--- license: mit tags: - generated_from_trainer base_model: facebook/w2v-bert-2.0 datasets: - generator metrics: - wer model-index: - name: wav2vec2-bert-fon results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: generator type: generator config: default split: train args: default metrics: - type: wer value: 0.2183013319494897 name: Wer --- # wav2vec2-bert-fon This model is a fine-tuned version of [facebook/w2v-bert-2.0](https://huggingface.co/facebook/w2v-bert-2.0) on the generator dataset. It achieves the following results on the evaluation set: - Loss: 0.2480 - Wer: 0.2183 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 8 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 1.7256 | 0.35 | 500 | 0.7130 | 0.5735 | | 0.497 | 0.7 | 1000 | 0.4485 | 0.4113 | | 0.4133 | 1.05 | 1500 | 0.3067 | 0.2729 | | 0.303 | 1.4 | 2000 | 0.2747 | 0.2340 | | 0.2556 | 1.75 | 2500 | 0.2047 | 0.1793 | | 0.2378 | 2.1 | 3000 | 0.1794 | 0.1528 | | 0.1619 | 2.45 | 3500 | 0.1831 | 0.1526 | | 0.1702 | 2.8 | 4000 | 0.1707 | 0.1275 | | 0.142 | 3.15 | 4500 | 0.1653 | 0.1273 | | 0.133 | 3.5 | 5000 | 0.1467 | 0.1218 | | 0.1864 | 3.85 | 5500 | 0.2228 | 0.1565 | | 0.3031 | 4.21 | 6000 | 0.2462 | 0.2076 | | 0.3263 | 4.56 | 6500 | 0.2432 | 0.1713 | | 0.3354 | 4.91 | 7000 | 0.2506 | 0.2277 | | 0.3266 | 5.26 | 7500 | 0.2480 | 0.2183 | | 0.3247 | 5.61 | 8000 | 0.2480 | 0.2183 | | 0.3416 | 5.96 | 8500 | 0.2480 | 0.2183 | | 0.323 | 6.31 | 9000 | 0.2480 | 0.2183 | | 0.3303 | 6.66 | 9500 | 0.2480 | 0.2183 | | 0.3328 | 7.01 | 10000 | 0.2480 | 0.2183 | | 0.3244 | 7.36 | 10500 | 0.2480 | 0.2183 | | 0.3362 | 7.71 | 11000 | 0.2480 | 0.2183 | ### Framework versions - Transformers 4.39.3 - Pytorch 2.1.2 - Datasets 2.18.0 - Tokenizers 0.15.2