BP-INT03 / README.md
Zainab984's picture
End of training
a17cc6b
|
raw
history blame
2.38 kB
---
license: mit
base_model: prajjwal1/bert-tiny
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
model-index:
- name: BP-INT03
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# BP-INT03
This model is a fine-tuned version of [prajjwal1/bert-tiny](https://huggingface.co/prajjwal1/bert-tiny) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3220
- Accuracy: 0.89
- F1: 0.8889
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| No log | 0.0 | 50 | 0.6958 | 0.43 | 0.2586 |
| No log | 0.01 | 100 | 0.6890 | 0.67 | 0.6043 |
| No log | 0.01 | 150 | 0.6814 | 0.57 | 0.4139 |
| No log | 0.02 | 200 | 0.6723 | 0.57 | 0.4139 |
| No log | 0.02 | 250 | 0.6289 | 0.81 | 0.8103 |
| No log | 0.03 | 300 | 0.5298 | 0.82 | 0.8207 |
| No log | 0.03 | 350 | 0.4480 | 0.88 | 0.8796 |
| No log | 0.04 | 400 | 0.4042 | 0.89 | 0.8889 |
| No log | 0.04 | 450 | 0.3688 | 0.9 | 0.8988 |
| 0.6099 | 0.05 | 500 | 0.3615 | 0.89 | 0.8889 |
| 0.6099 | 0.05 | 550 | 0.3542 | 0.89 | 0.8889 |
| 0.6099 | 0.06 | 600 | 0.3443 | 0.89 | 0.8889 |
| 0.6099 | 0.06 | 650 | 0.3300 | 0.89 | 0.8889 |
| 0.6099 | 0.07 | 700 | 0.3196 | 0.89 | 0.8889 |
| 0.6099 | 0.07 | 750 | 0.3220 | 0.89 | 0.8889 |
### Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0