|
import os |
|
import argparse |
|
from glob import glob |
|
import prettytable as pt |
|
|
|
from evaluation.evaluate import evaluator |
|
from config import Config |
|
|
|
|
|
config = Config() |
|
|
|
|
|
def do_eval(args): |
|
|
|
|
|
for _data_name in args.data_lst.split('+'): |
|
pred_data_dir = sorted(glob(os.path.join(args.pred_root, args.model_lst[0], _data_name))) |
|
if not pred_data_dir: |
|
print('Skip dataset {}.'.format(_data_name)) |
|
continue |
|
gt_src = os.path.join(args.gt_root, _data_name) |
|
gt_paths = sorted(glob(os.path.join(gt_src, 'gt', '*'))) |
|
print('#' * 20, _data_name, '#' * 20) |
|
filename = os.path.join(args.save_dir, '{}_eval.txt'.format(_data_name)) |
|
tb = pt.PrettyTable() |
|
tb.vertical_char = '&' |
|
if config.task == 'DIS5K': |
|
tb.field_names = ["Dataset", "Method", "maxFm", "wFmeasure", 'MAE', "Smeasure", "meanEm", "HCE", "maxEm", "meanFm", "adpEm", "adpFm"] |
|
elif config.task == 'COD': |
|
tb.field_names = ["Dataset", "Method", "Smeasure", "wFmeasure", "meanFm", "meanEm", "maxEm", 'MAE', "maxFm", "adpEm", "adpFm", "HCE"] |
|
elif config.task == 'HRSOD': |
|
tb.field_names = ["Dataset", "Method", "Smeasure", "maxFm", "meanEm", 'MAE', "maxEm", "meanFm", "wFmeasure", "adpEm", "adpFm", "HCE"] |
|
elif config.task == 'DIS5K+HRSOD+HRS10K': |
|
tb.field_names = ["Dataset", "Method", "maxFm", "wFmeasure", 'MAE', "Smeasure", "meanEm", "HCE", "maxEm", "meanFm", "adpEm", "adpFm"] |
|
elif config.task == 'P3M-10k': |
|
tb.field_names = ["Dataset", "Method", "Smeasure", "maxFm", "meanEm", 'MAE', "maxEm", "meanFm", "wFmeasure", "adpEm", "adpFm", "HCE"] |
|
else: |
|
tb.field_names = ["Dataset", "Method", "Smeasure", 'MAE', "maxEm", "meanEm", "maxFm", "meanFm", "wFmeasure", "adpEm", "adpFm", "HCE"] |
|
for _model_name in args.model_lst[:]: |
|
print('\t', 'Evaluating model: {}...'.format(_model_name)) |
|
pred_paths = [p.replace(args.gt_root, os.path.join(args.pred_root, _model_name)).replace('/gt/', '/') for p in gt_paths] |
|
|
|
em, sm, fm, mae, wfm, hce = evaluator( |
|
gt_paths=gt_paths, |
|
pred_paths=pred_paths, |
|
metrics=args.metrics.split('+'), |
|
verbose=config.verbose_eval |
|
) |
|
if config.task == 'DIS5K': |
|
scores = [ |
|
fm['curve'].max().round(3), wfm.round(3), mae.round(3), sm.round(3), em['curve'].mean().round(3), int(hce.round()), |
|
em['curve'].max().round(3), fm['curve'].mean().round(3), em['adp'].round(3), fm['adp'].round(3), |
|
] |
|
elif config.task == 'COD': |
|
scores = [ |
|
sm.round(3), wfm.round(3), fm['curve'].mean().round(3), em['curve'].mean().round(3), em['curve'].max().round(3), mae.round(3), |
|
fm['curve'].max().round(3), em['adp'].round(3), fm['adp'].round(3), int(hce.round()), |
|
] |
|
elif config.task == 'HRSOD': |
|
scores = [ |
|
sm.round(3), fm['curve'].max().round(3), em['curve'].mean().round(3), mae.round(3), |
|
em['curve'].max().round(3), fm['curve'].mean().round(3), wfm.round(3), em['adp'].round(3), fm['adp'].round(3), int(hce.round()), |
|
] |
|
elif config.task == 'DIS5K+HRSOD+HRS10K': |
|
scores = [ |
|
fm['curve'].max().round(3), wfm.round(3), mae.round(3), sm.round(3), em['curve'].mean().round(3), int(hce.round()), |
