|
import os |
|
from tqdm import tqdm |
|
import cv2 |
|
import numpy as np |
|
from scipy.ndimage import convolve, distance_transform_edt as bwdist |
|
from skimage.morphology import skeletonize |
|
from skimage.morphology import disk |
|
from skimage.measure import label |
|
|
|
|
|
_EPS = np.spacing(1) |
|
_TYPE = np.float64 |
|
|
|
|
|
def evaluator(gt_paths, pred_paths, metrics=['S', 'MAE', 'E', 'F', 'WF', 'HCE'], verbose=False): |
|
|
|
if 'E' in metrics: |
|
EM = Emeasure() |
|
if 'S' in metrics: |
|
SM = Smeasure() |
|
if 'F' in metrics: |
|
FM = Fmeasure() |
|
if 'MAE' in metrics: |
|
MAE = MAEmeasure() |
|
if 'WF' in metrics: |
|
WFM = WeightedFmeasure() |
|
if 'HCE' in metrics: |
|
HCE = HCEMeasure() |
|
|
|
if isinstance(gt_paths, list) and isinstance(pred_paths, list): |
|
|
|
assert len(gt_paths) == len(pred_paths) |
|
|
|
for idx_sample in tqdm(range(len(gt_paths)), total=len(gt_paths)) if verbose else range(len(gt_paths)): |
|
gt = gt_paths[idx_sample] |
|
pred = pred_paths[idx_sample] |
|
|
|
pred = pred[:-4] + '.png' |
|
if os.path.exists(pred): |
|
pred_ary = cv2.imread(pred, cv2.IMREAD_GRAYSCALE) |
|
else: |
|
pred_ary = cv2.imread(pred.replace('.png', '.jpg'), cv2.IMREAD_GRAYSCALE) |
|
gt_ary = cv2.imread(gt, cv2.IMREAD_GRAYSCALE) |
|
pred_ary = cv2.resize(pred_ary, (gt_ary.shape[1], gt_ary.shape[0])) |
|
|
|
if 'E' in metrics: |
|
EM.step(pred=pred_ary, gt=gt_ary) |
|
if 'S' in metrics: |
|
SM.step(pred=pred_ary, gt=gt_ary) |
|
if 'F' in metrics: |
|
FM.step(pred=pred_ary, gt=gt_ary) |
|
if 'MAE' in metrics: |
|
MAE.step(pred=pred_ary, gt=gt_ary) |
|
if 'WF' in metrics: |
|
WFM.step(pred=pred_ary, gt=gt_ary) |
|
if 'HCE' in metrics: |
|
ske_path = gt.replace('/gt/', '/ske/') |
|
if os.path.exists(ske_path): |
|
ske_ary = cv2.imread(ske_path, cv2.IMREAD_GRAYSCALE) |
|
ske_ary = ske_ary > 128 |
|
else: |
|
ske_ary = skeletonize(gt_ary > 128) |
|
ske_save_dir = os.path.join(*ske_path.split(os.sep)[:-1]) |
|
if ske_path[0] == os.sep: |
|
ske_save_dir = os.sep + ske_save_dir |
|
os.makedirs(ske_save_dir, exist_ok=True) |
|
cv2.imwrite(ske_path, ske_ary.astype(np.uint8) * 255) |
|
HCE.step(pred=pred_ary, gt=gt_ary, gt_ske=ske_ary) |
|
|
|
if 'E' in metrics: |
|
em = EM.get_results()['em'] |
|
else: |
|
em = {'curve': np.array([np.float64(-1)]), 'adp': np.float64(-1)} |
|
if 'S' in metrics: |
|
sm = SM.get_results()['sm'] |
|
else: |
|
sm = np.float64(-1) |
|
if 'F' in metrics: |
|
fm = FM.get_results()['fm'] |
|
else: |
|
fm = {'curve': np.array([np.float64(-1)]), 'adp': np.float64(-1)} |
|
if 'MAE' in metrics: |
|
mae = MAE.get_results()['mae'] |
|
else: |
|
mae = np.float64(-1) |
|
if 'WF' in metrics: |
|
wfm = WFM.get_results()['wfm'] |
|
else: |
|
wfm = np.float64(-1) |
|
if 'HCE' in metrics: |
|
