|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
Fine-tuning the library models for causal language modeling (GPT, GPT-2, CTRL, ...) on a text file or a dataset. |
|
|
|
Here is the full list of checkpoints on the hub that can be fine-tuned by this script: |
|
https://huggingface.co/models?filter=text-generation |
|
""" |
|
|
|
|
|
import logging |
|
import math |
|
import os |
|
import sys |
|
import warnings |
|
from dataclasses import dataclass, field |
|
from itertools import chain |
|
from typing import Optional |
|
|
|
import datasets |
|
import evaluate |
|
import torch |
|
from datasets import load_dataset |
|
|
|
import transformers |
|
from transformers import ( |
|
CONFIG_MAPPING, |
|
MODEL_FOR_CAUSAL_LM_MAPPING, |
|
AutoConfig, |
|
AutoModelForCausalLM, |
|
AutoTokenizer, |
|
HfArgumentParser, |
|
Trainer, |
|
TrainingArguments, |
|
default_data_collator, |
|
is_torch_tpu_available, |
|
set_seed, |
|
) |
|
from transformers.testing_utils import CaptureLogger |
|
from transformers.trainer_utils import get_last_checkpoint |
|
from transformers.utils import check_min_version, send_example_telemetry |
|
from transformers.utils.versions import require_version |
|
|
|
|
|
|
|
check_min_version("4.36.0.dev0") |
|
|
|
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/language-modeling/requirements.txt") |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
MODEL_CONFIG_CLASSES = list(MODEL_FOR_CAUSAL_LM_MAPPING.keys()) |
|
MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) |
|
|
|
|
|
@dataclass |
|
class ModelArguments: |
|
""" |
|
Arguments pertaining to which model/config/tokenizer we are going to fine-tune, or train from scratch. |
|
""" |
|
|
|
model_name_or_path: Optional[str] = field( |
|
default=None, |
|
metadata={ |
|
"help": ( |
|
"The model checkpoint for weights initialization. Don't set if you want to train a model from scratch." |
|
) |
|
}, |
|
) |
|
model_type: Optional[str] = field( |
|
default=None, |
|
metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(MODEL_TYPES)}, |
|
) |
|
config_overrides: Optional[str] = field( |
|
default=None, |
|
metadata={ |
|
"help": ( |
|
"Override some existing default config settings when a model is trained from scratch. Example: " |
|
"n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index" |
|
) |
|
}, |
|
) |
|
config_name: Optional[str] = field( |
|
default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"} |
|
) |
|
tokenizer_name: Optional[str] = field( |
|
default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} |
|
) |
|
cache_dir: Optional[str] = field( |
|
default=None, |
|
metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"}, |
|
) |
|
use_fast_tokenizer: bool = field( |
|
default=True, |
|
metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."}, |
|
) |
|
model_revision: str = field( |
|
default="main", |
|
metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."}, |
|
) |
|
token: str = field( |
|
default=None, |
|
metadata={ |
|
"help": ( |
|
"The token to use as HTTP bearer authorization for remote files. If not specified, will use the token " |
|
"generated when running `huggingface-cli login` (stored in `~/.huggingface`)." |
|
) |
|
}, |
|
) |
|
use_auth_token: bool = field( |
|
default=None, |
|
metadata={ |
|
"help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token` instead." |
|
}, |
|
) |
|
trust_remote_code: bool = field( |
|
default=False, |
|
metadata={ |
|
"help": ( |
|
"Whether or not to allow for custom models defined on the Hub in their own modeling files. This option" |
|
"should only be set to `True` for repositories you trust and in which you have read the code, as it will " |
|
"execute code present on the Hub on your local machine." |
|
) |
|
}, |
|
) |
|
torch_dtype: Optional[str] = field( |
|
default=None, |
|
metadata={ |
|
"help": ( |
|
"Override the default `torch.dtype` and load the model under this dtype. If `auto` is passed, the " |
|
"dtype will be automatically derived from the model's weights." |
|
), |
|
"choices": ["auto", "bfloat16", "float16", "float32"], |
|
}, |
|
) |
|
low_cpu_mem_usage: bool = field( |
|
default=False, |
|
metadata={ |
|
"help": ( |
|
