ZhengPeng7
commited on
Commit
β’
45e89f1
1
Parent(s):
d73d557
Move all BiRefNet github codes to the first level directory.
Browse files- BiRefNet_github/LICENSE +0 -21
- BiRefNet_github/README.md +0 -234
- BiRefNet_github/eval_existingOnes.py +0 -139
- BiRefNet_github/evaluation/evaluate.py +0 -60
- BiRefNet_github/evaluation/metrics.py +0 -612
- BiRefNet_github/evaluation/valid.py +0 -9
- BiRefNet_github/gen_best_ep.py +0 -85
- BiRefNet_github/inference.py +0 -105
- BiRefNet_github/loss.py +0 -274
- BiRefNet_github/make_a_copy.sh +0 -18
- BiRefNet_github/requirements.txt +0 -15
- BiRefNet_github/rm_cache.sh +0 -20
- BiRefNet_github/sub.sh +0 -19
- BiRefNet_github/test.sh +0 -28
- BiRefNet_github/train.py +0 -377
- BiRefNet_github/train_test.sh +0 -11
- BiRefNet_github/waiting4eval.py +0 -141
- BiRefNet_github/models/birefnet.py β birefnet.py +0 -0
- config.json +1 -1
- BiRefNet_github/config.py β config.py +0 -0
- BiRefNet_github/dataset.py β dataset.py +0 -0
- {BiRefNet_github/models β models}/backbones/build_backbone.py +0 -0
- {BiRefNet_github/models β models}/backbones/pvt_v2.py +0 -0
- {BiRefNet_github/models β models}/backbones/swin_v1.py +0 -0
- {BiRefNet_github/models β models}/modules/aspp.py +0 -0
- {BiRefNet_github/models β models}/modules/attentions.py +0 -0
- {BiRefNet_github/models β models}/modules/decoder_blocks.py +0 -0
- {BiRefNet_github/models β models}/modules/deform_conv.py +0 -0
- {BiRefNet_github/models β models}/modules/ing.py +0 -0
- {BiRefNet_github/models β models}/modules/lateral_blocks.py +0 -0
- {BiRefNet_github/models β models}/modules/mlp.py +0 -0
- {BiRefNet_github/models β models}/modules/prompt_encoder.py +0 -0
- {BiRefNet_github/models β models}/modules/utils.py +0 -0
- {BiRefNet_github/models β models}/refinement/refiner.py +0 -0
- {BiRefNet_github/models β models}/refinement/stem_layer.py +0 -0
- BiRefNet_github/preproc.py β preproc.py +0 -0
- BiRefNet_github/train.sh β train.sh +0 -0
- BiRefNet_github/utils.py β utils.py +0 -0
BiRefNet_github/LICENSE
DELETED
@@ -1,21 +0,0 @@
|
|
1 |
-
MIT License
|
2 |
-
|
3 |
-
Copyright (c) 2024 ZhengPeng
|
4 |
-
|
5 |
-
Permission is hereby granted, free of charge, to any person obtaining a copy
|
6 |
-
of this software and associated documentation files (the "Software"), to deal
|
7 |
-
in the Software without restriction, including without limitation the rights
|
8 |
-
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9 |
-
copies of the Software, and to permit persons to whom the Software is
|
10 |
-
furnished to do so, subject to the following conditions:
|
11 |
-
|
12 |
-
The above copyright notice and this permission notice shall be included in all
|
13 |
-
copies or substantial portions of the Software.
|
14 |
-
|
15 |
-
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16 |
-
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17 |
-
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18 |
-
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19 |
-
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20 |
-
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
21 |
-
SOFTWARE.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
BiRefNet_github/README.md
DELETED
@@ -1,234 +0,0 @@
|
|
1 |
-
# <p align=center>`Bilateral Reference for High-Resolution Dichotomous Image Segmentation`</p>
|
2 |
-
|
3 |
-
| *DIS-Sample_1* | *DIS-Sample_2* |
|
4 |
-
| :------------------------------: | :-------------------------------: |
|
5 |
-
| <img src="https://drive.google.com/thumbnail?id=1ItXaA26iYnE8XQ_GgNLy71MOWePoS2-g&sz=w400" /> | <img src="https://drive.google.com/thumbnail?id=1Z-esCujQF_uEa_YJjkibc3NUrW4aR_d4&sz=w400" /> |
|
6 |
-
|
7 |
-
This repo is the official implementation of "[**Bilateral Reference for High-Resolution Dichotomous Image Segmentation**](https://arxiv.org/pdf/2401.03407.pdf)" (___arXiv 2024___).
|
8 |
-
|
9 |
-
> **Authors:**
|
10 |
-
> [Peng Zheng](https://scholar.google.com/citations?user=TZRzWOsAAAAJ),
|
11 |
-
> [Dehong Gao](https://scholar.google.com/citations?user=0uPb8MMAAAAJ),
|
12 |
-
> [Deng-Ping Fan](https://scholar.google.com/citations?user=kakwJ5QAAAAJ),
|
13 |
-
> [Li Liu](https://scholar.google.com/citations?user=9cMQrVsAAAAJ),
|
14 |
-
> [Jorma Laaksonen](https://scholar.google.com/citations?user=qQP6WXIAAAAJ),
|
15 |
-
> [Wanli Ouyang](https://scholar.google.com/citations?user=pw_0Z_UAAAAJ), &
|
16 |
-
> [Nicu Sebe](https://scholar.google.com/citations?user=stFCYOAAAAAJ).
|
17 |
-
|
18 |
-
[[**arXiv**](https://arxiv.org/abs/2401.03407)] [[**code**](https://github.com/ZhengPeng7/BiRefNet)] [[**stuff**](https://drive.google.com/drive/folders/1s2Xe0cjq-2ctnJBR24563yMSCOu4CcxM)] [[**δΈζη**](https://drive.google.com/file/d/1aBnJ_R9lbnC2dm8dqD0-pzP2Cu-U1Xpt/view?usp=drive_link)]
|
19 |
-
|
20 |
-
Our BiRefNet has achieved SOTA on many similar HR tasks:
|
21 |
-
|
22 |
-
**DIS**: [![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/bilateral-reference-for-high-resolution/dichotomous-image-segmentation-on-dis-te1)](https://paperswithcode.com/sota/dichotomous-image-segmentation-on-dis-te1?p=bilateral-reference-for-high-resolution) [![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/bilateral-reference-for-high-resolution/dichotomous-image-segmentation-on-dis-te2)](https://paperswithcode.com/sota/dichotomous-image-segmentation-on-dis-te2?p=bilateral-reference-for-high-resolution) [![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/bilateral-reference-for-high-resolution/dichotomous-image-segmentation-on-dis-te3)](https://paperswithcode.com/sota/dichotomous-image-segmentation-on-dis-te3?p=bilateral-reference-for-high-resolution) [![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/bilateral-reference-for-high-resolution/dichotomous-image-segmentation-on-dis-te4)](https://paperswithcode.com/sota/dichotomous-image-segmentation-on-dis-te4?p=bilateral-reference-for-high-resolution) [![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/bilateral-reference-for-high-resolution/dichotomous-image-segmentation-on-dis-vd)](https://paperswithcode.com/sota/dichotomous-image-segmentation-on-dis-vd?p=bilateral-reference-for-high-resolution)
|
23 |
-
|
24 |
-
<details><summary>Figure of Comparison on Papers with Codes (by the time of this work):</summary><p>
|
25 |
-
<img src="https://drive.google.com/thumbnail?id=1DLt6CFXdT1QSWDj_6jRkyZINXZ4vmyRp&sz=w1620" />
|
26 |
-
<img src="https://drive.google.com/thumbnail?id=1gn5GyKFlJbMIkre1JyEdHDSYcrFmcLD0&sz=w1620" />
|
27 |
-
<img src="https://drive.google.com/thumbnail?id=16CVYYOtafEeZhHqv0am2Daku1n_exMP6&sz=w1620" />
|
28 |
-
<img src="https://drive.google.com/thumbnail?id=10K45xwPXmaTG4Ex-29ss9payA9yBnyLn&sz=w1620" />
|
29 |
-
<img src="https://drive.google.com/thumbnail?id=16EuyqKFJOqwMmagvfnbC9hUurL9pYLLB&sz=w1620" />
|
30 |
-
</details>
|
31 |
-
<br />
|
32 |
-
|
33 |
-
**COD**:[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/bilateral-reference-for-high-resolution/camouflaged-object-segmentation-on-cod)](https://paperswithcode.com/sota/camouflaged-object-segmentation-on-cod?p=bilateral-reference-for-high-resolution) [![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/bilateral-reference-for-high-resolution/camouflaged-object-segmentation-on-nc4k)](https://paperswithcode.com/sota/camouflaged-object-segmentation-on-nc4k?p=bilateral-reference-for-high-resolution) [![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/bilateral-reference-for-high-resolution/camouflaged-object-segmentation-on-camo)](https://paperswithcode.com/sota/camouflaged-object-segmentation-on-camo?p=bilateral-reference-for-high-resolution) [![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/bilateral-reference-for-high-resolution/camouflaged-object-segmentation-on-chameleon)](https://paperswithcode.com/sota/camouflaged-object-segmentation-on-chameleon?p=bilateral-reference-for-high-resolution)
|
34 |
-
|
35 |
-
<details><summary>Figure of Comparison on Papers with Codes (by the time of this work):</summary><p>
|
36 |
-
<img src="https://drive.google.com/thumbnail?id=1DLt6CFXdT1QSWDj_6jRkyZINXZ4vmyRp&sz=w1620" />
|
37 |
-
<img src="https://drive.google.com/thumbnail?id=1gn5GyKFlJbMIkre1JyEdHDSYcrFmcLD0&sz=w1620" />
|
38 |
-
<img src="https://drive.google.com/thumbnail?id=16CVYYOtafEeZhHqv0am2Daku1n_exMP6&sz=w1620" />
|
39 |
-
</details>
|
40 |
-
<br />
|
41 |
-
|
42 |
-
**HRSOD**: [![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/bilateral-reference-for-high-resolution/rgb-salient-object-detection-on-davis-s)](https://paperswithcode.com/sota/rgb-salient-object-detection-on-davis-s?p=bilateral-reference-for-high-resolution) [![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/bilateral-reference-for-high-resolution/rgb-salient-object-detection-on-hrsod)](https://paperswithcode.com/sota/rgb-salient-object-detection-on-hrsod?p=bilateral-reference-for-high-resolution) [![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/bilateral-reference-for-high-resolution/rgb-salient-object-detection-on-uhrsd)](https://paperswithcode.com/sota/rgb-salient-object-detection-on-uhrsd?p=bilateral-reference-for-high-resolution) [![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/bilateral-reference-for-high-resolution/salient-object-detection-on-duts-te)](https://paperswithcode.com/sota/salient-object-detection-on-duts-te?p=bilateral-reference-for-high-resolution) [![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/bilateral-reference-for-high-resolution/salient-object-detection-on-dut-omron)](https://paperswithcode.com/sota/salient-object-detection-on-dut-omron?p=bilateral-reference-for-high-resolution)
|
43 |
-
|
44 |
-
<details><summary>Figure of Comparison on Papers with Codes (by the time of this work):</summary><p>
|
45 |
-
<img src="https://drive.google.com/thumbnail?id=1hNfQtlTAHT4-AVbk_47852zyRp1NOFLs&sz=w1620" />
|
46 |
-
<img src="https://drive.google.com/thumbnail?id=1bcVldUAxYkMI3OMTyaP_jNuOugDfYj-d&sz=w1620" />
|
47 |
-
<img src="https://drive.google.com/thumbnail?id=1p1zgyVz27cGEqQMtOKzm_6zoYK3Sw_Zk&sz=w1620" />
|
48 |
-
<img src="https://drive.google.com/thumbnail?id=1TubAvcoEbH_mHu3I-AxflnB71nkf35jJ&sz=w1620" />
|
49 |
-
<img src="https://drive.google.com/thumbnail?id=1A3V9HjVtcMQdnGPwuy-DBVhwKuo0q2lT&sz=w1620" />
|
50 |
-
</details>
|
51 |
-
<br />
|
52 |
-
|
53 |
-
#### Try our online demos for inference:
|
54 |
-
|
55 |
-
+ **Inference and evaluation** of your given weights: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1MaEiBfJ4xIaZZn0DqKrhydHB8X97hNXl#scrollTo=DJ4meUYjia6S)
|
56 |
-
+ **Online Inference with GUI** with adjustable resolutions: [![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue)](https://huggingface.co/spaces/ZhengPeng7/BiRefNet_demo)
|
57 |
-
+ Online **Single Image Inference** on Colab: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/14Dqg7oeBkFEtchaHLNpig2BcdkZEogba?usp=drive_link)
|
58 |
-
<img src="https://drive.google.com/thumbnail?id=12XmDhKtO1o2fEvBu4OE4ULVB2BK0ecWi&sz=w1620" />
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
## Model Zoo
|
63 |
-
|
64 |
-
> For more general use of our BiRefNet, I managed to extend the original adademic one to more general ones for better application in real life.
|
65 |
-
>
|
66 |
-
> Datasets and datasets are suggested to download from official pages. But you can also download the packaged ones: [DIS](https://drive.google.com/drive/folders/1hZW6tAGPJwo9mPS7qGGGdpxuvuXiyoMJ?usp=drive_link), [HRSOD](https://drive.google.com/drive/folders/18_hAE3QM4cwAzEAKXuSNtKjmgFXTQXZN?usp=drive_link), [COD](https://drive.google.com/drive/folders/1EyHmKWsXfaCR9O0BiZEc3roZbRcs4ECO?usp=drive_link), [Backbones](https://drive.google.com/drive/folders/1cmce_emsS8A5ha5XT2c_CZiJzlLM81ms?usp=drive_link).
|
67 |
-
>
|
68 |
-
> Find performances (almost all metrics) of all models in the `exp-TASK_SETTINGS` folders in [[**stuff**](https://drive.google.com/drive/folders/1s2Xe0cjq-2ctnJBR24563yMSCOu4CcxM)].
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
<details><summary>Models in the original paper, for <b>comparison on benchmarks</b>:</summary><p>
|
73 |
-
|
74 |
-
| Task | Training Sets | Backbone | Download |
|
75 |
-
| :---: | :-------------------------: | :-----------: | :----------------------------------------------------------: |
|
76 |
-
| DIS | DIS5K-TR | swin_v1_large | [google-drive](https://drive.google.com/file/d/1J90LucvDQaS3R_-9E7QUh1mgJ8eQvccb/view?usp=drive_link) |
|
77 |
-
| COD | COD10K-TR, CAMO-TR | swin_v1_large | [google-drive](https://drive.google.com/file/d/1tM5M72k7a8aKF-dYy-QXaqvfEhbFaWkC/view?usp=drive_link) |
|
78 |
-
| HRSOD | DUTS-TR | swin_v1_large | [google-drive](https://drive.google.com/file/d/1f7L0Pb1Y3RkOMbqLCW_zO31dik9AiUFa/view?usp=drive_link) |
|
79 |
-
| HRSOD | HRSOD-TR | swin_v1_large | google-drive |
|
80 |
-
| HRSOD | UHRSD-TR | swin_v1_large | google-drive |
|
81 |
-
| HRSOD | DUTS-TR, HRSOD-TR | swin_v1_large | [google-drive](https://drive.google.com/file/d/1WJooyTkhoDLllaqwbpur_9Hle0XTHEs_/view?usp=drive_link) |
|
82 |
-
| HRSOD | DUTS-TR, UHRSD-TR | swin_v1_large | [google-drive](https://drive.google.com/file/d/1Pu1mv3ORobJatIuUoEuZaWDl2ylP3Gw7/view?usp=drive_link) |
|
83 |
-
| HRSOD | HRSOD-TR, UHRSD-TR | swin_v1_large | [google-drive](https://drive.google.com/file/d/1xEh7fsgWGaS5c3IffMswasv0_u-aVM9E/view?usp=drive_link) |
|
84 |
-
| HRSOD | DUTS-TR, HRSOD-TR, UHRSD-TR | swin_v1_large | [google-drive](https://drive.google.com/file/d/13FaxyyOwyCddfZn2vZo1xG1KNZ3cZ-6B/view?usp=drive_link) |
|
85 |
-
|
86 |
-
</details>
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
<details><summary>Models trained with customed data (massive, portrait), for <b>general use in practical application</b>:</summary>
|
91 |
-
|
92 |
-
| Task | Training Sets | Backbone | Test Set | Metric (S, wF[, HCE]) | Download |
|
93 |
-
| :-----------------------: | :----------------------------------------------------------: | :-----------: | :-------: | :-------------------: | :----------------------------------------------------------: |
|
94 |
-
| **general use** | DIS5K-TR,DIS-TEs, DUTS-TR_TE,HRSOD-TR_TE,UHRSD-TR_TE, HRS10K-TR_TE | swin_v1_large | DIS-VD | 0.889, 0.840, 1152 | [google-drive](https://drive.google.com/file/d/1KRVE-U3OHrUuuFPY4FFdE4eYBeHJSA0H/view?usp=drive_link) |
|
95 |
-
| **general use** | DIS5K-TR,DIS-TEs, DUTS-TR_TE,HRSOD-TR_TE,UHRSD-TR_TE, HRS10K-TR_TE | swin_v1_tiny | DIS-VD | 0.867, 0.809, 1182 | [Google-drive](https://drive.google.com/file/d/16gDZISjNp7rKi5vsJm6_fbYF8ZBK8AoF/view?usp=drive_link) |
|
96 |
-
| **general use** | DIS5K-TR, DIS-TEs | swin_v1_large | DIS-VD | 0.907, 0.865, 1059 | [google-drive](https://drive.google.com/file/d/1P6NJzG3Jf1sl7js2q1CPC3yqvBn_O8UJ/view?usp=drive_link) |
|
97 |
-
| **portrait segmentation** | P3M-10k | swin_v1_large | P3M-500-P | 0.982, 0.990 | [google-drive](https://drive.google.com/file/d/1vrjPoOGj05iSxb4MMeznX5k67VlyfZX5/view?usp=drive_link) |
|
98 |
-
|
99 |
-
</details>
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
<details><summary>Segmentation with box <b>guidance</b>:</summary>
|
104 |
-
|
105 |
-
β *In progress...*
|
106 |
-
|
107 |
-
</details>
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
<details><summary>Model <b>efficiency</b>:</summary><p>
|
112 |
-
|
113 |
-
> Screenshot from the original paper. All tests are conducted on a single A100 GPU.
