ZhengPeng7's picture
For users to load in one key.
2a41a22
raw
history blame
17.3 kB
import os
import datetime
import argparse
import torch
import torch.nn as nn
import torch.optim as optim
from torch.autograd import Variable
from config import Config
from loss import PixLoss, ClsLoss
from dataset import MyData
from models.birefnet import BiRefNet
from utils import Logger, AverageMeter, set_seed, check_state_dict
from evaluation.valid import valid
from torch.utils.data.distributed import DistributedSampler
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.distributed import init_process_group, destroy_process_group, get_rank
from torch.cuda import amp
parser = argparse.ArgumentParser(description='')
parser.add_argument('--resume', default=None, type=str, help='path to latest checkpoint')
parser.add_argument('--epochs', default=120, type=int)
parser.add_argument('--trainset', default='DIS5K', type=str, help="Options: 'DIS5K'")
parser.add_argument('--ckpt_dir', default=None, help='Temporary folder')
parser.add_argument('--testsets', default='DIS-VD+DIS-TE1+DIS-TE2+DIS-TE3+DIS-TE4', type=str)
parser.add_argument('--dist', default=False, type=lambda x: x == 'True')
args = parser.parse_args()
config = Config()
if config.rand_seed:
set_seed(config.rand_seed)
if config.use_fp16:
# Half Precision
scaler = amp.GradScaler(enabled=config.use_fp16)
# DDP
to_be_distributed = args.dist
if to_be_distributed:
init_process_group(backend="nccl", timeout=datetime.timedelta(seconds=3600*10))
device = int(os.environ["LOCAL_RANK"])
else:
device = config.device
epoch_st = 1
# make dir for ckpt
os.makedirs(args.ckpt_dir, exist_ok=True)
# Init log file
logger = Logger(os.path.join(args.ckpt_dir, "log.txt"))
logger_loss_idx = 1
# log model and optimizer params
# logger.info("Model details:"); logger.info(model)
logger.info("datasets: load_all={}, compile={}.".format(config.load_all, config.compile))
logger.info("Other hyperparameters:"); logger.info(args)
print('batch size:', config.batch_size)
if os.path.exists(os.path.join(config.data_root_dir, config.task, args.testsets.strip('+').split('+')[0])):
args.testsets = args.testsets.strip('+').split('+')
else:
args.testsets = []
# Init model
def prepare_dataloader(dataset: torch.utils.data.Dataset, batch_size: int, to_be_distributed=False, is_train=True):
if to_be_distributed:
return torch.utils.data.DataLoader(
dataset=dataset, batch_size=batch_size, num_workers=min(config.num_workers, batch_size), pin_memory=True,
shuffle=False, sampler=DistributedSampler(dataset), drop_last=True
)
else:
return torch.utils.data.DataLoader(
dataset=dataset, batch_size=batch_size, num_workers=min(config.num_workers, batch_size, 0), pin_memory=True,
shuffle=is_train, drop_last=True
)
def init_data_loaders(to_be_distributed):
# Prepare dataset
train_loader = prepare_dataloader(
MyData(datasets=config.training_set, image_size=config.size, is_train=True),
config.batch_size, to_be_distributed=to_be_distributed, is_train=True
)
print(len(train_loader), "batches of train dataloader {} have been created.".format(config.training_set))
test_loaders = {}
for testset in args.testsets:
_data_loader_test = prepare_dataloader(
MyData(datasets=testset, image_size=config.size, is_train=False),
config.batch_size_valid, is_train=False
)
print(len(_data_loader_test), "batches of valid dataloader {} have been created.".format(testset))
test_loaders[testset] = _data_loader_test
return train_loader, test_loaders
def init_models_optimizers(epochs, to_be_distributed):