"It is an option to create the model as an empty shell, then only materialize its parameters when the pretrained weights are loaded. " |
|
"set True will benefit LLM loading time and RAM consumption." |
|
) |
|
}, |
|
) |
|
|
|
def __post_init__(self): |
|
if self.config_overrides is not None and (self.config_name is not None or self.model_name_or_path is not None): |
|
raise ValueError( |
|
"--config_overrides can't be used in combination with --config_name or --model_name_or_path" |
|
) |
|
|
|
|
|
@dataclass |
|
class DataTrainingArguments: |
|
""" |
|
Arguments pertaining to what data we are going to input our model for training and eval. |
|
""" |
|
|
|
dataset_name: Optional[str] = field( |
|
default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."} |
|
) |
|
dataset_config_name: Optional[str] = field( |
|
default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} |
|
) |
|
train_file: Optional[str] = field(default=None, metadata={"help": "The input training data file (a text file)."}) |
|
validation_file: Optional[str] = field( |
|
default=None, |
|
metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."}, |
|
) |
|
max_train_samples: Optional[int] = field( |
|
default=None, |
|
metadata={ |
|
"help": ( |
|
"For debugging purposes or quicker training, truncate the number of training examples to this " |
|
"value if set." |
|
) |
|
}, |
|
) |
|
max_eval_samples: Optional[int] = field( |
|
default=None, |
|
metadata={ |
|
"help": ( |
|
"For debugging purposes or quicker training, truncate the number of evaluation examples to this " |
|
"value if set." |
|
) |
|
}, |
|
) |
|
streaming: bool = field(default=False, metadata={"help": "Enable streaming mode"}) |
|
block_size: Optional[int] = field( |
|
default=None, |
|
metadata={ |
|
"help": ( |
|
"Optional input sequence length after tokenization. " |
|
"The training dataset will be truncated in block of this size for training. " |
|
"Default to the model max input length for single sentence inputs (take into account special tokens)." |
|
) |
|
}, |
|
) |
|
overwrite_cache: bool = field( |
|
default=False, metadata={"help": "Overwrite the cached training and evaluation sets"} |
|
) |
|
validation_split_percentage: Optional[int] = field( |
|
default=5, |
|
metadata={ |
|
"help": "The percentage of the train set used as validation set in case there's no validation split" |
|
}, |
|
) |
|
preprocessing_num_workers: Optional[int] = field( |
|
default=None, |
|
metadata={"help": "The number of processes to use for the preprocessing."}, |
|
) |
|
keep_linebreaks: bool = field( |
|
default=True, metadata={"help": "Whether to keep line breaks when using TXT files or not."} |
|
) |
|
|
|
def __post_init__(self): |
|
if self.streaming: |
|
require_version("datasets>=2.0.0", "The streaming feature requires `datasets>=2.0.0`") |
|
|
|
if self.dataset_name is None and self.train_file is None and self.validation_file is None: |
|
raise ValueError("Need either a dataset name or a training/validation file.") |
|
else: |
|
if self.train_file is not None: |
|
extension = self.train_file.split(".")[-1] |
|
assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file." |
|
if self.validation_file is not None: |
|
extension = self.validation_file.split(".")[-1] |
|
assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file." |
|
|
|
|
|
def main(): |
|
|
|
|
|
|
|
|
|
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments)) |
|
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): |
|
|
|
|
|
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1])) |
|
else: |
|
model_args, data_args, training_args = parser.parse_args_into_dataclasses() |
|
|
|
if model_args.use_auth_token is not None: |
|
warnings.warn( |
|
"The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token` instead.", |
|
FutureWarning, |
|
) |
|
if model_args.token is not None: |
|
raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.") |
|
model_args.token = model_args.use_auth_token |
|
|
|
|
|
|
|
send_example_telemetry("run_clm", model_args, data_args) |
|
|
|
|
|
logging.basicConfig( |
|
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", |
|
datefmt="%m/%d/%Y %H:%M:%S", |
|
handlers=[logging.StreamHandler(sys.stdout)], |
|
) |
|
|
|
if training_args.should_log: |
|
|
|