|
114 |
-
|
115 |
-
<img src="https://drive.google.com/thumbnail?id=1mTfSD_qt-rFO1t8DRQcyIa5cgWLf1w2-&sz=h300" /> <img src="https://drive.google.com/thumbnail?id=1F_OURIWILVe4u1rSz-aqt6ur__bAef25&sz=h300" />
|
116 |
-
|
117 |
-
</details>
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
## Third-Party Creations
|
122 |
-
|
123 |
-
> Concerning edge devices with less computing power, we provide a lightweight version with `swin_v1_tiny` as the backbone, which is x4+ faster and x5+ smaller. The details can be found in [this issue](https://github.com/ZhengPeng7/BiRefNet/issues/11#issuecomment-2041033576) and links there.
|
124 |
-
|
125 |
-
We found there've been some 3rd party applications based on our BiRefNet. Many thanks for their contribution to the community!
|
126 |
-
Choose the one you like to try with clicks instead of codes:
|
127 |
-
1. **Applications**:
|
128 |
-
+ Thanks [**fal.ai/birefnet**](https://fal.ai/models/birefnet): this project on `fal.ai` encapsulates BiRefNet **online** with more useful options in **UI** and **API** to call the model.
|
129 |
-
<p align="center"><img src="https://drive.google.com/thumbnail?id=1rNk81YV_Pzb2GykrzfGvX6T7KBXR0wrA&sz=w1620" /></p>
|
130 |
-
|
131 |
-
+ Thanks [**ZHO-ZHO-ZHO/ComfyUI-BiRefNet-ZHO**](https://github.com/ZHO-ZHO-ZHO/ComfyUI-BiRefNet-ZHO): this project further improves the **UI** for BiRefNet in ComfyUI, especially for **video data**.
|
132 |
-
<p align="center"><img src="https://drive.google.com/thumbnail?id=1GOqEreyS7ENzTPN0RqxEjaA76RpMlkYM&sz=w1620" /></p>
|
133 |
-
|
134 |
-
<https://github.com/ZhengPeng7/BiRefNet/assets/25921713/3a1c7ab2-9847-4dac-8935-43a2d3cd2671>
|
135 |
-
|
136 |
-
+ Thanks [**viperyl/ComfyUI-BiRefNet**](https://github.com/viperyl/ComfyUI-BiRefNet): this project packs BiRefNet as **ComfyUI nodes**, and makes this SOTA model easier use for everyone.
|
137 |
-
<p align="center"><img src="https://drive.google.com/thumbnail?id=1KfxCQUUa2y9T-aysEaeVVjCUt3Z0zSkL&sz=w1620" /></p>
|
138 |
-
|
139 |
-
+ Thanks [**Rishabh**](https://github.com/rishabh063) for offerring a demo for the [easier single image inference on colab](https://colab.research.google.com/drive/14Dqg7oeBkFEtchaHLNpig2BcdkZEogba?usp=drive_link).
|
140 |
-
|
141 |
-
2. **More Visual Comparisons**
|
142 |
-
+ Thanks [**twitter.com/ZHOZHO672070**](https://twitter.com/ZHOZHO672070) for the comparison with more background-removal methods in images:
|
143 |
-
|
144 |
-
<img src="https://drive.google.com/thumbnail?id=1nvVIFt_Ezs-crPSQxUDqkUBz598fTe63&sz=w1620" />
|
145 |
-
|
146 |
-
+ Thanks [**twitter.com/toyxyz3**](https://twitter.com/toyxyz3) for the comparison with more background-removal methods in videos:
|
147 |
-
|
148 |
-
<https://github.com/ZhengPeng7/BiRefNet/assets/25921713/40136198-01cc-4106-81f9-81c985f02e31>
|
149 |
-
|
150 |
-
<https://github.com/ZhengPeng7/BiRefNet/assets/25921713/1a32860c-0893-49dd-b557-c2e35a83c160>
|
151 |
-
|
152 |
-
|
153 |
-
## Usage
|
154 |
-
|
155 |
-
#### Environment Setup
|
156 |
-
|
157 |
-
```shell
|
158 |
-
# PyTorch==2.0.1 is used for faster training with compilation.
|
159 |
-
conda create -n dis python=3.9 -y && conda activate dis
|
160 |
-
pip install -r requirements.txt
|
161 |
-
```
|
162 |
-
|
163 |
-
#### Dataset Preparation
|
164 |
-
|
165 |
-
Download combined training / test sets I have organized well from: [DIS](https://drive.google.com/drive/folders/1hZW6tAGPJwo9mPS7qGGGdpxuvuXiyoMJ)--[COD](https://drive.google.com/drive/folders/1EyHmKWsXfaCR9O0BiZEc3roZbRcs4ECO)--[HRSOD](https://drive.google.com/drive/folders/18_hAE3QM4cwAzEAKXuSNtKjmgFXTQXZN) or the single official ones in the `single_ones` folder, or their official pages. You can also find the same ones on my **BaiduDisk**: [DIS](https://pan.baidu.com/s/1O_pQIGAE4DKqL93xOxHpxw?pwd=PSWD)--[COD](https://pan.baidu.com/s/1RnxAzaHSTGBC1N6r_RfeqQ?pwd=PSWD)--[HRSOD](https://pan.baidu.com/s/1_Del53_0lBuG0DKJJAk4UA?pwd=PSWD).
|
166 |
-
|
167 |
-
#### Weights Preparation
|
168 |
-
|
169 |
-
Download backbone weights from [my google-drive folder](https://drive.google.com/drive/folders/1s2Xe0cjq-2ctnJBR24563yMSCOu4CcxM) or their official pages.
|
170 |
-
|
171 |
-
#### Run
|
172 |
-
|
173 |
-
```shell
|
174 |
-
# Train & Test & Evaluation
|
175 |
-
./train_test.sh RUN_NAME GPU_NUMBERS_FOR_TRAINING GPU_NUMBERS_FOR_TEST
|
176 |
-
# See train.sh / test.sh for only training / test-evaluation.
|
177 |
-
# After the evluation, run `gen_best_ep.py` to select the best ckpt from a specific metric (you choose it from Sm, wFm, HCE (DIS only)).
|
178 |
-
```
|
179 |
-
|
180 |
-
#### Well-trained weights:
|
181 |
-
|
182 |
-
Download the `BiRefNet-{TASK}-{EPOCH}.pth` from [[**stuff**](https://drive.google.com/drive/folders/1s2Xe0cjq-2ctnJBR24563yMSCOu4CcxM)]. Info of the corresponding (predicted\_maps/performance/training\_log) weights can be also found in folders like `exp-BiRefNet-{TASK_SETTINGS}` in the same directory.
|
183 |
-
|
184 |
-
You can also download the weights from the release of this repo.
|
185 |
-
|
186 |
-
The results might be a bit different from those in the original paper, you can see them in the `eval_results-BiRefNet-{TASK_SETTINGS}` folder in each `exp-xx`, we will update them in the following days. Due to the very high cost I used (A100-80G x 8) which many people cannot afford to (including myself....), I re-trained BiRefNet on a single A100-40G only and achieve the performance on the same level (even better). It means you can directly train the model on a single GPU with 36.5G+ memory. BTW, 5.5G GPU memory is needed for inference in 1024x1024. (I personally paid a lot for renting an A100-40G to re-train BiRefNet on the three tasks... T_T. Hope it can help you.)
|
187 |
-
|
188 |
-
But if you have more and more powerful GPUs, you can set GPU IDs and increase the batch size in `config.py` to accelerate the training. We have made all this kind of things adaptive in scripts to seamlessly switch between single-card training and multi-card training. Enjoy it :)
|
189 |
-
|
190 |
-
#### Some of my messages:
|
191 |
-
|
192 |
-
This project was originally built for DIS only. But after the updates one by one, I made it larger and larger with many functions embedded together. Finally, you can **use it for any binary image segmentation tasks**, such as DIS/COD/SOD, medical image segmentation, anomaly segmentation, etc. You can eaily open/close below things (usually in `config.py`):
|
193 |
-
+ Multi-GPU training: open/close with one variable.
|
194 |
-
+ Backbone choices: Swin_v1, PVT_v2, ConvNets, ...
|
195 |
-
+ Weighted losses: BCE, IoU, SSIM, MAE, Reg, ...
|
196 |
-
+ Adversarial loss for binary segmentation (proposed in my previous work [MCCL](https://arxiv.org/pdf/2302.14485.pdf)).
|
197 |
-
+ Training tricks: multi-scale supervision, freezing backbone, multi-scale input...
|
198 |
-
+ Data collator: loading all in memory, smooth combination of different datasets for combined training and test.
|
199 |
-
+ ...
|
200 |
-
I really hope you enjoy this project and use it in more works to achieve new SOTAs.
|
201 |
-
|
202 |
-
|
203 |
-
### Quantitative Results
|
204 |
-
|
205 |
-
<p align="center"><img src="https://drive.google.com/thumbnail?id=184e84BwLuNu1FytSAQ2EnANZ0RFHKPip&sz=w1620" /></p>
|
206 |
-
|
207 |
-
<p align="center"><img src="https://drive.google.com/thumbnail?id=1W0mi0ZiYbqsaGuohNXU8Gh7Zj4M3neFg&sz=w1620" /></p>
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
### Qualitative Results
|
212 |
-
|
213 |
-
<p align="center"><img src="https://drive.google.com/thumbnail?id=1TYZF8pVZc2V0V6g3ik4iAr9iKvJ8BNrf&sz=w1620" /></p>
|
214 |
-
|
215 |
-
<p align="center"><img src="https://drive.google.com/thumbnail?id=1ZGHC32CAdT9cwRloPzOCKWCrVQZvUAlJ&sz=w1620" /></p>
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
### Citation
|
220 |
-
|
221 |
-
```
|
222 |
-
@article{zheng2024birefnet,
|
223 |
-
title={Bilateral Reference for High-Resolution Dichotomous Image Segmentation},
|
224 |
-
author={Zheng, Peng and Gao, Dehong and Fan, Deng-Ping and Liu, Li and Laaksonen, Jorma and Ouyang, Wanli and Sebe, Nicu},
|
225 |
-
journal={arXiv},
|
226 |
-
year={2024}
|
227 |
-
}
|
228 |
-
```
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
## Contact
|
233 |
-
|
234 |
-
Any question, discussion or even complaint, feel free to leave issues here or send me e-mails ([email protected]).
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
BiRefNet_github/eval_existingOnes.py
DELETED
@@ -1,139 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
import argparse
|
3 |
-
from glob import glob
|
4 |
-
import prettytable as pt
|
5 |
-
|
6 |
-
from evaluation.evaluate import evaluator
|
7 |
-
from config import Config
|
8 |
-
|
9 |
-
|
10 |
-
config = Config()
|
11 |
-
|
12 |
-
|
13 |
-
def do_eval(args):
|
14 |
-
# evaluation for whole dataset
|
15 |
-
# dataset first in evaluation
|
16 |
-
for _data_name in args.data_lst.split('+'):
|
17 |
-
pred_data_dir = sorted(glob(os.path.join(args.pred_root, args.model_lst[0], _data_name)))
|
18 |
-
if not pred_data_dir:
|
19 |
-
print('Skip dataset {}.'.format(_data_name))
|
20 |
-
continue
|
21 |
-
gt_src = os.path.join(args.gt_root, _data_name)
|
22 |
-
gt_paths = sorted(glob(os.path.join(gt_src, 'gt', '*')))
|
23 |
-
print('#' * 20, _data_name, '#' * 20)
|
24 |
-
filename = os.path.join(args.save_dir, '{}_eval.txt'.format(_data_name))
|
25 |
-
tb = pt.PrettyTable()
|
26 |
-
tb.vertical_char = '&'
|
27 |
-
if config.task == 'DIS5K':
|
28 |
-
tb.field_names = ["Dataset", "Method", "maxFm", "wFmeasure", 'MAE', "Smeasure", "meanEm", "HCE", "maxEm", "meanFm", "adpEm", "adpFm"]
|
29 |
-
elif config.task == 'COD':
|
30 |
-
tb.field_names = ["Dataset", "Method", "Smeasure", "wFmeasure", "meanFm", "meanEm", "maxEm", 'MAE', "maxFm", "adpEm", "adpFm", "HCE"]
|
31 |
-
elif config.task == 'HRSOD':
|
32 |
-
tb.field_names = ["Dataset", "Method", "Smeasure", "maxFm", "meanEm", 'MAE', "maxEm", "meanFm", "wFmeasure", "adpEm", "adpFm", "HCE"]
|
33 |
-
elif config.task == 'DIS5K+HRSOD+HRS10K':
|
34 |
-
tb.field_names = ["Dataset", "Method", "maxFm", "wFmeasure", 'MAE', "Smeasure", "meanEm", "HCE", "maxEm", "meanFm", "adpEm", "adpFm"]
|
35 |
-
elif config.task == 'P3M-10k':
|
36 |
-
tb.field_names = ["Dataset", "Method", "Smeasure", "maxFm", "meanEm", 'MAE', "maxEm", "meanFm", "wFmeasure", "adpEm", "adpFm", "HCE"]
|
37 |
-
else:
|
38 |
-
tb.field_names = ["Dataset", "Method", "Smeasure", 'MAE', "maxEm", "meanEm", "maxFm", "meanFm", "wFmeasure", "adpEm", "adpFm", "HCE"]
|
39 |
-
for _model_name in args.model_lst[:]:
|
40 |
-
print('\t', 'Evaluating model: {}...'.format(_model_name))
|
41 |
-
pred_paths = [p.replace(args.gt_root, os.path.join(args.pred_root, _model_name)).replace('/gt/', '/') for p in gt_paths]
|
42 |
-
# print(pred_paths[:1], gt_paths[:1])
|
43 |
-
em, sm, fm, mae, wfm, hce = evaluator(
|
44 |
-
gt_paths=gt_paths,
|
45 |
-
pred_paths=pred_paths,
|
46 |
-
metrics=args.metrics.split('+'),
|
47 |
-
verbose=config.verbose_eval
|
48 |
-
)
|
49 |
-
if config.task == 'DIS5K':
|
50 |
-
scores = [
|
51 |
-
fm['curve'].max().round(3), wfm.round(3), mae.round(3), sm.round(3), em['curve'].mean().round(3), int(hce.round()),
|
52 |
-
em['curve'].max().round(3), fm['curve'].mean().round(3), em['adp'].round(3), fm['adp'].round(3),
|
53 |
-
]
|
54 |
-
elif config.task == 'COD':
|
55 |
-
scores = [
|
56 |
-
sm.round(3), wfm.round(3), fm['curve'].mean().round(3), em['curve'].mean().round(3), em['curve'].max().round(3), mae.round(3),
|
57 |
-
fm['curve'].max().round(3), em['adp'].round(3), fm['adp'].round(3), int(hce.round()),
|
58 |
-
]
|
59 |
-
elif config.task == 'HRSOD':
|
60 |
-
scores = [
|
61 |
-
sm.round(3), fm['curve'].max().round(3), em['curve'].mean().round(3), mae.round(3),
|
62 |
-
em['curve'].max().round(3), fm['curve'].mean().round(3), wfm.round(3), em['adp'].round(3), fm['adp'].round(3), int(hce.round()),
|
63 |
-
]
|
64 |
-
elif config.task == 'DIS5K+HRSOD+HRS10K':
|
65 |
-
scores = [
|
66 |
-
fm['curve'].max().round(3), wfm.round(3), mae.round(3), sm.round(3), em['curve'].mean().round(3), int(hce.round()),
|
67 |
-
em['curve'].max().round(3), fm['curve'].mean().round(3), em['adp'].round(3), fm['adp'].round(3),
|
68 |
-
]
|
69 |
-
elif config.task == 'P3M-10k':
|
70 |
-
scores = [
|
71 |
-
sm.round(3), fm['curve'].max().round(3), em['curve'].mean().round(3), mae.round(3),
|
72 |
-
em['curve'].max().round(3), fm['curve'].mean().round(3), wfm.round(3), em['adp'].round(3), fm['adp'].round(3), int(hce.round()),
|
73 |
-
]
|
74 |
-
else:
|
75 |
-
scores = [
|
76 |
-
sm.round(3), mae.round(3), em['curve'].max().round(3), em['curve'].mean().round(3),
|
77 |
-
fm['curve'].max().round(3), fm['curve'].mean().round(3), wfm.round(3),
|
78 |
-
em['adp'].round(3), fm['adp'].round(3), int(hce.round()),
|
79 |
-
]
|
80 |
-
|
81 |
-
for idx_score, score in enumerate(scores):
|
82 |
-
scores[idx_score] = '.' + format(score, '.3f').split('.')[-1] if score <= 1 else format(score, '<4')
|
83 |
-
records = [_data_name, _model_name] + scores
|
84 |
-
tb.add_row(records)
