--- base_model: unsloth/phi-3-mini-4k-instruct-bnb-4bit library_name: peft --- # Model Card for Model ID to genrate tabluar data give instruction like FastLanguageModel.for_inference(model) # Enable native 2x faster inference inputs = tokenizer( [ alpaca_prompt.format( "understand the pattern and functional dependencies in the table given in json format in Input and generate similar table with 5 rows.", # instruction """{("category":"A","item_id":"A1","location":"loc-001","price":100,"available":true),("category":"A","item_id":"A2","location":"loc-002","price":150,"available":false")},{("category":"B","item_id":"B1","location":"loc-001","price":100,"available":true),("category":"B","item_id":"B2","location":"loc-002","price":150,"available":false")},{("category":"C","item_id":"C1","location":"loc-001","price":100,"available":true),("category":"B","item_id":"B3","location":"loc-002","price":150,"available":false")}""", # input "", # output - leave this blank for generation! ) ], return_tensors = "pt").to("cuda") where alpaca_prompt = """Below is an instruction that describes a task, paired with an input that provides data mentioned in instruction. Write a response and explanation that appropriately completes the request. In the Input section a table is given in form of json format. ( (col1: 1,col2: 2), (col1: 3, col2: 4)) here (col1: 1,col2: 2) is row 1 and (col1: 3, col2: 4)) is row 2 in row 1 col 1 has value 1 and col 2 has value 2. ### Instruction: {} ### Input: {} ### Output: {}""" ## Model Details ### Model Description - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses ### Direct Use [More Information Needed] ### Downstream Use [optional] [More Information Needed] ### Out-of-Scope Use [More Information Needed] ## Bias, Risks, and Limitations [More Information Needed] ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data [More Information Needed] ### Training Procedure #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] #### Speeds, Sizes, Times [optional] [More Information Needed] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data [More Information Needed] #### Factors [More Information Needed] #### Metrics [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] [More Information Needed] ## Environmental Impact Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.12.0