File size: 2,051 Bytes
92717dd
 
 
 
 
 
41a0f99
92717dd
 
 
 
 
 
 
 
 
 
 
 
41a0f99
 
92717dd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
95e634e
 
92717dd
 
 
95e634e
92717dd
 
 
41a0f99
 
 
 
 
 
 
 
 
 
 
 
 
 
92717dd
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
---
license: apache-2.0
base_model: google/mt5-small
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: mt5-small-task2-dataset1
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# mt5-small-task2-dataset1

This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3301
- Accuracy: 0.714

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5.6e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 12

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 7.9531        | 1.0   | 250  | 1.3804          | 0.474    |
| 1.8269        | 2.0   | 500  | 0.8424          | 0.552    |
| 1.0738        | 3.0   | 750  | 0.6419          | 0.606    |
| 0.7726        | 4.0   | 1000 | 0.5072          | 0.65     |
| 0.649         | 5.0   | 1250 | 0.4420          | 0.664    |
| 0.5479        | 6.0   | 1500 | 0.4009          | 0.672    |
| 0.4958        | 7.0   | 1750 | 0.3732          | 0.684    |
| 0.4437        | 8.0   | 2000 | 0.3576          | 0.716    |
| 0.4287        | 9.0   | 2250 | 0.3477          | 0.708    |
| 0.4016        | 10.0  | 2500 | 0.3378          | 0.716    |
| 0.3975        | 11.0  | 2750 | 0.3310          | 0.718    |
| 0.3818        | 12.0  | 3000 | 0.3301          | 0.714    |


### Framework versions

- Transformers 4.35.2
- Pytorch 2.1.0+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0