File size: 2,236 Bytes
b532629
 
 
 
 
 
137a6c9
b532629
547e632
b532629
 
 
 
 
 
547e632
b532629
 
 
496154b
 
b532629
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
137a6c9
 
b532629
 
 
496154b
b532629
 
 
137a6c9
 
496154b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b532629
 
 
 
 
dac3171
b532629
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
---
license: apache-2.0
base_model: google/mt5-small
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: mt5-small-task1-dataset2
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# mt5-small-task1-dataset2

This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0670
- Accuracy: 0.19

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5.6e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 15

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 10.1157       | 1.0   | 250  | 2.0629          | 0.0      |
| 2.7164        | 2.0   | 500  | 1.6984          | 0.092    |
| 2.1384        | 3.0   | 750  | 1.6345          | 0.098    |
| 1.8496        | 4.0   | 1000 | 1.5214          | 0.118    |
| 1.6276        | 5.0   | 1250 | 1.3418          | 0.14     |
| 1.469         | 6.0   | 1500 | 1.2577          | 0.15     |
| 1.3461        | 7.0   | 1750 | 1.2325          | 0.162    |
| 1.2791        | 8.0   | 2000 | 1.1790          | 0.16     |
| 1.2349        | 9.0   | 2250 | 1.1320          | 0.174    |
| 1.1826        | 10.0  | 2500 | 1.1118          | 0.176    |
| 1.1504        | 11.0  | 2750 | 1.1063          | 0.19     |
| 1.1327        | 12.0  | 3000 | 1.0731          | 0.186    |
| 1.1168        | 13.0  | 3250 | 1.0617          | 0.186    |
| 1.1038        | 14.0  | 3500 | 1.0735          | 0.182    |
| 1.0929        | 15.0  | 3750 | 1.0670          | 0.19     |


### Framework versions

- Transformers 4.35.2
- Pytorch 2.1.0+cu121
- Datasets 2.15.0
- Tokenizers 0.15.0