hce = HCE.get_results()['hce'] |
|
else: |
|
hce = np.float64(-1) |
|
|
|
return em, sm, fm, mae, wfm, hce |
|
|
|
|
|
def _prepare_data(pred: np.ndarray, gt: np.ndarray) -> tuple: |
|
gt = gt > 128 |
|
pred = pred / 255 |
|
if pred.max() != pred.min(): |
|
pred = (pred - pred.min()) / (pred.max() - pred.min()) |
|
return pred, gt |
|
|
|
|
|
def _get_adaptive_threshold(matrix: np.ndarray, max_value: float = 1) -> float: |
|
return min(2 * matrix.mean(), max_value) |
|
|
|
|
|
class Fmeasure(object): |
|
def __init__(self, beta: float = 0.3): |
|
self.beta = beta |
|
self.precisions = [] |
|
self.recalls = [] |
|
self.adaptive_fms = [] |
|
self.changeable_fms = [] |
|
|
|
def step(self, pred: np.ndarray, gt: np.ndarray): |
|
pred, gt = _prepare_data(pred, gt) |
|
|
|
adaptive_fm = self.cal_adaptive_fm(pred=pred, gt=gt) |
|
self.adaptive_fms.append(adaptive_fm) |
|
|
|
precisions, recalls, changeable_fms = self.cal_pr(pred=pred, gt=gt) |
|
self.precisions.append(precisions) |
|
self.recalls.append(recalls) |
|
self.changeable_fms.append(changeable_fms) |
|
|
|
def cal_adaptive_fm(self, pred: np.ndarray, gt: np.ndarray) -> float: |
|
adaptive_threshold = _get_adaptive_threshold(pred, max_value=1) |
|
binary_predcition = pred >= adaptive_threshold |
|
area_intersection = binary_predcition[gt].sum() |
|
if area_intersection == 0: |
|
adaptive_fm = 0 |
|
else: |
|
pre = area_intersection / np.count_nonzero(binary_predcition) |
|
rec = area_intersection / np.count_nonzero(gt) |
|
adaptive_fm = (1 + self.beta) * pre * rec / (self.beta * pre + rec) |
|
return adaptive_fm |
|
|
|
def cal_pr(self, pred: np.ndarray, gt: np.ndarray) -> tuple: |
|
pred = (pred * 255).astype(np.uint8) |
|
bins = np.linspace(0, 256, 257) |
|
fg_hist, _ = np.histogram(pred[gt], bins=bins) |
|
bg_hist, _ = np.histogram(pred[~gt], bins=bins) |
|
fg_w_thrs = np.cumsum(np.flip(fg_hist), axis=0) |
|
bg_w_thrs = np.cumsum(np.flip(bg_hist), axis=0) |
|
TPs = fg_w_thrs |
|
Ps = fg_w_thrs + bg_w_thrs |
|
Ps[Ps == 0] = 1 |
|
T = max(np.count_nonzero(gt), 1) |
|
precisions = TPs / Ps |
|
recalls = TPs / T |
|
numerator = (1 + self.beta) * precisions * recalls |
|
denominator = np.where(numerator == 0, 1, self.beta * precisions + recalls) |
|
changeable_fms = numerator / denominator |
|
return precisions, recalls, changeable_fms |
|
|
|
def get_results(self) -> dict: |
|
adaptive_fm = np.mean(np.array(self.adaptive_fms, _TYPE)) |
|
changeable_fm = np.mean(np.array(self.changeable_fms, dtype=_TYPE), axis=0) |
|
precision = np.mean(np.array(self.precisions, dtype=_TYPE), axis=0) |
|
recall = np.mean(np.array(self.recalls, dtype=_TYPE), axis=0) |
|
return dict(fm=dict(adp=adaptive_fm, curve=changeable_fm), |
|
pr=dict(p=precision, r=recall)) |
|
|
|
|
|
class MAEmeasure(object): |