|
85 |
-
# Write results after every check.
|
86 |
-
with open(filename, 'w+') as file_to_write:
|
87 |
-
file_to_write.write(str(tb)+'\n')
|
88 |
-
print(tb)
|
89 |
-
|
90 |
-
|
91 |
-
if __name__ == '__main__':
|
92 |
-
# set parameters
|
93 |
-
parser = argparse.ArgumentParser()
|
94 |
-
parser.add_argument(
|
95 |
-
'--gt_root', type=str, help='ground-truth root',
|
96 |
-
default=os.path.join(config.data_root_dir, config.task))
|
97 |
-
parser.add_argument(
|
98 |
-
'--pred_root', type=str, help='prediction root',
|
99 |
-
default='./e_preds')
|
100 |
-
parser.add_argument(
|
101 |
-
'--data_lst', type=str, help='test dataset',
|
102 |
-
default={
|
103 |
-
'DIS5K': '+'.join(['DIS-VD', 'DIS-TE1', 'DIS-TE2', 'DIS-TE3', 'DIS-TE4'][:]),
|
104 |
-
'COD': '+'.join(['TE-COD10K', 'NC4K', 'TE-CAMO', 'CHAMELEON'][:]),
|
105 |
-
'HRSOD': '+'.join(['DAVIS-S', 'TE-HRSOD', 'TE-UHRSD', 'TE-DUTS', 'DUT-OMRON'][:]),
|
106 |
-
'DIS5K+HRSOD+HRS10K': '+'.join(['DIS-VD'][:]),
|
107 |
-
'P3M-10k': '+'.join(['TE-P3M-500-P', 'TE-P3M-500-NP'][:]),
|
108 |
-
}[config.task])
|
109 |
-
parser.add_argument(
|
110 |
-
'--save_dir', type=str, help='candidate competitors',
|
111 |
-
default='e_results')
|
112 |
-
parser.add_argument(
|
113 |
-
'--check_integrity', type=bool, help='whether to check the file integrity',
|
114 |
-
default=False)
|
115 |
-
parser.add_argument(
|
116 |
-
'--metrics', type=str, help='candidate competitors',
|
117 |
-
default='+'.join(['S', 'MAE', 'E', 'F', 'WF', 'HCE'][:100 if 'DIS5K' in config.task else -1]))
|
118 |
-
args = parser.parse_args()
|
119 |
-
|
120 |
-
os.makedirs(args.save_dir, exist_ok=True)
|
121 |
-
try:
|
122 |
-
args.model_lst = [m for m in sorted(os.listdir(args.pred_root), key=lambda x: int(x.split('epoch_')[-1]), reverse=True) if int(m.split('epoch_')[-1]) % 1 == 0]
|
123 |
-
except:
|
124 |
-
args.model_lst = [m for m in sorted(os.listdir(args.pred_root))]
|
125 |
-
|
126 |
-
# check the integrity of each candidates
|
127 |
-
if args.check_integrity:
|
128 |
-
for _data_name in args.data_lst.split('+'):
|
129 |
-
for _model_name in args.model_lst:
|
130 |
-
gt_pth = os.path.join(args.gt_root, _data_name)
|
131 |
-
pred_pth = os.path.join(args.pred_root, _model_name, _data_name)
|
132 |
-
if not sorted(os.listdir(gt_pth)) == sorted(os.listdir(pred_pth)):
|
133 |
-
print(len(sorted(os.listdir(gt_pth))), len(sorted(os.listdir(pred_pth))))
|
134 |
-
print('The {} Dataset of {} Model is not matching to the ground-truth'.format(_data_name, _model_name))
|
135 |
-
else:
|
136 |
-
print('>>> skip check the integrity of each candidates')
|
137 |
-
|
138 |
-
# start engine
|
139 |
-
do_eval(args)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
BiRefNet_github/evaluation/evaluate.py
DELETED
@@ -1,60 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
import prettytable as pt
|
3 |
-
|
4 |
-
from evaluation.metrics import evaluator
|
5 |
-
from config import Config
|
6 |
-
|
7 |
-
|
8 |
-
config = Config()
|
9 |
-
|
10 |
-
def evaluate(pred_dir, method, testset, only_S_MAE=False, epoch=0):
|
11 |
-
filename = os.path.join('evaluation', 'eval-{}.txt'.format(method))
|
12 |
-
if os.path.exists(filename):
|
13 |
-
id_suffix = 1
|
14 |
-
filename = filename.rstrip('.txt') + '_{}.txt'.format(id_suffix)
|
15 |
-
while os.path.exists(filename):
|
16 |
-
id_suffix += 1
|
17 |
-
filename = filename.replace('_{}.txt'.format(id_suffix-1), '_{}.txt'.format(id_suffix))
|
18 |
-
gt_paths = sorted([
|
19 |
-
os.path.join(config.data_root_dir, config.task, testset, 'gt', p)
|
20 |
-
for p in os.listdir(os.path.join(config.data_root_dir, config.task, testset, 'gt'))
|
21 |
-
])
|
22 |
-
pred_paths = sorted([os.path.join(pred_dir, method, testset, p) for p in os.listdir(os.path.join(pred_dir, method, testset))])
|
23 |
-
with open(filename, 'a+') as file_to_write:
|
24 |
-
tb = pt.PrettyTable()
|
25 |
-
field_names = [
|
26 |
-
"Dataset", "Method", "maxFm", "wFmeasure", 'MAE', "Smeasure", "meanEm", "maxEm", "meanFm",
|
27 |
-
"adpEm", "adpFm", 'HCE'
|
28 |
-
]
|
29 |
-
tb.field_names = [name for name in field_names if not only_S_MAE or all(metric not in name for metric in ['Em', 'Fm'])]
|
30 |
-
em, sm, fm, mae, wfm, hce = evaluator(
|
31 |
-
gt_paths=gt_paths[:],
|
32 |
-
pred_paths=pred_paths[:],
|
33 |
-
metrics=['S', 'MAE', 'E', 'F', 'HCE'][:10*(not only_S_MAE) + 2], # , 'WF'
|
34 |
-
verbose=config.verbose_eval,
|
35 |
-
)
|
36 |
-
e_max, e_mean, e_adp = em['curve'].max(), em['curve'].mean(), em['adp'].mean()
|
37 |
-
f_max, f_mean, f_wfm, f_adp = fm['curve'].max(), fm['curve'].mean(), wfm, fm['adp']
|
38 |
-
tb.add_row(
|
39 |
-
[
|
40 |
-
method+str(epoch), testset, f_max.round(3), f_wfm.round(3), mae.round(3), sm.round(3),
|
41 |
-
e_mean.round(3), e_max.round(3), f_mean.round(3), em['adp'].round(3), f_adp.round(3), hce.round(3)
|
42 |
-
] if not only_S_MAE else [method, testset, mae.round(3), sm.round(3)]
|
43 |
-
)
|
44 |
-
print(tb)
|
45 |
-
file_to_write.write(str(tb).replace('+', '|')+'\n')
|
46 |
-
file_to_write.close()
|
47 |
-
return {'e_max': e_max, 'e_mean': e_mean, 'e_adp': e_adp, 'sm': sm, 'mae': mae, 'f_max': f_max, 'f_mean': f_mean, 'f_wfm': f_wfm, 'f_adp': f_adp, 'hce': hce}
|
48 |
-
|
49 |
-
|
50 |
-
def main():
|
51 |
-
only_S_MAE = False
|
52 |
-
pred_dir = '.'
|
53 |
-
method = 'tmp_val'
|
54 |
-
testsets = 'DIS-VD+DIS-TE1'
|
55 |
-
for testset in testsets.split('+'):
|
56 |
-
res_dct = evaluate(pred_dir, method, testset, only_S_MAE=only_S_MAE)
|
57 |
-
|
58 |
-
|
59 |
-
if __name__ == '__main__':
|
60 |
-
main()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
BiRefNet_github/evaluation/metrics.py
DELETED
@@ -1,612 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
from tqdm import tqdm
|
3 |
-
import cv2
|
4 |
-
import numpy as np
|
5 |
-
from scipy.ndimage import convolve, distance_transform_edt as bwdist
|
6 |
-
from skimage.morphology import skeletonize
|
7 |
-
from skimage.morphology import disk
|
8 |
-
from skimage.measure import label
|
9 |
-
|
10 |
-
|
11 |
-
_EPS = np.spacing(1)
|
12 |
-
_TYPE = np.float64
|
13 |
-
|
14 |
-
|
15 |
-
def evaluator(gt_paths, pred_paths, metrics=['S', 'MAE', 'E', 'F', 'WF', 'HCE'], verbose=False):
|
16 |
-
# define measures
|
17 |
-
if 'E' in metrics:
|
18 |
-
EM = Emeasure()
|
19 |
-
if 'S' in metrics:
|
20 |
-
SM = Smeasure()
|
21 |
-
if 'F' in metrics:
|
22 |
-
FM = Fmeasure()
|
23 |
-
if 'MAE' in metrics:
|
24 |
-
MAE = MAEmeasure()
|
25 |
-
if 'WF' in metrics:
|
26 |
-
WFM = WeightedFmeasure()
|
27 |
-
if 'HCE' in metrics:
|
28 |
-
HCE = HCEMeasure()
|
29 |
-
|
30 |
-
if isinstance(gt_paths, list) and isinstance(pred_paths, list):
|
31 |
-
# print(len(gt_paths), len(pred_paths))
|
32 |
-
assert len(gt_paths) == len(pred_paths)
|
33 |
-
|
34 |
-
for idx_sample in tqdm(range(len(gt_paths)), total=len(gt_paths)) if verbose else range(len(gt_paths)):
|
35 |
-
gt = gt_paths[idx_sample]
|
36 |
-
pred = pred_paths[idx_sample]
|
37 |
-
|
38 |
-
pred = pred[:-4] + '.png'
|
39 |
-
if os.path.exists(pred):
|
40 |
-
pred_ary = cv2.imread(pred, cv2.IMREAD_GRAYSCALE)
|
41 |
-
else:
|
42 |
-
pred_ary = cv2.imread(pred.replace('.png', '.jpg'), cv2.IMREAD_GRAYSCALE)
|
43 |
-
gt_ary = cv2.imread(gt, cv2.IMREAD_GRAYSCALE)
|
44 |
-
pred_ary = cv2.resize(pred_ary, (gt_ary.shape[1], gt_ary.shape[0]))
|
45 |
-
|
46 |
-
if 'E' in metrics:
|
47 |
-
EM.step(pred=pred_ary, gt=gt_ary)
|
48 |
-
if 'S' in metrics:
|
49 |
-
SM.step(pred=pred_ary, gt=gt_ary)
|
50 |
-
if 'F' in metrics:
|
51 |
-
FM.step(pred=pred_ary, gt=gt_ary)
|
52 |
-
if 'MAE' in metrics:
|
53 |
-
MAE.step(pred=pred_ary, gt=gt_ary)
|
54 |
-
if 'WF' in metrics:
|
55 |
-
WFM.step(pred=pred_ary, gt=gt_ary)
|
56 |
-
if 'HCE' in metrics:
|
57 |
-
ske_path = gt.replace('/gt/', '/ske/')
|
58 |
-
if os.path.exists(ske_path):
|
59 |
-
ske_ary = cv2.imread(ske_path, cv2.IMREAD_GRAYSCALE)
|
60 |
-
ske_ary = ske_ary > 128
|
61 |
-
else:
|
62 |
-
ske_ary = skeletonize(gt_ary > 128)
|
63 |
-
ske_save_dir = os.path.join(*ske_path.split(os.sep)[:-1])
|
64 |
-
if ske_path[0] == os.sep:
|
65 |
-
ske_save_dir = os.sep + ske_save_dir
|
66 |
-
os.makedirs(ske_save_dir, exist_ok=True)
|
67 |
-
cv2.imwrite(ske_path, ske_ary.astype(np.uint8) * 255)
|
68 |
-
HCE.step(pred=pred_ary, gt=gt_ary, gt_ske=ske_ary)
|
69 |
-
|
70 |
-
if 'E' in metrics:
|
71 |
-
em = EM.get_results()['em']
|
72 |
-
else:
|
73 |
-
em = {'curve': np.array([np.float64(-1)]), 'adp': np.float64(-1)}
|
74 |
-
if 'S' in metrics:
|
75 |
-
sm = SM.get_results()['sm']
|
76 |
-
else:
|
77 |
-
sm = np.float64(-1)
|
78 |
-
if 'F' in metrics:
|
79 |
-
fm = FM.get_results()['fm']
|
80 |
-
else:
|
81 |
-
fm = {'curve': np.array([np.float64(-1)]), 'adp': np.float64(-1)}
|
82 |
-
if 'MAE' in metrics:
|
83 |
-
mae = MAE.get_results()['mae']
|
84 |
-
else:
|
85 |
-
mae = np.float64(-1)
|
86 |
-
if 'WF' in metrics:
|
87 |
-
wfm = WFM.get_results()['wfm']
|
88 |
-
else:
|
89 |
-
wfm = np.float64(-1)
|
90 |
-
if 'HCE' in metrics:
|
91 |
-
hce = HCE.get_results()['hce']
|
92 |
-
else:
|
93 |
-
hce = np.float64(-1)
|
94 |
-
|
95 |
-
return em, sm, fm, mae, wfm, hce
|
96 |
-
|
97 |
-
|
98 |
-
def _prepare_data(pred: np.ndarray, gt: np.ndarray) -> tuple:
|
99 |
-
gt = gt > 128
|
100 |
-
pred = pred / 255
|
101 |
-
if pred.max() != pred.min():
|
102 |
-
pred = (pred - pred.min()) / (pred.max() - pred.min())
|
103 |
-
return pred, gt
|
104 |
-
|
105 |
-
|
106 |
-
def _get_adaptive_threshold(matrix: np.ndarray, max_value: float = 1) -> float:
|
107 |
-
return min(2 * matrix.mean(), max_value)
|
108 |
-
|
109 |
-
|
110 |
-
class Fmeasure(object):
|
111 |
-
def __init__(self, beta: float = 0.3):
|
112 |
-
self.beta = beta
|
113 |
-
self.precisions = []
|
114 |
-
self.recalls = []
|
115 |
-
self.adaptive_fms = []
|
116 |
-
self.changeable_fms = []
|
117 |
-
|
118 |
-
def step(self, pred: np.ndarray, gt: np.ndarray):
|
119 |
-
pred, gt = _prepare_data(pred, gt)
|
120 |
-
|
121 |
-
adaptive_fm = self.cal_adaptive_fm(pred=pred, gt=gt)
|
122 |
-
self.adaptive_fms.append(adaptive_fm)
|
123 |
-
|
124 |
-
precisions, recalls, changeable_fms = self.cal_pr(pred=pred, gt=gt)
|
125 |
-
self.precisions.append(precisions)
|
126 |
-
self.recalls.append(recalls)
|
127 |
-
self.changeable_fms.append(changeable_fms)
|
128 |
-
|
129 |
-
def cal_adaptive_fm(self, pred: np.ndarray, gt: np.ndarray) -> float:
|
130 |
-
adaptive_threshold = _get_adaptive_threshold(pred, max_value=1)
|
131 |
-
binary_predcition = pred >= adaptive_threshold
|
132 |
-
area_intersection = binary_predcition[gt].sum()
|
133 |
-
if area_intersection == 0:
|
134 |
-
adaptive_fm = 0
|
135 |
-
else:
|
136 |
-
pre = area_intersection / np.count_nonzero(binary_predcition)
|
137 |
-
rec = area_intersection / np.count_nonzero(gt)
|
138 |
-
adaptive_fm = (1 + self.beta) * pre * rec / (self.beta * pre + rec)
|
139 |
-
return adaptive_fm
|
140 |
-
|
141 |
-
def cal_pr(self, pred: np.ndarray, gt: np.ndarray) -> tuple:
|
142 |
-
pred = (pred * 255).astype(np.uint8)
|
143 |
-
bins = np.linspace(0, 256, 257)
|
144 |
-
fg_hist, _ = np.histogram(pred[gt], bins=bins)
|
145 |
-
bg_hist, _ = np.histogram(pred[~gt], bins=bins)
|
146 |
-
fg_w_thrs = np.cumsum(np.flip(fg_hist), axis=0)
|
147 |
-
bg_w_thrs = np.cumsum(np.flip(bg_hist), axis=0)
|
148 |
-
TPs = fg_w_thrs
|
149 |
-
Ps = fg_w_thrs + bg_w_thrs
|
150 |
-
Ps[Ps == 0] = 1
|
151 |
-
T = max(np.count_nonzero(gt), 1)
|
152 |
-
precisions = TPs / Ps
|
153 |
-
recalls = TPs / T
|
154 |
-
numerator = (1 + self.beta) * precisions * recalls
|
155 |
-
denominator = np.where(numerator == 0, 1, self.beta * precisions + recalls)
|
156 |
-
changeable_fms = numerator / denominator
|
157 |
-
return precisions, recalls, changeable_fms
|
158 |
-
|
159 |
-
def get_results(self) -> dict:
|
160 |
-
adaptive_fm = np.mean(np.array(self.adaptive_fms, _TYPE))
|
161 |
-
changeable_fm = np.mean(np.array(self.changeable_fms, dtype=_TYPE), axis=0)
|
162 |
-
precision = np.mean(np.array(self.precisions, dtype=_TYPE), axis=0) # N, 256
|
163 |
-
recall = np.mean(np.array(self.recalls, dtype=_TYPE), axis=0) # N, 256
|
164 |
-
return dict(fm=dict(adp=adaptive_fm, curve=changeable_fm),
|
165 |
-
pr=dict(p=precision, r=recall))
|
166 |
-
|
167 |
-
|
168 |
-
class MAEmeasure(object):
|
169 |
-
def __init__(self):
|
170 |
-
self.maes = []
|
171 |
-
|
172 |
-
def step(self, pred: np.ndarray, gt: np.ndarray):
|
173 |
-
pred, gt = _prepare_data(pred, gt)
|
174 |
-
|
175 |
-
mae = self.cal_mae(pred, gt)
|
176 |
-
self.maes.append(mae)
|
177 |
-
|
178 |
-
def cal_mae(self, pred: np.ndarray, gt: np.ndarray) -> float:
|
179 |
-
mae = np.mean(np.abs(pred - gt))
|
180 |
-
return mae
|
181 |
-
|
182 |
-
def get_results(self) -> dict:
|
183 |
-
mae = np.mean(np.array(self.maes, _TYPE))
|
184 |
-
return dict(mae=mae)
|
185 |
-
|
186 |
-
|
187 |
-
class Smeasure(object):
|
188 |
-
def __init__(self, alpha: float = 0.5):
|
189 |
-
self.sms = []
|
190 |
-
self.alpha = alpha
|
191 |
-
|
192 |
-
def step(self, pred: np.ndarray, gt: np.ndarray):
|
193 |
-
pred, gt = _prepare_data(pred=pred, gt=gt)
|
194 |
-
|
195 |
-
sm = self.cal_sm(pred, gt)
|
196 |
-
self.sms.append(sm)
|
197 |
-
|
198 |
-
def cal_sm(self, pred: np.ndarray, gt: np.ndarray) -> float:
|
199 |
-
y = np.mean(gt)
|
200 |
-
if y == 0:
|
201 |
-
sm = 1 - np.mean(pred)
|
202 |
-
elif y == 1:
|
203 |
-
sm = np.mean(pred)
|
204 |
-
else:
|
205 |
-
sm = self.alpha * self.object(pred, gt) + (1 - self.alpha) * self.region(pred, gt)
|
206 |
-
sm = max(0, sm)
|
207 |
-
return sm
|
208 |
-
|
209 |
-
def object(self, pred: np.ndarray, gt: np.ndarray) -> float:
|
210 |
-
fg = pred * gt
|
211 |
-
bg = (1 - pred) * (1 - gt)
|
212 |
-
u = np.mean(gt)
|
213 |
-
object_score = u * self.s_object(fg, gt) + (1 - u) * self.s_object(bg, 1 - gt)
|
214 |
-
return object_score
|
215 |
-
|
216 |
-
def s_object(self, pred: np.ndarray, gt: np.ndarray) -> float:
|
217 |
-
x = np.mean(pred[gt == 1])
|
218 |
-
sigma_x = np.std(pred[gt == 1], ddof=1)
