import os import argparse from glob import glob from tqdm import tqdm import cv2 import torch from dataset import MyData from models.birefnet import BiRefNet from utils import save_tensor_img, check_state_dict from config import Config config = Config() def inference(model, data_loader_test, pred_root, method, testset, device=0): model_training = model.training if model_training: model.eval() for batch in tqdm(data_loader_test, total=len(data_loader_test)) if 1 or config.verbose_eval else data_loader_test: inputs = batch[0].to(device) # gts = batch[1].to(device) label_paths = batch[-1] with torch.no_grad(): scaled_preds = model(inputs)[-1].sigmoid() os.makedirs(os.path.join(pred_root, method, testset), exist_ok=True) for idx_sample in range(scaled_preds.shape[0]): res = torch.nn.functional.interpolate( scaled_preds[idx_sample].unsqueeze(0), size=cv2.imread(label_paths[idx_sample], cv2.IMREAD_GRAYSCALE).shape[:2], mode='bilinear', align_corners=True ) save_tensor_img(res, os.path.join(os.path.join(pred_root, method, testset), label_paths[idx_sample].replace('\\', '/').split('/')[-1])) # test set dir + file name if model_training: model.train() return None def main(args): # Init model device = config.device if args.ckpt_folder: print('Testing with models in {}'.format(args.ckpt_folder)) else: print('Testing with model {}'.format(args.ckpt)) if config.model == 'BiRefNet': model = BiRefNet(bb_pretrained=False) weights_lst = sorted( glob(os.path.join(args.ckpt_folder, '*.pth')) if args.ckpt_folder else [args.ckpt], key=lambda x: int(x.split('epoch_')[-1].split('.pth')[0]), reverse=True ) for testset in args.testsets.split('+'): print('>>>> Testset: {}...'.format(testset)) data_loader_test = torch.utils.data.DataLoader( dataset=MyData(testset, image_size=config.size, is_train=False), batch_size=config.batch_size_valid, shuffle=False, num_workers=config.num_workers, pin_memory=True ) for weights in weights_lst: if int(weights.strip('.pth').split('epoch_')[-1]) % 1 != 0: continue print('\tInferencing {}...'.format(weights)) # model.load_state_dict(torch.load(weights, map_location='cpu')) state_dict = torch.load(weights, map_location='cpu') state_dict = check_state_dict(state_dict) model.load_state_dict(state_dict) model = model.to(device) inference( model, data_loader_test=data_loader_test, pred_root=args.pred_root, method='--'.join([w.rstrip('.pth') for w in weights.split(os.sep)[-2:]]), testset=testset, device=config.device ) if __name__ == '__main__': # Parameter from command line parser = argparse.ArgumentParser(description='') parser.add_argument('--ckpt', type=str, help='model folder') parser.add_argument('--ckpt_folder', default=sorted(glob(os.path.join('ckpt', '*')))[-1], type=str, help='model folder') parser.add_argument('--pred_root', default='e_preds', type=str, help='Output folder') parser.add_argument('--testsets', default={ 'DIS5K': 'DIS-VD+DIS-TE1+DIS-TE2+DIS-TE3+DIS-TE4', 'COD': 'TE-COD10K+NC4K+TE-CAMO+CHAMELEON', 'HRSOD': 'DAVIS-S+TE-HRSOD+TE-UHRSD+TE-DUTS+DUT-OMRON', 'DIS5K+HRSOD+HRS10K': 'DIS-VD', 'P3M-10k': 'TE-P3M-500-P+TE-P3M-500-NP', 'DIS5K-': 'DIS-VD', 'COD-': 'TE-COD10K', 'SOD-': 'DAVIS-S+TE-HRSOD+TE-UHRSD', }[config.task + ''], type=str, help="Test all sets: , 'DIS-VD+DIS-TE1+DIS-TE2+DIS-TE3+DIS-TE4'") args = parser.parse_args() if config.precisionHigh: torch.set_float32_matmul_precision('high') main(args)