|
def __init__(self): |
|
self.maes = [] |
|
|
|
def step(self, pred: np.ndarray, gt: np.ndarray): |
|
pred, gt = _prepare_data(pred, gt) |
|
|
|
mae = self.cal_mae(pred, gt) |
|
self.maes.append(mae) |
|
|
|
def cal_mae(self, pred: np.ndarray, gt: np.ndarray) -> float: |
|
mae = np.mean(np.abs(pred - gt)) |
|
return mae |
|
|
|
def get_results(self) -> dict: |
|
mae = np.mean(np.array(self.maes, _TYPE)) |
|
return dict(mae=mae) |
|
|
|
|
|
class Smeasure(object): |
|
def __init__(self, alpha: float = 0.5): |
|
self.sms = [] |
|
self.alpha = alpha |
|
|
|
def step(self, pred: np.ndarray, gt: np.ndarray): |
|
pred, gt = _prepare_data(pred=pred, gt=gt) |
|
|
|
sm = self.cal_sm(pred, gt) |
|
self.sms.append(sm) |
|
|
|
def cal_sm(self, pred: np.ndarray, gt: np.ndarray) -> float: |
|
y = np.mean(gt) |
|
if y == 0: |
|
sm = 1 - np.mean(pred) |
|
elif y == 1: |
|
sm = np.mean(pred) |
|
else: |
|
sm = self.alpha * self.object(pred, gt) + (1 - self.alpha) * self.region(pred, gt) |
|
sm = max(0, sm) |
|
return sm |
|
|
|
def object(self, pred: np.ndarray, gt: np.ndarray) -> float: |
|
fg = pred * gt |
|
bg = (1 - pred) * (1 - gt) |
|
u = np.mean(gt) |
|
object_score = u * self.s_object(fg, gt) + (1 - u) * self.s_object(bg, 1 - gt) |
|
return object_score |
|
|
|
def s_object(self, pred: np.ndarray, gt: np.ndarray) -> float: |
|
x = np.mean(pred[gt == 1]) |
|
sigma_x = np.std(pred[gt == 1], ddof=1) |
|
score = 2 * x / (np.power(x, 2) + 1 + sigma_x + _EPS) |
|
return score |
|
|
|
def region(self, pred: np.ndarray, gt: np.ndarray) -> float: |
|
x, y = self.centroid(gt) |
|
part_info = self.divide_with_xy(pred, gt, x, y) |
|
w1, w2, w3, w4 = part_info['weight'] |
|
pred1, pred2, pred3, pred4 = part_info['pred'] |
|
gt1, gt2, gt3, gt4 = part_info['gt'] |
|
score1 = self.ssim(pred1, gt1) |
|
score2 = self.ssim(pred2, gt2) |
|
score3 = self.ssim(pred3, gt3) |
|
score4 = self.ssim(pred4, gt4) |
|
|
|
return w1 * score1 + w2 * score2 + w3 * score3 + w4 * score4 |
|
|
|
def centroid(self, matrix: np.ndarray) -> tuple: |
|
h, w = matrix.shape |
|
area_object = np.count_nonzero(matrix) |
|
if area_object == 0: |
|
x = np.round(w / 2) |
|
y = np.round(h / 2) |
|
else: |
|
|
|
y, x = np.argwhere(matrix).mean(axis=0).round() |
|
return int(x) + 1, int(y) + 1 |
|
|
|
def divide_with_xy(self, pred: np.ndarray, gt: np.ndarray, x, y) -> dict: |
|
h, w = gt.shape |
|
area = h * w |
|
|
|
gt_LT = gt[0:y, 0:x] |
|
gt_RT = gt[0:y, x:w] |
|
gt_LB = gt[y:h, 0:x] |
|
gt_RB = gt[y:h, x:w] |
|
|
|
pred_LT = pred[0:y, 0:x] |
|
pred_RT = pred[0:y, x:w] |
|
pred_LB = pred[y:h, 0:x] |
|
pred_RB = pred[y:h, x:w] |
|
|
|
w1 = x * y / area |
|
w2 = y * (w - x) / area |
|
w3 = (h - y) * x / area |
|
w4 = 1 - w1 - w2 - w3 |
|
|
|
return dict(gt=(gt_LT, gt_RT, gt_LB, gt_RB), |
