ZiqianLiu commited on
Commit
7688e34
1 Parent(s): e6043d4

Upload 55 files

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. r_facelib/__init__.py +0 -0
  2. r_facelib/__pycache__/__init__.cpython-310.pyc +0 -0
  3. r_facelib/detection/__init__.py +102 -0
  4. r_facelib/detection/__pycache__/__init__.cpython-310.pyc +0 -0
  5. r_facelib/detection/__pycache__/align_trans.cpython-310.pyc +0 -0
  6. r_facelib/detection/__pycache__/matlab_cp2tform.cpython-310.pyc +0 -0
  7. r_facelib/detection/align_trans.py +219 -0
  8. r_facelib/detection/matlab_cp2tform.py +317 -0
  9. r_facelib/detection/retinaface/__pycache__/retinaface.cpython-310.pyc +0 -0
  10. r_facelib/detection/retinaface/__pycache__/retinaface_net.cpython-310.pyc +0 -0
  11. r_facelib/detection/retinaface/__pycache__/retinaface_utils.cpython-310.pyc +0 -0
  12. r_facelib/detection/retinaface/retinaface.py +389 -0
  13. r_facelib/detection/retinaface/retinaface_net.py +196 -0
  14. r_facelib/detection/retinaface/retinaface_utils.py +421 -0
  15. r_facelib/detection/yolov5face/__init__.py +0 -0
  16. r_facelib/detection/yolov5face/__pycache__/__init__.cpython-310.pyc +0 -0
  17. r_facelib/detection/yolov5face/__pycache__/face_detector.cpython-310.pyc +0 -0
  18. r_facelib/detection/yolov5face/face_detector.py +141 -0
  19. r_facelib/detection/yolov5face/models/__init__.py +0 -0
  20. r_facelib/detection/yolov5face/models/__pycache__/__init__.cpython-310.pyc +0 -0
  21. r_facelib/detection/yolov5face/models/__pycache__/common.cpython-310.pyc +0 -0
  22. r_facelib/detection/yolov5face/models/__pycache__/experimental.cpython-310.pyc +0 -0
  23. r_facelib/detection/yolov5face/models/__pycache__/yolo.cpython-310.pyc +0 -0
  24. r_facelib/detection/yolov5face/models/common.py +299 -0
  25. r_facelib/detection/yolov5face/models/experimental.py +45 -0
  26. r_facelib/detection/yolov5face/models/yolo.py +235 -0
  27. r_facelib/detection/yolov5face/models/yolov5l.yaml +47 -0
  28. r_facelib/detection/yolov5face/models/yolov5n.yaml +45 -0
  29. r_facelib/detection/yolov5face/utils/__init__.py +0 -0
  30. r_facelib/detection/yolov5face/utils/__pycache__/__init__.cpython-310.pyc +0 -0
  31. r_facelib/detection/yolov5face/utils/__pycache__/autoanchor.cpython-310.pyc +0 -0
  32. r_facelib/detection/yolov5face/utils/__pycache__/datasets.cpython-310.pyc +0 -0
  33. r_facelib/detection/yolov5face/utils/__pycache__/general.cpython-310.pyc +0 -0
  34. r_facelib/detection/yolov5face/utils/__pycache__/torch_utils.cpython-310.pyc +0 -0
  35. r_facelib/detection/yolov5face/utils/autoanchor.py +12 -0
  36. r_facelib/detection/yolov5face/utils/datasets.py +35 -0
  37. r_facelib/detection/yolov5face/utils/extract_ckpt.py +5 -0
  38. r_facelib/detection/yolov5face/utils/general.py +271 -0
  39. r_facelib/detection/yolov5face/utils/torch_utils.py +40 -0
  40. r_facelib/parsing/__init__.py +23 -0
  41. r_facelib/parsing/__pycache__/__init__.cpython-310.pyc +0 -0
  42. r_facelib/parsing/__pycache__/bisenet.cpython-310.pyc +0 -0
  43. r_facelib/parsing/__pycache__/parsenet.cpython-310.pyc +0 -0
  44. r_facelib/parsing/__pycache__/resnet.cpython-310.pyc +0 -0
  45. r_facelib/parsing/bisenet.py +140 -0
  46. r_facelib/parsing/parsenet.py +194 -0
  47. r_facelib/parsing/resnet.py +69 -0
  48. r_facelib/utils/__init__.py +7 -0
  49. r_facelib/utils/__pycache__/__init__.cpython-310.pyc +0 -0
  50. r_facelib/utils/__pycache__/face_restoration_helper.cpython-310.pyc +0 -0
r_facelib/__init__.py ADDED
File without changes
r_facelib/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (177 Bytes). View file
 
r_facelib/detection/__init__.py ADDED
@@ -0,0 +1,102 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import torch
3
+ from torch import nn
4
+ from copy import deepcopy
5
+ import pathlib
6
+
7
+ from r_facelib.utils import load_file_from_url
8
+ from r_facelib.utils import download_pretrained_models
9
+ from r_facelib.detection.yolov5face.models.common import Conv
10
+
11
+ from .retinaface.retinaface import RetinaFace
12
+ from .yolov5face.face_detector import YoloDetector
13
+
14
+
15
+ def init_detection_model(model_name, half=False, device='cuda'):
16
+ if 'retinaface' in model_name:
17
+ model = init_retinaface_model(model_name, half, device)
18
+ elif 'YOLOv5' in model_name:
19
+ model = init_yolov5face_model(model_name, device)
20
+ else:
21
+ raise NotImplementedError(f'{model_name} is not implemented.')
22
+
23
+ return model
24
+
25
+
26
+ def init_retinaface_model(model_name, half=False, device='cuda'):
27
+ if model_name == 'retinaface_resnet50':
28
+ model = RetinaFace(network_name='resnet50', half=half)
29
+ model_url = 'https://github.com/xinntao/facexlib/releases/download/v0.1.0/detection_Resnet50_Final.pth'
30
+ elif model_name == 'retinaface_mobile0.25':
31
+ model = RetinaFace(network_name='mobile0.25', half=half)
32
+ model_url = 'https://github.com/xinntao/facexlib/releases/download/v0.1.0/detection_mobilenet0.25_Final.pth'
33
+ else:
34
+ raise NotImplementedError(f'{model_name} is not implemented.')
35
+
36
+ model_path = load_file_from_url(url=model_url, model_dir='../../models/facedetection', progress=True, file_name=None)
37
+ load_net = torch.load(model_path, map_location=lambda storage, loc: storage)
38
+ # remove unnecessary 'module.'
39
+ for k, v in deepcopy(load_net).items():
40
+ if k.startswith('module.'):
41
+ load_net[k[7:]] = v
42
+ load_net.pop(k)
43
+ model.load_state_dict(load_net, strict=True)
44
+ model.eval()
45
+ model = model.to(device)
46
+
47
+ return model
48
+
49
+
50
+ def init_yolov5face_model(model_name, device='cuda'):
51
+ current_dir = str(pathlib.Path(__file__).parent.resolve())
52
+ if model_name == 'YOLOv5l':
53
+ model = YoloDetector(config_name=current_dir+'/yolov5face/models/yolov5l.yaml', device=device)
54
+ model_url = 'https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/yolov5l-face.pth'
55
+ elif model_name == 'YOLOv5n':
56
+ model = YoloDetector(config_name=current_dir+'/yolov5face/models/yolov5n.yaml', device=device)
57
+ model_url = 'https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/yolov5n-face.pth'
58
+ else:
59
+ raise NotImplementedError(f'{model_name} is not implemented.')
60
+
61
+ model_path = load_file_from_url(url=model_url, model_dir='../../models/facedetection', progress=True, file_name=None)
62
+ load_net = torch.load(model_path, map_location=lambda storage, loc: storage)
63
+ model.detector.load_state_dict(load_net, strict=True)
64
+ model.detector.eval()
65
+ model.detector = model.detector.to(device).float()
66
+
67
+ for m in model.detector.modules():
68
+ if type(m) in [nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6, nn.SiLU]:
69
+ m.inplace = True # pytorch 1.7.0 compatibility
70
+ elif isinstance(m, Conv):
71
+ m._non_persistent_buffers_set = set() # pytorch 1.6.0 compatibility
72
+
73
+ return model
74
+
75
+
76
+ # Download from Google Drive
77
+ # def init_yolov5face_model(model_name, device='cuda'):
78
+ # if model_name == 'YOLOv5l':
79
+ # model = YoloDetector(config_name='facelib/detection/yolov5face/models/yolov5l.yaml', device=device)
80
+ # f_id = {'yolov5l-face.pth': '131578zMA6B2x8VQHyHfa6GEPtulMCNzV'}
81
+ # elif model_name == 'YOLOv5n':
82
+ # model = YoloDetector(config_name='facelib/detection/yolov5face/models/yolov5n.yaml', device=device)
83
+ # f_id = {'yolov5n-face.pth': '1fhcpFvWZqghpGXjYPIne2sw1Fy4yhw6o'}
84
+ # else:
85
+ # raise NotImplementedError(f'{model_name} is not implemented.')
