|
import random |
|
import torch |
|
from pathlib import Path |
|
from torch.utils import data as data |
|
|
|
from r_basicsr.data.transforms import augment, paired_random_crop |
|
from r_basicsr.utils import FileClient, get_root_logger, imfrombytes, img2tensor |
|
from r_basicsr.utils.registry import DATASET_REGISTRY |
|
|
|
|
|
@DATASET_REGISTRY.register() |
|
class Vimeo90KDataset(data.Dataset): |
|
"""Vimeo90K dataset for training. |
|
|
|
The keys are generated from a meta info txt file. |
|
basicsr/data/meta_info/meta_info_Vimeo90K_train_GT.txt |
|
|
|
Each line contains: |
|
1. clip name; 2. frame number; 3. image shape, separated by a white space. |
|
Examples: |
|
00001/0001 7 (256,448,3) |
|
00001/0002 7 (256,448,3) |
|
|
|
Key examples: "00001/0001" |
|
GT (gt): Ground-Truth; |
|
LQ (lq): Low-Quality, e.g., low-resolution/blurry/noisy/compressed frames. |
|
|
|
The neighboring frame list for different num_frame: |
|
num_frame | frame list |
|
1 | 4 |
|
3 | 3,4,5 |
|
5 | 2,3,4,5,6 |
|
7 | 1,2,3,4,5,6,7 |
|
|
|
Args: |
|
opt (dict): Config for train dataset. It contains the following keys: |
|
dataroot_gt (str): Data root path for gt. |
|
dataroot_lq (str): Data root path for lq. |
|
meta_info_file (str): Path for meta information file. |
|
io_backend (dict): IO backend type and other kwarg. |
|
|
|
num_frame (int): Window size for input frames. |
|
gt_size (int): Cropped patched size for gt patches. |
|
random_reverse (bool): Random reverse input frames. |
|
use_hflip (bool): Use horizontal flips. |
|
use_rot (bool): Use rotation (use vertical flip and transposing h |
|
and w for implementation). |
|
|
|
scale (bool): Scale, which will be added automatically. |
|
""" |
|
|
|
def __init__(self, opt): |
|
super(Vimeo90KDataset, self).__init__() |
|
self.opt = opt |
|
self.gt_root, self.lq_root = Path(opt['dataroot_gt']), Path(opt['dataroot_lq']) |
|
|
|
with open(opt['meta_info_file'], 'r') as fin: |
|
self.keys = [line.split(' ')[0] for line in fin] |
|
|
|
|
|
self.file_client = None |
|
self.io_backend_opt = opt['io_backend'] |
|
self.is_lmdb = False |
|
if self.io_backend_opt['type'] == 'lmdb': |
|
self.is_lmdb = True |
|
self.io_backend_opt['db_paths'] = [self.lq_root, self.gt_root] |
|
self.io_backend_opt['client_keys'] = ['lq', 'gt'] |
|
|
|
|
|
self.neighbor_list = [i + (9 - opt['num_frame']) // 2 for i in range(opt['num_frame'])] |
|
|
|
|
|
self.random_reverse = opt['random_reverse'] |
|
logger = get_root_logger() |
|
logger.info(f'Random reverse is {self.random_reverse}.') |
|
|
|
def __getitem__(self, index): |
|
if self.file_client is None: |
|
self.file_client = FileClient(self.io_backend_opt.pop('type'), **self.io_backend_opt) |
|
|
|
|
|
if self.random_reverse and random.random() < 0.5: |
|
self.neighbor_list.reverse() |
|
|
|
scale = self.opt['scale'] |
|
gt_size = self.opt['gt_size'] |
|
key = self.keys[index] |
|
clip, seq = key.split('/') |
|
|
|
|
|