|
pred=(pred_LT, pred_RT, pred_LB, pred_RB), |
|
weight=(w1, w2, w3, w4)) |
|
|
|
def ssim(self, pred: np.ndarray, gt: np.ndarray) -> float: |
|
h, w = pred.shape |
|
N = h * w |
|
|
|
x = np.mean(pred) |
|
y = np.mean(gt) |
|
|
|
sigma_x = np.sum((pred - x) ** 2) / (N - 1) |
|
sigma_y = np.sum((gt - y) ** 2) / (N - 1) |
|
sigma_xy = np.sum((pred - x) * (gt - y)) / (N - 1) |
|
|
|
alpha = 4 * x * y * sigma_xy |
|
beta = (x ** 2 + y ** 2) * (sigma_x + sigma_y) |
|
|
|
if alpha != 0: |
|
score = alpha / (beta + _EPS) |
|
elif alpha == 0 and beta == 0: |
|
score = 1 |
|
else: |
|
score = 0 |
|
return score |
|
|
|
def get_results(self) -> dict: |
|
sm = np.mean(np.array(self.sms, dtype=_TYPE)) |
|
return dict(sm=sm) |
|
|
|
|
|
class Emeasure(object): |
|
def __init__(self): |
|
self.adaptive_ems = [] |
|
self.changeable_ems = [] |
|
|
|
def step(self, pred: np.ndarray, gt: np.ndarray): |
|
pred, gt = _prepare_data(pred=pred, gt=gt) |
|
self.gt_fg_numel = np.count_nonzero(gt) |
|
self.gt_size = gt.shape[0] * gt.shape[1] |
|
|
|
changeable_ems = self.cal_changeable_em(pred, gt) |
|
self.changeable_ems.append(changeable_ems) |
|
adaptive_em = self.cal_adaptive_em(pred, gt) |
|
self.adaptive_ems.append(adaptive_em) |
|
|
|
def cal_adaptive_em(self, pred: np.ndarray, gt: np.ndarray) -> float: |
|
adaptive_threshold = _get_adaptive_threshold(pred, max_value=1) |
|
adaptive_em = self.cal_em_with_threshold(pred, gt, threshold=adaptive_threshold) |
|
return adaptive_em |
|
|
|
def cal_changeable_em(self, pred: np.ndarray, gt: np.ndarray) -> np.ndarray: |
|
changeable_ems = self.cal_em_with_cumsumhistogram(pred, gt) |
|
return changeable_ems |
|
|
|
def cal_em_with_threshold(self, pred: np.ndarray, gt: np.ndarray, threshold: float) -> float: |
|
binarized_pred = pred >= threshold |
|
fg_fg_numel = np.count_nonzero(binarized_pred & gt) |
|
fg_bg_numel = np.count_nonzero(binarized_pred & ~gt) |
|
|
|
fg___numel = fg_fg_numel + fg_bg_numel |
|
bg___numel = self.gt_size - fg___numel |
|
|
|
if self.gt_fg_numel == 0: |
|
enhanced_matrix_sum = bg___numel |
|
elif self.gt_fg_numel == self.gt_size: |
|
enhanced_matrix_sum = fg___numel |
|
else: |
|
parts_numel, combinations = self.generate_parts_numel_combinations( |
|
fg_fg_numel=fg_fg_numel, fg_bg_numel=fg_bg_numel, |
|
pred_fg_numel=fg___numel, pred_bg_numel=bg___numel, |
|
) |
|
|
|
results_parts = [] |
|
for i, (part_numel, combination) in enumerate(zip(parts_numel, combinations)): |
|
align_matrix_value = 2 * (combination[0] * combination[1]) / \ |
|
(combination[0] ** 2 + combination[1] ** 2 + _EPS) |
|
enhanced_matrix_value = (align_matrix_value + 1) ** 2 / 4 |
|
results_parts.append(enhanced_matrix_value * part_numel) |
|
enhanced_matrix_sum = sum(results_parts) |
|
