|
--- |
|
license: mit |
|
base_model: prajjwal1/bert-tiny |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
- f1 |
|
model-index: |
|
- name: BP-INT03 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# BP-INT03 |
|
|
|
This model is a fine-tuned version of [prajjwal1/bert-tiny](https://huggingface.co/prajjwal1/bert-tiny) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.3220 |
|
- Accuracy: 0.89 |
|
- F1: 0.8889 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| |
|
| No log | 0.0 | 50 | 0.6958 | 0.43 | 0.2586 | |
|
| No log | 0.01 | 100 | 0.6890 | 0.67 | 0.6043 | |
|
| No log | 0.01 | 150 | 0.6814 | 0.57 | 0.4139 | |
|
| No log | 0.02 | 200 | 0.6723 | 0.57 | 0.4139 | |
|
| No log | 0.02 | 250 | 0.6289 | 0.81 | 0.8103 | |
|
| No log | 0.03 | 300 | 0.5298 | 0.82 | 0.8207 | |
|
| No log | 0.03 | 350 | 0.4480 | 0.88 | 0.8796 | |
|
| No log | 0.04 | 400 | 0.4042 | 0.89 | 0.8889 | |
|
| No log | 0.04 | 450 | 0.3688 | 0.9 | 0.8988 | |
|
| 0.6099 | 0.05 | 500 | 0.3615 | 0.89 | 0.8889 | |
|
| 0.6099 | 0.05 | 550 | 0.3542 | 0.89 | 0.8889 | |
|
| 0.6099 | 0.06 | 600 | 0.3443 | 0.89 | 0.8889 | |
|
| 0.6099 | 0.06 | 650 | 0.3300 | 0.89 | 0.8889 | |
|
| 0.6099 | 0.07 | 700 | 0.3196 | 0.89 | 0.8889 | |
|
| 0.6099 | 0.07 | 750 | 0.3220 | 0.89 | 0.8889 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.35.2 |
|
- Pytorch 2.1.0+cu118 |
|
- Datasets 2.15.0 |
|
- Tokenizers 0.15.0 |
|
|