86
+
87
+ # model_path = os.path.join('../../models/facedetection', list(f_id.keys())[0])
88
+ # if not os.path.exists(model_path):
89
+ # download_pretrained_models(file_ids=f_id, save_path_root='../../models/facedetection')
90
+
91
+ # load_net = torch.load(model_path, map_location=lambda storage, loc: storage)
92
+ # model.detector.load_state_dict(load_net, strict=True)
93
+ # model.detector.eval()
94
+ # model.detector = model.detector.to(device).float()
95
+
96
+ # for m in model.detector.modules():
97
+ # if type(m) in [nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6, nn.SiLU]:
98
+ # m.inplace = True # pytorch 1.7.0 compatibility
99
+ # elif isinstance(m, Conv):
100
+ # m._non_persistent_buffers_set = set() # pytorch 1.6.0 compatibility
101
+
102
+ # return model
r_facelib/detection/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (2.98 kB). View file
 
r_facelib/detection/__pycache__/align_trans.cpython-310.pyc ADDED
Binary file (6.45 kB). View file
 
r_facelib/detection/__pycache__/matlab_cp2tform.cpython-310.pyc ADDED
Binary file (7.13 kB). View file
 
r_facelib/detection/align_trans.py ADDED
@@ -0,0 +1,219 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import cv2
2
+ import numpy as np
3
+
4
+ from .matlab_cp2tform import get_similarity_transform_for_cv2
5
+
6
+ # reference facial points, a list of coordinates (x,y)
7
+ REFERENCE_FACIAL_POINTS = [[30.29459953, 51.69630051], [65.53179932, 51.50139999], [48.02519989, 71.73660278],
8
+ [33.54930115, 92.3655014], [62.72990036, 92.20410156]]
9
+
10
+ DEFAULT_CROP_SIZE = (96, 112)
11
+
12
+
13
+ class FaceWarpException(Exception):
14
+
15
+ def __str__(self):
16
+ return 'In File {}:{}'.format(__file__, super.__str__(self))
17
+
18
+
19
+ def get_reference_facial_points(output_size=None, inner_padding_factor=0.0, outer_padding=(0, 0), default_square=False):
20
+ """
21
+ Function:
22
+ ----------
23
+ get reference 5 key points according to crop settings:
24
+ 0. Set default crop_size:
25
+ if default_square:
26
+ crop_size = (112, 112)
27
+ else:
28
+ crop_size = (96, 112)
29
+ 1. Pad the crop_size by inner_padding_factor in each side;
30
+ 2. Resize crop_size into (output_size - outer_padding*2),
31
+ pad into output_size with outer_padding;
32
+ 3. Output reference_5point;
33
+ Parameters:
34
+ ----------
35
+ @output_size: (w, h) or None
36
+ size of aligned face image
37
+ @inner_padding_factor: (w_factor, h_factor)
38
+ padding factor for inner (w, h)
39
+ @outer_padding: (w_pad, h_pad)
40
+ each row is a pair of coordinates (x, y)
41
+ @default_square: True or False
42
+ if True:
43
+ default crop_size = (112, 112)
44
+ else:
45
+ default crop_size = (96, 112);
46
+ !!! make sure, if output_size is not None:
47
+ (output_size - outer_padding)
48
+ = some_scale * (default crop_size * (1.0 +
49
+ inner_padding_factor))
50
+ Returns:
51
+ ----------
52
+ @reference_5point: 5x2 np.array
53
+ each row is a pair of transformed coordinates (x, y)
54
+ """
55
+
56
+ tmp_5pts = np.array(REFERENCE_FACIAL_POINTS)
57
+ tmp_crop_size = np.array(DEFAULT_CROP_SIZE)
58
+
59
+ # 0) make the inner region a square
60
+ if default_square:
61
+ size_diff = max(tmp_crop_size) - tmp_crop_size
62
+ tmp_5pts += size_diff / 2
63
+ tmp_crop_size += size_diff
64
+
65
+ if (output_size and output_size[0] == tmp_crop_size[0] and output_size[1] == tmp_crop_size[1]):
66
+
67
+ return tmp_5pts
68
+
69
+ if (inner_padding_factor == 0 and outer_padding == (0, 0)):
70
+ if output_size is None:
71
+ return tmp_5pts
72
+ else:
73
+ raise FaceWarpException('No paddings to do, output_size must be None or {}'.format(tmp_crop_size))
74
+
75
+ # check output size
76
+ if not (0 <= inner_padding_factor <= 1.0):
77
+ raise FaceWarpException('Not (0 <= inner_padding_factor <= 1.0)')
78
+
79
+ if ((inner_padding_factor > 0 or outer_padding[0] > 0 or outer_padding[1] > 0) and output_size is None):
80
+ output_size = tmp_crop_size * \
81
+ (1 + inner_padding_factor * 2).astype(np.int32)
82
+ output_size += np.array(outer_padding)
83
+ if not (outer_padding[0] < output_size[0] and outer_padding[1] < output_size[1]):
84
+ raise FaceWarpException('Not (outer_padding[0] < output_size[0] and outer_padding[1] < output_size[1])')
85
+
86
+ # 1) pad the inner region according inner_padding_factor
87
+ if inner_padding_factor > 0:
88
+ size_diff = tmp_crop_size * inner_padding_factor * 2
89
+ tmp_5pts += size_diff / 2
90
+ tmp_crop_size += np.round(size_diff).astype(np.int32)
91
+
92
+ # 2) resize the padded inner region
93
+ size_bf_outer_pad = np.array(output_size) - np.array(outer_padding) * 2
94
+
95
+ if size_bf_outer_pad[0] * tmp_crop_size[1] != size_bf_outer_pad[1] * tmp_crop_size[0]:
96
+ raise FaceWarpException('Must have (output_size - outer_padding)'
97
+ '= some_scale * (crop_size * (1.0 + inner_padding_factor)')
98
+
99
+ scale_factor = size_bf_outer_pad[0].astype(np.float32) / tmp_crop_size[0]
100
+ tmp_5pts = tmp_5pts * scale_factor
101
+ # size_diff = tmp_crop_size * (scale_factor - min(scale_factor))
102
+ # tmp_5pts = tmp_5pts + size_diff / 2
103
+ tmp_crop_size = size_bf_outer_pad
104
+
105
+ # 3) add outer_padding to make output_size
106
+ reference_5point = tmp_5pts + np.array(outer_padding)
107
+ tmp_crop_size = output_size
108
+
109
+ return reference_5point
110
+
111
+
112
+ def get_affine_transform_matrix(src_pts, dst_pts):
113
+ """
114
+ Function:
115
+ ----------
116
+ get affine transform matrix 'tfm' from src_pts to dst_pts
117
+ Parameters:
118
+ ----------
119
+ @src_pts: Kx2 np.array
120
+ source points matrix, each row is a pair of coordinates (x, y)
121
+ @dst_pts: Kx2 np.array
122
+ destination points matrix, each row is a pair of coordinates (x, y)
123
+ Returns:
124
+ ----------
125
+ @tfm: 2x3 np.array
126
+ transform matrix from src_pts to dst_pts
127
+ """
128
+
129
+ tfm = np.float32([[1, 0, 0], [0, 1, 0]])
130
+ n_pts = src_pts.shape[0]
131
+ ones = np.ones((n_pts, 1), src_pts.dtype)
132
+ src_pts_ = np.hstack([src_pts, ones])
133
+ dst_pts_ = np.hstack([dst_pts, ones])
134
+
135
+ A, res, rank, s = np.linalg.lstsq(src_pts_, dst_pts_)
136
+
137
+ if rank == 3:
138
+ tfm = np.float32([[A[0, 0], A[1, 0], A[2, 0]], [A[0, 1], A[1, 1], A[2, 1]]])
139
+ elif rank == 2:
140
+ tfm = np.float32([[A[0, 0], A[1, 0], 0], [A[0, 1], A[1, 1], 0]])
141
+
142
+ return tfm
143
+
144
+
145
+ def warp_and_crop_face(src_img, facial_pts, reference_pts=None, crop_size=(96, 112), align_type='smilarity'):
146
+ """
147
+ Function:
148
+ ----------
149
+ apply affine transform 'trans' to uv
150
+ Parameters:
151
+ ----------
152
+ @src_img: 3x3 np.array
153
+ input image
154
+ @facial_pts: could be
155
+ 1)a list of K coordinates (x,y)
156
+ or
157
+ 2) Kx2 or 2xK np.array
158
+ each row or col is a pair of coordinates (x, y)
159
+ @reference_pts: could be
160
+ 1) a list of K coordinates (x,y)
161
+ or
162
+ 2) Kx2 or 2xK np.array
163
+ each row or col is a pair of coordinates (x, y)
164
+ or
165
+ 3) None
166
+ if None, use default reference facial points
167
+ @crop_size: (w, h)
168
+ output face image size
169
+ @align_type: transform type, could be one of
170
+ 1) 'similarity': use similarity transform
171
+ 2) 'cv2_affine': use the first 3 points to do affine transform,
172
+ by calling cv2.getAffineTransform()
173
+ 3) 'affine': use all points to do affine transform
174
+ Returns:
175
+ ----------
176
+ @face_img: output face image with size (w, h) = @crop_size
177
+ """
178
+
179
+ if reference_pts is None:
180
+ if crop_size[0] == 96 and crop_size[1] == 112:
181
+ reference_pts = REFERENCE_FACIAL_POINTS
182
+ else:
183
+ default_square = False
184
+ inner_padding_factor = 0
185
+ outer_padding = (0, 0)
186
+ output_size = crop_size
187
+
188