|
|
em = enhanced_matrix_sum / (self.gt_size - 1 + _EPS) |
|
return em |
|
|
|
def cal_em_with_cumsumhistogram(self, pred: np.ndarray, gt: np.ndarray) -> np.ndarray: |
|
pred = (pred * 255).astype(np.uint8) |
|
bins = np.linspace(0, 256, 257) |
|
fg_fg_hist, _ = np.histogram(pred[gt], bins=bins) |
|
fg_bg_hist, _ = np.histogram(pred[~gt], bins=bins) |
|
fg_fg_numel_w_thrs = np.cumsum(np.flip(fg_fg_hist), axis=0) |
|
fg_bg_numel_w_thrs = np.cumsum(np.flip(fg_bg_hist), axis=0) |
|
|
|
fg___numel_w_thrs = fg_fg_numel_w_thrs + fg_bg_numel_w_thrs |
|
bg___numel_w_thrs = self.gt_size - fg___numel_w_thrs |
|
|
|
if self.gt_fg_numel == 0: |
|
enhanced_matrix_sum = bg___numel_w_thrs |
|
elif self.gt_fg_numel == self.gt_size: |
|
enhanced_matrix_sum = fg___numel_w_thrs |
|
else: |
|
parts_numel_w_thrs, combinations = self.generate_parts_numel_combinations( |
|
fg_fg_numel=fg_fg_numel_w_thrs, fg_bg_numel=fg_bg_numel_w_thrs, |
|
pred_fg_numel=fg___numel_w_thrs, pred_bg_numel=bg___numel_w_thrs, |
|
) |
|
|
|
results_parts = np.empty(shape=(4, 256), dtype=np.float64) |
|
for i, (part_numel, combination) in enumerate(zip(parts_numel_w_thrs, combinations)): |
|
align_matrix_value = 2 * (combination[0] * combination[1]) / \ |
|
(combination[0] ** 2 + combination[1] ** 2 + _EPS) |
|
enhanced_matrix_value = (align_matrix_value + 1) ** 2 / 4 |
|
results_parts[i] = enhanced_matrix_value * part_numel |
|
enhanced_matrix_sum = results_parts.sum(axis=0) |
|
|
|
em = enhanced_matrix_sum / (self.gt_size - 1 + _EPS) |
|
return em |
|
|
|
def generate_parts_numel_combinations(self, fg_fg_numel, fg_bg_numel, pred_fg_numel, pred_bg_numel): |
|
bg_fg_numel = self.gt_fg_numel - fg_fg_numel |
|
bg_bg_numel = pred_bg_numel - bg_fg_numel |
|
|
|
parts_numel = [fg_fg_numel, fg_bg_numel, bg_fg_numel, bg_bg_numel] |
|
|
|
mean_pred_value = pred_fg_numel / self.gt_size |
|
mean_gt_value = self.gt_fg_numel / self.gt_size |
|
|
|
demeaned_pred_fg_value = 1 - mean_pred_value |
|
demeaned_pred_bg_value = 0 - mean_pred_value |
|
demeaned_gt_fg_value = 1 - mean_gt_value |
|
demeaned_gt_bg_value = 0 - mean_gt_value |
|
|
|
combinations = [ |
|
(demeaned_pred_fg_value, demeaned_gt_fg_value), |
|
(demeaned_pred_fg_value, demeaned_gt_bg_value), |
|
(demeaned_pred_bg_value, demeaned_gt_fg_value), |
|
(demeaned_pred_bg_value, demeaned_gt_bg_value) |
|
] |
|
return parts_numel, combinations |
|
|
|
def get_results(self) -> dict: |
|
adaptive_em = np.mean(np.array(self.adaptive_ems, dtype=_TYPE)) |
|
changeable_em = np.mean(np.array(self.changeable_ems, dtype=_TYPE), axis=0) |
|
return dict(em=dict(adp=adaptive_em, curve=changeable_em)) |
|
|
|
|
|
class WeightedFmeasure(object): |
|
def __init__(self, beta: float = 1): |
|
self.beta = beta |
|
self.weighted_fms = [] |
|
|
|