model = BiRefNet(bb_pretrained=True)
if args.resume:
if os.path.isfile(args.resume):
logger.info("=> loading checkpoint '{}'".format(args.resume))
state_dict = torch.load(args.resume, map_location='cpu')
state_dict = check_state_dict(state_dict)
model.load_state_dict(state_dict)
global epoch_st
epoch_st = int(args.resume.rstrip('.pth').split('epoch_')[-1]) + 1
else:
logger.info("=> no checkpoint found at '{}'".format(args.resume))
if to_be_distributed:
model = model.to(device)
model = DDP(model, device_ids=[device])
else:
model = model.to(device)
if config.compile:
model = torch.compile(model, mode=['default', 'reduce-overhead', 'max-autotune'][0])
if config.precisionHigh:
torch.set_float32_matmul_precision('high')
# Setting optimizer
if config.optimizer == 'AdamW':
optimizer = optim.AdamW(params=model.parameters(), lr=config.lr, weight_decay=1e-2)
elif config.optimizer == 'Adam':
optimizer = optim.Adam(params=model.parameters(), lr=config.lr, weight_decay=0)
lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(
optimizer,
milestones=[lde if lde > 0 else epochs + lde + 1 for lde in config.lr_decay_epochs],
gamma=config.lr_decay_rate
)
logger.info("Optimizer details:"); logger.info(optimizer)
logger.info("Scheduler details:"); logger.info(lr_scheduler)
return model, optimizer, lr_scheduler
class Trainer:
def __init__(
self, data_loaders, model_opt_lrsch,
):
self.model, self.optimizer, self.lr_scheduler = model_opt_lrsch
self.train_loader, self.test_loaders = data_loaders
if config.out_ref:
self.criterion_gdt = nn.BCELoss() if not config.use_fp16 else nn.BCEWithLogitsLoss()
# Setting Losses
self.pix_loss = PixLoss()
self.cls_loss = ClsLoss()
# Others
self.loss_log = AverageMeter()
if config.lambda_adv_g:
self.optimizer_d, self.lr_scheduler_d, self.disc, self.adv_criterion = self._load_adv_components()
self.disc_update_for_odd = 0
def _load_adv_components(self):
# AIL
from loss import Discriminator
disc = Discriminator(channels=3, img_size=config.size)
if to_be_distributed:
disc = disc.to(device)
disc = DDP(disc, device_ids=[device], broadcast_buffers=False)
else:
disc = disc.to(device)
if config.compile:
disc = torch.compile(disc, mode=['default', 'reduce-overhead', 'max-autotune'][0])
adv_criterion = nn.BCELoss() if not config.use_fp16 else nn.BCEWithLogitsLoss()
if config.optimizer == 'AdamW':
optimizer_d = optim.AdamW(params=disc.parameters(), lr=config.lr, weight_decay=1e-2)
elif config.optimizer == 'Adam':
optimizer_d = optim.Adam(params=disc.parameters(), lr=config.lr, weight_decay=0)
lr_scheduler_d = torch.optim.lr_scheduler.MultiStepLR(
optimizer_d,
milestones=[lde if lde > 0 else args.epochs + lde + 1 for lde in config.lr_decay_epochs],
gamma=config.lr_decay_rate
)
return optimizer_d, lr_scheduler_d, disc, adv_criterion
def _train_batch(self, batch):
inputs = batch[0].to(device)
gts = batch[1].to(device)
class_labels = batch[2].to(device)
if config.use_fp16:
with amp.autocast(enabled=config.use_fp16):
scaled_preds, class_preds_lst = self.model(inputs)
if config.out_ref:
(outs_gdt_pred, outs_gdt_label), scaled_preds = scaled_preds
for _idx, (_gdt_pred, _gdt_label) in enumerate(zip(outs_gdt_pred, outs_gdt_label)):
_gdt_pred = nn.functional.interpolate(_gdt_pred, size=_gdt_label.shape[2:], mode='bilinear', align_corners=True)#.sigmoid()
# _gdt_label = _gdt_label.sigmoid()
loss_gdt = self.criterion_gdt(_gdt_pred, _gdt_label) if _idx == 0 else self.criterion_gdt(_gdt_pred, _gdt_label) + loss_gdt
# self.loss_dict['loss_gdt'] = loss_gdt.item()
if None in class_preds_lst:
loss_cls = 0.