+ reference_pts = get_reference_facial_points(output_size, inner_padding_factor, outer_padding,
189
+ default_square)
190
+
191
+ ref_pts = np.float32(reference_pts)
192
+ ref_pts_shp = ref_pts.shape
193
+ if max(ref_pts_shp) < 3 or min(ref_pts_shp) != 2:
194
+ raise FaceWarpException('reference_pts.shape must be (K,2) or (2,K) and K>2')
195
+
196
+ if ref_pts_shp[0] == 2:
197
+ ref_pts = ref_pts.T
198
+
199
+ src_pts = np.float32(facial_pts)
200
+ src_pts_shp = src_pts.shape
201
+ if max(src_pts_shp) < 3 or min(src_pts_shp) != 2:
202
+ raise FaceWarpException('facial_pts.shape must be (K,2) or (2,K) and K>2')
203
+
204
+ if src_pts_shp[0] == 2:
205
+ src_pts = src_pts.T
206
+
207
+ if src_pts.shape != ref_pts.shape:
208
+ raise FaceWarpException('facial_pts and reference_pts must have the same shape')
209
+
210
+ if align_type == 'cv2_affine':
211
+ tfm = cv2.getAffineTransform(src_pts[0:3], ref_pts[0:3])
212
+ elif align_type == 'affine':
213
+ tfm = get_affine_transform_matrix(src_pts, ref_pts)
214
+ else:
215
+ tfm = get_similarity_transform_for_cv2(src_pts, ref_pts)
216
+
217
+ face_img = cv2.warpAffine(src_img, tfm, (crop_size[0], crop_size[1]))
218
+
219
+ return face_img
r_facelib/detection/matlab_cp2tform.py ADDED
@@ -0,0 +1,317 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ from numpy.linalg import inv, lstsq
3
+ from numpy.linalg import matrix_rank as rank
4
+ from numpy.linalg import norm
5
+
6
+
7
+ class MatlabCp2tormException(Exception):
8
+
9
+ def __str__(self):
10
+ return 'In File {}:{}'.format(__file__, super.__str__(self))
11
+
12
+
13
+ def tformfwd(trans, uv):
14
+ """
15
+ Function:
16
+ ----------
17
+ apply affine transform 'trans' to uv
18
+
19
+ Parameters:
20
+ ----------
21
+ @trans: 3x3 np.array
22
+ transform matrix
23
+ @uv: Kx2 np.array
24
+ each row is a pair of coordinates (x, y)
25
+
26
+ Returns:
27
+ ----------
28
+ @xy: Kx2 np.array
29
+ each row is a pair of transformed coordinates (x, y)
30
+ """
31
+ uv = np.hstack((uv, np.ones((uv.shape[0], 1))))
32
+ xy = np.dot(uv, trans)
33
+ xy = xy[:, 0:-1]
34
+ return xy
35
+
36
+
37
+ def tforminv(trans, uv):
38
+ """
39
+ Function:
40
+ ----------
41
+ apply the inverse of affine transform 'trans' to uv
42
+
43
+ Parameters:
44
+ ----------
45
+ @trans: 3x3 np.array
46
+ transform matrix
47
+ @uv: Kx2 np.array
48
+ each row is a pair of coordinates (x, y)
49
+
50
+ Returns:
51
+ ----------
52
+ @xy: Kx2 np.array
53
+ each row is a pair of inverse-transformed coordinates (x, y)
54
+ """
55
+ Tinv = inv(trans)
56
+ xy = tformfwd(Tinv, uv)
57
+ return xy
58
+
59
+
60
+ def findNonreflectiveSimilarity(uv, xy, options=None):
61
+ options = {'K': 2}
62
+
63
+ K = options['K']
64
+ M = xy.shape[0]
65
+ x = xy[:, 0].reshape((-1, 1)) # use reshape to keep a column vector
66
+ y = xy[:, 1].reshape((-1, 1)) # use reshape to keep a column vector
67
+
68
+ tmp1 = np.hstack((x, y, np.ones((M, 1)), np.zeros((M, 1))))
69
+ tmp2 = np.hstack((y, -x, np.zeros((M, 1)), np.ones((M, 1))))
70
+ X = np.vstack((tmp1, tmp2))
71
+
72
+ u = uv[:, 0].reshape((-1, 1)) # use reshape to keep a column vector
73
+ v = uv[:, 1].reshape((-1, 1)) # use reshape to keep a column vector
74
+ U = np.vstack((u, v))
75
+
76
+ # We know that X * r = U
77
+ if rank(X) >= 2 * K:
78
+ r, _, _, _ = lstsq(X, U, rcond=-1)
79
+ r = np.squeeze(r)
80
+ else:
81
+ raise Exception('cp2tform:twoUniquePointsReq')
82
+ sc = r[0]
83
+ ss = r[1]
84
+ tx = r[2]
85
+ ty = r[3]
86
+
87
+ Tinv = np.array([[sc, -ss, 0], [ss, sc, 0], [tx, ty, 1]])
88
+ T = inv(Tinv)
89
+ T[:, 2] = np.array([0, 0, 1])
90
+
91
+ return T, Tinv
92
+
93
+
94
+ def findSimilarity(uv, xy, options=None):
95
+ options = {'K': 2}
96
+
97
+ # uv = np.array(uv)
98
+ # xy = np.array(xy)
99
+
100
+ # Solve for trans1
101
+ trans1, trans1_inv = findNonreflectiveSimilarity(uv, xy, options)
102
+
103
+ # Solve for trans2
104
+
105
+ # manually reflect the xy data across the Y-axis
106
+ xyR = xy
107
+ xyR[:, 0] = -1 * xyR[:, 0]
108
+
109
+ trans2r, trans2r_inv = findNonreflectiveSimilarity(uv, xyR, options)
110
+
111
+ # manually reflect the tform to undo the reflection done on xyR
112
+ TreflectY = np.array([[-1, 0, 0], [0, 1, 0], [0, 0, 1]])
113
+
114
+ trans2 = np.dot(trans2r, TreflectY)
115
+
116
+ # Figure out if trans1 or trans2 is better
117
+ xy1 = tformfwd(trans1, uv)
118
+ norm1 = norm(xy1 - xy)
119
+
120
+ xy2 = tformfwd(trans2, uv)
121
+ norm2 = norm(xy2 - xy)
122
+
123
+ if norm1 <= norm2:
124
+ return trans1, trans1_inv
125
+ else:
126
+ trans2_inv = inv(trans2)
127
+ return trans2, trans2_inv
128
+
129
+
130
+ def get_similarity_transform(src_pts, dst_pts, reflective=True):
131
+ """
132
+ Function:
133
+ ----------
134
+ Find Similarity Transform Matrix 'trans':
135
+ u = src_pts[:, 0]
136
+ v = src_pts[:, 1]
137
+ x = dst_pts[:, 0]
138
+ y = dst_pts[:, 1]
139
+ [x, y, 1] = [u, v, 1] * trans
140
+
141
+ Parameters:
142
+ ----------
143
+ @src_pts: Kx2 np.array
144
+ source points, each row is a pair of coordinates (x, y)
145
+ @dst_pts: Kx2 np.array
146
+ destination points, each row is a pair of transformed
147
+ coordinates (x, y)
148
+ @reflective: True or False
149
+ if True:
150
+ use reflective similarity transform
151
+ else:
152
+ use non-reflective similarity transform
153
+
154
+ Returns:
155
+ ----------
156
+ @trans: 3x3 np.array
157
+ transform matrix from uv to xy
158
+ trans_inv: 3x3 np.array
159
+ inverse of trans, transform matrix from xy to uv
160
+ """
161
+
162
+ if reflective:
163
+ trans, trans_inv = findSimilarity(src_pts, dst_pts)
164
+ else:
165
+ trans, trans_inv = findNonreflectiveSimilarity(src_pts, dst_pts)
166
+
167
+ return trans, trans_inv
168
+
169
+
170
+ def cvt_tform_mat_for_cv2(trans):
171
+ """
172
+ Function:
173
+ ----------
174
+ Convert Transform Matrix 'trans' into 'cv2_trans' which could be
175
+ directly used by cv2.warpAffine():
176
+ u = src_pts[:, 0]
177
+ v = src_pts[:, 1]
178
+ x = dst_pts[:, 0]
179
+ y = dst_pts[:, 1]
180
+ [x, y].T = cv_trans * [u, v, 1].T
181
+
182
+ Parameters:
183
+ ----------
184
+ @trans: 3x3 np.array
185
+ transform matrix from uv to xy
186
+
187
+ Returns:
188
+ ----------
189
+ @cv2_trans: 2x3 np.array
190
+ transform matrix from src_pts to dst_pts, could be directly used
191
+ for cv2.warpAffine()
192
+ """
193
+ cv2_trans = trans[:, 0:2].T
194
+
195
+ return cv2_trans
196
+
197
+
198
+ def get_similarity_transform_for_cv2(src_pts, dst_pts, reflective=True):
199
+ """
200
+ Function:
201
+ ----------
202
+ Find Similarity Transform Matrix 'cv2_trans' which could be
203
+ directly used by cv2.warpAffine():
204
+ u = src_pts[:, 0]
205
+ v = src_pts[:, 1]
206
+ x = dst_pts[:, 0]
207
+ y = dst_pts[:, 1]
208
+ [x, y].T = cv_trans * [u, v, 1].T
209
+
210
+ Parameters:
211
+ ----------
212
+ @src_pts: Kx2 np.array
213
+ source points, each row is a pair of coordinates (x, y)
214
+ @dst_pts: Kx2 np.array
215
+ destination points, each row is a pair of transformed
216
+ coordinates (x, y)
217
+ reflective: True or False
218
+ if True:
219
+ use reflective similarity transform
220
+ else:
221
+ use non-reflective similarity transform
222
+
223
+ Returns:
224
+ ----------
225
+ @cv2_trans: 2x3 np.array
226
+ transform matrix from src_pts to dst_pts, could be directly used
227
+ for cv2.warpAffine()
228
+ """
229
+ trans, trans_inv = get_similarity_transform(src_pts, dst_pts, reflective)
230
+ cv2_trans = cvt_tform_mat_for_cv2(trans)
231
+
232
+ return cv2_trans
233
+
234
+
235
+ if __name__ == '__main__':
236
+ """
237
+ u = [0, 6, -2]
238
+ v = [0, 3, 5]
239
+ x = [-1, 0, 4]
240
+ y = [-1, -10, 4]
241
+
242
+ # In Matlab, run:
243
+ #
244
+ # uv = [u'; v'];
245
+ # xy = [x'; y'];
246
+ # tform_sim=cp2tform(uv,xy,'similarity');
247
+ #
248
+ # trans = tform_sim.tdata.T
249
+ # ans =
250
+ # -0.0764 -1.6190 0