def step(self, pred: np.ndarray, gt: np.ndarray): |
|
pred, gt = _prepare_data(pred=pred, gt=gt) |
|
|
|
if np.all(~gt): |
|
wfm = 0 |
|
else: |
|
wfm = self.cal_wfm(pred, gt) |
|
self.weighted_fms.append(wfm) |
|
|
|
def cal_wfm(self, pred: np.ndarray, gt: np.ndarray) -> float: |
|
|
|
Dst, Idxt = bwdist(gt == 0, return_indices=True) |
|
|
|
|
|
|
|
E = np.abs(pred - gt) |
|
Et = np.copy(E) |
|
Et[gt == 0] = Et[Idxt[0][gt == 0], Idxt[1][gt == 0]] |
|
|
|
|
|
|
|
K = self.matlab_style_gauss2D((7, 7), sigma=5) |
|
EA = convolve(Et, weights=K, mode="constant", cval=0) |
|
|
|
|
|
MIN_E_EA = np.where(gt & (EA < E), EA, E) |
|
|
|
|
|
B = np.where(gt == 0, 2 - np.exp(np.log(0.5) / 5 * Dst), np.ones_like(gt)) |
|
Ew = MIN_E_EA * B |
|
|
|
TPw = np.sum(gt) - np.sum(Ew[gt == 1]) |
|
FPw = np.sum(Ew[gt == 0]) |
|
|
|
|
|
R = 1 - np.mean(Ew[gt == 1]) |
|
P = TPw / (TPw + FPw + _EPS) |
|
|
|
|
|
Q = (1 + self.beta) * R * P / (R + self.beta * P + _EPS) |
|
|
|
return Q |
|
|
|
def matlab_style_gauss2D(self, shape: tuple = (7, 7), sigma: int = 5) -> np.ndarray: |
|
""" |
|
2D gaussian mask - should give the same result as MATLAB's |
|
fspecial('gaussian',[shape],[sigma]) |
|
""" |
|
m, n = [(ss - 1) / 2 for ss in shape] |
|
y, x = np.ogrid[-m: m + 1, -n: n + 1] |
|
h = np.exp(-(x * x + y * y) / (2 * sigma * sigma)) |
|
h[h < np.finfo(h.dtype).eps * h.max()] = 0 |
|
sumh = h.sum() |
|
if sumh != 0: |
|
h /= sumh |
|
return h |
|
|
|
def get_results(self) -> dict: |
|
weighted_fm = np.mean(np.array(self.weighted_fms, dtype=_TYPE)) |
|
return dict(wfm=weighted_fm) |
|
|
|
|
|
class HCEMeasure(object): |
|
def __init__(self): |
|
self.hces = [] |
|
|
|
def step(self, pred: np.ndarray, gt: np.ndarray, gt_ske): |
|
|
|
|
|
hce = self.cal_hce(pred, gt, gt_ske) |
|
self.hces.append(hce) |
|
|
|
def get_results(self) -> dict: |
|
hce = np.mean(np.array(self.hces, _TYPE)) |
|
return dict(hce=hce) |
|
|
|
|
|
def cal_hce(self, pred: np.ndarray, gt: np.ndarray, gt_ske: np.ndarray, relax=5, epsilon=2.0) -> float: |
|
|
|
if(len(gt.shape)>2): |
|
gt = gt[:, :, 0] |
|
|
|
epsilon_gt = 128 |
|
gt = (gt>epsilon_gt).astype(np.uint8) |
|
|
|
|
|
if(len(pred.shape)>2): |
|
pred = pred[:, :, 0] |
|
epsilon_pred = 128 |
|
pred = (pred>epsilon_pred).astype(np.uint8) |
|
|
|
Union = np.logical_or(gt, pred) |
|
TP = np.logical_and(gt, pred) |
|
FP = pred - TP |
|
FN = gt - TP |
|
|
|
|
|
Union_erode = Union.copy() |
|
Union_erode = cv2.erode(Union_erode.astype(np.uint8), disk(1), iterations=relax) |
|
|
|
|
|
FP_ = np.logical_and(FP, Union_erode) |
|
for i in range(0, relax): |
|
FP_ = cv2.dilate(FP_.astype(np.uint8), disk(1)) |
|
FP_ = np.logical_and(FP_, 1-np.logical_or(TP, FN)) |
|
FP_ = np.logical_and(FP, FP_) |
|
|
|
|
|
FN_ = np.logical_and(FN, Union_erode) |
