File size: 8,082 Bytes
2a41a22 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 |
import os
import math
class Config():
def __init__(self) -> None:
# PATH settings
self.sys_home_dir = os.environ['HOME'] # Make up your file system as: SYS_HOME_DIR/codes/dis/BiRefNet, SYS_HOME_DIR/datasets/dis/xx, SYS_HOME_DIR/weights/xx
# TASK settings
self.task = ['DIS5K', 'COD', 'HRSOD', 'DIS5K+HRSOD+HRS10K', 'P3M-10k'][0]
self.training_set = {
'DIS5K': ['DIS-TR', 'DIS-TR+DIS-TE1+DIS-TE2+DIS-TE3+DIS-TE4'][0],
'COD': 'TR-COD10K+TR-CAMO',
'HRSOD': ['TR-DUTS', 'TR-HRSOD', 'TR-UHRSD', 'TR-DUTS+TR-HRSOD', 'TR-DUTS+TR-UHRSD', 'TR-HRSOD+TR-UHRSD', 'TR-DUTS+TR-HRSOD+TR-UHRSD'][5],
'DIS5K+HRSOD+HRS10K': 'DIS-TE1+DIS-TE2+DIS-TE3+DIS-TE4+DIS-TR+TE-HRS10K+TE-HRSOD+TE-UHRSD+TR-HRS10K+TR-HRSOD+TR-UHRSD', # leave DIS-VD for evaluation.
'P3M-10k': 'TR-P3M-10k',
}[self.task]
self.prompt4loc = ['dense', 'sparse'][0]
# Faster-Training settings
self.load_all = True
self.compile = True # 1. Trigger CPU memory leak in some extend, which is an inherent problem of PyTorch.
# Machines with > 70GB CPU memory can run the whole training on DIS5K with default setting.
# 2. Higher PyTorch version may fix it: https://github.com/pytorch/pytorch/issues/119607.
# 3. But compile in Pytorch > 2.0.1 seems to bring no acceleration for training.
self.precisionHigh = True
# MODEL settings
self.ms_supervision = True
self.out_ref = self.ms_supervision and True
self.dec_ipt = True
self.dec_ipt_split = True
self.cxt_num = [0, 3][1] # multi-scale skip connections from encoder
self.mul_scl_ipt = ['', 'add', 'cat'][2]
self.dec_att = ['', 'ASPP', 'ASPPDeformable'][2]
self.squeeze_block = ['', 'BasicDecBlk_x1', 'ResBlk_x4', 'ASPP_x3', 'ASPPDeformable_x3'][1]
self.dec_blk = ['BasicDecBlk', 'ResBlk', 'HierarAttDecBlk'][0]
# TRAINING settings
self.batch_size = 4
self.IoU_finetune_last_epochs = [
0,
{
'DIS5K': -50,
'COD': -20,
'HRSOD': -20,
'DIS5K+HRSOD+HRS10K': -20,
'P3M-10k': -20,
}[self.task]
][1] # choose 0 to skip
self.lr = (1e-4 if 'DIS5K' in self.task else 1e-5) * math.sqrt(self.batch_size / 4) # DIS needs high lr to converge faster. Adapt the lr linearly
self.size = 1024
self.num_workers = max(4, self.batch_size) # will be decrease to min(it, batch_size) at the initialization of the data_loader
# Backbone settings
self.bb = [
'vgg16', 'vgg16bn', 'resnet50', # 0, 1, 2
'swin_v1_t', 'swin_v1_s', # 3, 4
'swin_v1_b', 'swin_v1_l', # 5-bs9, 6-bs4
'pvt_v2_b0', 'pvt_v2_b1', # 7, 8
'pvt_v2_b2', 'pvt_v2_b5', # 9-bs10, 10-bs5
][6]
self.lateral_channels_in_collection = {
'vgg16': [512, 256, 128, 64], 'vgg16bn': [512, 256, 128, 64], 'resnet50': [1024, 512, 256, 64],
'pvt_v2_b2': [512, 320, 128, 64], 'pvt_v2_b5': [512, 320, 128, 64],
'swin_v1_b': [1024, 512, 256, 128], 'swin_v1_l': [1536, 768, 384, 192],
'swin_v1_t': [768, 384, 192, 96], 'swin_v1_s': [768, 384, 192, 96],
'pvt_v2_b0': [256, 160, 64, 32], 'pvt_v2_b1': [512, 320, 128, 64],
}[self.bb]
if self.mul_scl_ipt == 'cat':
self.lateral_channels_in_collection = [channel * 2 for channel in self.lateral_channels_in_collection]
self.cxt = self.lateral_channels_in_collection[1:][::-1][-self.cxt_num:] if self.cxt_num else []
# MODEL settings - inactive
self.lat_blk = ['BasicLatBlk'][0]
self.dec_channels_inter = ['fixed', 'adap'][0]
self.refine = ['', 'itself', 'RefUNet', 'Refiner', 'RefinerPVTInChannels4'][0]
self.progressive_ref = self.refine and True
self.ender = self.progressive_ref and False
self.scale = self.progressive_ref and 2
self.auxiliary_classification = False # Only for DIS5K, where class labels are saved in `dataset.py`.