251
+ # 1.6190 -0.0764 0
252
+ # -3.2156 0.0290 1.0000
253
+ # trans_inv = tform_sim.tdata.Tinv
254
+ # ans =
255
+ #
256
+ # -0.0291 0.6163 0
257
+ # -0.6163 -0.0291 0
258
+ # -0.0756 1.9826 1.0000
259
+ # xy_m=tformfwd(tform_sim, u,v)
260
+ #
261
+ # xy_m =
262
+ #
263
+ # -3.2156 0.0290
264
+ # 1.1833 -9.9143
265
+ # 5.0323 2.8853
266
+ # uv_m=tforminv(tform_sim, x,y)
267
+ #
268
+ # uv_m =
269
+ #
270
+ # 0.5698 1.3953
271
+ # 6.0872 2.2733
272
+ # -2.6570 4.3314
273
+ """
274
+ u = [0, 6, -2]
275
+ v = [0, 3, 5]
276
+ x = [-1, 0, 4]
277
+ y = [-1, -10, 4]
278
+
279
+ uv = np.array((u, v)).T
280
+ xy = np.array((x, y)).T
281
+
282
+ print('\n--->uv:')
283
+ print(uv)
284
+ print('\n--->xy:')
285
+ print(xy)
286
+
287
+ trans, trans_inv = get_similarity_transform(uv, xy)
288
+
289
+ print('\n--->trans matrix:')
290
+ print(trans)
291
+
292
+ print('\n--->trans_inv matrix:')
293
+ print(trans_inv)
294
+
295
+ print('\n---> apply transform to uv')
296
+ print('\nxy_m = uv_augmented * trans')
297
+ uv_aug = np.hstack((uv, np.ones((uv.shape[0], 1))))
298
+ xy_m = np.dot(uv_aug, trans)
299
+ print(xy_m)
300
+
301
+ print('\nxy_m = tformfwd(trans, uv)')
302
+ xy_m = tformfwd(trans, uv)
303
+ print(xy_m)
304
+
305
+ print('\n---> apply inverse transform to xy')
306
+ print('\nuv_m = xy_augmented * trans_inv')
307
+ xy_aug = np.hstack((xy, np.ones((xy.shape[0], 1))))
308
+ uv_m = np.dot(xy_aug, trans_inv)
309
+ print(uv_m)
310
+
311
+ print('\nuv_m = tformfwd(trans_inv, xy)')
312
+ uv_m = tformfwd(trans_inv, xy)
313
+ print(uv_m)
314
+
315
+ uv_m = tforminv(trans, xy)
316
+ print('\nuv_m = tforminv(trans, xy)')
317
+ print(uv_m)
r_facelib/detection/retinaface/__pycache__/retinaface.cpython-310.pyc ADDED
Binary file (10.3 kB). View file
 
r_facelib/detection/retinaface/__pycache__/retinaface_net.cpython-310.pyc ADDED
Binary file (6 kB). View file
 
r_facelib/detection/retinaface/__pycache__/retinaface_utils.cpython-310.pyc ADDED
Binary file (15.3 kB). View file
 
r_facelib/detection/retinaface/retinaface.py ADDED
@@ -0,0 +1,389 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import cv2
2
+ import numpy as np
3
+ import torch
4
+ import torch.nn as nn
5
+ import torch.nn.functional as F
6
+ from PIL import Image
7
+ from torchvision.models._utils import IntermediateLayerGetter as IntermediateLayerGetter
8
+
9
+ from modules import shared
10
+
11
+ from r_facelib.detection.align_trans import get_reference_facial_points, warp_and_crop_face
12
+ from r_facelib.detection.retinaface.retinaface_net import FPN, SSH, MobileNetV1, make_bbox_head, make_class_head, make_landmark_head
13
+ from r_facelib.detection.retinaface.retinaface_utils import (PriorBox, batched_decode, batched_decode_landm, decode, decode_landm,
14
+ py_cpu_nms)
15
+
16
+ #device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
17
+ if torch.cuda.is_available():
18
+ device = torch.device('cuda')
19
+ elif torch.backends.mps.is_available():
20
+ device = torch.device('mps')
21
+ # elif hasattr(torch,'dml'):
22
+ # device = torch.device('dml')
23
+ elif hasattr(torch,'dml') or hasattr(torch,'privateuseone'): # AMD
24
+ if shared.cmd_opts is not None: # A1111
25
+ if shared.cmd_opts.device_id is not None:
26
+ device = torch.device(f'privateuseone:{shared.cmd_opts.device_id}')
27
+ else:
28
+ device = torch.device('privateuseone:0')
29
+ else:
30
+ device = torch.device('privateuseone:0')
31
+ else:
32
+ device = torch.device('cpu')
33
+
34
+
35
+ def generate_config(network_name):
36
+
37
+ cfg_mnet = {
38
+ 'name': 'mobilenet0.25',
39
+ 'min_sizes': [[16, 32], [64, 128], [256, 512]],
40
+ 'steps': [8, 16, 32],
41
+ 'variance': [0.1, 0.2],
42
+ 'clip': False,
43
+ 'loc_weight': 2.0,
44
+ 'gpu_train': True,
45
+ 'batch_size': 32,
46
+ 'ngpu': 1,
47
+ 'epoch': 250,
48
+ 'decay1': 190,
49
+ 'decay2': 220,
50
+ 'image_size': 640,
51
+ 'return_layers': {
52
+ 'stage1': 1,
53
+ 'stage2': 2,
54
+ 'stage3': 3
55
+ },
56
+ 'in_channel': 32,
57
+ 'out_channel': 64
58
+ }
59
+
60
+ cfg_re50 = {
61
+ 'name': 'Resnet50',
62
+ 'min_sizes': [[16, 32], [64, 128], [256, 512]],
63
+ 'steps': [8, 16, 32],
64
+ 'variance': [0.1, 0.2],
65
+ 'clip': False,
66
+ 'loc_weight': 2.0,
67
+ 'gpu_train': True,
68
+ 'batch_size': 24,
69
+ 'ngpu': 4,
70
+ 'epoch': 100,
71
+ 'decay1': 70,
72
+ 'decay2': 90,
73
+ 'image_size': 840,
74
+ 'return_layers': {
75
+ 'layer2': 1,
76
+ 'layer3': 2,
77
+ 'layer4': 3
78
+ },
79
+ 'in_channel': 256,
80
+ 'out_channel': 256
81
+ }
82
+
83
+ if network_name == 'mobile0.25':
84
+ return cfg_mnet
85
+ elif network_name == 'resnet50':
86
+ return cfg_re50
87
+ else:
88
+ raise NotImplementedError(f'network_name={network_name}')
89
+
90
+
91
+ class RetinaFace(nn.Module):
92
+
93
+ def __init__(self, network_name='resnet50', half=False, phase='test'):
94
+ super(RetinaFace, self).__init__()
95
+ self.half_inference = half
96
+ cfg = generate_config(network_name)
97
+ self.backbone = cfg['name']
98
+
99
+ self.model_name = f'retinaface_{network_name}'
100
+ self.cfg = cfg
101
+ self.phase = phase
102
+ self.target_size, self.max_size = 1600, 2150
103
+ self.resize, self.scale, self.scale1 = 1., None, None
104
+ self.mean_tensor = torch.tensor([[[[104.]], [[117.]], [[123.]]]]).to(device)
105
+ self.reference = get_reference_facial_points(default_square=True)
106
+ # Build network.
107
+ backbone = None
108
+ if cfg['name'] == 'mobilenet0.25':
109
+ backbone = MobileNetV1()
110
+ self.body = IntermediateLayerGetter(backbone, cfg['return_layers'])
111
+ elif cfg['name'] == 'Resnet50':
112
+ import torchvision.models as models
113
+ backbone = models.resnet50(pretrained=False)
114
+ self.body = IntermediateLayerGetter(backbone, cfg['return_layers'])
115
+
116
+ in_channels_stage2 = cfg['in_channel']
117
+ in_channels_list = [
118
+ in_channels_stage2 * 2,
119
+ in_channels_stage2 * 4,
120
+ in_channels_stage2 * 8,
121
+ ]
122
+
123
+ out_channels = cfg['out_channel']
124
+ self.fpn = FPN(in_channels_list, out_channels)
125
+ self.ssh1 = SSH(out_channels, out_channels)
126
+ self.ssh2 = SSH(out_channels, out_channels)
127
+ self.ssh3 = SSH(out_channels, out_channels)
128
+
129
+ self.ClassHead = make_class_head(fpn_num=3, inchannels=cfg['out_channel'])
130
+ self.BboxHead = make_bbox_head(fpn_num=3, inchannels=cfg['out_channel'])
131
+ self.LandmarkHead = make_landmark_head(fpn_num=3, inchannels=cfg['out_channel'])
132
+
133
+ self.to(device)
134
+ self.eval()
135
+ if self.half_inference:
136
+ self.half()
137
+
138
+ def forward(self, inputs):
139
+ self.to(device)
140
+ out = self.body(inputs)
141
+
142
+ if self.backbone == 'mobilenet0.25' or self.backbone == 'Resnet50':
143
+ out = list(out.values())
144
+ # FPN
145
+ fpn = self.fpn(out)
146
+
147
+ # SSH
148
+ feature1 = self.ssh1(fpn[0])
149
+ feature2 = self.ssh2(fpn[1])
150
+ feature3 = self.ssh3(fpn[2])
151
+ features = [feature1, feature2, feature3]
152
+
153
+ bbox_regressions = torch.cat([self.BboxHead[i](feature) for i, feature in enumerate(features)], dim=1)
154
+ classifications = torch.cat([self.ClassHead[i](feature) for i, feature in enumerate(features)], dim=1)
155
+ tmp = [self.LandmarkHead[i](feature) for i, feature in enumerate(features)]
156
+ ldm_regressions = (torch.cat(tmp, dim=1))
157
+
158
+ if self.phase == 'train':
159
+ output = (bbox_regressions, classifications, ldm_regressions)
160
+ else:
161
+ output = (bbox_regressions, F.softmax(classifications, dim=-1), ldm_regressions)
162
+ return output
163
+
164
+ def __detect_faces(self, inputs):
165
+ # get scale
166
+ height, width = inputs.shape[2:]
167
+ self.scale = torch.tensor([width, height, width, height], dtype=torch.float32).to(device)
168
+ tmp = [width, height, width, height, width, height, width, height, width, height]
169