|
|
|
for i in range(0, relax): |
|
FN_ = cv2.dilate(FN_.astype(np.uint8), disk(1)) |
|
FN_ = np.logical_and(FN_, 1-np.logical_or(TP, FP)) |
|
FN_ = np.logical_and(FN, FN_) |
|
FN_ = np.logical_or(FN_, np.logical_xor(gt_ske, np.logical_and(TP, gt_ske))) |
|
|
|
|
|
|
|
ctrs_FP, hier_FP = cv2.findContours(FP_.astype(np.uint8), cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE) |
|
|
|
bdies_FP, indep_cnt_FP = self.filter_bdy_cond(ctrs_FP, FP_, np.logical_or(TP,FN_)) |
|
|
|
ctrs_FN, hier_FN = cv2.findContours(FN_.astype(np.uint8), cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE) |
|
|
|
bdies_FN, indep_cnt_FN = self.filter_bdy_cond(ctrs_FN, FN_, 1-np.logical_or(np.logical_or(TP, FP_), FN_)) |
|
|
|
poly_FP, poly_FP_len, poly_FP_point_cnt = self.approximate_RDP(bdies_FP, epsilon=epsilon) |
|
poly_FN, poly_FN_len, poly_FN_point_cnt = self.approximate_RDP(bdies_FN, epsilon=epsilon) |
|
|
|
|
|
return poly_FP_point_cnt+indep_cnt_FP+poly_FN_point_cnt+indep_cnt_FN |
|
|
|
def filter_bdy_cond(self, bdy_, mask, cond): |
|
|
|
cond = cv2.dilate(cond.astype(np.uint8), disk(1)) |
|
labels = label(mask) |
|
lbls = np.unique(labels) |
|
indep = np.ones(lbls.shape[0]) |
|
indep[0] = 0 |
|
|
|
boundaries = [] |
|
h,w = cond.shape[0:2] |
|
ind_map = np.zeros((h, w)) |
|
indep_cnt = 0 |
|
|
|
for i in range(0, len(bdy_)): |
|
tmp_bdies = [] |
|
tmp_bdy = [] |
|
for j in range(0, bdy_[i].shape[0]): |
|
r, c = bdy_[i][j,0,1],bdy_[i][j,0,0] |
|
|
|
if(np.sum(cond[r, c])==0 or ind_map[r, c]!=0): |
|
if(len(tmp_bdy)>0): |
|
tmp_bdies.append(tmp_bdy) |
|
tmp_bdy = [] |
|
continue |
|
tmp_bdy.append([c, r]) |
|
ind_map[r, c] = ind_map[r, c] + 1 |
|
indep[labels[r, c]] = 0 |
|
if(len(tmp_bdy)>0): |
|
tmp_bdies.append(tmp_bdy) |
|
|
|
|
|
|
|
if(len(tmp_bdies)>1): |
|
first_x, first_y = tmp_bdies[0][0] |
|
last_x, last_y = tmp_bdies[-1][-1] |
|
if((abs(first_x-last_x)==1 and first_y==last_y) or |
|
(first_x==last_x and abs(first_y-last_y)==1) or |
|
(abs(first_x-last_x)==1 and abs(first_y-last_y)==1) |
|
): |
|
tmp_bdies[-1].extend(tmp_bdies[0][::-1]) |
|
del tmp_bdies[0] |
|
|
|
for k in range(0, len(tmp_bdies)): |
|
tmp_bdies[k] = np.array(tmp_bdies[k])[:, np.newaxis, :] |
|
if(len(tmp_bdies)>0): |
|
boundaries.extend(tmp_bdies) |
|
|
|
return boundaries, np.sum(indep) |
|
|
|
|
|
|
|
def approximate_RDP(self, boundaries, epsilon=1.0): |
|
|
|
boundaries_ = [] |
|
boundaries_len_ = [] |
|
pixel_cnt_ = 0 |
|
|
|
|
|
for i in range(0, len(boundaries)): |
|
boundaries_.append(cv2.approxPolyDP(boundaries[i], epsilon, False)) |
|
|
|
|
|
for i in range(0, len(boundaries_)): |
|
boundaries_len_.append(len(boundaries_[i])) |
|
pixel_cnt_ = pixel_cnt_ + len(boundaries_[i]) |
|
|
|
return boundaries_, boundaries_len_, pixel_cnt_ |
|
|