ZhishanQ commited on
Commit
2fb63c2
1 Parent(s): f7a21c1

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +12 -1
README.md CHANGED
@@ -13,6 +13,8 @@ widget: []
13
 
14
  # UniHGKR-base-beir
15
 
 
 
16
  The UniHGKR-base-beir model is derived from the UniHGKR-base model, further fine-tuned on MS MARCO for evaluation on the BEIR benchmark. We recommend using the [sentence-transformers](https://www.SBERT.net) package to load our model and to perform embedding for paragraphs and sentences.
17
 
18
  It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
@@ -138,7 +140,16 @@ You can finetune this model on your own dataset.
138
 
139
  ## Citation
140
 
141
- ### BibTeX
 
 
 
 
 
 
 
 
 
142
 
143
  <!--
144
  ## Glossary
 
13
 
14
  # UniHGKR-base-beir
15
 
16
+ Our paper: [UniHGKR: Unified Instruction-aware Heterogeneous Knowledge Retrievers](https://arxiv.org/abs/2410.20163).
17
+
18
  The UniHGKR-base-beir model is derived from the UniHGKR-base model, further fine-tuned on MS MARCO for evaluation on the BEIR benchmark. We recommend using the [sentence-transformers](https://www.SBERT.net) package to load our model and to perform embedding for paragraphs and sentences.
19
 
20
  It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
 
140
 
141
  ## Citation
142
 
143
+ If you find this resource useful in your research, please consider giving a like and citation.
144
+
145
+ ```
146
+ @article{min2024unihgkr,
147
+ title={UniHGKR: Unified Instruction-aware Heterogeneous Knowledge Retrievers},
148
+ author={Min, Dehai and Xu, Zhiyang and Qi, Guilin and Huang, Lifu and You, Chenyu},
149
+ journal={arXiv preprint arXiv:2410.20163},
150
+ year={2024}
151
+ }
152
+ ```
153
 
154
  <!--
155
  ## Glossary