+ self.scale1 = torch.tensor(tmp, dtype=torch.float32).to(device)
170
+
171
+ # forawrd
172
+ inputs = inputs.to(device)
173
+ if self.half_inference:
174
+ inputs = inputs.half()
175
+ loc, conf, landmarks = self(inputs)
176
+
177
+ # get priorbox
178
+ priorbox = PriorBox(self.cfg, image_size=inputs.shape[2:])
179
+ priors = priorbox.forward().to(device)
180
+
181
+ return loc, conf, landmarks, priors
182
+
183
+ # single image detection
184
+ def transform(self, image, use_origin_size):
185
+ # convert to opencv format
186
+ if isinstance(image, Image.Image):
187
+ image = cv2.cvtColor(np.asarray(image), cv2.COLOR_RGB2BGR)
188
+ image = image.astype(np.float32)
189
+
190
+ # testing scale
191
+ im_size_min = np.min(image.shape[0:2])
192
+ im_size_max = np.max(image.shape[0:2])
193
+ resize = float(self.target_size) / float(im_size_min)
194
+
195
+ # prevent bigger axis from being more than max_size
196
+ if np.round(resize * im_size_max) > self.max_size:
197
+ resize = float(self.max_size) / float(im_size_max)
198
+ resize = 1 if use_origin_size else resize
199
+
200
+ # resize
201
+ if resize != 1:
202
+ image = cv2.resize(image, None, None, fx=resize, fy=resize, interpolation=cv2.INTER_LINEAR)
203
+
204
+ # convert to torch.tensor format
205
+ # image -= (104, 117, 123)
206
+ image = image.transpose(2, 0, 1)
207
+ image = torch.from_numpy(image).unsqueeze(0)
208
+
209
+ return image, resize
210
+
211
+ def detect_faces(
212
+ self,
213
+ image,
214
+ conf_threshold=0.8,
215
+ nms_threshold=0.4,
216
+ use_origin_size=True,
217
+ ):
218
+ """
219
+ Params:
220
+ imgs: BGR image
221
+ """
222
+ image, self.resize = self.transform(image, use_origin_size)
223
+ image = image.to(device)
224
+ if self.half_inference:
225
+ image = image.half()
226
+ image = image - self.mean_tensor
227
+
228
+ loc, conf, landmarks, priors = self.__detect_faces(image)
229
+
230
+ boxes = decode(loc.data.squeeze(0), priors.data, self.cfg['variance'])
231
+ boxes = boxes * self.scale / self.resize
232
+ boxes = boxes.cpu().numpy()
233
+
234
+ scores = conf.squeeze(0).data.cpu().numpy()[:, 1]
235
+
236
+ landmarks = decode_landm(landmarks.squeeze(0), priors, self.cfg['variance'])
237
+ landmarks = landmarks * self.scale1 / self.resize
238
+ landmarks = landmarks.cpu().numpy()
239
+
240
+ # ignore low scores
241
+ inds = np.where(scores > conf_threshold)[0]
242
+ boxes, landmarks, scores = boxes[inds], landmarks[inds], scores[inds]
243
+
244
+ # sort
245
+ order = scores.argsort()[::-1]
246
+ boxes, landmarks, scores = boxes[order], landmarks[order], scores[order]
247
+
248
+ # do NMS
249
+ bounding_boxes = np.hstack((boxes, scores[:, np.newaxis])).astype(np.float32, copy=False)
250
+ keep = py_cpu_nms(bounding_boxes, nms_threshold)
251
+ bounding_boxes, landmarks = bounding_boxes[keep, :], landmarks[keep]
252
+ # self.t['forward_pass'].toc()
253
+ # print(self.t['forward_pass'].average_time)
254
+ # import sys
255
+ # sys.stdout.flush()
256
+ return np.concatenate((bounding_boxes, landmarks), axis=1)
257
+
258
+ def __align_multi(self, image, boxes, landmarks, limit=None):
259
+
260
+ if len(boxes) < 1:
261
+ return [], []
262
+
263
+ if limit:
264
+ boxes = boxes[:limit]
265
+ landmarks = landmarks[:limit]
266
+
267
+ faces = []
268
+ for landmark in landmarks:
269
+ facial5points = [[landmark[2 * j], landmark[2 * j + 1]] for j in range(5)]
270
+
271
+ warped_face = warp_and_crop_face(np.array(image), facial5points, self.reference, crop_size=(112, 112))
272
+ faces.append(warped_face)
273
+
274
+ return np.concatenate((boxes, landmarks), axis=1), faces
275
+
276
+ def align_multi(self, img, conf_threshold=0.8, limit=None):
277
+
278
+ rlt = self.detect_faces(img, conf_threshold=conf_threshold)
279
+ boxes, landmarks = rlt[:, 0:5], rlt[:, 5:]
280
+
281
+ return self.__align_multi(img, boxes, landmarks, limit)
282
+
283
+ # batched detection
284
+ def batched_transform(self, frames, use_origin_size):
285
+ """
286
+ Arguments:
287
+ frames: a list of PIL.Image, or torch.Tensor(shape=[n, h, w, c],
288
+ type=np.float32, BGR format).
289
+ use_origin_size: whether to use origin size.
290
+ """
291
+ from_PIL = True if isinstance(frames[0], Image.Image) else False
292
+
293
+ # convert to opencv format
294
+ if from_PIL:
295
+ frames = [cv2.cvtColor(np.asarray(frame), cv2.COLOR_RGB2BGR) for frame in frames]
296
+ frames = np.asarray(frames, dtype=np.float32)
297
+
298
+ # testing scale
299
+ im_size_min = np.min(frames[0].shape[0:2])
300
+ im_size_max = np.max(frames[0].shape[0:2])
301
+ resize = float(self.target_size) / float(im_size_min)
302
+
303
+ # prevent bigger axis from being more than max_size
304
+ if np.round(resize * im_size_max) > self.max_size:
305
+ resize = float(self.max_size) / float(im_size_max)
306
+ resize = 1 if use_origin_size else resize
307
+
308
+ # resize
309
+ if resize != 1:
310
+ if not from_PIL:
311
+ frames = F.interpolate(frames, scale_factor=resize)
312
+ else:
313
+ frames = [
314
+ cv2.resize(frame, None, None, fx=resize, fy=resize, interpolation=cv2.INTER_LINEAR)
315
+ for frame in frames
316
+ ]
317
+
318
+ # convert to torch.tensor format
319
+ if not from_PIL:
320
+ frames = frames.transpose(1, 2).transpose(1, 3).contiguous()
321
+ else:
322
+ frames = frames.transpose((0, 3, 1, 2))
323
+ frames = torch.from_numpy(frames)
324
+
325
+ return frames, resize
326
+
327
+ def batched_detect_faces(self, frames, conf_threshold=0.8, nms_threshold=0.4, use_origin_size=True):
328
+ """
329
+ Arguments:
330
+ frames: a list of PIL.Image, or np.array(shape=[n, h, w, c],
331
+ type=np.uint8, BGR format).
332
+ conf_threshold: confidence threshold.
333
+ nms_threshold: nms threshold.
334
+ use_origin_size: whether to use origin size.
335
+ Returns:
336
+ final_bounding_boxes: list of np.array ([n_boxes, 5],
337
+ type=np.float32).
338
+ final_landmarks: list of np.array ([n_boxes, 10], type=np.float32).
339
+ """
340
+ # self.t['forward_pass'].tic()
341
+ frames, self.resize = self.batched_transform(frames, use_origin_size)
342
+ frames = frames.to(device)
343
+ frames = frames - self.mean_tensor
344
+
345
+ b_loc, b_conf, b_landmarks, priors = self.__detect_faces(frames)
346
+
347
+ final_bounding_boxes, final_landmarks = [], []
348
+
349
+ # decode
350
+ priors = priors.unsqueeze(0)
351
+ b_loc = batched_decode(b_loc, priors, self.cfg['variance']) * self.scale / self.resize
352
+ b_landmarks = batched_decode_landm(b_landmarks, priors, self.cfg['variance']) * self.scale1 / self.resize
353
+ b_conf = b_conf[:, :, 1]
354
+
355
+ # index for selection
356
+ b_indice = b_conf > conf_threshold
357
+
358
+ # concat
359
+ b_loc_and_conf = torch.cat((b_loc, b_conf.unsqueeze(-1)), dim=2).float()
360
+
361
+ for pred, landm, inds in zip(b_loc_and_conf, b_landmarks, b_indice):
362
+
363
+ # ignore low scores
364
+ pred, landm = pred[inds, :], landm[inds, :]
365
+ if pred.shape[0] == 0:
366
+ final_bounding_boxes.append(np.array([], dtype=np.float32))
367
+ final_landmarks.append(np.array([], dtype=np.float32))
368
+ continue
369
+
370
+ # sort
371
+ # order = score.argsort(descending=True)
372
+ # box, landm, score = box[order], landm[order], score[order]
373
+
374
+ # to CPU
375
+ bounding_boxes, landm = pred.cpu().numpy(), landm.cpu().numpy()
376
+
377
+ # NMS
378
+ keep = py_cpu_nms(bounding_boxes, nms_threshold)
379
+ bounding_boxes, landmarks = bounding_boxes[keep, :], landm[keep]
380
+
381
+ # append
382
+ final_bounding_boxes.append(bounding_boxes)
383
+ final_landmarks.append(landmarks)
384
+ # self.t['forward_pass'].toc(average=True)
385
+ # self.batch_time += self.t['forward_pass'].diff
386
+ # self.total_frame += len(frames)
387
+ # print(self.batch_time / self.total_frame)
388
+
389
+ return final_bounding_boxes, final_landmarks