self.refine_iteration = 1
self.freeze_bb = False
self.model = [
'BiRefNet',
][0]
if self.dec_blk == 'HierarAttDecBlk':
self.batch_size = 2 ** [0, 1, 2, 3, 4][2]
# TRAINING settings - inactive
self.preproc_methods = ['flip', 'enhance', 'rotate', 'pepper', 'crop'][:4]
self.optimizer = ['Adam', 'AdamW'][1]
self.lr_decay_epochs = [1e5] # Set to negative N to decay the lr in the last N-th epoch.
self.lr_decay_rate = 0.5
# Loss
self.lambdas_pix_last = {
# not 0 means opening this loss
# original rate -- 1 : 30 : 1.5 : 0.2, bce x 30
'bce': 30 * 1, # high performance
'iou': 0.5 * 1, # 0 / 255
'iou_patch': 0.5 * 0, # 0 / 255, win_size = (64, 64)
'mse': 150 * 0, # can smooth the saliency map
'triplet': 3 * 0,
'reg': 100 * 0,
'ssim': 10 * 1, # help contours,
'cnt': 5 * 0, # help contours
'structure': 5 * 0, # structure loss from codes of MVANet. A little improvement on DIS-TE[1,2,3], a bit more decrease on DIS-TE4.
}
self.lambdas_cls = {
'ce': 5.0
}
# Adv
self.lambda_adv_g = 10. * 0 # turn to 0 to avoid adv training
self.lambda_adv_d = 3. * (self.lambda_adv_g > 0)
# PATH settings - inactive
self.data_root_dir = os.path.join(self.sys_home_dir, 'datasets/dis')
self.weights_root_dir = os.path.join(self.sys_home_dir, 'weights')
self.weights = {
'pvt_v2_b2': os.path.join(self.weights_root_dir, 'pvt_v2_b2.pth'),
'pvt_v2_b5': os.path.join(self.weights_root_dir, ['pvt_v2_b5.pth', 'pvt_v2_b5_22k.pth'][0]),
'swin_v1_b': os.path.join(self.weights_root_dir, ['swin_base_patch4_window12_384_22kto1k.pth', 'swin_base_patch4_window12_384_22k.pth'][0]),
'swin_v1_l': os.path.join(self.weights_root_dir, ['swin_large_patch4_window12_384_22kto1k.pth', 'swin_large_patch4_window12_384_22k.pth'][0]),
'swin_v1_t': os.path.join(self.weights_root_dir, ['swin_tiny_patch4_window7_224_22kto1k_finetune.pth'][0]),
'swin_v1_s': os.path.join(self.weights_root_dir, ['swin_small_patch4_window7_224_22kto1k_finetune.pth'][0]),
'pvt_v2_b0': os.path.join(self.weights_root_dir, ['pvt_v2_b0.pth'][0]),
'pvt_v2_b1': os.path.join(self.weights_root_dir, ['pvt_v2_b1.pth'][0]),
}
# Callbacks - inactive
self.verbose_eval = True
self.only_S_MAE = False
self.use_fp16 = False # Bugs. It may cause nan in training.
self.SDPA_enabled = False # Bugs. Slower and errors occur in multi-GPUs
# others
self.device = [0, 'cpu'][0] # .to(0) == .to('cuda:0')
self.batch_size_valid = 1
self.rand_seed = 7
run_sh_file = [f for f in os.listdir('.') if 'train.sh' == f] + [os.path.join('..', f) for f in os.listdir('..') if 'train.sh' == f]
with open(run_sh_file[0], 'r') as f:
lines = f.readlines()
self.save_last = int([l.strip() for l in lines if '"{}")'.format(self.task) in l and 'val_last=' in l][0].split('val_last=')[-1].split()[0])
self.save_step = int([l.strip() for l in lines if '"{}")'.format(self.task) in l and 'step=' in l][0].split('step=')[-1].split()[0])
self.val_step = [0, self.save_step][0]
def print_task(self) -> None:
# Return task for choosing settings in shell scripts.
print(self.task)
if __name__ == '__main__':
config = Config()
config.print_task()
|