if self.is_lmdb: |
|
img_gt_path = f'{key}/im4' |
|
else: |
|
img_gt_path = self.gt_root / clip / seq / 'im4.png' |
|
img_bytes = self.file_client.get(img_gt_path, 'gt') |
|
img_gt = imfrombytes(img_bytes, float32=True) |
|
|
|
|
|
img_lqs = [] |
|
for neighbor in self.neighbor_list: |
|
if self.is_lmdb: |
|
img_lq_path = f'{clip}/{seq}/im{neighbor}' |
|
else: |
|
img_lq_path = self.lq_root / clip / seq / f'im{neighbor}.png' |
|
img_bytes = self.file_client.get(img_lq_path, 'lq') |
|
img_lq = imfrombytes(img_bytes, float32=True) |
|
img_lqs.append(img_lq) |
|
|
|
|
|
img_gt, img_lqs = paired_random_crop(img_gt, img_lqs, gt_size, scale, img_gt_path) |
|
|
|
|
|
img_lqs.append(img_gt) |
|
img_results = augment(img_lqs, self.opt['use_hflip'], self.opt['use_rot']) |
|
|
|
img_results = img2tensor(img_results) |
|
img_lqs = torch.stack(img_results[0:-1], dim=0) |
|
img_gt = img_results[-1] |
|
|
|
|
|
|
|
|
|
return {'lq': img_lqs, 'gt': img_gt, 'key': key} |
|
|
|
def __len__(self): |
|
return len(self.keys) |
|
|
|
|
|
@DATASET_REGISTRY.register() |
|
class Vimeo90KRecurrentDataset(Vimeo90KDataset): |
|
|
|
def __init__(self, opt): |
|
super(Vimeo90KRecurrentDataset, self).__init__(opt) |
|
|
|
self.flip_sequence = opt['flip_sequence'] |
|
self.neighbor_list = [1, 2, 3, 4, 5, 6, 7] |
|
|
|
def __getitem__(self, index): |
|
if self.file_client is None: |
|
self.file_client = FileClient(self.io_backend_opt.pop('type'), **self.io_backend_opt) |
|
|
|
|
|
if self.random_reverse and random.random() < 0.5: |
|
self.neighbor_list.reverse() |
|
|
|
scale = self.opt['scale'] |
|
gt_size = self.opt['gt_size'] |
|
key = self.keys[index] |
|
clip, seq = key.split('/') |
|
|
|
|
|
img_lqs = [] |
|
img_gts = [] |
|
for neighbor in self.neighbor_list: |
|
if self.is_lmdb: |
|
img_lq_path = f'{clip}/{seq}/im{neighbor}' |
|
img_gt_path = f'{clip}/{seq}/im{neighbor}' |
|
else: |
|
img_lq_path = self.lq_root / clip / seq / f'im{neighbor}.png' |
|
img_gt_path = self.gt_root / clip / seq / f'im{neighbor}.png' |
|
|
|
img_bytes = self.file_client.get(img_lq_path, 'lq') |
|
img_lq = imfrombytes(img_bytes, float32=True) |
|
|
|
img_bytes = self.file_client.get(img_gt_path, 'gt') |
|
img_gt = imfrombytes(img_bytes, float32=True) |
|
|
|
img_lqs.append(img_lq) |
|
img_gts.append(img_gt) |
|
|
|
|
|
img_gts, img_lqs = paired_random_crop(img_gts, img_lqs, gt_size, scale, img_gt_path) |
|
|
|
|
|
img_lqs.extend(img_gts) |
|
img_results = augment(img_lqs, self.opt['use_hflip'], self.opt['use_rot']) |
|
|
|
img_results = img2tensor(img_results) |
|
img_lqs = torch.stack(img_results[:7], dim=0) |
|
img_gts = torch.stack(img_results[7:], dim=0) |
|
|
|
if self.flip_sequence: |
|
img_lqs = torch.cat([img_lqs, img_lqs.flip(0)], dim=0) |
|
img_gts = torch.cat([img_gts, img_gts.flip(0)], dim=0) |
|
|
|
|
|
|
|
|
|
return {'lq': img_lqs, 'gt': img_gts, 'key': key} |
|
|
|
def __len__(self): |
|
return len(self.keys) |
|
|