r_facelib/detection/retinaface/retinaface_net.py ADDED
@@ -0,0 +1,196 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ import torch.nn.functional as F
4
+
5
+
6
+ def conv_bn(inp, oup, stride=1, leaky=0):
7
+ return nn.Sequential(
8
+ nn.Conv2d(inp, oup, 3, stride, 1, bias=False), nn.BatchNorm2d(oup),
9
+ nn.LeakyReLU(negative_slope=leaky, inplace=True))
10
+
11
+
12
+ def conv_bn_no_relu(inp, oup, stride):
13
+ return nn.Sequential(
14
+ nn.Conv2d(inp, oup, 3, stride, 1, bias=False),
15
+ nn.BatchNorm2d(oup),
16
+ )
17
+
18
+
19
+ def conv_bn1X1(inp, oup, stride, leaky=0):
20
+ return nn.Sequential(
21
+ nn.Conv2d(inp, oup, 1, stride, padding=0, bias=False), nn.BatchNorm2d(oup),
22
+ nn.LeakyReLU(negative_slope=leaky, inplace=True))
23
+
24
+
25
+ def conv_dw(inp, oup, stride, leaky=0.1):
26
+ return nn.Sequential(
27
+ nn.Conv2d(inp, inp, 3, stride, 1, groups=inp, bias=False),
28
+ nn.BatchNorm2d(inp),
29
+ nn.LeakyReLU(negative_slope=leaky, inplace=True),
30
+ nn.Conv2d(inp, oup, 1, 1, 0, bias=False),
31
+ nn.BatchNorm2d(oup),
32
+ nn.LeakyReLU(negative_slope=leaky, inplace=True),
33
+ )
34
+
35
+
36
+ class SSH(nn.Module):
37
+
38
+ def __init__(self, in_channel, out_channel):
39
+ super(SSH, self).__init__()
40
+ assert out_channel % 4 == 0
41
+ leaky = 0
42
+ if (out_channel <= 64):
43
+ leaky = 0.1
44
+ self.conv3X3 = conv_bn_no_relu(in_channel, out_channel // 2, stride=1)
45
+
46
+ self.conv5X5_1 = conv_bn(in_channel, out_channel // 4, stride=1, leaky=leaky)
47
+ self.conv5X5_2 = conv_bn_no_relu(out_channel // 4, out_channel // 4, stride=1)
48
+
49
+ self.conv7X7_2 = conv_bn(out_channel // 4, out_channel // 4, stride=1, leaky=leaky)
50
+ self.conv7x7_3 = conv_bn_no_relu(out_channel // 4, out_channel // 4, stride=1)
51
+
52
+ def forward(self, input):
53
+ conv3X3 = self.conv3X3(input)
54
+
55
+ conv5X5_1 = self.conv5X5_1(input)
56
+ conv5X5 = self.conv5X5_2(conv5X5_1)
57
+
58
+ conv7X7_2 = self.conv7X7_2(conv5X5_1)
59
+ conv7X7 = self.conv7x7_3(conv7X7_2)
60
+
61
+ out = torch.cat([conv3X3, conv5X5, conv7X7], dim=1)
62
+ out = F.relu(out)
63
+ return out
64
+
65
+
66
+ class FPN(nn.Module):
67
+
68
+ def __init__(self, in_channels_list, out_channels):
69
+ super(FPN, self).__init__()
70
+ leaky = 0
71
+ if (out_channels <= 64):
72
+ leaky = 0.1
73
+ self.output1 = conv_bn1X1(in_channels_list[0], out_channels, stride=1, leaky=leaky)
74
+ self.output2 = conv_bn1X1(in_channels_list[1], out_channels, stride=1, leaky=leaky)
75
+ self.output3 = conv_bn1X1(in_channels_list[2], out_channels, stride=1, leaky=leaky)
76
+
77
+ self.merge1 = conv_bn(out_channels, out_channels, leaky=leaky)
78
+ self.merge2 = conv_bn(out_channels, out_channels, leaky=leaky)
79
+
80
+ def forward(self, input):
81
+ # names = list(input.keys())
82
+ # input = list(input.values())
83
+
84
+ output1 = self.output1(input[0])
85
+ output2 = self.output2(input[1])
86
+ output3 = self.output3(input[2])
87
+
88
+ up3 = F.interpolate(output3, size=[output2.size(2), output2.size(3)], mode='nearest')
89
+ output2 = output2 + up3
90
+ output2 = self.merge2(output2)
91
+
92
+ up2 = F.interpolate(output2, size=[output1.size(2), output1.size(3)], mode='nearest')
93
+ output1 = output1 + up2
94
+ output1 = self.merge1(output1)
95
+
96
+ out = [output1, output2, output3]
97
+ return out
98
+
99
+
100
+ class MobileNetV1(nn.Module):
101
+
102
+ def __init__(self):
103
+ super(MobileNetV1, self).__init__()
104
+ self.stage1 = nn.Sequential(
105
+ conv_bn(3, 8, 2, leaky=0.1), # 3
106
+ conv_dw(8, 16, 1), # 7
107
+ conv_dw(16, 32, 2), # 11
108
+ conv_dw(32, 32, 1), # 19
109
+ conv_dw(32, 64, 2), # 27
110
+ conv_dw(64, 64, 1), # 43
111
+ )
112
+ self.stage2 = nn.Sequential(
113
+ conv_dw(64, 128, 2), # 43 + 16 = 59
114
+ conv_dw(128, 128, 1), # 59 + 32 = 91
115
+ conv_dw(128, 128, 1), # 91 + 32 = 123
116
+ conv_dw(128, 128, 1), # 123 + 32 = 155
117
+ conv_dw(128, 128, 1), # 155 + 32 = 187
118
+ conv_dw(128, 128, 1), # 187 + 32 = 219
119
+ )
120
+ self.stage3 = nn.Sequential(
121
+ conv_dw(128, 256, 2), # 219 +3 2 = 241
122
+ conv_dw(256, 256, 1), # 241 + 64 = 301
123
+ )
124
+ self.avg = nn.AdaptiveAvgPool2d((1, 1))
125
+ self.fc = nn.Linear(256, 1000)
126
+
127
+ def forward(self, x):
128
+ x = self.stage1(x)
129
+ x = self.stage2(x)
130
+ x = self.stage3(x)
131
+ x = self.avg(x)
132
+ # x = self.model(x)
133
+ x = x.view(-1, 256)
134
+ x = self.fc(x)
135
+ return x
136
+
137
+
138
+ class ClassHead(nn.Module):
139
+
140
+ def __init__(self, inchannels=512, num_anchors=3):
141
+ super(ClassHead, self).__init__()
142
+ self.num_anchors = num_anchors
143
+ self.conv1x1 = nn.Conv2d(inchannels, self.num_anchors * 2, kernel_size=(1, 1), stride=1, padding=0)
144
+
145
+ def forward(self, x):
146
+ out = self.conv1x1(x)
147
+ out = out.permute(0, 2, 3, 1).contiguous()
148
+
149
+ return out.view(out.shape[0], -1, 2)
150
+
151
+
152
+ class BboxHead(nn.Module):
153
+
154
+ def __init__(self, inchannels=512, num_anchors=3):
155
+ super(BboxHead, self).__init__()
156
+ self.conv1x1 = nn.Conv2d(inchannels, num_anchors * 4, kernel_size=(1, 1), stride=1, padding=0)
157
+
158
+ def forward(self, x):
159
+ out = self.conv1x1(x)
160
+ out = out.permute(0, 2, 3, 1).contiguous()
161
+
162
+ return out.view(out.shape[0], -1, 4)
163
+
164
+
165
+ class LandmarkHead(nn.Module):
166
+
167
+ def __init__(self, inchannels=512, num_anchors=3):
168
+ super(LandmarkHead, self).__init__()
169
+ self.conv1x1 = nn.Conv2d(inchannels, num_anchors * 10, kernel_size=(1, 1), stride=1, padding=0)
170
+
171
+ def forward(self, x):
172
+ out = self.conv1x1(x)
173
+ out = out.permute(0, 2, 3, 1).contiguous()
174
+
175
+ return out.view(out.shape[0], -1, 10)
176
+
177
+
178
+ def make_class_head(fpn_num=3, inchannels=64, anchor_num=2):
179
+ classhead = nn.ModuleList()
180
+ for i in range(fpn_num):
181
+ classhead.append(ClassHead(inchannels, anchor_num))
182
+ return classhead
183
+
184
+
185
+ def make_bbox_head(fpn_num=3, inchannels=64, anchor_num=2):
186
+ bboxhead = nn.ModuleList()
187
+ for i in range(fpn_num):
188
+ bboxhead.append(BboxHead(inchannels, anchor_num))
189
+ return bboxhead
190
+
191
+
192
+ def make_landmark_head(fpn_num=3, inchannels=64, anchor_num=2):
193
+ landmarkhead = nn.ModuleList()
194
+ for i in range(fpn_num):
195
+ landmarkhead.append(LandmarkHead(inchannels, anchor_num))
196
+ return landmarkhead
r_facelib/detection/retinaface/retinaface_utils.py ADDED
@@ -0,0 +1,421 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import torch
3
+ import torchvision
4
+ from itertools import product as product
5
+ from math import ceil
6
+
7
+
8
+ class PriorBox(object):
9
+
10
+ def __init__(self, cfg, image_size=None, phase='train'):
11
+ super(PriorBox, self).__init__()
12
+ self.min_sizes = cfg['min_sizes']
13
+ self.steps = cfg['steps']
14
+ self.clip = cfg['clip']
15
+ self.image_size = image_size
16
+ self.feature_maps = [[ceil(self.image_size[0] / step), ceil(self.image_size[1] / step)] for step in self.steps]
17
+ self.name = 's'
18
+
19
+ def forward(self):
20
+ anchors = []
21
+ for k, f in enumerate(self.feature_maps):
22
+ min_sizes = self.min_sizes[k]
23
+ for i, j in product(range(f[0]), range(f[1])):
24
+ for min_size in min_sizes:
25
+ s_kx = min_size / self.image_size[1]
26
+ s_ky = min_size / self.image_size[0]
27
+ dense_cx = [x * self.steps[k] / self.image_size[1] for x in [j + 0.5]]
28
+ dense_cy = [y * self.steps[k] / self.image_size[0] for y in [i + 0.5]]
29
+ for cy, cx in product(dense_cy, dense_cx):
30
+ anchors += [cx, cy, s_kx, s_ky]
31
+
32
+ # back to torch land
33
+ output = torch.Tensor(anchors).view(-1, 4)
34
+ if self.clip:
35
+ output.clamp_(max=1, min=0)
36
+ return output
37
+
38
+
39
+ def py_cpu_nms(dets, thresh):
40
+ """Pure Python NMS baseline."""
