|
import torch |
|
from torch import nn |
|
import torch.nn.functional as F |
|
from torch.autograd import Variable |
|
from math import exp |
|
from config import Config |
|
|
|
|
|
class Discriminator(nn.Module): |
|
def __init__(self, channels=1, img_size=256): |
|
super(Discriminator, self).__init__() |
|
|
|
def discriminator_block(in_filters, out_filters, bn=Config().batch_size > 1): |
|
block = [nn.Conv2d(in_filters, out_filters, 3, 2, 1), nn.LeakyReLU(0.2, inplace=True), nn.Dropout2d(0.25)] |
|
if bn: |
|
block.append(nn.BatchNorm2d(out_filters, 0.8)) |
|
return block |
|
|
|
self.model = nn.Sequential( |
|
*discriminator_block(channels, 16, bn=False), |
|
*discriminator_block(16, 32), |
|
*discriminator_block(32, 64), |
|
*discriminator_block(64, 128), |
|
) |
|
|
|
|
|
ds_size = img_size // 2 ** 4 |
|
self.adv_layer = nn.Sequential(nn.Linear(128 * ds_size ** 2, 1), nn.Sigmoid()) |
|
|
|
def forward(self, img): |
|
out = self.model(img) |
|
out = out.view(out.shape[0], -1) |
|
validity = self.adv_layer(out) |
|
|
|
return validity |
|
|
|
|
|
class ContourLoss(torch.nn.Module): |
|
def __init__(self): |
|
super(ContourLoss, self).__init__() |
|
|
|
def forward(self, pred, target, weight=10): |
|
''' |
|
target, pred: tensor of shape (B, C, H, W), where target[:,:,region_in_contour] == 1, |
|
target[:,:,region_out_contour] == 0. |
|
weight: scalar, length term weight. |
|
''' |
|
|
|
delta_r = pred[:,:,1:,:] - pred[:,:,:-1,:] |
|
delta_c = pred[:,:,:,1:] - pred[:,:,:,:-1] |
|
|
|
delta_r = delta_r[:,:,1:,:-2]**2 |
|
delta_c = delta_c[:,:,:-2,1:]**2 |
|
delta_pred = torch.abs(delta_r + delta_c) |
|
|
|
epsilon = 1e-8 |
|
length = torch.mean(torch.sqrt(delta_pred + epsilon)) |
|
|
|
c_in = torch.ones_like(pred) |
|
c_out = torch.zeros_like(pred) |
|
|
|
region_in = torch.mean( pred * (target - c_in )**2 ) |
|
region_out = torch.mean( (1-pred) * (target - c_out)**2 ) |
|
region = region_in + region_out |
|
|
|
loss = weight * length + region |
|
|
|
return loss |
|
|
|
|
|
class IoULoss(torch.nn.Module): |
|
def __init__(self): |
|
super(IoULoss, self).__init__() |
|
|
|
def forward(self, pred, target): |
|
b = pred.shape[0] |
|
IoU = 0.0 |
|
for i in range(0, b): |
|
|
|
Iand1 = torch.sum(target[i, :, :, :] * pred[i, :, :, :]) |
|
Ior1 = torch.sum(target[i, :, :, :]) + torch.sum(pred[i, :, :, :]) - Iand1 |
|
IoU1 = Iand1 / Ior1 |
|
|
|
IoU = IoU + (1-IoU1) |
|
|
|
return IoU |
|
|
|
|
|
class StructureLoss(torch.nn.Module): |
|
def __init__(self): |
|
super(StructureLoss, self).__init__() |
|
|
|
def forward(self, pred, target): |
|
weit = 1+5*torch.abs(F.avg_pool2d(target, kernel_size=31, stride=1, padding=15)-target) |
|
wbce = F.binary_cross_entropy_with_logits(pred, target, reduction='none') |
|
wbce = (weit*wbce).sum(dim=(2,3))/weit.sum(dim=(2,3)) |
|
|
|
pred = torch.sigmoid(pred) |
|
inter = ((pred * target) * weit).sum(dim=(2, 3)) |
|
union = ((pred + target) * weit).sum(dim=(2, 3)) |
|
wiou = 1-(inter+1)/(union-inter+1) |
|
|
|
return (wbce+wiou).mean() |
|
|
|
|
|
class PatchIoULoss(torch.nn.Module): |