|
em['curve'].max().round(3), fm['curve'].mean().round(3), em['adp'].round(3), fm['adp'].round(3), |
|
] |
|
elif config.task == 'P3M-10k': |
|
scores = [ |
|
sm.round(3), fm['curve'].max().round(3), em['curve'].mean().round(3), mae.round(3), |
|
em['curve'].max().round(3), fm['curve'].mean().round(3), wfm.round(3), em['adp'].round(3), fm['adp'].round(3), int(hce.round()), |
|
] |
|
else: |
|
scores = [ |
|
sm.round(3), mae.round(3), em['curve'].max().round(3), em['curve'].mean().round(3), |
|
fm['curve'].max().round(3), fm['curve'].mean().round(3), wfm.round(3), |
|
em['adp'].round(3), fm['adp'].round(3), int(hce.round()), |
|
] |
|
|
|
for idx_score, score in enumerate(scores): |
|
scores[idx_score] = '.' + format(score, '.3f').split('.')[-1] if score <= 1 else format(score, '<4') |
|
records = [_data_name, _model_name] + scores |
|
tb.add_row(records) |
|
|
|
with open(filename, 'w+') as file_to_write: |
|
file_to_write.write(str(tb)+'\n') |
|
print(tb) |
|
|
|
|
|
if __name__ == '__main__': |
|
|
|
parser = argparse.ArgumentParser() |
|
parser.add_argument( |
|
'--gt_root', type=str, help='ground-truth root', |
|
default=os.path.join(config.data_root_dir, config.task)) |
|
parser.add_argument( |
|
'--pred_root', type=str, help='prediction root', |
|
default='./e_preds') |
|
parser.add_argument( |
|
'--data_lst', type=str, help='test dataset', |
|
default={ |
|
'DIS5K': '+'.join(['DIS-VD', 'DIS-TE1', 'DIS-TE2', 'DIS-TE3', 'DIS-TE4'][:]), |
|
'COD': '+'.join(['TE-COD10K', 'NC4K', 'TE-CAMO', 'CHAMELEON'][:]), |
|
'HRSOD': '+'.join(['DAVIS-S', 'TE-HRSOD', 'TE-UHRSD', 'TE-DUTS', 'DUT-OMRON'][:]), |
|
'DIS5K+HRSOD+HRS10K': '+'.join(['DIS-VD'][:]), |
|
'P3M-10k': '+'.join(['TE-P3M-500-P', 'TE-P3M-500-NP'][:]), |
|
}[config.task]) |
|
parser.add_argument( |
|
'--save_dir', type=str, help='candidate competitors', |
|
default='e_results') |
|
parser.add_argument( |
|
'--check_integrity', type=bool, help='whether to check the file integrity', |
|
default=False) |
|
parser.add_argument( |
|
'--metrics', type=str, help='candidate competitors', |
|
default='+'.join(['S', 'MAE', 'E', 'F', 'WF', 'HCE'][:100 if 'DIS5K' in config.task else -1])) |
|
args = parser.parse_args() |
|
|
|
os.makedirs(args.save_dir, exist_ok=True) |
|
try: |
|
args.model_lst = [m for m in sorted(os.listdir(args.pred_root), key=lambda x: int(x.split('epoch_')[-1]), reverse=True) if int(m.split('epoch_')[-1]) % 1 == 0] |
|
except: |
|
args.model_lst = [m for m in sorted(os.listdir(args.pred_root))] |
|
|
|
|
|
if args.check_integrity: |
|
for _data_name in args.data_lst.split('+'): |
|
for _model_name in args.model_lst: |
|
gt_pth = os.path.join(args.gt_root, _data_name) |
|
pred_pth = os.path.join(args.pred_root, _model_name, _data_name) |
|
if not sorted(os.listdir(gt_pth)) == sorted(os.listdir(pred_pth)): |
|
print(len(sorted(os.listdir(gt_pth))), len(sorted(os.listdir(pred_pth)))) |
|
print('The {} Dataset of {} Model is not matching to the ground-truth'.format(_data_name, _model_name)) |
|
else: |
|
print('>>> skip check the integrity of each candidates') |
|
|
|
|
|
do_eval(args) |
|
|