41
+ keep = torchvision.ops.nms(
42
+ boxes=torch.Tensor(dets[:, :4]),
43
+ scores=torch.Tensor(dets[:, 4]),
44
+ iou_threshold=thresh,
45
+ )
46
+
47
+ return list(keep)
48
+
49
+
50
+ def point_form(boxes):
51
+ """ Convert prior_boxes to (xmin, ymin, xmax, ymax)
52
+ representation for comparison to point form ground truth data.
53
+ Args:
54
+ boxes: (tensor) center-size default boxes from priorbox layers.
55
+ Return:
56
+ boxes: (tensor) Converted xmin, ymin, xmax, ymax form of boxes.
57
+ """
58
+ return torch.cat(
59
+ (
60
+ boxes[:, :2] - boxes[:, 2:] / 2, # xmin, ymin
61
+ boxes[:, :2] + boxes[:, 2:] / 2),
62
+ 1) # xmax, ymax
63
+
64
+
65
+ def center_size(boxes):
66
+ """ Convert prior_boxes to (cx, cy, w, h)
67
+ representation for comparison to center-size form ground truth data.
68
+ Args:
69
+ boxes: (tensor) point_form boxes
70
+ Return:
71
+ boxes: (tensor) Converted xmin, ymin, xmax, ymax form of boxes.
72
+ """
73
+ return torch.cat(
74
+ (boxes[:, 2:] + boxes[:, :2]) / 2, # cx, cy
75
+ boxes[:, 2:] - boxes[:, :2],
76
+ 1) # w, h
77
+
78
+
79
+ def intersect(box_a, box_b):
80
+ """ We resize both tensors to [A,B,2] without new malloc:
81
+ [A,2] -> [A,1,2] -> [A,B,2]
82
+ [B,2] -> [1,B,2] -> [A,B,2]
83
+ Then we compute the area of intersect between box_a and box_b.
84
+ Args:
85
+ box_a: (tensor) bounding boxes, Shape: [A,4].
86
+ box_b: (tensor) bounding boxes, Shape: [B,4].
87
+ Return:
88
+ (tensor) intersection area, Shape: [A,B].
89
+ """
90
+ A = box_a.size(0)
91
+ B = box_b.size(0)
92
+ max_xy = torch.min(box_a[:, 2:].unsqueeze(1).expand(A, B, 2), box_b[:, 2:].unsqueeze(0).expand(A, B, 2))
93
+ min_xy = torch.max(box_a[:, :2].unsqueeze(1).expand(A, B, 2), box_b[:, :2].unsqueeze(0).expand(A, B, 2))
94
+ inter = torch.clamp((max_xy - min_xy), min=0)
95
+ return inter[:, :, 0] * inter[:, :, 1]
96
+
97
+
98
+ def jaccard(box_a, box_b):
99
+ """Compute the jaccard overlap of two sets of boxes. The jaccard overlap
100
+ is simply the intersection over union of two boxes. Here we operate on
101
+ ground truth boxes and default boxes.
102
+ E.g.:
103
+ A ∩ B / A ∪ B = A ∩ B / (area(A) + area(B) - A ∩ B)
104
+ Args:
105
+ box_a: (tensor) Ground truth bounding boxes, Shape: [num_objects,4]
106
+ box_b: (tensor) Prior boxes from priorbox layers, Shape: [num_priors,4]
107
+ Return:
108
+ jaccard overlap: (tensor) Shape: [box_a.size(0), box_b.size(0)]
109
+ """
110
+ inter = intersect(box_a, box_b)
111
+ area_a = ((box_a[:, 2] - box_a[:, 0]) * (box_a[:, 3] - box_a[:, 1])).unsqueeze(1).expand_as(inter) # [A,B]
112
+ area_b = ((box_b[:, 2] - box_b[:, 0]) * (box_b[:, 3] - box_b[:, 1])).unsqueeze(0).expand_as(inter) # [A,B]
113
+ union = area_a + area_b - inter
114
+ return inter / union # [A,B]
115
+
116
+
117
+ def matrix_iou(a, b):
118
+ """
119
+ return iou of a and b, numpy version for data augenmentation
120
+ """
121
+ lt = np.maximum(a[:, np.newaxis, :2], b[:, :2])
122
+ rb = np.minimum(a[:, np.newaxis, 2:], b[:, 2:])
123
+
124
+ area_i = np.prod(rb - lt, axis=2) * (lt < rb).all(axis=2)
125
+ area_a = np.prod(a[:, 2:] - a[:, :2], axis=1)
126
+ area_b = np.prod(b[:, 2:] - b[:, :2], axis=1)
127
+ return area_i / (area_a[:, np.newaxis] + area_b - area_i)
128
+
129
+
130
+ def matrix_iof(a, b):
131
+ """
132
+ return iof of a and b, numpy version for data augenmentation
133
+ """
134
+ lt = np.maximum(a[:, np.newaxis, :2], b[:, :2])
135
+ rb = np.minimum(a[:, np.newaxis, 2:], b[:, 2:])
136
+
137
+ area_i = np.prod(rb - lt, axis=2) * (lt < rb).all(axis=2)
138
+ area_a = np.prod(a[:, 2:] - a[:, :2], axis=1)
139
+ return area_i / np.maximum(area_a[:, np.newaxis], 1)
140
+
141
+
142
+ def match(threshold, truths, priors, variances, labels, landms, loc_t, conf_t, landm_t, idx):
143
+ """Match each prior box with the ground truth box of the highest jaccard
144
+ overlap, encode the bounding boxes, then return the matched indices
145
+ corresponding to both confidence and location preds.
146
+ Args:
147
+ threshold: (float) The overlap threshold used when matching boxes.
148
+ truths: (tensor) Ground truth boxes, Shape: [num_obj, 4].
149
+ priors: (tensor) Prior boxes from priorbox layers, Shape: [n_priors,4].
150
+ variances: (tensor) Variances corresponding to each prior coord,
151
+ Shape: [num_priors, 4].
152
+ labels: (tensor) All the class labels for the image, Shape: [num_obj].
153
+ landms: (tensor) Ground truth landms, Shape [num_obj, 10].
154
+ loc_t: (tensor) Tensor to be filled w/ encoded location targets.
155
+ conf_t: (tensor) Tensor to be filled w/ matched indices for conf preds.
156
+ landm_t: (tensor) Tensor to be filled w/ encoded landm targets.
157
+ idx: (int) current batch index
158
+ Return:
159
+ The matched indices corresponding to 1)location 2)confidence
160
+ 3)landm preds.
161
+ """
162
+ # jaccard index
163
+ overlaps = jaccard(truths, point_form(priors))
164
+ # (Bipartite Matching)
165
+ # [1,num_objects] best prior for each ground truth
166
+ best_prior_overlap, best_prior_idx = overlaps.max(1, keepdim=True)
167
+
168
+ # ignore hard gt
169
+ valid_gt_idx = best_prior_overlap[:, 0] >= 0.2
170
+ best_prior_idx_filter = best_prior_idx[valid_gt_idx, :]
171
+ if best_prior_idx_filter.shape[0] <= 0:
172
+ loc_t[idx] = 0
173
+ conf_t[idx] = 0
174
+ return
175
+
176
+ # [1,num_priors] best ground truth for each prior
177
+ best_truth_overlap, best_truth_idx = overlaps.max(0, keepdim=True)
178
+ best_truth_idx.squeeze_(0)
179
+ best_truth_overlap.squeeze_(0)
180
+ best_prior_idx.squeeze_(1)
181
+ best_prior_idx_filter.squeeze_(1)
182
+ best_prior_overlap.squeeze_(1)
183
+ best_truth_overlap.index_fill_(0, best_prior_idx_filter, 2) # ensure best prior
184
+ # TODO refactor: index best_prior_idx with long tensor
185
+ # ensure every gt matches with its prior of max overlap
186
+ for j in range(best_prior_idx.size(0)): # 判别此anchor是预测哪一个boxes
187
+ best_truth_idx[best_prior_idx[j]] = j
188
+ matches = truths[best_truth_idx] # Shape: [num_priors,4] 此处为每一个anchor对应的bbox取出来
189
+ conf = labels[best_truth_idx] # Shape: [num_priors] 此处为每一个anchor对应的label取出来
190
+ conf[best_truth_overlap < threshold] = 0 # label as background overlap<0.35的全部作为负样本
191
+ loc = encode(matches, priors, variances)
192
+
193
+ matches_landm = landms[best_truth_idx]
194
+ landm = encode_landm(matches_landm, priors, variances)
195
+ loc_t[idx] = loc # [num_priors,4] encoded offsets to learn
196
+ conf_t[idx] = conf # [num_priors] top class label for each prior
197
+ landm_t[idx] = landm
198
+
199
+
200
+ def encode(matched, priors, variances):
201
+ """Encode the variances from the priorbox layers into the ground truth boxes
202
+ we have matched (based on jaccard overlap) with the prior boxes.
203
+ Args:
204
+ matched: (tensor) Coords of ground truth for each prior in point-form
205
+ Shape: [num_priors, 4].
206
+ priors: (tensor) Prior boxes in center-offset form
207
+ Shape: [num_priors,4].
208
+ variances: (list[float]) Variances of priorboxes
209
+ Return:
210
+ encoded boxes (tensor), Shape: [num_priors, 4]
211
+ """
212
+
213
+ # dist b/t match center and prior's center
214
+ g_cxcy = (matched[:, :2] + matched[:, 2:]) / 2 - priors[:, :2]
215
+ # encode variance
216
+ g_cxcy /= (variances[0] * priors[:, 2:])
217
+ # match wh / prior wh
218
+ g_wh = (matched[:, 2:] - matched[:, :2]) / priors[:, 2:]
219
+ g_wh = torch.log(g_wh) / variances[1]
220
+ # return target for smooth_l1_loss
221
+ return torch.cat([g_cxcy, g_wh], 1) # [num_priors,4]
222
+
223
+
224
+ def encode_landm(matched, priors, variances):
225
+ """Encode the variances from the priorbox layers into the ground truth boxes
226
+ we have matched (based on jaccard overlap) with the prior boxes.