|
def __init__(self): |
|
super(PatchIoULoss, self).__init__() |
|
self.iou_loss = IoULoss() |
|
|
|
def forward(self, pred, target): |
|
win_y, win_x = 64, 64 |
|
iou_loss = 0. |
|
for anchor_y in range(0, target.shape[0], win_y): |
|
for anchor_x in range(0, target.shape[1], win_y): |
|
patch_pred = pred[:, :, anchor_y:anchor_y+win_y, anchor_x:anchor_x+win_x] |
|
patch_target = target[:, :, anchor_y:anchor_y+win_y, anchor_x:anchor_x+win_x] |
|
patch_iou_loss = self.iou_loss(patch_pred, patch_target) |
|
iou_loss += patch_iou_loss |
|
return iou_loss |
|
|
|
|
|
class ThrReg_loss(torch.nn.Module): |
|
def __init__(self): |
|
super(ThrReg_loss, self).__init__() |
|
|
|
def forward(self, pred, gt=None): |
|
return torch.mean(1 - ((pred - 0) ** 2 + (pred - 1) ** 2)) |
|
|
|
|
|
class ClsLoss(nn.Module): |
|
""" |
|
Auxiliary classification loss for each refined class output. |
|
""" |
|
def __init__(self): |
|
super(ClsLoss, self).__init__() |
|
self.config = Config() |
|
self.lambdas_cls = self.config.lambdas_cls |
|
|
|
self.criterions_last = { |
|
'ce': nn.CrossEntropyLoss() |
|
} |
|
|
|
def forward(self, preds, gt): |
|
loss = 0. |
|
for _, pred_lvl in enumerate(preds): |
|
if pred_lvl is None: |
|
continue |
|
for criterion_name, criterion in self.criterions_last.items(): |
|
loss += criterion(pred_lvl, gt) * self.lambdas_cls[criterion_name] |
|
return loss |
|
|
|
|
|
class PixLoss(nn.Module): |
|
""" |
|
Pixel loss for each refined map output. |
|
""" |
|
def __init__(self): |
|
super(PixLoss, self).__init__() |
|
self.config = Config() |
|
self.lambdas_pix_last = self.config.lambdas_pix_last |
|
|
|
self.criterions_last = {} |
|
if 'bce' in self.lambdas_pix_last and self.lambdas_pix_last['bce']: |
|
self.criterions_last['bce'] = nn.BCELoss() if not self.config.use_fp16 else nn.BCEWithLogitsLoss() |
|
if 'iou' in self.lambdas_pix_last and self.lambdas_pix_last['iou']: |
|
self.criterions_last['iou'] = IoULoss() |
|
if 'iou_patch' in self.lambdas_pix_last and self.lambdas_pix_last['iou_patch']: |
|
self.criterions_last['iou_patch'] = PatchIoULoss() |
|
if 'ssim' in self.lambdas_pix_last and self.lambdas_pix_last['ssim']: |
|
self.criterions_last['ssim'] = SSIMLoss() |
|
if 'mse' in self.lambdas_pix_last and self.lambdas_pix_last['mse']: |
|
self.criterions_last['mse'] = nn.MSELoss() |
|
if 'reg' in self.lambdas_pix_last and self.lambdas_pix_last['reg']: |
|
self.criterions_last['reg'] = ThrReg_loss() |
|
if 'cnt' in self.lambdas_pix_last and self.lambdas_pix_last['cnt']: |
|
self.criterions_last['cnt'] = ContourLoss() |
|
if 'structure' in self.lambdas_pix_last and self.lambdas_pix_last['structure']: |
|
self.criterions_last['structure'] = StructureLoss() |
|
|
|
def forward(self, scaled_preds, gt): |
|
loss = 0. |
|
criterions_embedded_with_sigmoid = ['structure', ] + ['bce'] if self.config.use_fp16 else [] |
|
for _, pred_lvl in enumerate(scaled_preds): |
|
if pred_lvl.shape != gt.shape: |
|
pred_lvl = nn.functional.interpolate(pred_lvl, size=gt.shape[2:], mode='bilinear', align_corners=True) |