transformers.utils.logging.set_verbosity_info() |
|
|
|
log_level = training_args.get_process_log_level() |
|
logger.setLevel(log_level) |
|
datasets.utils.logging.set_verbosity(log_level) |
|
transformers.utils.logging.set_verbosity(log_level) |
|
transformers.utils.logging.enable_default_handler() |
|
transformers.utils.logging.enable_explicit_format() |
|
|
|
|
|
logger.warning( |
|
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, " |
|
+ f"distributed training: {training_args.parallel_mode.value == 'distributed'}, 16-bits training: {training_args.fp16}" |
|
) |
|
logger.info(f"Training/evaluation parameters {training_args}") |
|
|
|
|
|
last_checkpoint = None |
|
if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir: |
|
last_checkpoint = get_last_checkpoint(training_args.output_dir) |
|
if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0: |
|
raise ValueError( |
|
f"Output directory ({training_args.output_dir}) already exists and is not empty. " |
|
"Use --overwrite_output_dir to overcome." |
|
) |
|
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: |
|
logger.info( |
|
f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " |
|
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch." |
|
) |
|
|
|
|
|
set_seed(training_args.seed) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if data_args.dataset_name is not None: |
|
|
|
raw_datasets = load_dataset( |
|
data_args.dataset_name, |
|
data_args.dataset_config_name, |
|
cache_dir=model_args.cache_dir, |
|
token=model_args.token, |
|
streaming=data_args.streaming, |
|
) |
|
if "validation" not in raw_datasets.keys(): |
|
raw_datasets["validation"] = load_dataset( |
|
data_args.dataset_name, |
|
data_args.dataset_config_name, |
|
split=f"train[:{data_args.validation_split_percentage}%]", |
|
cache_dir=model_args.cache_dir, |
|
token=model_args.token, |
|
streaming=data_args.streaming, |
|
) |
|
raw_datasets["train"] = load_dataset( |
|
data_args.dataset_name, |
|
data_args.dataset_config_name, |
|
split=f"train[{data_args.validation_split_percentage}%:]", |
|
cache_dir=model_args.cache_dir, |
|
token=model_args.token, |
|
streaming=data_args.streaming, |
|
) |
|
else: |
|
data_files = {} |
|
dataset_args = {} |
|
if data_args.train_file is not None: |
|
data_files["train"] = data_args.train_file |
|
if data_args.validation_file is not None: |
|
data_files["validation"] = data_args.validation_file |
|
extension = ( |
|
data_args.train_file.split(".")[-1] |
|
if data_args.train_file is not None |
|
else data_args.validation_file.split(".")[-1] |
|
) |
|
if extension == "txt": |
|
extension = "text" |
|
dataset_args["keep_linebreaks"] = data_args.keep_linebreaks |
|
raw_datasets = load_dataset( |
|
extension, |
|
data_files=data_files, |
|
cache_dir=model_args.cache_dir, |
|
token=model_args.token, |
|
**dataset_args, |
|
) |
|
|
|
if "validation" not in raw_datasets.keys(): |
|
raw_datasets["validation"] = load_dataset( |
|
extension, |
|
data_files=data_files, |
|
split=f"train[:{data_args.validation_split_percentage}%]", |
|
cache_dir=model_args.cache_dir, |
|
token=model_args.token, |
|
**dataset_args, |
|
) |
|
raw_datasets["train"] = load_dataset( |
|
extension, |
|
data_files=data_files, |
|
split=f"train[{data_args.validation_split_percentage}%:]", |
|
cache_dir=model_args.cache_dir, |
|
token=model_args.token, |
|
**dataset_args, |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
config_kwargs = { |
|
"cache_dir": model_args.cache_dir, |
|
"revision": model_args.model_revision, |
|
"token": model_args.token, |
|
"trust_remote_code": model_args.trust_remote_code, |
|
} |
|
if model_args.config_name: |
|
config = AutoConfig.from_pretrained(model_args.config_name, **config_kwargs) |
|
elif model_args.model_name_or_path: |
|
config = AutoConfig.from_pretrained(model_args.model_name_or_path, **config_kwargs) |
|
else: |
|
config = CONFIG_MAPPING[model_args.model_type]() |
|
logger.warning("You are instantiating a new config instance from scratch.") |
|
if model_args.config_overrides is not None: |
|
logger.info(f"Overriding config: {model_args.config_overrides}") |
|
config.update_from_string(model_args.config_overrides) |
|
logger.info(f"New config: {config}") |
|
|
|
tokenizer_kwargs = { |
|