|
219 |
-
score = 2 * x / (np.power(x, 2) + 1 + sigma_x + _EPS)
|
220 |
-
return score
|
221 |
-
|
222 |
-
def region(self, pred: np.ndarray, gt: np.ndarray) -> float:
|
223 |
-
x, y = self.centroid(gt)
|
224 |
-
part_info = self.divide_with_xy(pred, gt, x, y)
|
225 |
-
w1, w2, w3, w4 = part_info['weight']
|
226 |
-
pred1, pred2, pred3, pred4 = part_info['pred']
|
227 |
-
gt1, gt2, gt3, gt4 = part_info['gt']
|
228 |
-
score1 = self.ssim(pred1, gt1)
|
229 |
-
score2 = self.ssim(pred2, gt2)
|
230 |
-
score3 = self.ssim(pred3, gt3)
|
231 |
-
score4 = self.ssim(pred4, gt4)
|
232 |
-
|
233 |
-
return w1 * score1 + w2 * score2 + w3 * score3 + w4 * score4
|
234 |
-
|
235 |
-
def centroid(self, matrix: np.ndarray) -> tuple:
|
236 |
-
h, w = matrix.shape
|
237 |
-
area_object = np.count_nonzero(matrix)
|
238 |
-
if area_object == 0:
|
239 |
-
x = np.round(w / 2)
|
240 |
-
y = np.round(h / 2)
|
241 |
-
else:
|
242 |
-
# More details can be found at: https://www.yuque.com/lart/blog/gpbigm
|
243 |
-
y, x = np.argwhere(matrix).mean(axis=0).round()
|
244 |
-
return int(x) + 1, int(y) + 1
|
245 |
-
|
246 |
-
def divide_with_xy(self, pred: np.ndarray, gt: np.ndarray, x, y) -> dict:
|
247 |
-
h, w = gt.shape
|
248 |
-
area = h * w
|
249 |
-
|
250 |
-
gt_LT = gt[0:y, 0:x]
|
251 |
-
gt_RT = gt[0:y, x:w]
|
252 |
-
gt_LB = gt[y:h, 0:x]
|
253 |
-
gt_RB = gt[y:h, x:w]
|
254 |
-
|
255 |
-
pred_LT = pred[0:y, 0:x]
|
256 |
-
pred_RT = pred[0:y, x:w]
|
257 |
-
pred_LB = pred[y:h, 0:x]
|
258 |
-
pred_RB = pred[y:h, x:w]
|
259 |
-
|
260 |
-
w1 = x * y / area
|
261 |
-
w2 = y * (w - x) / area
|
262 |
-
w3 = (h - y) * x / area
|
263 |
-
w4 = 1 - w1 - w2 - w3
|
264 |
-
|
265 |
-
return dict(gt=(gt_LT, gt_RT, gt_LB, gt_RB),
|
266 |
-
pred=(pred_LT, pred_RT, pred_LB, pred_RB),
|
267 |
-
weight=(w1, w2, w3, w4))
|
268 |
-
|
269 |
-
def ssim(self, pred: np.ndarray, gt: np.ndarray) -> float:
|
270 |
-
h, w = pred.shape
|
271 |
-
N = h * w
|
272 |
-
|
273 |
-
x = np.mean(pred)
|
274 |
-
y = np.mean(gt)
|
275 |
-
|
276 |
-
sigma_x = np.sum((pred - x) ** 2) / (N - 1)
|
277 |
-
sigma_y = np.sum((gt - y) ** 2) / (N - 1)
|
278 |
-
sigma_xy = np.sum((pred - x) * (gt - y)) / (N - 1)
|
279 |
-
|
280 |
-
alpha = 4 * x * y * sigma_xy
|
281 |
-
beta = (x ** 2 + y ** 2) * (sigma_x + sigma_y)
|
282 |
-
|
283 |
-
if alpha != 0:
|
284 |
-
score = alpha / (beta + _EPS)
|
285 |
-
elif alpha == 0 and beta == 0:
|
286 |
-
score = 1
|
287 |
-
else:
|
288 |
-
score = 0
|
289 |
-
return score
|
290 |
-
|
291 |
-
def get_results(self) -> dict:
|
292 |
-
sm = np.mean(np.array(self.sms, dtype=_TYPE))
|
293 |
-
return dict(sm=sm)
|
294 |
-
|
295 |
-
|
296 |
-
class Emeasure(object):
|
297 |
-
def __init__(self):
|
298 |
-
self.adaptive_ems = []
|
299 |
-
self.changeable_ems = []
|
300 |
-
|
301 |
-
def step(self, pred: np.ndarray, gt: np.ndarray):
|
302 |
-
pred, gt = _prepare_data(pred=pred, gt=gt)
|
303 |
-
self.gt_fg_numel = np.count_nonzero(gt)
|
304 |
-
self.gt_size = gt.shape[0] * gt.shape[1]
|
305 |
-
|
306 |
-
changeable_ems = self.cal_changeable_em(pred, gt)
|
307 |
-
self.changeable_ems.append(changeable_ems)
|
308 |
-
adaptive_em = self.cal_adaptive_em(pred, gt)
|
309 |
-
self.adaptive_ems.append(adaptive_em)
|
310 |
-
|
311 |
-
def cal_adaptive_em(self, pred: np.ndarray, gt: np.ndarray) -> float:
|
312 |
-
adaptive_threshold = _get_adaptive_threshold(pred, max_value=1)
|
313 |
-
adaptive_em = self.cal_em_with_threshold(pred, gt, threshold=adaptive_threshold)
|
314 |
-
return adaptive_em
|
315 |
-
|
316 |
-
def cal_changeable_em(self, pred: np.ndarray, gt: np.ndarray) -> np.ndarray:
|
317 |
-
changeable_ems = self.cal_em_with_cumsumhistogram(pred, gt)
|
318 |
-
return changeable_ems
|
319 |
-
|
320 |
-
def cal_em_with_threshold(self, pred: np.ndarray, gt: np.ndarray, threshold: float) -> float:
|
321 |
-
binarized_pred = pred >= threshold
|
322 |
-
fg_fg_numel = np.count_nonzero(binarized_pred & gt)
|
323 |
-
fg_bg_numel = np.count_nonzero(binarized_pred & ~gt)
|
324 |
-
|
325 |
-
fg___numel = fg_fg_numel + fg_bg_numel
|
326 |
-
bg___numel = self.gt_size - fg___numel
|
327 |
-
|
328 |
-
if self.gt_fg_numel == 0:
|
329 |
-
enhanced_matrix_sum = bg___numel
|
330 |
-
elif self.gt_fg_numel == self.gt_size:
|
331 |
-
enhanced_matrix_sum = fg___numel
|
332 |
-
else:
|
333 |
-
parts_numel, combinations = self.generate_parts_numel_combinations(
|
334 |
-
fg_fg_numel=fg_fg_numel, fg_bg_numel=fg_bg_numel,
|
335 |
-
pred_fg_numel=fg___numel, pred_bg_numel=bg___numel,
|
336 |
-
)
|
337 |
-
|
338 |
-
results_parts = []
|
339 |
-
for i, (part_numel, combination) in enumerate(zip(parts_numel, combinations)):
|
340 |
-
align_matrix_value = 2 * (combination[0] * combination[1]) / \
|
341 |
-
(combination[0] ** 2 + combination[1] ** 2 + _EPS)
|
342 |
-
enhanced_matrix_value = (align_matrix_value + 1) ** 2 / 4
|
343 |
-
results_parts.append(enhanced_matrix_value * part_numel)
|
344 |
-
enhanced_matrix_sum = sum(results_parts)
|
345 |
-
|
346 |
-
em = enhanced_matrix_sum / (self.gt_size - 1 + _EPS)
|
347 |
-
return em
|
348 |
-
|
349 |
-
def cal_em_with_cumsumhistogram(self, pred: np.ndarray, gt: np.ndarray) -> np.ndarray:
|
350 |
-
pred = (pred * 255).astype(np.uint8)
|
351 |
-
bins = np.linspace(0, 256, 257)
|
352 |
-
fg_fg_hist, _ = np.histogram(pred[gt], bins=bins)
|
353 |
-
fg_bg_hist, _ = np.histogram(pred[~gt], bins=bins)
|
354 |
-
fg_fg_numel_w_thrs = np.cumsum(np.flip(fg_fg_hist), axis=0)
|
355 |
-
fg_bg_numel_w_thrs = np.cumsum(np.flip(fg_bg_hist), axis=0)
|
356 |
-
|
357 |
-
fg___numel_w_thrs = fg_fg_numel_w_thrs + fg_bg_numel_w_thrs
|
358 |
-
bg___numel_w_thrs = self.gt_size - fg___numel_w_thrs
|
359 |
-
|
360 |
-
if self.gt_fg_numel == 0:
|
361 |
-
enhanced_matrix_sum = bg___numel_w_thrs
|
362 |
-
elif self.gt_fg_numel == self.gt_size:
|
363 |
-
enhanced_matrix_sum = fg___numel_w_thrs
|
364 |
-
else:
|
365 |
-
parts_numel_w_thrs, combinations = self.generate_parts_numel_combinations(
|
366 |
-
fg_fg_numel=fg_fg_numel_w_thrs, fg_bg_numel=fg_bg_numel_w_thrs,
|
367 |
-
pred_fg_numel=fg___numel_w_thrs, pred_bg_numel=bg___numel_w_thrs,
|
368 |
-
)
|
369 |
-
|
370 |
-
results_parts = np.empty(shape=(4, 256), dtype=np.float64)
|
371 |
-
for i, (part_numel, combination) in enumerate(zip(parts_numel_w_thrs, combinations)):
|
372 |
-
align_matrix_value = 2 * (combination[0] * combination[1]) / \
|
373 |
-
(combination[0] ** 2 + combination[1] ** 2 + _EPS)
|
374 |
-
enhanced_matrix_value = (align_matrix_value + 1) ** 2 / 4
|
375 |
-
results_parts[i] = enhanced_matrix_value * part_numel
|
376 |
-
enhanced_matrix_sum = results_parts.sum(axis=0)
|
377 |
-
|
378 |
-
em = enhanced_matrix_sum / (self.gt_size - 1 + _EPS)
|
379 |
-
return em
|
380 |
-
|
381 |
-
def generate_parts_numel_combinations(self, fg_fg_numel, fg_bg_numel, pred_fg_numel, pred_bg_numel):
|
382 |
-
bg_fg_numel = self.gt_fg_numel - fg_fg_numel
|
383 |
-
bg_bg_numel = pred_bg_numel - bg_fg_numel
|
384 |
-
|
385 |
-
parts_numel = [fg_fg_numel, fg_bg_numel, bg_fg_numel, bg_bg_numel]
|
386 |
-
|
387 |
-
mean_pred_value = pred_fg_numel / self.gt_size
|
388 |
-
mean_gt_value = self.gt_fg_numel / self.gt_size
|
389 |
-
|
390 |
-
demeaned_pred_fg_value = 1 - mean_pred_value
|
391 |
-
demeaned_pred_bg_value = 0 - mean_pred_value
|
392 |
-
demeaned_gt_fg_value = 1 - mean_gt_value
|
393 |
-
demeaned_gt_bg_value = 0 - mean_gt_value
|
394 |
-
|
395 |
-
combinations = [
|
396 |
-
(demeaned_pred_fg_value, demeaned_gt_fg_value),
|
397 |
-
(demeaned_pred_fg_value, demeaned_gt_bg_value),
|
398 |
-
(demeaned_pred_bg_value, demeaned_gt_fg_value),
|
399 |
-
(demeaned_pred_bg_value, demeaned_gt_bg_value)
|
400 |
-
]
|
401 |
-
return parts_numel, combinations
|
402 |
-
|
403 |
-
def get_results(self) -> dict:
|
404 |
-
adaptive_em = np.mean(np.array(self.adaptive_ems, dtype=_TYPE))
|
405 |
-
changeable_em = np.mean(np.array(self.changeable_ems, dtype=_TYPE), axis=0)
|
406 |
-
return dict(em=dict(adp=adaptive_em, curve=changeable_em))
|
407 |
-
|
408 |
-
|
409 |
-
class WeightedFmeasure(object):
|
410 |
-
def __init__(self, beta: float = 1):
|
411 |
-
self.beta = beta
|
412 |
-
self.weighted_fms = []
|
413 |
-
|
414 |
-
def step(self, pred: np.ndarray, gt: np.ndarray):
|
415 |
-
pred, gt = _prepare_data(pred=pred, gt=gt)
|
416 |
-
|
417 |
-
if np.all(~gt):
|
418 |
-
wfm = 0
|
419 |
-
else:
|
420 |
-
wfm = self.cal_wfm(pred, gt)
|
421 |
-
self.weighted_fms.append(wfm)
|
422 |
-
|
423 |
-
def cal_wfm(self, pred: np.ndarray, gt: np.ndarray) -> float:
|
424 |
-
# [Dst,IDXT] = bwdist(dGT);
|
425 |
-
Dst, Idxt = bwdist(gt == 0, return_indices=True)
|
426 |
-
|
427 |
-
# %Pixel dependency
|
428 |
-
# E = abs(FG-dGT);
|
429 |
-
E = np.abs(pred - gt)
|
430 |
-
Et = np.copy(E)
|
431 |
-
Et[gt == 0] = Et[Idxt[0][gt == 0], Idxt[1][gt == 0]]
|
432 |
-
|
433 |
-
# K = fspecial('gaussian',7,5);
|
434 |
-
# EA = imfilter(Et,K);
|
435 |
-
K = self.matlab_style_gauss2D((7, 7), sigma=5)
|
436 |
-
EA = convolve(Et, weights=K, mode="constant", cval=0)
|
437 |
-
# MIN_E_EA = E;
|
438 |
-
# MIN_E_EA(GT & EA<E) = EA(GT & EA<E);
|
439 |
-
MIN_E_EA = np.where(gt & (EA < E), EA, E)
|
440 |
-
|
441 |
-
# %Pixel importance
|
442 |
-
B = np.where(gt == 0, 2 - np.exp(np.log(0.5) / 5 * Dst), np.ones_like(gt))
|
443 |
-
Ew = MIN_E_EA * B
|
444 |
-
|
445 |
-
TPw = np.sum(gt) - np.sum(Ew[gt == 1])
|
446 |
-
FPw = np.sum(Ew[gt == 0])
|
447 |
-
|
448 |
-
|
449 |
-
R = 1 - np.mean(Ew[gt == 1])
|
450 |
-
P = TPw / (TPw + FPw + _EPS)
|
451 |
-
|
452 |
-
# % Q = (1+Beta^2)*(R*P)./(eps+R+(Beta.*P));
|
453 |
-
Q = (1 + self.beta) * R * P / (R + self.beta * P + _EPS)
|
454 |
-
|
455 |
-
return Q
|
456 |
-
|
457 |
-
def matlab_style_gauss2D(self, shape: tuple = (7, 7), sigma: int = 5) -> np.ndarray:
|
458 |
-
"""
|
459 |
-
2D gaussian mask - should give the same result as MATLAB's
|
460 |
-
fspecial('gaussian',[shape],[sigma])
|
461 |
-
"""
|
462 |
-
m, n = [(ss - 1) / 2 for ss in shape]
|
463 |
-
y, x = np.ogrid[-m: m + 1, -n: n + 1]
|
464 |
-
h = np.exp(-(x * x + y * y) / (2 * sigma * sigma))
|
465 |
-
h[h < np.finfo(h.dtype).eps * h.max()] = 0
|
466 |
-
sumh = h.sum()
|
467 |
-
if sumh != 0:
|
468 |
-
h /= sumh
|
469 |
-
return h
|
470 |
-
|
471 |
-
def get_results(self) -> dict:
|
472 |
-
weighted_fm = np.mean(np.array(self.weighted_fms, dtype=_TYPE))
|
473 |
-
return dict(wfm=weighted_fm)
|
474 |
-
|
475 |
-
|
476 |
-
class HCEMeasure(object):
|
477 |
-
def __init__(self):
|
478 |
-
self.hces = []
|
479 |
-
|
480 |
-
def step(self, pred: np.ndarray, gt: np.ndarray, gt_ske):
|
481 |
-
# pred, gt = _prepare_data(pred, gt)
|
482 |
-
|
483 |
-
hce = self.cal_hce(pred, gt, gt_ske)
|
484 |
-
self.hces.append(hce)
|
485 |
-
|
486 |
-
def get_results(self) -> dict:
|
487 |
-
hce = np.mean(np.array(self.hces, _TYPE))
|
488 |
-
return dict(hce=hce)
|
489 |
-
|
490 |
-
|
491 |
-
def cal_hce(self, pred: np.ndarray, gt: np.ndarray, gt_ske: np.ndarray, relax=5, epsilon=2.0) -> float:
|
492 |
-
# Binarize gt
|
493 |
-
if(len(gt.shape)>2):
|
494 |
-
gt = gt[:, :, 0]
|
495 |
-
|
496 |
-
epsilon_gt = 128#(np.amin(gt)+np.amax(gt))/2.0
|
497 |
-
gt = (gt>epsilon_gt).astype(np.uint8)
|
498 |
-
|
499 |
-
# Binarize pred
|
500 |
-
if(len(pred.shape)>2):
|
501 |
-
pred = pred[:, :, 0]
|
502 |
-
epsilon_pred = 128#(np.amin(pred)+np.amax(pred))/2.0
|
503 |
-
pred = (pred>epsilon_pred).astype(np.uint8)
|
504 |
-
|
505 |
-
Union = np.logical_or(gt, pred)
|
506 |
-
TP = np.logical_and(gt, pred)
|
507 |
-
FP = pred - TP
|
508 |
-
FN = gt - TP
|
509 |
-
|
510 |
-
# relax the Union of gt and pred
|
511 |
-
Union_erode = Union.copy()
|
512 |
-
Union_erode = cv2.erode(Union_erode.astype(np.uint8), disk(1), iterations=relax)
|
513 |
-
|
514 |
-
# --- get the relaxed False Positive regions for computing the human efforts in correcting them ---
|
515 |
-
FP_ = np.logical_and(FP, Union_erode) # get the relaxed FP
|
516 |
-
for i in range(0, relax):
|
517 |
-
FP_ = cv2.dilate(FP_.astype(np.uint8), disk(1))
|
518 |
-
FP_ = np.logical_and(FP_, 1-np.logical_or(TP, FN))
|
519 |
-
FP_ = np.logical_and(FP, FP_)
|
520 |
-
|
521 |
-
# --- get the relaxed False Negative regions for computing the human efforts in correcting them ---
|
522 |
-
FN_ = np.logical_and(FN, Union_erode) # preserve the structural components of FN
|
523 |
-
## recover the FN, where pixels are not close to the TP borders
|
524 |
-
for i in range(0, relax):
|
525 |
-
FN_ = cv2.dilate(FN_.astype(np.uint8), disk(1))
|
526 |
-
FN_ = np.logical_and(FN_, 1-np.logical_or(TP, FP))
|
527 |
-
FN_ = np.logical_and(FN, FN_)
|
528 |
-
FN_ = np.logical_or(FN_, np.logical_xor(gt_ske, np.logical_and(TP, gt_ske))) # preserve the structural components of FN
|
529 |
-
|
530 |
-
## 2. =============Find exact polygon control points and independent regions==============
|
531 |
-
## find contours from FP_
|
532 |
-
ctrs_FP, hier_FP = cv2.findContours(FP_.astype(np.uint8), cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)
|
533 |
-
## find control points and independent regions for human correction
|
534 |
-
bdies_FP, indep_cnt_FP = self.filter_bdy_cond(ctrs_FP, FP_, np.logical_or(TP,FN_))
|
535 |
-
## find contours from FN_
|
536 |
-
ctrs_FN, hier_FN = cv2.findContours(FN_.astype(np.uint8), cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)
|
537 |
-
## find control points and independent regions for human correction
|
538 |
-
bdies_FN, indep_cnt_FN = self.filter_bdy_cond(ctrs_FN, FN_, 1-np.logical_or(np.logical_or(TP, FP_), FN_))
|
539 |
-
|
540 |
-
poly_FP, poly_FP_len, poly_FP_point_cnt = self.approximate_RDP(bdies_FP, epsilon=epsilon)
|
541 |
-
poly_FN, poly_FN_len, poly_FN_point_cnt = self.approximate_RDP(bdies_FN, epsilon=epsilon)
|
542 |
-
|
543 |
-
# FP_points+FP_indep+FN_points+FN_indep
|
544 |
-
return poly_FP_point_cnt+indep_cnt_FP+poly_FN_point_cnt+indep_cnt_FN
|
545 |
-
|
546 |
-
def filter_bdy_cond(self, bdy_, mask, cond):
|
547 |
-
|
548 |
-
