File size: 2,390 Bytes
63251d0 75ac6a3 63251d0 b968e04 63251d0 75ac6a3 63251d0 b968e04 63251d0 75ac6a3 b968e04 63251d0 75ac6a3 63251d0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 |
---
license: apache-2.0
base_model: google/mt5-small
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: mt5-small-task3-dataset4
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mt5-small-task3-dataset4
This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.5832
- Accuracy: 0.056
- Mse: 6.6919
- Log-distance: 0.6837
- S Score: 0.4844
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5.6e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 15
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Mse | Log-distance | S Score |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:------------:|:-------:|
| 10.6622 | 1.0 | 250 | 2.1479 | 0.032 | 7.8307 | 0.8081 | 0.4244 |
| 3.1421 | 2.0 | 500 | 1.8253 | 0.044 | 5.7385 | 0.6844 | 0.4892 |
| 2.3451 | 3.0 | 750 | 1.6174 | 0.04 | 5.5959 | 0.6980 | 0.4832 |
| 2.0073 | 4.0 | 1000 | 1.5994 | 0.046 | 6.2422 | 0.6708 | 0.4940 |
| 1.8357 | 5.0 | 1250 | 1.5867 | 0.05 | 6.2493 | 0.6727 | 0.4936 |
| 1.7782 | 6.0 | 1500 | 1.5800 | 0.048 | 6.0314 | 0.6621 | 0.4980 |
| 1.7333 | 7.0 | 1750 | 1.5733 | 0.056 | 6.8849 | 0.6908 | 0.4816 |
| 1.7219 | 8.0 | 2000 | 1.6012 | 0.056 | 6.7969 | 0.6872 | 0.4828 |
| 1.6886 | 9.0 | 2250 | 1.5849 | 0.038 | 6.1512 | 0.6683 | 0.4976 |
| 1.6804 | 10.0 | 2500 | 1.5832 | 0.056 | 6.6919 | 0.6837 | 0.4844 |
### Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu121
- Datasets 2.15.0
- Tokenizers 0.15.0
|