else:
loss_cls = self.cls_loss(class_preds_lst, class_labels) * 1.0
self.loss_dict['loss_cls'] = loss_cls.item()
# Loss
loss_pix = self.pix_loss(scaled_preds, torch.clamp(gts, 0, 1)) * 1.0
self.loss_dict['loss_pix'] = loss_pix.item()
# since there may be several losses for sal, the lambdas for them (lambdas_pix) are inside the loss.py
loss = loss_pix + loss_cls
if config.out_ref:
loss = loss + loss_gdt * 1.0
if config.lambda_adv_g:
# gen
valid = Variable(torch.cuda.FloatTensor(scaled_preds[-1].shape[0], 1).fill_(1.0), requires_grad=False).to(device)
adv_loss_g = self.adv_criterion(self.disc(scaled_preds[-1] * inputs), valid) * config.lambda_adv_g
loss += adv_loss_g
self.loss_dict['loss_adv'] = adv_loss_g.item()
self.disc_update_for_odd += 1
# self.loss_log.update(loss.item(), inputs.size(0))
# self.optimizer.zero_grad()
# loss.backward()
# self.optimizer.step()
self.optimizer.zero_grad()
scaler.scale(loss).backward()
scaler.step(self.optimizer)
scaler.update()
if config.lambda_adv_g and self.disc_update_for_odd % 2 == 0:
# disc
fake = Variable(torch.cuda.FloatTensor(scaled_preds[-1].shape[0], 1).fill_(0.0), requires_grad=False).to(device)
adv_loss_real = self.adv_criterion(self.disc(gts * inputs), valid)
adv_loss_fake = self.adv_criterion(self.disc(scaled_preds[-1].detach() * inputs.detach()), fake)
adv_loss_d = (adv_loss_real + adv_loss_fake) / 2 * config.lambda_adv_d
self.loss_dict['loss_adv_d'] = adv_loss_d.item()
# self.optimizer_d.zero_grad()
# adv_loss_d.backward()
# self.optimizer_d.step()
self.optimizer_d.zero_grad()
scaler.scale(adv_loss_d).backward()
scaler.step(self.optimizer_d)
scaler.update()
else:
scaled_preds, class_preds_lst = self.model(inputs)
if config.out_ref:
(outs_gdt_pred, outs_gdt_label), scaled_preds = scaled_preds
for _idx, (_gdt_pred, _gdt_label) in enumerate(zip(outs_gdt_pred, outs_gdt_label)):
_gdt_pred = nn.functional.interpolate(_gdt_pred, size=_gdt_label.shape[2:], mode='bilinear', align_corners=True).sigmoid()
_gdt_label = _gdt_label.sigmoid()
loss_gdt = self.criterion_gdt(_gdt_pred, _gdt_label) if _idx == 0 else self.criterion_gdt(_gdt_pred, _gdt_label) + loss_gdt
# self.loss_dict['loss_gdt'] = loss_gdt.item()
if None in class_preds_lst:
loss_cls = 0.
else:
loss_cls = self.cls_loss(class_preds_lst, class_labels) * 1.0
self.loss_dict['loss_cls'] = loss_cls.item()
# Loss
loss_pix = self.pix_loss(scaled_preds, torch.clamp(gts, 0, 1)) * 1.0
self.loss_dict['loss_pix'] = loss_pix.item()
# since there may be several losses for sal, the lambdas for them (lambdas_pix) are inside the loss.py
loss = loss_pix + loss_cls
if config.out_ref:
loss = loss + loss_gdt * 1.0
if config.lambda_adv_g:
# gen
valid = Variable(torch.cuda.FloatTensor(scaled_preds[-1].shape[0], 1).fill_(1.0), requires_grad=False).to(device)
adv_loss_g = self.adv_criterion(self.disc(scaled_preds[-1] * inputs), valid) * config.lambda_adv_g
loss += adv_loss_g
self.loss_dict['loss_adv'] = adv_loss_g.item()
self.disc_update_for_odd += 1
self.loss_log.update(loss.item(), inputs.size(0))
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
if config.lambda_adv_g and self.disc_update_for_odd % 2 == 0:
# disc
fake = Variable(torch.cuda.FloatTensor(scaled_preds[-1].shape[0], 1).fill_(0.0), requires_grad=False).to(device)
adv_loss_real = self.adv_criterion(self.disc(gts * inputs), valid)
adv_loss_fake = self.adv_criterion(self.disc(scaled_preds[-1].detach() * inputs.detach()), fake)
adv_loss_d = (adv_loss_real + adv_loss_fake) / 2 * config.lambda_adv_d