cond = cv2.dilate(cond.astype(np.uint8), disk(1))
|
549 |
-
labels = label(mask) # find the connected regions
|
550 |
-
lbls = np.unique(labels) # the indices of the connected regions
|
551 |
-
indep = np.ones(lbls.shape[0]) # the label of each connected regions
|
552 |
-
indep[0] = 0 # 0 indicate the background region
|
553 |
-
|
554 |
-
boundaries = []
|
555 |
-
h,w = cond.shape[0:2]
|
556 |
-
ind_map = np.zeros((h, w))
|
557 |
-
indep_cnt = 0
|
558 |
-
|
559 |
-
for i in range(0, len(bdy_)):
|
560 |
-
tmp_bdies = []
|
561 |
-
tmp_bdy = []
|
562 |
-
for j in range(0, bdy_[i].shape[0]):
|
563 |
-
r, c = bdy_[i][j,0,1],bdy_[i][j,0,0]
|
564 |
-
|
565 |
-
if(np.sum(cond[r, c])==0 or ind_map[r, c]!=0):
|
566 |
-
if(len(tmp_bdy)>0):
|
567 |
-
tmp_bdies.append(tmp_bdy)
|
568 |
-
tmp_bdy = []
|
569 |
-
continue
|
570 |
-
tmp_bdy.append([c, r])
|
571 |
-
ind_map[r, c] = ind_map[r, c] + 1
|
572 |
-
indep[labels[r, c]] = 0 # indicates part of the boundary of this region needs human correction
|
573 |
-
if(len(tmp_bdy)>0):
|
574 |
-
tmp_bdies.append(tmp_bdy)
|
575 |
-
|
576 |
-
# check if the first and the last boundaries are connected
|
577 |
-
# if yes, invert the first boundary and attach it after the last boundary
|
578 |
-
if(len(tmp_bdies)>1):
|
579 |
-
first_x, first_y = tmp_bdies[0][0]
|
580 |
-
last_x, last_y = tmp_bdies[-1][-1]
|
581 |
-
if((abs(first_x-last_x)==1 and first_y==last_y) or
|
582 |
-
(first_x==last_x and abs(first_y-last_y)==1) or
|
583 |
-
(abs(first_x-last_x)==1 and abs(first_y-last_y)==1)
|
584 |
-
):
|
585 |
-
tmp_bdies[-1].extend(tmp_bdies[0][::-1])
|
586 |
-
del tmp_bdies[0]
|
587 |
-
|
588 |
-
for k in range(0, len(tmp_bdies)):
|
589 |
-
tmp_bdies[k] = np.array(tmp_bdies[k])[:, np.newaxis, :]
|
590 |
-
if(len(tmp_bdies)>0):
|
591 |
-
boundaries.extend(tmp_bdies)
|
592 |
-
|
593 |
-
return boundaries, np.sum(indep)
|
594 |
-
|
595 |
-
# this function approximate each boundary by DP algorithm
|
596 |
-
# https://en.wikipedia.org/wiki/Ramer%E2%80%93Douglas%E2%80%93Peucker_algorithm
|
597 |
-
def approximate_RDP(self, boundaries, epsilon=1.0):
|
598 |
-
|
599 |
-
boundaries_ = []
|
600 |
-
boundaries_len_ = []
|
601 |
-
pixel_cnt_ = 0
|
602 |
-
|
603 |
-
# polygon approximate of each boundary
|
604 |
-
for i in range(0, len(boundaries)):
|
605 |
-
boundaries_.append(cv2.approxPolyDP(boundaries[i], epsilon, False))
|
606 |
-
|
607 |
-
# count the control points number of each boundary and the total control points number of all the boundaries
|
608 |
-
for i in range(0, len(boundaries_)):
|
609 |
-
boundaries_len_.append(len(boundaries_[i]))
|
610 |
-
pixel_cnt_ = pixel_cnt_ + len(boundaries_[i])
|
611 |
-
|
612 |
-
return boundaries_, boundaries_len_, pixel_cnt_
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
BiRefNet_github/evaluation/valid.py
DELETED
@@ -1,9 +0,0 @@
|
|
1 |
-
from inference import inference
|
2 |
-
from evaluation.evaluate import evaluate
|
3 |
-
|
4 |
-
|
5 |
-
def valid(model, data_loader_test, pred_dir, method='tmp_val', testset='DIS-VD', only_S_MAE=True, device=0):
|
6 |
-
model.eval()
|
7 |
-
inference(model, data_loader_test, pred_dir, method, testset, device=device)
|
8 |
-
performance_dict = evaluate(pred_dir, method, testset, only_S_MAE=only_S_MAE, epoch=model.epoch)
|
9 |
-
return performance_dict
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
BiRefNet_github/gen_best_ep.py
DELETED
@@ -1,85 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
from glob import glob
|
3 |
-
import numpy as np
|
4 |
-
from config import Config
|
5 |
-
|
6 |
-
|
7 |
-
config = Config()
|
8 |
-
|
9 |
-
eval_txts = sorted(glob('e_results/*_eval.txt'))
|
10 |
-
print('eval_txts:', [_.split(os.sep)[-1] for _ in eval_txts])
|
11 |
-
score_panel = {}
|
12 |
-
sep = '&'
|
13 |
-
metrics = ['sm', 'wfm', 'hce'] # we used HCE for DIS and wFm for others.
|
14 |
-
if 'DIS5K' not in config.task:
|
15 |
-
metrics.remove('hce')
|
16 |
-
|
17 |
-
for metric in metrics:
|
18 |
-
print('Metric:', metric)
|
19 |
-
current_line_nums = []
|
20 |
-
for idx_et, eval_txt in enumerate(eval_txts):
|
21 |
-
with open(eval_txt, 'r') as f:
|
22 |
-
lines = [l for l in f.readlines()[3:] if '.' in l]
|
23 |
-
current_line_nums.append(len(lines))
|
24 |
-
for idx_et, eval_txt in enumerate(eval_txts):
|
25 |
-
with open(eval_txt, 'r') as f:
|
26 |
-
lines = [l for l in f.readlines()[3:] if '.' in l]
|
27 |
-
for idx_line, line in enumerate(lines[:min(current_line_nums)]): # Consist line numbers by the minimal result file.
|
28 |
-
properties = line.strip().strip(sep).split(sep)
|
29 |
-
dataset = properties[0].strip()
|
30 |
-
ckpt = properties[1].strip()
|
31 |
-
if int(ckpt.split('--epoch_')[-1].strip()) < 0:
|
32 |
-
continue
|
33 |
-
targe_idx = {
|
34 |
-
'sm': [5, 2, 2, 5, 2],
|
35 |
-
'wfm': [3, 3, 8, 3, 8],
|
36 |
-
'hce': [7, -1, -1, 7, -1]
|
37 |
-
}[metric][['DIS5K', 'COD', 'HRSOD', 'DIS5K+HRSOD+HRS10K', 'P3M-10k'].index(config.task)]
|
38 |
-
if metric != 'hce':
|
39 |
-
score_sm = float(properties[targe_idx].strip())
|
40 |
-
else:
|
41 |
-
score_sm = int(properties[targe_idx].strip().strip('.'))
|
42 |
-
if idx_et == 0:
|
43 |
-
score_panel[ckpt] = []
|
44 |
-
score_panel[ckpt].append(score_sm)
|
45 |
-
|
46 |
-
metrics_min = ['hce', 'mae']
|
47 |
-
max_or_min = min if metric in metrics_min else max
|
48 |
-
score_max = max_or_min(score_panel.values(), key=lambda x: np.sum(x))
|
49 |
-
|
50 |
-
good_models = []
|
51 |
-
for k, v in score_panel.items():
|
52 |
-
if (np.sum(v) <= np.sum(score_max)) if metric in metrics_min else (np.sum(v) >= np.sum(score_max)):
|
53 |
-
print(k, v)
|
54 |
-
good_models.append(k)
|
55 |
-
|
56 |
-
# Write
|
57 |
-
with open(eval_txt, 'r') as f:
|
58 |
-
lines = f.readlines()
|
59 |
-
info4good_models = lines[:3]
|
60 |
-
metric_names = [m.strip() for m in lines[1].strip().strip('&').split('&')[2:]]
|
61 |
-
testset_mean_values = {metric_name: [] for metric_name in metric_names}
|
62 |
-
for good_model in good_models:
|
63 |
-
for idx_et, eval_txt in enumerate(eval_txts):
|
64 |
-
with open(eval_txt, 'r') as f:
|
65 |
-
lines = f.readlines()
|
66 |
-
for line in lines:
|
67 |
-
if set([good_model]) & set([_.strip() for _ in line.split(sep)]):
|
68 |
-
info4good_models.append(line)
|
69 |
-
metric_scores = [float(m.strip()) for m in line.strip().strip('&').split('&')[2:]]
|
70 |
-
for idx_score, metric_score in enumerate(metric_scores):
|
71 |
-
testset_mean_values[metric_names[idx_score]].append(metric_score)
|
72 |
-
|
73 |
-
if 'DIS5K' in config.task:
|
74 |
-
testset_mean_values_lst = ['{:<4}'.format(int(np.mean(v_lst[:-1]).round())) if name == 'HCE' else '{:.3f}'.format(np.mean(v_lst[:-1])).lstrip('0') for name, v_lst in testset_mean_values.items()] # [:-1] to remove DIS-VD
|
75 |
-
sample_line_for_placing_mean_values = info4good_models[-2]
|
76 |
-
numbers_placed_well = sample_line_for_placing_mean_values.replace(sample_line_for_placing_mean_values.split('&')[1].strip(), 'DIS-TEs').strip().split('&')[3:]
|
77 |
-
for idx_number, (number_placed_well, testset_mean_value) in enumerate(zip(numbers_placed_well, testset_mean_values_lst)):
|
78 |
-
numbers_placed_well[idx_number] = number_placed_well.replace(number_placed_well.strip(), testset_mean_value)
|
79 |
-
testset_mean_line = '&'.join(sample_line_for_placing_mean_values.replace(sample_line_for_placing_mean_values.split('&')[1].strip(), 'DIS-TEs').split('&')[:3] + numbers_placed_well) + '\n'
|
80 |
-
info4good_models.append(testset_mean_line)
|
81 |
-
info4good_models.append(lines[-1])
|
82 |
-
info = ''.join(info4good_models)
|
83 |
-
print(info)
|
84 |
-
with open(os.path.join('e_results', 'eval-{}_best_on_{}.txt'.format(config.task, metric)), 'w') as f:
|
85 |
-
f.write(info + '\n')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
BiRefNet_github/inference.py
DELETED
@@ -1,105 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
import argparse
|
3 |
-
from glob import glob
|
4 |
-
from tqdm import tqdm
|
5 |
-
import cv2
|
6 |
-
import torch
|
7 |
-
|
8 |
-
from dataset import MyData
|
9 |
-
from models.birefnet import BiRefNet
|
10 |
-
from utils import save_tensor_img, check_state_dict
|
11 |
-
from config import Config
|
12 |
-
|
13 |
-
|
14 |
-
config = Config()
|
15 |
-
|
16 |
-
|
17 |
-
def inference(model, data_loader_test, pred_root, method, testset, device=0):
|
18 |
-
model_training = model.training
|
19 |
-
if model_training:
|
20 |
-
model.eval()
|
21 |
-
for batch in tqdm(data_loader_test, total=len(data_loader_test)) if 1 or config.verbose_eval else data_loader_test:
|
22 |
-
inputs = batch[0].to(device)
|
23 |
-
# gts = batch[1].to(device)
|
24 |
-
label_paths = batch[-1]
|
25 |
-
with torch.no_grad():
|
26 |
-
scaled_preds = model(inputs)[-1].sigmoid()
|
27 |
-
|
28 |
-
os.makedirs(os.path.join(pred_root, method, testset), exist_ok=True)
|
29 |
-
|
30 |
-
for idx_sample in range(scaled_preds.shape[0]):
|
31 |
-
res = torch.nn.functional.interpolate(
|
32 |
-
scaled_preds[idx_sample].unsqueeze(0),
|
33 |
-
size=cv2.imread(label_paths[idx_sample], cv2.IMREAD_GRAYSCALE).shape[:2],
|
34 |
-
mode='bilinear',
|
35 |
-
align_corners=True
|
36 |
-
)
|
37 |
-
save_tensor_img(res, os.path.join(os.path.join(pred_root, method, testset), label_paths[idx_sample].replace('\\', '/').split('/')[-1])) # test set dir + file name
|
38 |
-
if model_training:
|
39 |
-
model.train()
|
40 |
-
return None
|
41 |
-
|
42 |
-
|
43 |
-
def main(args):
|
44 |
-
# Init model
|
45 |
-
|
46 |
-
device = config.device
|
47 |
-
if args.ckpt_folder:
|
48 |
-
print('Testing with models in {}'.format(args.ckpt_folder))
|
49 |
-
else:
|
50 |
-
print('Testing with model {}'.format(args.ckpt))
|
51 |
-
|
52 |
-
if config.model == 'BiRefNet':
|
53 |
-
model = BiRefNet(bb_pretrained=False)
|
54 |
-
weights_lst = sorted(
|
55 |
-
glob(os.path.join(args.ckpt_folder, '*.pth')) if args.ckpt_folder else [args.ckpt],
|
56 |
-
key=lambda x: int(x.split('epoch_')[-1].split('.pth')[0]),
|
57 |
-
reverse=True
|
58 |
-
)
|
59 |
-
for testset in args.testsets.split('+'):
|
60 |
-
print('>>>> Testset: {}...'.format(testset))
|
61 |
-
data_loader_test = torch.utils.data.DataLoader(
|
62 |
-
dataset=MyData(testset, image_size=config.size, is_train=False),
|
63 |
-
batch_size=config.batch_size_valid, shuffle=False, num_workers=config.num_workers, pin_memory=True
|
64 |
-
)
|
65 |
-
for weights in weights_lst:
|
66 |
-
if int(weights.strip('.pth').split('epoch_')[-1]) % 1 != 0:
|
67 |
-
continue
|
68 |
-
print('\tInferencing {}...'.format(weights))
|
69 |
-
# model.load_state_dict(torch.load(weights, map_location='cpu'))
|
70 |
-
state_dict = torch.load(weights, map_location='cpu')
|
71 |
-
state_dict = check_state_dict(state_dict)
|
72 |
-
model.load_state_dict(state_dict)
|
73 |
-
model = model.to(device)
|
74 |
-
inference(
|
75 |
-
model, data_loader_test=data_loader_test, pred_root=args.pred_root,
|
76 |
-
method='--'.join([w.rstrip('.pth') for w in weights.split(os.sep)[-2:]]),
|
77 |
-
testset=testset, device=config.device
|
78 |
-
)
|
79 |
-
|
80 |
-
|
81 |
-
if __name__ == '__main__':
|
82 |
-
# Parameter from command line
|
83 |
-
parser = argparse.ArgumentParser(description='')
|
84 |
-
parser.add_argument('--ckpt', type=str, help='model folder')
|
85 |
-
parser.add_argument('--ckpt_folder', default=sorted(glob(os.path.join('ckpt', '*')))[-1], type=str, help='model folder')
|
86 |
-
parser.add_argument('--pred_root', default='e_preds', type=str, help='Output folder')
|
87 |
-
parser.add_argument('--testsets',
|
88 |
-
default={
|
89 |
-
'DIS5K': 'DIS-VD+DIS-TE1+DIS-TE2+DIS-TE3+DIS-TE4',
|
90 |
-
'COD': 'TE-COD10K+NC4K+TE-CAMO+CHAMELEON',
|
91 |
-
'HRSOD': 'DAVIS-S+TE-HRSOD+TE-UHRSD+TE-DUTS+DUT-OMRON',
|
92 |
-
'DIS5K+HRSOD+HRS10K': 'DIS-VD',
|
93 |
-
'P3M-10k': 'TE-P3M-500-P+TE-P3M-500-NP',
|
94 |
-
'DIS5K-': 'DIS-VD',
|
95 |
-
'COD-': 'TE-COD10K',
|
96 |
-
'SOD-': 'DAVIS-S+TE-HRSOD+TE-UHRSD',
|
97 |
-
}[config.task + ''],
|
98 |
-
type=str,
|
99 |
-
help="Test all sets: , 'DIS-VD+DIS-TE1+DIS-TE2+DIS-TE3+DIS-TE4'")
|
100 |
-
|
101 |
-
args = parser.parse_args()
|
102 |
-
|
103 |
-
if config.precisionHigh:
|
104 |
-
torch.set_float32_matmul_precision('high')
|
105 |
-
main(args)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
BiRefNet_github/loss.py
DELETED
@@ -1,274 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
from torch import nn
|
3 |
-
import torch.nn.functional as F
|
4 |
-
from torch.autograd import Variable
|
5 |
-
from math import exp
|
6 |
-
from config import Config
|
7 |
-
|
8 |
-
|
9 |
-
class Discriminator(nn.Module):
|
10 |
-
def __init__(self, channels=1, img_size=256):
|
11 |
-
super(Discriminator, self).__init__()
|
12 |
-
|
13 |
-
def discriminator_block(in_filters, out_filters, bn=Config().batch_size > 1):
|
14 |
-
block = [nn.Conv2d(in_filters, out_filters, 3, 2, 1), nn.LeakyReLU(0.2, inplace=True), nn.Dropout2d(0.25)]
|
15 |
-
if bn:
|
16 |
-
block.append(nn.BatchNorm2d(out_filters, 0.8))
|
17 |
-
return block
|
18 |
-
|
19 |
-
self.model = nn.Sequential(
|
20 |
-
*discriminator_block(channels, 16, bn=False),
|
21 |
-
*discriminator_block(16, 32),
|
22 |
-
*discriminator_block(32, 64),
|
23 |
-
*discriminator_block(64, 128),
|
24 |
-
)
|
25 |
-
|
26 |
-
# The height and width of downsampled image
|
27 |
-
ds_size = img_size // 2 ** 4
|
28 |
-
self.adv_layer = nn.Sequential(nn.Linear(128 * ds_size ** 2, 1), nn.Sigmoid())
|
29 |
-
|
30 |
-
def forward(self, img):
|
31 |
-
out = self.model(img)
|
32 |
-
out = out.view(out.shape[0], -1)
|
33 |
-
validity = self.adv_layer(out)
|
34 |
-
|
35 |
-
return validity
|
36 |
-
|
37 |
-
|
38 |
-
class ContourLoss(torch.nn.Module):
|
39 |
-
def __init__(self):
|
40 |
-
super(ContourLoss, self).__init__()
|
41 |
-
|
42 |
-
def forward(self, pred, target, weight=10):
|
43 |
-
'''
|
44 |
-
target, pred: tensor of shape (B, C, H, W), where target[:,:,region_in_contour] == 1,
|
45 |
-
target[:,:,region_out_contour] == 0.
