File size: 8,082 Bytes
2a41a22
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
import os
import math


class Config():
    def __init__(self) -> None:
        # PATH settings
        self.sys_home_dir = os.environ['HOME']     # Make up your file system as: SYS_HOME_DIR/codes/dis/BiRefNet, SYS_HOME_DIR/datasets/dis/xx, SYS_HOME_DIR/weights/xx

        # TASK settings
        self.task = ['DIS5K', 'COD', 'HRSOD', 'DIS5K+HRSOD+HRS10K', 'P3M-10k'][0]
        self.training_set = {
            'DIS5K': ['DIS-TR', 'DIS-TR+DIS-TE1+DIS-TE2+DIS-TE3+DIS-TE4'][0],
            'COD': 'TR-COD10K+TR-CAMO',
            'HRSOD': ['TR-DUTS', 'TR-HRSOD', 'TR-UHRSD', 'TR-DUTS+TR-HRSOD', 'TR-DUTS+TR-UHRSD', 'TR-HRSOD+TR-UHRSD', 'TR-DUTS+TR-HRSOD+TR-UHRSD'][5],
            'DIS5K+HRSOD+HRS10K': 'DIS-TE1+DIS-TE2+DIS-TE3+DIS-TE4+DIS-TR+TE-HRS10K+TE-HRSOD+TE-UHRSD+TR-HRS10K+TR-HRSOD+TR-UHRSD',     # leave DIS-VD for evaluation.
            'P3M-10k': 'TR-P3M-10k',
        }[self.task]
        self.prompt4loc = ['dense', 'sparse'][0]

        # Faster-Training settings
        self.load_all = True
        self.compile = True     # 1. Trigger CPU memory leak in some extend, which is an inherent problem of PyTorch.
                                #   Machines with > 70GB CPU memory can run the whole training on DIS5K with default setting.
                                # 2. Higher PyTorch version may fix it: https://github.com/pytorch/pytorch/issues/119607.
                                # 3. But compile in Pytorch > 2.0.1 seems to bring no acceleration for training.
        self.precisionHigh = True

        # MODEL settings
        self.ms_supervision = True
        self.out_ref = self.ms_supervision and True
        self.dec_ipt = True
        self.dec_ipt_split = True
        self.cxt_num = [0, 3][1]    # multi-scale skip connections from encoder
        self.mul_scl_ipt = ['', 'add', 'cat'][2]
        self.dec_att = ['', 'ASPP', 'ASPPDeformable'][2]
        self.squeeze_block = ['', 'BasicDecBlk_x1', 'ResBlk_x4', 'ASPP_x3', 'ASPPDeformable_x3'][1]
        self.dec_blk = ['BasicDecBlk', 'ResBlk', 'HierarAttDecBlk'][0]

        # TRAINING settings
        self.batch_size = 4
        self.IoU_finetune_last_epochs = [
            0,
            {
                'DIS5K': -50,
                'COD': -20,
                'HRSOD': -20,
                'DIS5K+HRSOD+HRS10K': -20,
                'P3M-10k': -20,
            }[self.task]
        ][1]    # choose 0 to skip
        self.lr = (1e-4 if 'DIS5K' in self.task else 1e-5) * math.sqrt(self.batch_size / 4)     # DIS needs high lr to converge faster. Adapt the lr linearly
        self.size = 1024
        self.num_workers = max(4, self.batch_size)          # will be decrease to min(it, batch_size) at the initialization of the data_loader

        # Backbone settings
        self.bb = [
            'vgg16', 'vgg16bn', 'resnet50',         # 0, 1, 2
            'swin_v1_t', 'swin_v1_s',               # 3, 4
            'swin_v1_b', 'swin_v1_l',               # 5-bs9, 6-bs4
            'pvt_v2_b0', 'pvt_v2_b1',               # 7, 8
            'pvt_v2_b2', 'pvt_v2_b5',               # 9-bs10, 10-bs5
        ][6]
        self.lateral_channels_in_collection = {
            'vgg16': [512, 256, 128, 64], 'vgg16bn': [512, 256, 128, 64], 'resnet50': [1024, 512, 256, 64],
            'pvt_v2_b2': [512, 320, 128, 64], 'pvt_v2_b5': [512, 320, 128, 64],
            'swin_v1_b': [1024, 512, 256, 128], 'swin_v1_l': [1536, 768, 384, 192],
            'swin_v1_t': [768, 384, 192, 96], 'swin_v1_s': [768, 384, 192, 96],
            'pvt_v2_b0': [256, 160, 64, 32], 'pvt_v2_b1': [512, 320, 128, 64],
        }[self.bb]
        if self.mul_scl_ipt == 'cat':
            self.lateral_channels_in_collection = [channel * 2 for channel in self.lateral_channels_in_collection]
        self.cxt = self.lateral_channels_in_collection[1:][::-1][-self.cxt_num:] if self.cxt_num else []