"cache_dir": model_args.cache_dir, |
|
"use_fast": model_args.use_fast_tokenizer, |
|
"revision": model_args.model_revision, |
|
"token": model_args.token, |
|
"trust_remote_code": model_args.trust_remote_code, |
|
} |
|
if model_args.tokenizer_name: |
|
tokenizer = AutoTokenizer.from_pretrained(model_args.tokenizer_name, **tokenizer_kwargs) |
|
elif model_args.model_name_or_path: |
|
tokenizer = AutoTokenizer.from_pretrained(model_args.model_name_or_path, **tokenizer_kwargs) |
|
else: |
|
raise ValueError( |
|
"You are instantiating a new tokenizer from scratch. This is not supported by this script. " |
|
"You can do it from another script, save it, and load it from here, using --tokenizer_name." |
|
) |
|
|
|
if model_args.model_name_or_path: |
|
torch_dtype = ( |
|
model_args.torch_dtype |
|
if model_args.torch_dtype in ["auto", None] |
|
else getattr(torch, model_args.torch_dtype) |
|
) |
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_args.model_name_or_path, |
|
from_tf=bool(".ckpt" in model_args.model_name_or_path), |
|
config=config, |
|
cache_dir=model_args.cache_dir, |
|
revision=model_args.model_revision, |
|
token=model_args.token, |
|
trust_remote_code=model_args.trust_remote_code, |
|
torch_dtype=torch_dtype, |
|
low_cpu_mem_usage=model_args.low_cpu_mem_usage, |
|
) |
|
else: |
|
model = AutoModelForCausalLM.from_config(config, trust_remote_code=model_args.trust_remote_code) |
|
n_params = sum({p.data_ptr(): p.numel() for p in model.parameters()}.values()) |
|
logger.info(f"Training new model from scratch - Total size={n_params/2**20:.2f}M params") |
|
|
|
|
|
|
|
embedding_size = model.get_input_embeddings().weight.shape[0] |
|
if len(tokenizer) > embedding_size: |
|
model.resize_token_embeddings(len(tokenizer)) |
|
|
|
|
|
|
|
if training_args.do_train: |
|
column_names = list(raw_datasets["train"].features) |
|
else: |
|
column_names = list(raw_datasets["validation"].features) |
|
text_column_name = "text" if "text" in column_names else column_names[0] |
|
|
|
|
|
tok_logger = transformers.utils.logging.get_logger("transformers.tokenization_utils_base") |
|
|
|
def tokenize_function(examples): |
|
with CaptureLogger(tok_logger) as cl: |
|
output = tokenizer(examples[text_column_name]) |
|
|
|
if "Token indices sequence length is longer than the" in cl.out: |
|
tok_logger.warning( |
|
"^^^^^^^^^^^^^^^^ Please ignore the warning above - this long input will be chunked into smaller bits" |
|
" before being passed to the model." |
|
) |
|
return output |
|
|
|
with training_args.main_process_first(desc="dataset map tokenization"): |
|
if not data_args.streaming: |
|
tokenized_datasets = raw_datasets.map( |
|
tokenize_function, |
|
batched=True, |
|
num_proc=data_args.preprocessing_num_workers, |
|
remove_columns=column_names, |
|
load_from_cache_file=not data_args.overwrite_cache, |
|
desc="Running tokenizer on dataset", |
|
) |
|
else: |
|
tokenized_datasets = raw_datasets.map( |
|
tokenize_function, |
|
batched=True, |
|
remove_columns=column_names, |
|
) |
|
if hasattr(config, "max_position_embeddings"): |
|
max_pos_embeddings = config.max_position_embeddings |
|
else: |
|
|
|
max_pos_embeddings = 1024 |
|
|
|
if data_args.block_size is None: |
|
block_size = tokenizer.model_max_length |
|
if block_size > max_pos_embeddings: |
|
logger.warning( |
|
f"The tokenizer picked seems to have a very large `model_max_length` ({tokenizer.model_max_length}). " |
|
f"Using block_size={min(1024, max_pos_embeddings)} instead. You can change that default value by passing --block_size xxx." |
|
) |
|
block_size = min(1024, max_pos_embeddings) |
|
else: |
|
if data_args.block_size > tokenizer.model_max_length: |
|
logger.warning( |
|
f"The block_size passed ({data_args.block_size}) is larger than the maximum length for the model " |
|
f"({tokenizer.model_max_length}). Using block_size={tokenizer.model_max_length}." |
|
) |
|
block_size = min(data_args.block_size, tokenizer.model_max_length) |
|
|
|
|
|
def group_texts(examples): |
|
|
|
concatenated_examples = {k: list(chain(*examples[k])) for k in examples.keys()} |
|
total_length = len(concatenated_examples[list(examples.keys())[0]]) |
|
|
|
|
|
total_length = (total_length // block_size) * block_size |
|
|
|