self.loss_dict['loss_adv_d'] = adv_loss_d.item()
self.optimizer_d.zero_grad()
adv_loss_d.backward()
self.optimizer_d.step()
def train_epoch(self, epoch):
global logger_loss_idx
self.model.train()
self.loss_dict = {}
if epoch > args.epochs + config.IoU_finetune_last_epochs:
self.pix_loss.lambdas_pix_last['bce'] *= 0
self.pix_loss.lambdas_pix_last['ssim'] *= 1
self.pix_loss.lambdas_pix_last['iou'] *= 0.5
for batch_idx, batch in enumerate(self.train_loader):
self._train_batch(batch)
# Logger
if batch_idx % 20 == 0:
info_progress = 'Epoch[{0}/{1}] Iter[{2}/{3}].'.format(epoch, args.epochs, batch_idx, len(self.train_loader))
info_loss = 'Training Losses'
for loss_name, loss_value in self.loss_dict.items():
info_loss += ', {}: {:.3f}'.format(loss_name, loss_value)
logger.info(' '.join((info_progress, info_loss)))
info_loss = '@==Final== Epoch[{0}/{1}] Training Loss: {loss.avg:.3f} '.format(epoch, args.epochs, loss=self.loss_log)
logger.info(info_loss)
self.lr_scheduler.step()
if config.lambda_adv_g:
self.lr_scheduler_d.step()
return self.loss_log.avg
def validate_model(self, epoch):
num_image_testset_all = {'DIS-VD': 470, 'DIS-TE1': 500, 'DIS-TE2': 500, 'DIS-TE3': 500, 'DIS-TE4': 500}
num_image_testset = {}
for testset in args.testsets:
if 'DIS-TE' in testset:
num_image_testset[testset] = num_image_testset_all[testset]
weighted_scores = {'f_max': 0, 'f_mean': 0, 'f_wfm': 0, 'sm': 0, 'e_max': 0, 'e_mean': 0, 'mae': 0}
len_all_data_loaders = 0
self.model.epoch = epoch
for testset, data_loader_test in self.test_loaders.items():
print('Validating {}...'.format(testset))
performance_dict = valid(
self.model,
data_loader_test,
pred_dir='.',
method=args.ckpt_dir.split('/')[-1] if args.ckpt_dir.split('/')[-1].strip('.').strip('/') else 'tmp_val',
testset=testset,
only_S_MAE=config.only_S_MAE,
device=device
)
print('Test set: {}:'.format(testset))
if config.only_S_MAE:
print('Smeasure: {:.4f}, MAE: {:.4f}'.format(
performance_dict['sm'], performance_dict['mae']
))
else:
print('Fmax: {:.4f}, Fwfm: {:.4f}, Smeasure: {:.4f}, Emean: {:.4f}, MAE: {:.4f}'.format(
performance_dict['f_max'], performance_dict['f_wfm'], performance_dict['sm'], performance_dict['e_mean'], performance_dict['mae']
))
if '-TE' in testset:
for metric in ['sm', 'mae'] if config.only_S_MAE else ['f_max', 'f_mean', 'f_wfm', 'sm', 'e_max', 'e_mean', 'mae']:
weighted_scores[metric] += performance_dict[metric] * len(data_loader_test)
len_all_data_loaders += len(data_loader_test)
print('Weighted Scores:')
for metric, score in weighted_scores.items():
if score:
print('\t{}: {:.4f}.'.format(metric, score / len_all_data_loaders))
def main():
trainer = Trainer(
data_loaders=init_data_loaders(to_be_distributed),
model_opt_lrsch=init_models_optimizers(args.epochs, to_be_distributed)
)
for epoch in range(epoch_st, args.epochs+1):
train_loss = trainer.train_epoch(epoch)
# Save checkpoint
# DDP
if epoch >= args.epochs - config.save_last and epoch % config.save_step == 0:
torch.save(
trainer.model.module.state_dict() if to_be_distributed else trainer.model.state_dict(),
os.path.join(args.ckpt_dir, 'epoch_{}.pth'.format(epoch))
)
if config.val_step and epoch >= args.epochs - config.save_last and (args.epochs - epoch) % config.val_step == 0:
if to_be_distributed:
if get_rank() == 0:
print('Validating at rank-{}...'.format(get_rank()))
trainer.validate_model(epoch)
else:
trainer.validate_model(epoch)
if to_be_distributed:
destroy_process_group()
if __name__ == '__main__':
main()