File size: 4,271 Bytes
2a41a22
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
import os
import argparse
from glob import glob
from tqdm import tqdm
import cv2
import torch

from dataset import MyData
from models.birefnet import BiRefNet
from utils import save_tensor_img, check_state_dict
from config import Config


config = Config()


def inference(model, data_loader_test, pred_root, method, testset, device=0):
    model_training = model.training
    if model_training:
        model.eval()
    for batch in tqdm(data_loader_test, total=len(data_loader_test)) if 1 or config.verbose_eval else data_loader_test:
        inputs = batch[0].to(device)
        # gts = batch[1].to(device)
        label_paths = batch[-1]
        with torch.no_grad():
            scaled_preds = model(inputs)[-1].sigmoid()

        os.makedirs(os.path.join(pred_root, method, testset), exist_ok=True)

        for idx_sample in range(scaled_preds.shape[0]):
            res = torch.nn.functional.interpolate(
                scaled_preds[idx_sample].unsqueeze(0),
                size=cv2.imread(label_paths[idx_sample], cv2.IMREAD_GRAYSCALE).shape[:2],
                mode='bilinear',
                align_corners=True
            )
            save_tensor_img(res, os.path.join(os.path.join(pred_root, method, testset), label_paths[idx_sample].replace('\\', '/').split('/')[-1]))   # test set dir + file name
    if model_training:
        model.train()
    return None


def main(args):
    # Init model

    device = config.device
    if args.ckpt_folder:
        print('Testing with models in {}'.format(args.ckpt_folder))
    else:
        print('Testing with model {}'.format(args.ckpt))

    if config.model == 'BiRefNet':
        model = BiRefNet(bb_pretrained=False)
    weights_lst = sorted(
        glob(os.path.join(args.ckpt_folder, '*.pth')) if args.ckpt_folder else [args.ckpt],
        key=lambda x: int(x.split('epoch_')[-1].split('.pth')[0]),
        reverse=True
    )
    for testset in args.testsets.split('+'):
        print('>>>> Testset: {}...'.format(testset))
        data_loader_test = torch.utils.data.DataLoader(
            dataset=MyData(testset, image_size=config.size, is_train=False),
            batch_size=config.batch_size_valid, shuffle=False, num_workers=config.num_workers, pin_memory=True
        )
        for weights in weights_lst:
            if int(weights.strip('.pth').split('epoch_')[-1]) % 1 != 0:
                continue
            print('\tInferencing {}...'.format(weights))
            # model.load_state_dict(torch.load(weights, map_location='cpu'))
            state_dict = torch.load(weights, map_location='cpu')
            state_dict = check_state_dict(state_dict)
            model.load_state_dict(state_dict)
            model = model.to(device)
            inference(
                model, data_loader_test=data_loader_test, pred_root=args.pred_root,
                method='--'.join([w.rstrip('.pth') for w in weights.split(os.sep)[-2:]]),
                testset=testset, device=config.device
            )


if __name__ == '__main__':
    # Parameter from command line
    parser = argparse.ArgumentParser(description='')
    parser.add_argument('--ckpt', type=str, help='model folder')
    parser.add_argument('--ckpt_folder', default=sorted(glob(os.path.join('ckpt', '*')))[-1], type=str, help='model folder')
    parser.add_argument('--pred_root', default='e_preds', type=str, help='Output folder')
    parser.add_argument('--testsets',
                        default={
                            'DIS5K': 'DIS-VD+DIS-TE1+DIS-TE2+DIS-TE3+DIS-TE4',
                            'COD': 'TE-COD10K+NC4K+TE-CAMO+CHAMELEON',
                            'HRSOD': 'DAVIS-S+TE-HRSOD+TE-UHRSD+TE-DUTS+DUT-OMRON',
                            'DIS5K+HRSOD+HRS10K': 'DIS-VD',
                            'P3M-10k': 'TE-P3M-500-P+TE-P3M-500-NP',
                            'DIS5K-': 'DIS-VD',
                            'COD-': 'TE-COD10K',
                            'SOD-': 'DAVIS-S+TE-HRSOD+TE-UHRSD',
                        }[config.task + ''],
                        type=str,
                        help="Test all sets: , 'DIS-VD+DIS-TE1+DIS-TE2+DIS-TE3+DIS-TE4'")

    args = parser.parse_args()

    if config.precisionHigh:
        torch.set_float32_matmul_precision('high')
    main(args)