result = { |
|
k: [t[i : i + block_size] for i in range(0, total_length, block_size)] |
|
for k, t in concatenated_examples.items() |
|
} |
|
result["labels"] = result["input_ids"].copy() |
|
return result |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
with training_args.main_process_first(desc="grouping texts together"): |
|
if not data_args.streaming: |
|
lm_datasets = tokenized_datasets.map( |
|
group_texts, |
|
batched=True, |
|
num_proc=data_args.preprocessing_num_workers, |
|
load_from_cache_file=not data_args.overwrite_cache, |
|
desc=f"Grouping texts in chunks of {block_size}", |
|
) |
|
else: |
|
lm_datasets = tokenized_datasets.map( |
|
group_texts, |
|
batched=True, |
|
) |
|
|
|
if training_args.do_train: |
|
if "train" not in tokenized_datasets: |
|
raise ValueError("--do_train requires a train dataset") |
|
train_dataset = lm_datasets["train"] |
|
if data_args.max_train_samples is not None: |
|
max_train_samples = min(len(train_dataset), data_args.max_train_samples) |
|
train_dataset = train_dataset.select(range(max_train_samples)) |
|
|
|
if training_args.do_eval: |
|
if "validation" not in tokenized_datasets: |
|
raise ValueError("--do_eval requires a validation dataset") |
|
eval_dataset = lm_datasets["validation"] |
|
if data_args.max_eval_samples is not None: |
|
max_eval_samples = min(len(eval_dataset), data_args.max_eval_samples) |
|
eval_dataset = eval_dataset.select(range(max_eval_samples)) |
|
|
|
def preprocess_logits_for_metrics(logits, labels): |
|
if isinstance(logits, tuple): |
|
|
|
|
|
logits = logits[0] |
|
return logits.argmax(dim=-1) |
|
|
|
metric = evaluate.load("accuracy") |
|
|
|
def compute_metrics(eval_preds): |
|
preds, labels = eval_preds |
|
|
|
|
|
labels = labels[:, 1:].reshape(-1) |
|
preds = preds[:, :-1].reshape(-1) |
|
return metric.compute(predictions=preds, references=labels) |
|
|
|
|
|
trainer = Trainer( |
|
model=model, |
|
args=training_args, |
|
train_dataset=train_dataset if training_args.do_train else None, |
|
eval_dataset=eval_dataset if training_args.do_eval else None, |
|
tokenizer=tokenizer, |
|
|
|
data_collator=default_data_collator, |
|
compute_metrics=compute_metrics if training_args.do_eval and not is_torch_tpu_available() else None, |
|
preprocess_logits_for_metrics=preprocess_logits_for_metrics |
|
if training_args.do_eval and not is_torch_tpu_available() |
|
else None, |
|
) |
|
|
|
|
|
if training_args.do_train: |
|
checkpoint = None |
|
if training_args.resume_from_checkpoint is not None: |
|
checkpoint = training_args.resume_from_checkpoint |
|
elif last_checkpoint is not None: |
|
checkpoint = last_checkpoint |
|
train_result = trainer.train(resume_from_checkpoint=checkpoint) |
|
trainer.save_model() |
|
|
|
metrics = train_result.metrics |
|
|
|
max_train_samples = ( |
|
data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset) |
|
) |
|
metrics["train_samples"] = min(max_train_samples, len(train_dataset)) |
|
|
|
trainer.log_metrics("train", metrics) |
|
trainer.save_metrics("train", metrics) |
|
trainer.save_state() |
|
|
|
|
|
if training_args.do_eval: |
|
logger.info("*** Evaluate ***") |
|
|
|
metrics = trainer.evaluate() |
|
|
|
max_eval_samples = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(eval_dataset) |
|
metrics["eval_samples"] = min(max_eval_samples, len(eval_dataset)) |
|
try: |
|
perplexity = math.exp(metrics["eval_loss"]) |
|
except OverflowError: |
|
perplexity = float("inf") |
|
metrics["perplexity"] = perplexity |
|
|
|
trainer.log_metrics("eval", metrics) |
|
trainer.save_metrics("eval", metrics) |
|
|
|
kwargs = {"finetuned_from": model_args.model_name_or_path, "tasks": "text-generation"} |
|
if data_args.dataset_name is not None: |
|
kwargs["dataset_tags"] = data_args.dataset_name |
|
if data_args.dataset_config_name is not None: |
|
kwargs["dataset_args"] = data_args.dataset_config_name |
|
kwargs["dataset"] = f"{data_args.dataset_name} {data_args.dataset_config_name}" |
|
else: |
|
kwargs["dataset"] = data_args.dataset_name |
|
|
|
if training_args.push_to_hub: |
|
trainer.push_to_hub(**kwargs) |
|
else: |
|
trainer.create_model_card(**kwargs) |
|
|
|
|
|
def _mp_fn(index): |
|
|
|
main() |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |
|
|