|
46 |
-
weight: scalar, length term weight.
|
47 |
-
'''
|
48 |
-
# length term
|
49 |
-
delta_r = pred[:,:,1:,:] - pred[:,:,:-1,:] # horizontal gradient (B, C, H-1, W)
|
50 |
-
delta_c = pred[:,:,:,1:] - pred[:,:,:,:-1] # vertical gradient (B, C, H, W-1)
|
51 |
-
|
52 |
-
delta_r = delta_r[:,:,1:,:-2]**2 # (B, C, H-2, W-2)
|
53 |
-
delta_c = delta_c[:,:,:-2,1:]**2 # (B, C, H-2, W-2)
|
54 |
-
delta_pred = torch.abs(delta_r + delta_c)
|
55 |
-
|
56 |
-
epsilon = 1e-8 # where is a parameter to avoid square root is zero in practice.
|
57 |
-
length = torch.mean(torch.sqrt(delta_pred + epsilon)) # eq.(11) in the paper, mean is used instead of sum.
|
58 |
-
|
59 |
-
c_in = torch.ones_like(pred)
|
60 |
-
c_out = torch.zeros_like(pred)
|
61 |
-
|
62 |
-
region_in = torch.mean( pred * (target - c_in )**2 ) # equ.(12) in the paper, mean is used instead of sum.
|
63 |
-
region_out = torch.mean( (1-pred) * (target - c_out)**2 )
|
64 |
-
region = region_in + region_out
|
65 |
-
|
66 |
-
loss = weight * length + region
|
67 |
-
|
68 |
-
return loss
|
69 |
-
|
70 |
-
|
71 |
-
class IoULoss(torch.nn.Module):
|
72 |
-
def __init__(self):
|
73 |
-
super(IoULoss, self).__init__()
|
74 |
-
|
75 |
-
def forward(self, pred, target):
|
76 |
-
b = pred.shape[0]
|
77 |
-
IoU = 0.0
|
78 |
-
for i in range(0, b):
|
79 |
-
# compute the IoU of the foreground
|
80 |
-
Iand1 = torch.sum(target[i, :, :, :] * pred[i, :, :, :])
|
81 |
-
Ior1 = torch.sum(target[i, :, :, :]) + torch.sum(pred[i, :, :, :]) - Iand1
|
82 |
-
IoU1 = Iand1 / Ior1
|
83 |
-
# IoU loss is (1-IoU1)
|
84 |
-
IoU = IoU + (1-IoU1)
|
85 |
-
# return IoU/b
|
86 |
-
return IoU
|
87 |
-
|
88 |
-
|
89 |
-
class StructureLoss(torch.nn.Module):
|
90 |
-
def __init__(self):
|
91 |
-
super(StructureLoss, self).__init__()
|
92 |
-
|
93 |
-
def forward(self, pred, target):
|
94 |
-
weit = 1+5*torch.abs(F.avg_pool2d(target, kernel_size=31, stride=1, padding=15)-target)
|
95 |
-
wbce = F.binary_cross_entropy_with_logits(pred, target, reduction='none')
|
96 |
-
wbce = (weit*wbce).sum(dim=(2,3))/weit.sum(dim=(2,3))
|
97 |
-
|
98 |
-
pred = torch.sigmoid(pred)
|
99 |
-
inter = ((pred * target) * weit).sum(dim=(2, 3))
|
100 |
-
union = ((pred + target) * weit).sum(dim=(2, 3))
|
101 |
-
wiou = 1-(inter+1)/(union-inter+1)
|
102 |
-
|
103 |
-
return (wbce+wiou).mean()
|
104 |
-
|
105 |
-
|
106 |
-
class PatchIoULoss(torch.nn.Module):
|
107 |
-
def __init__(self):
|
108 |
-
super(PatchIoULoss, self).__init__()
|
109 |
-
self.iou_loss = IoULoss()
|
110 |
-
|
111 |
-
def forward(self, pred, target):
|
112 |
-
win_y, win_x = 64, 64
|
113 |
-
iou_loss = 0.
|
114 |
-
for anchor_y in range(0, target.shape[0], win_y):
|
115 |
-
for anchor_x in range(0, target.shape[1], win_y):
|
116 |
-
patch_pred = pred[:, :, anchor_y:anchor_y+win_y, anchor_x:anchor_x+win_x]
|
117 |
-
patch_target = target[:, :, anchor_y:anchor_y+win_y, anchor_x:anchor_x+win_x]
|
118 |
-
patch_iou_loss = self.iou_loss(patch_pred, patch_target)
|
119 |
-
iou_loss += patch_iou_loss
|
120 |
-
return iou_loss
|
121 |
-
|
122 |
-
|
123 |
-
class ThrReg_loss(torch.nn.Module):
|
124 |
-
def __init__(self):
|
125 |
-
super(ThrReg_loss, self).__init__()
|
126 |
-
|
127 |
-
def forward(self, pred, gt=None):
|
128 |
-
return torch.mean(1 - ((pred - 0) ** 2 + (pred - 1) ** 2))
|
129 |
-
|
130 |
-
|
131 |
-
class ClsLoss(nn.Module):
|
132 |
-
"""
|
133 |
-
Auxiliary classification loss for each refined class output.
|
134 |
-
"""
|
135 |
-
def __init__(self):
|
136 |
-
super(ClsLoss, self).__init__()
|
137 |
-
self.config = Config()
|
138 |
-
self.lambdas_cls = self.config.lambdas_cls
|
139 |
-
|
140 |
-
self.criterions_last = {
|
141 |
-
'ce': nn.CrossEntropyLoss()
|
142 |
-
}
|
143 |
-
|
144 |
-
def forward(self, preds, gt):
|
145 |
-
loss = 0.
|
146 |
-
for _, pred_lvl in enumerate(preds):
|
147 |
-
if pred_lvl is None:
|
148 |
-
continue
|
149 |
-
for criterion_name, criterion in self.criterions_last.items():
|
150 |
-
loss += criterion(pred_lvl, gt) * self.lambdas_cls[criterion_name]
|
151 |
-
return loss
|
152 |
-
|
153 |
-
|
154 |
-
class PixLoss(nn.Module):
|
155 |
-
"""
|
156 |
-
Pixel loss for each refined map output.
|
157 |
-
"""
|
158 |
-
def __init__(self):
|
159 |
-
super(PixLoss, self).__init__()
|
160 |
-
self.config = Config()
|
161 |
-
self.lambdas_pix_last = self.config.lambdas_pix_last
|
162 |
-
|
163 |
-
self.criterions_last = {}
|
164 |
-
if 'bce' in self.lambdas_pix_last and self.lambdas_pix_last['bce']:
|
165 |
-
self.criterions_last['bce'] = nn.BCELoss() if not self.config.use_fp16 else nn.BCEWithLogitsLoss()
|
166 |
-
if 'iou' in self.lambdas_pix_last and self.lambdas_pix_last['iou']:
|
167 |
-
self.criterions_last['iou'] = IoULoss()
|
168 |
-
if 'iou_patch' in self.lambdas_pix_last and self.lambdas_pix_last['iou_patch']:
|
169 |
-
self.criterions_last['iou_patch'] = PatchIoULoss()
|
170 |
-
if 'ssim' in self.lambdas_pix_last and self.lambdas_pix_last['ssim']:
|
171 |
-
self.criterions_last['ssim'] = SSIMLoss()
|
172 |
-
if 'mse' in self.lambdas_pix_last and self.lambdas_pix_last['mse']:
|
173 |
-
self.criterions_last['mse'] = nn.MSELoss()
|
174 |
-
if 'reg' in self.lambdas_pix_last and self.lambdas_pix_last['reg']:
|
175 |
-
self.criterions_last['reg'] = ThrReg_loss()
|
176 |
-
if 'cnt' in self.lambdas_pix_last and self.lambdas_pix_last['cnt']:
|
177 |
-
self.criterions_last['cnt'] = ContourLoss()
|
178 |
-
if 'structure' in self.lambdas_pix_last and self.lambdas_pix_last['structure']:
|
179 |
-
self.criterions_last['structure'] = StructureLoss()
|
180 |
-
|
181 |
-
def forward(self, scaled_preds, gt):
|
182 |
-
loss = 0.
|
183 |
-
criterions_embedded_with_sigmoid = ['structure', ] + ['bce'] if self.config.use_fp16 else []
|
184 |
-
for _, pred_lvl in enumerate(scaled_preds):
|
185 |
-
if pred_lvl.shape != gt.shape:
|
186 |
-
pred_lvl = nn.functional.interpolate(pred_lvl, size=gt.shape[2:], mode='bilinear', align_corners=True)
|
187 |
-
for criterion_name, criterion in self.criterions_last.items():
|
188 |
-
_loss = criterion(pred_lvl.sigmoid() if criterion_name not in criterions_embedded_with_sigmoid else pred_lvl, gt) * self.lambdas_pix_last[criterion_name]
|
189 |
-
loss += _loss
|
190 |
-
# print(criterion_name, _loss.item())
|
191 |
-
return loss
|
192 |
-
|
193 |
-
|
194 |
-
class SSIMLoss(torch.nn.Module):
|
195 |
-
def __init__(self, window_size=11, size_average=True):
|
196 |
-
super(SSIMLoss, self).__init__()
|
197 |
-
self.window_size = window_size
|
198 |
-
self.size_average = size_average
|
199 |
-
self.channel = 1
|
200 |
-
self.window = create_window(window_size, self.channel)
|
201 |
-
|
202 |
-
def forward(self, img1, img2):
|
203 |
-
(_, channel, _, _) = img1.size()
|
204 |
-
if channel == self.channel and self.window.data.type() == img1.data.type():
|
205 |
-
window = self.window
|
206 |
-
else:
|
207 |
-
window = create_window(self.window_size, channel)
|
208 |
-
if img1.is_cuda:
|
209 |
-
window = window.cuda(img1.get_device())
|
210 |
-
window = window.type_as(img1)
|
211 |
-
self.window = window
|
212 |
-
self.channel = channel
|
213 |
-
return 1 - _ssim(img1, img2, window, self.window_size, channel, self.size_average)
|
214 |
-
|
215 |
-
|
216 |
-
def gaussian(window_size, sigma):
|
217 |
-
gauss = torch.Tensor([exp(-(x - window_size//2)**2/float(2*sigma**2)) for x in range(window_size)])
|
218 |
-
return gauss/gauss.sum()
|
219 |
-
|
220 |
-
|
221 |
-
def create_window(window_size, channel):
|
222 |
-
_1D_window = gaussian(window_size, 1.5).unsqueeze(1)
|
223 |
-
_2D_window = _1D_window.mm(_1D_window.t()).float().unsqueeze(0).unsqueeze(0)
|
224 |
-
window = Variable(_2D_window.expand(channel, 1, window_size, window_size).contiguous())
|
225 |
-
return window
|
226 |
-
|
227 |
-
|
228 |
-
def _ssim(img1, img2, window, window_size, channel, size_average=True):
|
229 |
-
mu1 = F.conv2d(img1, window, padding = window_size//2, groups=channel)
|
230 |
-
mu2 = F.conv2d(img2, window, padding = window_size//2, groups=channel)
|
231 |
-
|
232 |
-
mu1_sq = mu1.pow(2)
|
233 |
-
mu2_sq = mu2.pow(2)
|
234 |
-
mu1_mu2 = mu1*mu2
|
235 |
-
|
236 |
-
sigma1_sq = F.conv2d(img1*img1, window, padding=window_size//2, groups=channel) - mu1_sq
|
237 |
-
sigma2_sq = F.conv2d(img2*img2, window, padding=window_size//2, groups=channel) - mu2_sq
|
238 |
-
sigma12 = F.conv2d(img1*img2, window, padding=window_size//2, groups=channel) - mu1_mu2
|
239 |
-
|
240 |
-
C1 = 0.01**2
|
241 |
-
C2 = 0.03**2
|
242 |
-
|
243 |
-
ssim_map = ((2*mu1_mu2 + C1)*(2*sigma12 + C2))/((mu1_sq + mu2_sq + C1)*(sigma1_sq + sigma2_sq + C2))
|
244 |
-
|
245 |
-
if size_average:
|
246 |
-
return ssim_map.mean()
|
247 |
-
else:
|
248 |
-
return ssim_map.mean(1).mean(1).mean(1)
|
249 |
-
|
250 |
-
|
251 |
-
def SSIM(x, y):
|
252 |
-
C1 = 0.01 ** 2
|
253 |
-
C2 = 0.03 ** 2
|
254 |
-
|
255 |
-
mu_x = nn.AvgPool2d(3, 1, 1)(x)
|
256 |
-
mu_y = nn.AvgPool2d(3, 1, 1)(y)
|
257 |
-
mu_x_mu_y = mu_x * mu_y
|
258 |
-
mu_x_sq = mu_x.pow(2)
|
259 |
-
mu_y_sq = mu_y.pow(2)
|
260 |
-
|
261 |
-
sigma_x = nn.AvgPool2d(3, 1, 1)(x * x) - mu_x_sq
|
262 |
-
sigma_y = nn.AvgPool2d(3, 1, 1)(y * y) - mu_y_sq
|
263 |
-
sigma_xy = nn.AvgPool2d(3, 1, 1)(x * y) - mu_x_mu_y
|
264 |
-
|
265 |
-
SSIM_n = (2 * mu_x_mu_y + C1) * (2 * sigma_xy + C2)
|
266 |
-
SSIM_d = (mu_x_sq + mu_y_sq + C1) * (sigma_x + sigma_y + C2)
|
267 |
-
SSIM = SSIM_n / SSIM_d
|
268 |
-
|
269 |
-
return torch.clamp((1 - SSIM) / 2, 0, 1)
|
270 |
-
|
271 |
-
|
272 |
-
def saliency_structure_consistency(x, y):
|
273 |
-
ssim = torch.mean(SSIM(x,y))