|
for criterion_name, criterion in self.criterions_last.items(): |
|
_loss = criterion(pred_lvl.sigmoid() if criterion_name not in criterions_embedded_with_sigmoid else pred_lvl, gt) * self.lambdas_pix_last[criterion_name] |
|
loss += _loss |
|
|
|
return loss |
|
|
|
|
|
class SSIMLoss(torch.nn.Module): |
|
def __init__(self, window_size=11, size_average=True): |
|
super(SSIMLoss, self).__init__() |
|
self.window_size = window_size |
|
self.size_average = size_average |
|
self.channel = 1 |
|
self.window = create_window(window_size, self.channel) |
|
|
|
def forward(self, img1, img2): |
|
(_, channel, _, _) = img1.size() |
|
if channel == self.channel and self.window.data.type() == img1.data.type(): |
|
window = self.window |
|
else: |
|
window = create_window(self.window_size, channel) |
|
if img1.is_cuda: |
|
window = window.cuda(img1.get_device()) |
|
window = window.type_as(img1) |
|
self.window = window |
|
self.channel = channel |
|
return 1 - _ssim(img1, img2, window, self.window_size, channel, self.size_average) |
|
|
|
|
|
def gaussian(window_size, sigma): |
|
gauss = torch.Tensor([exp(-(x - window_size//2)**2/float(2*sigma**2)) for x in range(window_size)]) |
|
return gauss/gauss.sum() |
|
|
|
|
|
def create_window(window_size, channel): |
|
_1D_window = gaussian(window_size, 1.5).unsqueeze(1) |
|
_2D_window = _1D_window.mm(_1D_window.t()).float().unsqueeze(0).unsqueeze(0) |
|
window = Variable(_2D_window.expand(channel, 1, window_size, window_size).contiguous()) |
|
return window |
|
|
|
|
|
def _ssim(img1, img2, window, window_size, channel, size_average=True): |
|
mu1 = F.conv2d(img1, window, padding = window_size//2, groups=channel) |
|
mu2 = F.conv2d(img2, window, padding = window_size//2, groups=channel) |
|
|
|
mu1_sq = mu1.pow(2) |
|
mu2_sq = mu2.pow(2) |
|
mu1_mu2 = mu1*mu2 |
|
|
|
sigma1_sq = F.conv2d(img1*img1, window, padding=window_size//2, groups=channel) - mu1_sq |
|
sigma2_sq = F.conv2d(img2*img2, window, padding=window_size//2, groups=channel) - mu2_sq |
|
sigma12 = F.conv2d(img1*img2, window, padding=window_size//2, groups=channel) - mu1_mu2 |
|
|
|
C1 = 0.01**2 |
|
C2 = 0.03**2 |
|
|
|
ssim_map = ((2*mu1_mu2 + C1)*(2*sigma12 + C2))/((mu1_sq + mu2_sq + C1)*(sigma1_sq + sigma2_sq + C2)) |
|
|
|
if size_average: |
|
return ssim_map.mean() |
|
else: |
|
return ssim_map.mean(1).mean(1).mean(1) |
|
|
|
|
|
def SSIM(x, y): |
|
C1 = 0.01 ** 2 |
|
C2 = 0.03 ** 2 |
|
|
|
mu_x = nn.AvgPool2d(3, 1, 1)(x) |
|
mu_y = nn.AvgPool2d(3, 1, 1)(y) |
|
mu_x_mu_y = mu_x * mu_y |
|
mu_x_sq = mu_x.pow(2) |
|
mu_y_sq = mu_y.pow(2) |
|
|
|
sigma_x = nn.AvgPool2d(3, 1, 1)(x * x) - mu_x_sq |
|
sigma_y = nn.AvgPool2d(3, 1, 1)(y * y) - mu_y_sq |
|
sigma_xy = nn.AvgPool2d(3, 1, 1)(x * y) - mu_x_mu_y |
|
|
|
SSIM_n = (2 * mu_x_mu_y + C1) * (2 * sigma_xy + C2) |
|
SSIM_d = (mu_x_sq + mu_y_sq + C1) * (sigma_x + sigma_y + C2) |
|
SSIM = SSIM_n / SSIM_d |
|
|
|
return torch.clamp((1 - SSIM) / 2, 0, 1) |
|
|
|
|
|
def saliency_structure_consistency(x, y): |
|
ssim = torch.mean(SSIM(x,y)) |
|
return ssim |
|
|