        # MODEL settings - inactive
        self.lat_blk = ['BasicLatBlk'][0]
        self.dec_channels_inter = ['fixed', 'adap'][0]
        self.refine = ['', 'itself', 'RefUNet', 'Refiner', 'RefinerPVTInChannels4'][0]
        self.progressive_ref = self.refine and True
        self.ender = self.progressive_ref and False
        self.scale = self.progressive_ref and 2
        self.auxiliary_classification = False       # Only for DIS5K, where class labels are saved in `dataset.py`.
        self.refine_iteration = 1
        self.freeze_bb = False
        self.model = [
            'BiRefNet',
        ][0]
        if self.dec_blk == 'HierarAttDecBlk':
            self.batch_size = 2 ** [0, 1, 2, 3, 4][2]

        # TRAINING settings - inactive
        self.preproc_methods = ['flip', 'enhance', 'rotate', 'pepper', 'crop'][:4]
        self.optimizer = ['Adam', 'AdamW'][1]
        self.lr_decay_epochs = [1e5]    # Set to negative N to decay the lr in the last N-th epoch.
        self.lr_decay_rate = 0.5
        # Loss
        self.lambdas_pix_last = {
            # not 0 means opening this loss
            # original rate -- 1 : 30 : 1.5 : 0.2, bce x 30
            'bce': 30 * 1,          # high performance
            'iou': 0.5 * 1,         # 0 / 255
            'iou_patch': 0.5 * 0,   # 0 / 255, win_size = (64, 64)
            'mse': 150 * 0,         # can smooth the saliency map
            'triplet': 3 * 0,
            'reg': 100 * 0,
            'ssim': 10 * 1,          # help contours,
            'cnt': 5 * 0,          # help contours
            'structure': 5 * 0,    # structure loss from codes of MVANet. A little improvement on DIS-TE[1,2,3], a bit more decrease on DIS-TE4.
        }
        self.lambdas_cls = {
            'ce': 5.0
        }
        # Adv
        self.lambda_adv_g = 10. * 0        # turn to 0 to avoid adv training
        self.lambda_adv_d = 3. * (self.lambda_adv_g > 0)

        # PATH settings - inactive
        self.data_root_dir = os.path.join(self.sys_home_dir, 'datasets/dis')
        self.weights_root_dir = os.path.join(self.sys_home_dir, 'weights')
        self.weights = {
            'pvt_v2_b2': os.path.join(self.weights_root_dir, 'pvt_v2_b2.pth'),
            'pvt_v2_b5': os.path.join(self.weights_root_dir, ['pvt_v2_b5.pth', 'pvt_v2_b5_22k.pth'][0]),
            'swin_v1_b': os.path.join(self.weights_root_dir, ['swin_base_patch4_window12_384_22kto1k.pth', 'swin_base_patch4_window12_384_22k.pth'][0]),
            'swin_v1_l': os.path.join(self.weights_root_dir, ['swin_large_patch4_window12_384_22kto1k.pth', 'swin_large_patch4_window12_384_22k.pth'][0]),
            'swin_v1_t': os.path.join(self.weights_root_dir, ['swin_tiny_patch4_window7_224_22kto1k_finetune.pth'][0]),
            'swin_v1_s': os.path.join(self.weights_root_dir, ['swin_small_patch4_window7_224_22kto1k_finetune.pth'][0]),
            'pvt_v2_b0': os.path.join(self.weights_root_dir, ['pvt_v2_b0.pth'][0]),
            'pvt_v2_b1': os.path.join(self.weights_root_dir, ['pvt_v2_b1.pth'][0]),
        }

        # Callbacks - inactive
        self.verbose_eval = True
        self.only_S_MAE = False
        self.use_fp16 = False   # Bugs. It may cause nan in training.
        self.SDPA_enabled = False    # Bugs. Slower and errors occur in multi-GPUs

        # others
        self.device = [0, 'cpu'][0]     # .to(0) == .to('cuda:0')

        self.batch_size_valid = 1
        self.rand_seed = 7
        run_sh_file = [f for f in os.listdir('.') if 'train.sh' == f] + [os.path.join('..', f) for f in os.listdir('..') if 'train.sh' == f]
        with open(run_sh_file[0], 'r') as f:
            lines = f.readlines()
            self.save_last = int([l.strip() for l in lines if '"{}")'.format(self.task) in l and 'val_last=' in l][0].split('val_last=')[-1].split()[0])
            self.save_step = int([l.strip() for l in lines if '"{}")'.format(self.task) in l and 'step=' in l][0].split('step=')[-1].split()[0])
        self.val_step = [0, self.save_step][0]

    def print_task(self) -> None:
        # Return task for choosing settings in shell scripts.
        print(self.task)

if __name__ == '__main__':
    config = Config()
    config.print_task()