|
274 |
-
return ssim
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
BiRefNet_github/make_a_copy.sh
DELETED
@@ -1,18 +0,0 @@
|
|
1 |
-
#!/bin/bash
|
2 |
-
# Set dst repo here.
|
3 |
-
repo=$1
|
4 |
-
mkdir ../${repo}
|
5 |
-
mkdir ../${repo}/evaluation
|
6 |
-
mkdir ../${repo}/models
|
7 |
-
mkdir ../${repo}/models/backbones
|
8 |
-
mkdir ../${repo}/models/modules
|
9 |
-
mkdir ../${repo}/models/refinement
|
10 |
-
|
11 |
-
cp ./*.sh ../${repo}
|
12 |
-
cp ./*.py ../${repo}
|
13 |
-
cp ./evaluation/*.py ../${repo}/evaluation
|
14 |
-
cp ./models/*.py ../${repo}/models
|
15 |
-
cp ./models/backbones/*.py ../${repo}/models/backbones
|
16 |
-
cp ./models/modules/*.py ../${repo}/models/modules
|
17 |
-
cp ./models/refinement/*.py ../${repo}/models/refinement
|
18 |
-
cp -r ./.git* ../${repo}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
BiRefNet_github/requirements.txt
DELETED
@@ -1,15 +0,0 @@
|
|
1 |
-
--extra-index-url https://download.pytorch.org/whl/cu118
|
2 |
-
torch==2.0.1
|
3 |
-
--extra-index-url https://download.pytorch.org/whl/cu118
|
4 |
-
torchvision==0.15.2
|
5 |
-
numpy<2
|
6 |
-
opencv-python
|
7 |
-
timm
|
8 |
-
scipy
|
9 |
-
scikit-image
|
10 |
-
kornia
|
11 |
-
|
12 |
-
tqdm
|
13 |
-
prettytable
|
14 |
-
|
15 |
-
huggingface_hub
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
BiRefNet_github/rm_cache.sh
DELETED
@@ -1,20 +0,0 @@
|
|
1 |
-
#!/bin/bash
|
2 |
-
rm -rf __pycache__ */__pycache__
|
3 |
-
|
4 |
-
# Val
|
5 |
-
rm -r tmp*
|
6 |
-
|
7 |
-
# Train
|
8 |
-
rm slurm*
|
9 |
-
rm -r ckpt
|
10 |
-
rm nohup.out*
|
11 |
-
|
12 |
-
# Eval
|
13 |
-
rm -r evaluation/eval-*
|
14 |
-
rm -r tmp*
|
15 |
-
rm -r e_logs/
|
16 |
-
|
17 |
-
# System
|
18 |
-
rm core-*-python-*
|
19 |
-
|
20 |
-
clear
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
BiRefNet_github/sub.sh
DELETED
@@ -1,19 +0,0 @@
|
|
1 |
-
#!/bin/sh
|
2 |
-
# Example: ./sub.sh tmp_proj 0,1,2,3 3 --> Use 0,1,2,3 for training, release GPUs, use GPU:3 for inference.
|
3 |
-
|
4 |
-
module load compilers/cuda/11.8
|
5 |
-
|
6 |
-
export PYTHONUNBUFFERED=1
|
7 |
-
export LD_PRELOAD=/home/bingxing2/apps/compilers/gcc/12.2.0/lib64/libstdc++.so.6
|
8 |
-
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:${HOME}/miniconda3/lib:/home/bingxing2/apps/cudnn/8.4.0.27_cuda11.x/lib
|
9 |
-
|
10 |
-
method=${1:-"BSL"}
|
11 |
-
devices=${2:-0}
|
12 |
-
|
13 |
-
sbatch --nodes=1 -p vip_gpu_ailab -A ai4bio \
|
14 |
-
--ntasks-per-node=1 \
|
15 |
-
--gres=gpu:$(($(echo ${devices%%,} | grep -o "," | wc -l)+1)) \
|
16 |
-
--cpus-per-task=32 \
|
17 |
-
./train_test.sh ${method} ${devices}
|
18 |
-
|
19 |
-
hostname
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
BiRefNet_github/test.sh
DELETED
@@ -1,28 +0,0 @@
|
|
1 |
-
devices=${1:-0}
|
2 |
-
pred_root=${2:-e_preds}
|
3 |
-
|
4 |
-
# Inference
|
5 |
-
|
6 |
-
CUDA_VISIBLE_DEVICES=${devices} python inference.py --pred_root ${pred_root}
|
7 |
-
|
8 |
-
echo Inference finished at $(date)
|
9 |
-
|
10 |
-
# Evaluation
|
11 |
-
log_dir=e_logs && mkdir ${log_dir}
|
12 |
-
|
13 |
-
task=$(python3 config.py)
|
14 |
-
case "${task}" in
|
15 |
-
"DIS5K") testsets='DIS-VD,DIS-TE1,DIS-TE2,DIS-TE3,DIS-TE4' ;;
|
16 |
-
"COD") testsets='CHAMELEON,NC4K,TE-CAMO,TE-COD10K' ;;
|
17 |
-
"HRSOD") testsets='DAVIS-S,TE-HRSOD,TE-UHRSD,DUT-OMRON,TE-DUTS' ;;
|
18 |
-
"DIS5K+HRSOD+HRS10K") testsets='DIS-VD' ;;
|
19 |
-
"P3M-10k") testsets='TE-P3M-500-P,TE-P3M-500-NP' ;;
|
20 |
-
esac
|
21 |
-
testsets=(`echo ${testsets} | tr ',' ' '`) && testsets=${testsets[@]}
|
22 |
-
|
23 |
-
for testset in ${testsets}; do
|
24 |
-
nohup python eval_existingOnes.py --pred_root ${pred_root} --data_lst ${testset} > ${log_dir}/eval_${testset}.out 2>&1 &
|
25 |
-
done
|
26 |
-
|
27 |
-
|
28 |
-
echo Evaluation started at $(date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
BiRefNet_github/train.py
DELETED
@@ -1,377 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
import datetime
|
3 |
-
import argparse
|
4 |
-
import torch
|
5 |
-
import torch.nn as nn
|
6 |
-
import torch.optim as optim
|
7 |
-
from torch.autograd import Variable
|
8 |
-
|
9 |
-
from config import Config
|
10 |
-
from loss import PixLoss, ClsLoss
|
11 |
-
from dataset import MyData
|
12 |
-
from models.birefnet import BiRefNet
|
13 |
-
from utils import Logger, AverageMeter, set_seed, check_state_dict
|
14 |
-
from evaluation.valid import valid
|
15 |
-
|
16 |
-
from torch.utils.data.distributed import DistributedSampler
|
17 |
-
from torch.nn.parallel import DistributedDataParallel as DDP
|
18 |
-
from torch.distributed import init_process_group, destroy_process_group, get_rank
|
19 |
-
from torch.cuda import amp
|
20 |
-
|
21 |
-
|
22 |
-
parser = argparse.ArgumentParser(description='')
|
23 |
-
parser.add_argument('--resume', default=None, type=str, help='path to latest checkpoint')
|
24 |
-
parser.add_argument('--epochs', default=120, type=int)
|
25 |
-
parser.add_argument('--trainset', default='DIS5K', type=str, help="Options: 'DIS5K'")
|
26 |
-
parser.add_argument('--ckpt_dir', default=None, help='Temporary folder')
|
27 |
-
parser.add_argument('--testsets', default='DIS-VD+DIS-TE1+DIS-TE2+DIS-TE3+DIS-TE4', type=str)
|
28 |
-
parser.add_argument('--dist', default=False, type=lambda x: x == 'True')
|
29 |
-
args = parser.parse_args()
|
30 |
-
|
31 |
-
|
32 |
-
config = Config()
|
33 |
-
if config.rand_seed:
|
34 |
-
set_seed(config.rand_seed)
|
35 |
-
|
36 |
-
if config.use_fp16:
|
37 |
-
# Half Precision
|
38 |
-
scaler = amp.GradScaler(enabled=config.use_fp16)
|
39 |
-
|
40 |
-
# DDP
|
41 |
-
to_be_distributed = args.dist
|
42 |
-
if to_be_distributed:
|
43 |
-
init_process_group(backend="nccl", timeout=datetime.timedelta(seconds=3600*10))
|
44 |
-
device = int(os.environ["LOCAL_RANK"])
|
45 |
-
else:
|
46 |
-
device = config.device
|
47 |
-
|
48 |
-
epoch_st = 1
|
49 |
-
# make dir for ckpt
|
50 |
-
os.makedirs(args.ckpt_dir, exist_ok=True)
|
51 |
-
|
52 |
-
# Init log file
|
53 |
-
logger = Logger(os.path.join(args.ckpt_dir, "log.txt"))
|
54 |
-
logger_loss_idx = 1
|
55 |
-
|
56 |
-
# log model and optimizer params
|
57 |
-
# logger.info("Model details:"); logger.info(model)
|
58 |
-
logger.info("datasets: load_all={}, compile={}.".format(config.load_all, config.compile))
|
59 |
-
logger.info("Other hyperparameters:"); logger.info(args)
|
60 |
-
print('batch size:', config.batch_size)
|
61 |
-
|
62 |
-
|
63 |
-
if os.path.exists(os.path.join(config.data_root_dir, config.task, args.testsets.strip('+').split('+')[0])):
|
64 |
-
args.testsets = args.testsets.strip('+').split('+')
|
65 |
-
else:
|
66 |
-
args.testsets = []
|
67 |
-
|
68 |
-
# Init model
|
69 |
-
def prepare_dataloader(dataset: torch.utils.data.Dataset, batch_size: int, to_be_distributed=False, is_train=True):
|
70 |
-
if to_be_distributed:
|
71 |
-
return torch.utils.data.DataLoader(
|
72 |
-
dataset=dataset, batch_size=batch_size, num_workers=min(config.num_workers, batch_size), pin_memory=True,
|
73 |
-
shuffle=False, sampler=DistributedSampler(dataset), drop_last=True
|
74 |
-
)
|
75 |
-
else:
|
76 |
-
return torch.utils.data.DataLoader(
|
77 |
-
dataset=dataset, batch_size=batch_size, num_workers=min(config.num_workers, batch_size, 0), pin_memory=True,
|
78 |
-
shuffle=is_train, drop_last=True
|
79 |
-
)
|
80 |
-
|
81 |
-
|
82 |
-
def init_data_loaders(to_be_distributed):
|
83 |
-
# Prepare dataset
|
84 |
-
train_loader = prepare_dataloader(
|
85 |
-
MyData(datasets=config.training_set, image_size=config.size, is_train=True),
|
86 |
-
config.batch_size, to_be_distributed=to_be_distributed, is_train=True
|
87 |
-
)
|
88 |
-
print(len(train_loader), "batches of train dataloader {} have been created.".format(config.training_set))
|
89 |
-
test_loaders = {}
|
90 |
-
for testset in args.testsets:
|
91 |
-
_data_loader_test = prepare_dataloader(
|
92 |
-
MyData(datasets=testset, image_size=config.size, is_train=False),
|
93 |
-
config.batch_size_valid, is_train=False
|
94 |
-
)
|
95 |
-
print(len(_data_loader_test), "batches of valid dataloader {} have been created.".format(testset))
|
96 |
-
test_loaders[testset] = _data_loader_test
|
97 |
-
return train_loader, test_loaders
|
98 |
-
|
99 |
-
|
100 |
-
def init_models_optimizers(epochs, to_be_distributed):
|
101 |
-
model = BiRefNet(bb_pretrained=True)
|
102 |
-
if args.resume:
|
103 |
-
if os.path.isfile(args.resume):
|
104 |
-
logger.info("=> loading checkpoint '{}'".format(args.resume))
|
105 |
-
state_dict = torch.load(args.resume, map_location='cpu')
|
106 |
-
state_dict = check_state_dict(state_dict)
|
107 |
-
model.load_state_dict(state_dict)
|
108 |
-
global epoch_st
|
109 |
-
epoch_st = int(args.resume.rstrip('.pth').split('epoch_')[-1]) + 1
|
110 |
-
else:
|
111 |
-
logger.info("=> no checkpoint found at '{}'".format(args.resume))
|
112 |
-
if to_be_distributed:
|
113 |
-
model = model.to(device)
|
114 |
-
model = DDP(model, device_ids=[device])
|
115 |
-
else:
|
116 |
-
model = model.to(device)
|
117 |
-
if config.compile:
|
118 |
-
model = torch.compile(model, mode=['default', 'reduce-overhead', 'max-autotune'][0])
|
119 |
-
if config.precisionHigh:
|
120 |
-
torch.set_float32_matmul_precision('high')
|
121 |
-
|
122 |
-
|
123 |
-
# Setting optimizer
|
124 |
-
if config.optimizer == 'AdamW':
|
125 |
-
optimizer = optim.AdamW(params=model.parameters(), lr=config.lr, weight_decay=1e-2)
|
126 |
-
elif config.optimizer == 'Adam':
|
127 |
-
optimizer = optim.Adam(params=model.parameters(), lr=config.lr, weight_decay=0)
|
128 |
-
lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(
|
129 |
-
optimizer,
|
130 |
-
milestones=[lde if lde > 0 else epochs + lde + 1 for lde in config.lr_decay_epochs],
|
131 |
-
gamma=config.lr_decay_rate
|
132 |
-
)
|
133 |
-
logger.info("Optimizer details:"); logger.info(optimizer)
|
134 |
-
logger.info("Scheduler details:"); logger.info(lr_scheduler)
|
135 |
-
|
136 |
-
return model, optimizer, lr_scheduler
|
137 |
-
|
138 |
-
|
139 |
-
class Trainer:
|
140 |
-
def __init__(
|
141 |
-
self, data_loaders, model_opt_lrsch,
|
142 |
-
):
|
143 |
-
self.model, self.optimizer, self.lr_scheduler = model_opt_lrsch
|
144 |
-
self.train_loader, self.test_loaders = data_loaders
|
145 |
-
if config.out_ref:
|
146 |
-
self.criterion_gdt = nn.BCELoss() if not config.use_fp16 else nn.BCEWithLogitsLoss()
|
147 |
-
|
148 |
-
# Setting Losses
|
149 |
-
self.pix_loss = PixLoss()
|
150 |
-
self.cls_loss = ClsLoss()
|
151 |
-
|
152 |
-
# Others
|
153 |
-
self.loss_log = AverageMeter()
|
154 |
-
if config.lambda_adv_g:
|
155 |
-
self.optimizer_d, self.lr_scheduler_d, self.disc, self.adv_criterion = self._load_adv_components()
|
156 |
-
self.disc_update_for_odd = 0
|
157 |
-
|
158 |
-
def _load_adv_components(self):
|
159 |
-
# AIL
|
160 |
-
from loss import Discriminator
|
161 |
-
disc = Discriminator(channels=3, img_size=config.size)
|
162 |
-
if to_be_distributed:
|
163 |
-
disc = disc.to(device)
|
164 |
-
disc = DDP(disc, device_ids=[device], broadcast_buffers=False)
|
165 |
-
else:
|
166 |
-
disc = disc.to(device)
|
167 |
-
if config.compile:
|
168 |
-
disc = torch.compile(disc, mode=['default', 'reduce-overhead', 'max-autotune'][0])
|
169 |
-
adv_criterion = nn.BCELoss() if not config.use_fp16 else nn.BCEWithLogitsLoss()
|
170 |
-
if config.optimizer == 'AdamW':
|
171 |
-
optimizer_d = optim.AdamW(params=disc.parameters(), lr=config.lr, weight_decay=1e-2)
|
172 |
-
elif config.optimizer == 'Adam':
|
173 |
-
optimizer_d = optim.Adam(params=disc.parameters(), lr=config.lr, weight_decay=0)
|
174 |
-
lr_scheduler_d = torch.optim.lr_scheduler.MultiStepLR(
|
175 |
-
optimizer_d,
|
176 |
-
milestones=[lde if lde > 0 else args.epochs + lde + 1 for lde in config.lr_decay_epochs],
|
177 |
-
gamma=config.lr_decay_rate
|
178 |
-
)
|
179 |
-
return optimizer_d, lr_scheduler_d, disc, adv_criterion
|
180 |
-
|
181 |
-
def _train_batch(self, batch):
|
182 |
-
inputs = batch[0].to(device)
|
183 |
-
gts = batch[1].to(device)
|
184 |
-
class_labels = batch[2].to(device)
|
185 |
-
if config.use_fp16:
|
186 |
-
with amp.autocast(enabled=config.use_fp16):
|
187 |
-
scaled_preds, class_preds_lst = self.model(inputs)
|
188 |
-
if config.out_ref:
|
189 |
-
(outs_gdt_pred, outs_gdt_label), scaled_preds = scaled_preds
|
190 |
-
for _idx, (_gdt_pred, _gdt_label) in enumerate(zip(outs_gdt_pred, outs_gdt_label)):
|
191 |
-
_gdt_pred = nn.functional.interpolate(_gdt_pred, size=_gdt_label.shape[2:], mode='bilinear', align_corners=True)#.sigmoid()
|
192 |
-
# _gdt_label = _gdt_label.sigmoid()
|
193 |
-
loss_gdt = self.criterion_gdt(_gdt_pred, _gdt_label) if _idx == 0 else self.criterion_gdt(_gdt_pred, _gdt_label) + loss_gdt
|
194 |
-
# self.loss_dict['loss_gdt'] = loss_gdt.item()
|
195 |
-
if None in class_preds_lst:
|
196 |
-
loss_cls = 0.
|
197 |
-
else:
|
198 |
-
loss_cls = self.cls_loss(class_preds_lst, class_labels) * 1.0
|
199 |
-
self.loss_dict['loss_cls'] = loss_cls.item()
|
200 |
-
|
201 |
-
# Loss
|
202 |
-
loss_pix = self.pix_loss(scaled_preds, torch.clamp(gts, 0, 1)) * 1.0
|
203 |
-
self.loss_dict['loss_pix'] = loss_pix.item()
|
204 |
-
# since there may be several losses for sal, the lambdas for them (lambdas_pix) are inside the loss.py
|
205 |
-
loss = loss_pix + loss_cls
|
206 |
-
if config.out_ref:
|
207 |
-
loss = loss + loss_gdt * 1.0
|
208 |
-
|
209 |
-
if config.lambda_adv_g:
|
210 |
-
# gen
|
211 |
-
valid = Variable(torch.cuda.FloatTensor(scaled_preds[-1].shape[0], 1).fill_(1.0), requires_grad=False).to(device)
|
212 |
-
adv_loss_g = self.adv_criterion(self.disc(scaled_preds[-1] * inputs), valid) * config.lambda_adv_g
|
213 |
-
loss += adv_loss_g
|
214 |
-
self.loss_dict['loss_adv'] = adv_loss_g.item()
|
215 |
-
self.disc_update_for_odd += 1
|
216 |
-
# self.loss_log.update(loss.item(), inputs.size(0))
|
217 |
-
# self.optimizer.zero_grad()
|
218 |
-
# loss.backward()
|
219 |
-
# self.optimizer.step()
|
220 |
-
self.optimizer.zero_grad()
|
221 |
-
scaler.scale(loss).backward()
|
222 |
-
scaler.step(self.optimizer)
|
223 |
-
scaler.update()
|
224 |
-
|
225 |
-
if config.lambda_adv_g and self.disc_update_for_odd % 2 == 0:
|
226 |
-
# disc
|
227 |
-
fake = Variable(torch.cuda.FloatTensor(scaled_preds[-1].shape[0], 1).fill_(0.0), requires_grad=False).to(device)
|
228 |
-
adv_loss_real = self.adv_criterion(self.disc(gts * inputs), valid)
|
229 |
-
adv_loss_fake = self.adv_criterion(self.disc(scaled_preds[-1].detach() * inputs.detach()), fake)
|
230 |
-
adv_loss_d = (adv_loss_real + adv_loss_fake) / 2 * config.lambda_adv_d
|
231 |
-
self.loss_dict['loss_adv_d'] = adv_loss_d.item()
|
232 |
-
# self.optimizer_d.zero_grad()
|
233 |
-
# adv_loss_d.backward()
|
234 |
-
# self.optimizer_d.step()
|
235 |
-
self.optimizer_d.zero_grad()
|
236 |
-
scaler.scale(adv_loss_d).backward()
|
237 |
-
scaler.step(self.optimizer_d)
|
238 |
-
scaler.update()
|
239 |
-
else:
|
240 |
-
scaled_preds, class_preds_lst = self.model(inputs)
|
241 |
-
if config.out_ref:
|
242 |
-
(outs_gdt_pred, outs_gdt_label), scaled_preds = scaled_preds
|
243 |
-
for _idx, (_gdt_pred, _gdt_label) in enumerate(zip(outs_gdt_pred, outs_gdt_label)):
|
244 |
-
_gdt_pred = nn.functional.interpolate(_gdt_pred, size=_gdt_label.shape[2:], mode='bilinear', align_corners=True).sigmoid()
|
245 |
-
_gdt_label = _gdt_label.sigmoid()
|
246 |
-
loss_gdt = self.criterion_gdt(_gdt_pred, _gdt_label) if _idx == 0 else self.criterion_gdt(_gdt_pred, _gdt_label) + loss_gdt
|
247 |
-
# self.loss_dict['loss_gdt'] = loss_gdt.item()
|
248 |
-
if None in class_preds_lst:
|
249 |
-
loss_cls = 0.
|
250 |
-
else:
|
251 |
-
loss_cls = self.cls_loss(class_preds_lst, class_labels) * 1.0
|
252 |
-
self.loss_dict['loss_cls'] = loss_cls.item()
|
253 |
-
|
254 |
-
# Loss
|
255 |
-
loss_pix = self.pix_loss(scaled_preds, torch.clamp(gts, 0, 1)) * 1.0
|
256 |
-
self.loss_dict['loss_pix'] = loss_pix.item()
|
257 |
-
# since there may be several losses for sal, the lambdas for them (lambdas_pix) are inside the loss.py
|
258 |
-
loss = loss_pix + loss_cls
|
259 |
-
if config.out_ref:
|
260 |
-
loss = loss + loss_gdt * 1.0
|
261 |
-
|
262 |
-
if config.lambda_adv_g:
|
263 |
-
# gen
|
264 |
-
valid = Variable(torch.cuda.FloatTensor(scaled_preds[-1].shape[0], 1).fill_(1.0), requires_grad=False).to(device)
|
265 |
-
adv_loss_g = self.adv_criterion(self.disc(scaled_preds[-1] * inputs), valid) * config.lambda_adv_g
|
266 |
-
loss += adv_loss_g
|
267 |
-
self.loss_dict['loss_adv'] = adv_loss_g.item()
|
268 |
-
self.disc_update_for_odd += 1
|
269 |
-
self.loss_log.update(loss.item(), inputs.size(0))
|
270 |
-
self.optimizer.zero_grad()
|
271 |
-
loss.backward()
|
272 |
-
self.optimizer.step()
|
273 |
-
|
274 |
-
if config.lambda_adv_g and self.disc_update_for_odd % 2 == 0:
|
275 |
-
# disc
|
276 |
-
fake = Variable(torch.cuda.FloatTensor(scaled_preds[-1].shape[0], 1).fill_(0.0), requires_grad=False).to(device)
|
277 |
-
adv_loss_real = self.adv_criterion(self.disc(gts * inputs), valid)
|
278 |
-
adv_loss_fake = self.adv_criterion(self.disc(scaled_preds[-1].detach() * inputs.detach()), fake)
|
279 |
-
adv_loss_d = (adv_loss_real + adv_loss_fake) / 2 * config.lambda_adv_d
|
280 |
-
self.loss_dict['loss_adv_d'] = adv_loss_d.item()
|
281 |
-
self.optimizer_d.zero_grad()
|
282 |
-
adv_loss_d.backward()
|
283 |
-
self.optimizer_d.step()
|
284 |
-
|
285 |
-
def train_epoch(self, epoch):
|
286 |
-
global logger_loss_idx
|
287 |
-
self.model.train()
|
288 |
-
self.loss_dict = {}
|
289 |
-
if epoch > args.epochs + config.IoU_finetune_last_epochs:
|
290 |
-
self.pix_loss.lambdas_pix_last['bce'] *= 0
|
291 |
-
self.pix_loss.lambdas_pix_last['ssim'] *= 1
|
292 |
-
self.pix_loss.lambdas_pix_last['iou'] *= 0.5
|
293 |
-
|
294 |
-
for batch_idx, batch in enumerate(self.train_loader):
|
295 |
-
self._train_batch(batch)
|
296 |
-
# Logger
|
297 |
-
if batch_idx % 20 == 0:
|
298 |
-
info_progress = 'Epoch[{0}/{1}] Iter[{2}/{3}].'.format(epoch, args.epochs, batch_idx, len(self.train_loader))
|
299 |
-
info_loss = 'Training Losses'
|
300 |
-
for loss_name, loss_value in self.loss_dict.items():
|
301 |
-
info_loss += ', {}: {:.3f}'.format(loss_name, loss_value)
|
302 |
-
logger.info(' '.join((info_progress, info_loss)))
|
303 |
-
info_loss = '@==Final== Epoch[{0}/{1}] Training Loss: {loss.avg:.3f} '.format(epoch, args.epochs, loss=self.loss_log)
|
304 |
-
logger.info(info_loss)
|
305 |
-
|
306 |
-
self.lr_scheduler.step()
|
307 |
-
if config.lambda_adv_g:
|
308 |
-
self.lr_scheduler_d.step()
|
309 |
-
return self.loss_log.avg
|
310 |
-
|
311 |
-
def validate_model(self, epoch):
|
312 |
-
num_image_testset_all = {'DIS-VD': 470, 'DIS-TE1': 500, 'DIS-TE2': 500, 'DIS-TE3': 500, 'DIS-TE4': 500}
|
313 |
-
num_image_testset = {}
|
314 |
-
for testset in args.testsets:
|
315 |
-
if 'DIS-TE' in testset:
|
316 |
-
num_image_testset[testset] = num_image_testset_all[testset]
|
317 |
-
weighted_scores = {'f_max': 0, 'f_mean': 0, 'f_wfm': 0, 'sm': 0, 'e_max': 0, 'e_mean': 0, 'mae': 0}
|
318 |
-
len_all_data_loaders = 0
|
319 |
-
self.model.epoch = epoch
|
320 |
-
for testset, data_loader_test in self.test_loaders.items():
|
321 |
-
print('Validating {}...'.format(testset))
|
322 |
-
performance_dict = valid(
|
323 |
-
self.model,
|
324 |
-
data_loader_test,
|
325 |
-
pred_dir='.',
|
326 |
-
method=args.ckpt_dir.split('/')[-1] if args.ckpt_dir.split('/')[-1].strip('.').strip('/') else 'tmp_val',
|
327 |
-
testset=testset,
|
328 |
-
only_S_MAE=config.only_S_MAE,
|
329 |
-
device=device
|
330 |
-
)
|
331 |
-
print('Test set: {}:'.format(testset))
|
332 |
-
if config.only_S_MAE:
|
333 |
-
print('Smeasure: {:.4f}, MAE: {:.4f}'.format(
|
334 |
-
performance_dict['sm'], performance_dict['mae']
|
335 |
-
))
|
336 |
-
else:
|
337 |
-
print('Fmax: {:.4f}, Fwfm: {:.4f}, Smeasure: {:.4f}, Emean: {:.4f}, MAE: {:.4f}'.format(
|
338 |
-
performance_dict['f_max'], performance_dict['f_wfm'], performance_dict['sm'], performance_dict['e_mean'], performance_dict['mae']
|
339 |
-
))
|
340 |
-
if '-TE' in testset:
|
341 |
-
for metric in ['sm', 'mae'] if config.only_S_MAE else ['f_max', 'f_mean', 'f_wfm', 'sm', 'e_max', 'e_mean', 'mae']:
|
342 |
-
weighted_scores[metric] += performance_dict[metric] * len(data_loader_test)
|
343 |
-
len_all_data_loaders += len(data_loader_test)
|
344 |
-
print('Weighted Scores:')
|
345 |
-
for metric, score in weighted_scores.items():
|
346 |
-
if score:
|
347 |
-
print('\t{}: {:.4f}.'.format(metric, score / len_all_data_loaders))
|
348 |
-
|
349 |
-
|
350 |
-
def main():
|
351 |
-
|
352 |
-
trainer = Trainer(
|
353 |
-
data_loaders=init_data_loaders(to_be_distributed),
|
354 |
-
model_opt_lrsch=init_models_optimizers(args.epochs, to_be_distributed)
|
355 |
-
)
|
356 |
-
|
357 |
-
for epoch in range(epoch_st, args.epochs+1):
|
358 |
-
train_loss = trainer.train_epoch(epoch)
|
359 |
-
# Save checkpoint
|
360 |
-
# DDP
|
361 |
-
if epoch >= args.epochs - config.save_last and epoch % config.save_step == 0:
|
362 |
-
torch.save(
|
363 |
-
trainer.model.module.state_dict() if to_be_distributed else trainer.model.state_dict(),
|
364 |
-
os.path.join(args.ckpt_dir, 'epoch_{}.pth'.format(epoch))
|
365 |
-
)
|
366 |
-
if config.val_step and epoch >= args.epochs - config.save_last and (args.epochs - epoch) % config.val_step == 0:
|
367 |
-
if to_be_distributed:
|
368 |
-
if get_rank() == 0:
|
369 |
-
print('Validating at rank-{}...'.format(get_rank()))
|
370 |
-
trainer.validate_model(epoch)
|
371 |
-
else:
|
372 |
-
trainer.validate_model(epoch)
|
373 |
-
if to_be_distributed:
|
374 |
-
destroy_process_group()
|
375 |
-
|
376 |
-
if __name__ == '__main__':
|
377 |
-
main()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
BiRefNet_github/train_test.sh
DELETED
@@ -1,11 +0,0 @@
|
|
1 |
-
#!/bin/sh
|
2 |
-
|
3 |
-
method=${1:-"BSL"}
|
4 |
-
devices=${2:-"0,1,2,3,4,5,6,7"}
|
5 |
-
|
6 |
-
bash train.sh ${method} ${devices}
|
7 |
-
|
8 |
-
devices_test=${3:-0}
|
9 |
-
bash test.sh ${devices_test}
|
10 |
-
|
11 |
-
hostname
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
BiRefNet_github/waiting4eval.py
DELETED
@@ -1,141 +0,0 @@
|
|
1 |
-
# --------------------------------------------------------
|
2 |
-
# Make evaluation along with training. Swith time with space/computation.
|
3 |
-
# Licensed under The MIT License [see LICENSE for details]
|
4 |
-
# Written by Peng Zheng
|
5 |
-
# --------------------------------------------------------
|
6 |
-
import os
|
7 |
-
from glob import glob
|
8 |
-
from time import sleep
|
9 |
-
import argparse
|
10 |
-
import torch
|
11 |
-
|
12 |
-
from config import Config
|
13 |
-
from models.birefnet import BiRefNet
|
14 |
-
from dataset import MyData
|
15 |
-
from evaluation.valid import valid
|
16 |
-
|
17 |
-
|
18 |
-
parser = argparse.ArgumentParser(description='')
|
19 |
-
parser.add_argument('--cuda_idx', default=-1, type=int)
|
20 |
-
parser.add_argument('--val_step', default=5*1, type=int)
|
21 |
-
parser.add_argument('--program_id', default=0, type=int)
|
22 |
-
# id-th one of this program will evaluate val_step * N + program_id -th epoch model.
|
23 |
-
# Test more models, number of programs == number of GPUs: [models[num_all - program_id_1], models[num_all - program_id_max(n, val_step-1)], ...] programs with id>val_step will speed up the evaluation on (val_step - id)%val_step -th epoch models.
|
24 |
-
# Test fastest, only sequentially searched val_step*N -th models -- set all program_id as the same.
|
25 |
-
parser.add_argument('--testsets', default='DIS-VD+DIS-TE1+DIS-TE2+DIS-TE3+DIS-TE4', type=str)
|
26 |
-
args_eval = parser.parse_args()
|
27 |
-
|
28 |
-
args_eval.program_id = (args_eval.val_step - args_eval.program_id) % args_eval.val_step
|
29 |
-
|
30 |
-
config = Config()
|
31 |
-
config.only_S_MAE = True
|
32 |
-
device = 'cpu' if args_eval.cuda_idx < 0 else 'cuda:{}'.format(args_eval.cuda_idx)
|
33 |
-
ckpt_dir, testsets = glob(os.path.join('ckpt', '*'))[0], args_eval.testsets
|
34 |
-
|
35 |
-
|
36 |
-
def validate_model(model, test_loaders, epoch):
|
37 |
-
num_image_testset_all = {'DIS-VD': 470, 'DIS-TE1': 500, 'DIS-TE2': 500, 'DIS-TE3': 500, 'DIS-TE4': 500}
|
38 |
-
num_image_testset = {}
|
39 |
-
for testset in testsets.split('+'):
|
40 |
-
if 'DIS-TE' in testset:
|
41 |
-
num_image_testset[testset] = num_image_testset_all[testset]
|
42 |
-
weighted_scores = {'f_max': 0, 'sm': 0, 'e_max': 0, 'mae': 0}
|
43 |
-
len_all_data_loaders = 0
|
44 |
-
model.epoch = epoch
|
45 |
-
for testset, data_loader_test in test_loaders.items():
|
46 |
-
print('Validating {}...'.format(testset))
|
47 |
-
performance_dict = valid(
|
48 |
-
model,
|
49 |
-
data_loader_test,
|
50 |
-
pred_dir='.',
|
51 |
-
method=ckpt_dir.split('/')[-1] if ckpt_dir.split('/')[-1].strip('.').strip('/') else 'tmp_val',
|
52 |
-
testset=testset,
|
53 |
-
only_S_MAE=config.only_S_MAE,
|
54 |
-
device=device
|
55 |
-
)
|
56 |
-
print('Test set: {}:'.format(testset))
|
57 |
-
if config.only_S_MAE:
|
58 |
-
print('Smeasure: {:.4f}, MAE: {:.4f}'.format(
|
59 |
-
performance_dict['sm'], performance_dict['mae']
|
60 |
-
))
|
61 |
-
else:
|
62 |
-
print('Fmax: {:.4f}, Fwfm: {:.4f}, Smeasure: {:.4f}, Emean: {:.4f}, MAE: {:.4f}'.format(
|
63 |
-
performance_dict['f_max'], performance_dict['f_wfm'], performance_dict['sm'], performance_dict['e_mean'], performance_dict['mae']
|
64 |
-
))
|
65 |
-
if '-TE' in testset:
|
66 |
-
for metric in ['sm', 'mae'] if config.only_S_MAE else ['f_max', 'f_wfm', 'sm', 'e_mean', 'mae']:
|
67 |
-
weighted_scores[metric] += performance_dict[metric] * len(data_loader_test)
|
68 |
-
len_all_data_loaders += len(data_loader_test)
|
69 |
-
print('Weighted Scores:')
|
70 |
-
for metric, score in weighted_scores.items():
|
71 |
-
if score:
|
72 |
-
print('\t{}: {:.4f}.'.format(metric, score / len_all_data_loaders))
|
73 |
-
|
74 |
-
@torch.no_grad()
|
75 |
-
def main():
|
76 |
-
config = Config()
|
77 |
-
# Dataloader
|
78 |
-
test_loaders = {}
|
79 |
-
for testset in testsets.split('+'):
|
80 |
-
dataset = MyData(
|
81 |
-
datasets=testset,
|
82 |
-
image_size=config.size, is_train=False
|
83 |
-
)
|
84 |
-
_data_loader_test = torch.utils.data.DataLoader(
|
85 |
-
dataset=dataset, batch_size=config.batch_size_valid, num_workers=min(config.num_workers, config.batch_size_valid),
|
86 |
-
pin_memory=device != 'cpu', shuffle=False
|
87 |
-
)
|
88 |
-
print(len(_data_loader_test), "batches of valid dataloader {} have been created.".format(testset))
|
89 |
-
test_loaders[testset] = _data_loader_test
|
90 |
-
|
91 |
-
# Model, 3070MiB GPU memory for inference
|
92 |
-
model = BiRefNet(bb_pretrained=False).to(device)
|
93 |
-
models_evaluated = []
|
94 |
-
continous_sleep_time = 0
|
95 |
-
while True:
|
96 |
-
if (
|
97 |
-
(models_evaluated and continous_sleep_time > 60*60*2) or
|
98 |
-
(not models_evaluated and continous_sleep_time > 60*60*24)
|
99 |
-
):
|
100 |
-
# If no ckpt has been saved, we wait for 24h;
|
101 |
-
# elif some ckpts have been saved, we wait for 2h for new ones;
|
102 |
-
# else: exit this waiting.
|
103 |
-
print('Exiting the waiting for evaluation.')
|
104 |
-
break
|
105 |
-
models_evaluated_record = 'tmp_models_evaluated.txt'
|
106 |
-
if os.path.exists(models_evaluated_record):
|
107 |
-
with open(models_evaluated_record, 'r') as f:
|
108 |
-
models_evaluated_global = f.read().splitlines()
|
109 |
-
else:
|
110 |
-
models_evaluated_global = []
|
111 |
-
models_detected = [
|
112 |
-
m for idx_m, m in enumerate(sorted(
|
113 |
-
glob(os.path.join(ckpt_dir, '*.pth')),
|
114 |
-
key=lambda x: int(x.rstrip('.pth').split('epoch_')[-1]), reverse=True
|
115 |
-
)) if idx_m % args_eval.val_step == args_eval.program_id and m not in models_evaluated + models_evaluated_global
|
116 |
-
]
|
117 |
-
if models_detected:
|
118 |
-
from time import time
|
119 |
-
time_st = time()
|
120 |
-
# register the evaluated models
|
121 |
-
model_not_evaluated_latest = models_detected[0]
|
122 |
-
with open('tmp_models_evaluated.txt', 'a') as f:
|
123 |
-
f.write(model_not_evaluated_latest + '\n')
|
124 |
-
models_evaluated.append(model_not_evaluated_latest)
|
125 |
-
print('Loading {} for validation...'.format(model_not_evaluated_latest))
|
126 |
-
|
127 |
-
# evaluate the current model
|
128 |
-
state_dict = torch.load(model_not_evaluated_latest, map_location=device)
|
129 |
-
model.load_state_dict(state_dict, strict=False)
|
130 |
-
validate_model(model, test_loaders, int(model_not_evaluated_latest.rstrip('.pth').split('epoch_')[-1]))
|
131 |
-
continous_sleep_time = 0
|
132 |
-
print('Duration of this evaluation:', time() - time_st)
|
133 |
-
else:
|
134 |
-
sleep_interval = 60 * 2
|
135 |
-
sleep(sleep_interval)
|
136 |
-
continous_sleep_time += sleep_interval
|
137 |
-
continue
|
138 |
-
|
139 |
-
|
140 |
-
if __name__ == '__main__':
|
141 |
-
main()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
BiRefNet_github/models/birefnet.py β birefnet.py
RENAMED
File without changes
|
config.json
CHANGED
@@ -5,7 +5,7 @@
|
|
5 |
],
|
6 |
"auto_map": {
|
7 |
"AutoConfig": "BiRefNet_config.BiRefNetConfig",
|
8 |
-
"AutoModelForImageSegmentation": "
|
9 |
},
|
10 |
"custom_pipelines": {
|
11 |
"image-segmentation": {
|
|
|
5 |
],
|
6 |
"auto_map": {
|
7 |
"AutoConfig": "BiRefNet_config.BiRefNetConfig",
|
8 |
+
"AutoModelForImageSegmentation": "birefnet.BiRefNet"
|
9 |
},
|
10 |
"custom_pipelines": {
|
11 |
"image-segmentation": {
|
BiRefNet_github/config.py β config.py
RENAMED
File without changes
|
BiRefNet_github/dataset.py β dataset.py
RENAMED
File without changes
|
{BiRefNet_github/models β models}/backbones/build_backbone.py
RENAMED
File without changes
|
{BiRefNet_github/models β models}/backbones/pvt_v2.py
RENAMED
File without changes
|
{BiRefNet_github/models β models}/backbones/swin_v1.py
RENAMED
File without changes
|
{BiRefNet_github/models β models}/modules/aspp.py
RENAMED
File without changes
|
{BiRefNet_github/models β models}/modules/attentions.py
RENAMED
File without changes
|
{BiRefNet_github/models β models}/modules/decoder_blocks.py
RENAMED
File without changes
|
{BiRefNet_github/models β models}/modules/deform_conv.py
RENAMED
File without changes
|
{BiRefNet_github/models β models}/modules/ing.py
RENAMED
File without changes
|
{BiRefNet_github/models β models}/modules/lateral_blocks.py
RENAMED
File without changes
|
{BiRefNet_github/models β models}/modules/mlp.py
RENAMED
File without changes
|
{BiRefNet_github/models β models}/modules/prompt_encoder.py
RENAMED
File without changes
|
{BiRefNet_github/models β models}/modules/utils.py
RENAMED
File without changes
|
{BiRefNet_github/models β models}/refinement/refiner.py
RENAMED
File without changes
|
{BiRefNet_github/models β models}/refinement/stem_layer.py
RENAMED
File without changes
|
BiRefNet_github/preproc.py β preproc.py
RENAMED
File without changes
|
BiRefNet_github/train.sh β train.sh
RENAMED
File without changes
|
BiRefNet_github/utils.py β utils.py
RENAMED
File without changes
|