227
+ Args:
228
+ matched: (tensor) Coords of ground truth for each prior in point-form
229
+ Shape: [num_priors, 10].
230
+ priors: (tensor) Prior boxes in center-offset form
231
+ Shape: [num_priors,4].
232
+ variances: (list[float]) Variances of priorboxes
233
+ Return:
234
+ encoded landm (tensor), Shape: [num_priors, 10]
235
+ """
236
+
237
+ # dist b/t match center and prior's center
238
+ matched = torch.reshape(matched, (matched.size(0), 5, 2))
239
+ priors_cx = priors[:, 0].unsqueeze(1).expand(matched.size(0), 5).unsqueeze(2)
240
+ priors_cy = priors[:, 1].unsqueeze(1).expand(matched.size(0), 5).unsqueeze(2)
241
+ priors_w = priors[:, 2].unsqueeze(1).expand(matched.size(0), 5).unsqueeze(2)
242
+ priors_h = priors[:, 3].unsqueeze(1).expand(matched.size(0), 5).unsqueeze(2)
243
+ priors = torch.cat([priors_cx, priors_cy, priors_w, priors_h], dim=2)
244
+ g_cxcy = matched[:, :, :2] - priors[:, :, :2]
245
+ # encode variance
246
+ g_cxcy /= (variances[0] * priors[:, :, 2:])
247
+ # g_cxcy /= priors[:, :, 2:]
248
+ g_cxcy = g_cxcy.reshape(g_cxcy.size(0), -1)
249
+ # return target for smooth_l1_loss
250
+ return g_cxcy
251
+
252
+
253
+ # Adapted from https://github.com/Hakuyume/chainer-ssd
254
+ def decode(loc, priors, variances):
255
+ """Decode locations from predictions using priors to undo
256
+ the encoding we did for offset regression at train time.
257
+ Args:
258
+ loc (tensor): location predictions for loc layers,
259
+ Shape: [num_priors,4]
260
+ priors (tensor): Prior boxes in center-offset form.
261
+ Shape: [num_priors,4].
262
+ variances: (list[float]) Variances of priorboxes
263
+ Return:
264
+ decoded bounding box predictions
265
+ """
266
+
267
+ boxes = torch.cat((priors[:, :2] + loc[:, :2] * variances[0] * priors[:, 2:],
268
+ priors[:, 2:] * torch.exp(loc[:, 2:] * variances[1])), 1)
269
+ boxes[:, :2] -= boxes[:, 2:] / 2
270
+ boxes[:, 2:] += boxes[:, :2]
271
+ return boxes
272
+
273
+
274
+ def decode_landm(pre, priors, variances):
275
+ """Decode landm from predictions using priors to undo
276
+ the encoding we did for offset regression at train time.
277
+ Args:
278
+ pre (tensor): landm predictions for loc layers,
279
+ Shape: [num_priors,10]
280
+ priors (tensor): Prior boxes in center-offset form.
281
+ Shape: [num_priors,4].
282
+ variances: (list[float]) Variances of priorboxes
283
+ Return:
284
+ decoded landm predictions
285
+ """
286
+ tmp = (
287
+ priors[:, :2] + pre[:, :2] * variances[0] * priors[:, 2:],
288
+ priors[:, :2] + pre[:, 2:4] * variances[0] * priors[:, 2:],
289
+ priors[:, :2] + pre[:, 4:6] * variances[0] * priors[:, 2:],
290
+ priors[:, :2] + pre[:, 6:8] * variances[0] * priors[:, 2:],
291
+ priors[:, :2] + pre[:, 8:10] * variances[0] * priors[:, 2:],
292
+ )
293
+ landms = torch.cat(tmp, dim=1)
294
+ return landms
295
+
296
+
297
+ def batched_decode(b_loc, priors, variances):
298
+ """Decode locations from predictions using priors to undo
299
+ the encoding we did for offset regression at train time.
300
+ Args:
301
+ b_loc (tensor): location predictions for loc layers,
302
+ Shape: [num_batches,num_priors,4]
303
+ priors (tensor): Prior boxes in center-offset form.
304
+ Shape: [1,num_priors,4].
305
+ variances: (list[float]) Variances of priorboxes
306
+ Return:
307
+ decoded bounding box predictions
308
+ """
309
+ boxes = (
310
+ priors[:, :, :2] + b_loc[:, :, :2] * variances[0] * priors[:, :, 2:],
311
+ priors[:, :, 2:] * torch.exp(b_loc[:, :, 2:] * variances[1]),
312
+ )
313
+ boxes = torch.cat(boxes, dim=2)
314
+
315
+ boxes[:, :, :2] -= boxes[:, :, 2:] / 2
316
+ boxes[:, :, 2:] += boxes[:, :, :2]
317
+ return boxes
318
+
319
+
320
+ def batched_decode_landm(pre, priors, variances):
321
+ """Decode landm from predictions using priors to undo
322
+ the encoding we did for offset regression at train time.
323
+ Args:
324
+ pre (tensor): landm predictions for loc layers,
325
+ Shape: [num_batches,num_priors,10]
326
+ priors (tensor): Prior boxes in center-offset form.
327
+ Shape: [1,num_priors,4].
328
+ variances: (list[float]) Variances of priorboxes
329
+ Return:
330
+ decoded landm predictions
331
+ """
332
+ landms = (
333
+ priors[:, :, :2] + pre[:, :, :2] * variances[0] * priors[:, :, 2:],
334
+ priors[:, :, :2] + pre[:, :, 2:4] * variances[0] * priors[:, :, 2:],
335
+ priors[:, :, :2] + pre[:, :, 4:6] * variances[0] * priors[:, :, 2:],
336
+ priors[:, :, :2] + pre[:, :, 6:8] * variances[0] * priors[:, :, 2:],
337
+ priors[:, :, :2] + pre[:, :, 8:10] * variances[0] * priors[:, :, 2:],
338
+ )
339
+ landms = torch.cat(landms, dim=2)
340
+ return landms
341
+
342
+
343
+ def log_sum_exp(x):
344
+ """Utility function for computing log_sum_exp while determining
345
+ This will be used to determine unaveraged confidence loss across
346
+ all examples in a batch.
347
+ Args:
348
+ x (Variable(tensor)): conf_preds from conf layers
349
+ """
350
+ x_max = x.data.max()
351
+ return torch.log(torch.sum(torch.exp(x - x_max), 1, keepdim=True)) + x_max
352
+
353
+
354
+ # Original author: Francisco Massa:
355
+ # https://github.com/fmassa/object-detection.torch
356
+ # Ported to PyTorch by Max deGroot (02/01/2017)
357
+ def nms(boxes, scores, overlap=0.5, top_k=200):
358
+ """Apply non-maximum suppression at test time to avoid detecting too many
359
+ overlapping bounding boxes for a given object.
360
+ Args:
361
+ boxes: (tensor) The location preds for the img, Shape: [num_priors,4].
362
+ scores: (tensor) The class predscores for the img, Shape:[num_priors].
363
+ overlap: (float) The overlap thresh for suppressing unnecessary boxes.
364
+ top_k: (int) The Maximum number of box preds to consider.
365
+ Return:
366
+ The indices of the kept boxes with respect to num_priors.
367
+ """
368
+
369
+ keep = torch.Tensor(scores.size(0)).fill_(0).long()
370
+ if boxes.numel() == 0:
371
+ return keep
372
+ x1 = boxes[:, 0]
373
+ y1 = boxes[:, 1]
374
+ x2 = boxes[:, 2]
375
+ y2 = boxes[:, 3]
376
+ area = torch.mul(x2 - x1, y2 - y1)
377
+ v, idx = scores.sort(0) # sort in ascending order
378
+ # I = I[v >= 0.01]
379
+ idx = idx[-top_k:] # indices of the top-k largest vals
380
+ xx1 = boxes.new()
381
+ yy1 = boxes.new()
382
+ xx2 = boxes.new()
383
+ yy2 = boxes.new()
384
+ w = boxes.new()
385
+ h = boxes.new()
386
+
387
+ # keep = torch.Tensor()
388
+ count = 0
389
+ while idx.numel() > 0:
390
+ i = idx[-1] # index of current largest val
391
+ # keep.append(i)
392
+ keep[count] = i
393
+ count += 1
394
+ if idx.size(0) == 1:
395
+ break
396
+ idx = idx[:-1] # remove kept element from view
397
+ # load bboxes of next highest vals
398
+ torch.index_select(x1, 0, idx, out=xx1)
399
+ torch.index_select(y1, 0, idx, out=yy1)
400
+ torch.index_select(x2, 0, idx, out=xx2)
401
+ torch.index_select(y2, 0, idx, out=yy2)
402
+ # store element-wise max with next highest score
403
+ xx1 = torch.clamp(xx1, min=x1[i])
404
+ yy1 = torch.clamp(yy1, min=y1[i])
405
+ xx2 = torch.clamp(xx2, max=x2[i])
406
+ yy2 = torch.clamp(yy2, max=y2[i])
407
+ w.resize_as_(xx2)
408
+ h.resize_as_(yy2)
409
+ w = xx2 - xx1
410
+ h = yy2 - yy1
411
+ # check sizes of xx1 and xx2.. after each iteration
412
+ w = torch.clamp(w, min=0.0)
413
+ h = torch.clamp(h, min=0.0)
414
+ inter = w * h
415
+ # IoU = i / (area(a) + area(b) - i)
416
+ rem_areas = torch.index_select(area, 0, idx) # load remaining areas)
417
+ union = (rem_areas - inter) + area[i]
418
+ IoU = inter / union # store result in iou
419
+ # keep only elements with an IoU <= overlap
420
+ idx = idx[IoU.le(overlap)]
421
+ return keep, count
r_facelib/detection/yolov5face/__init__.py ADDED
File without changes
r_facelib/detection/yolov5face/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (198 Bytes). View file
 
r_facelib/detection/yolov5face/__pycache__/face_detector.cpython-310.pyc ADDED
Binary file (5.93 kB). View file
 
r_facelib/detection/yolov5face/face_detector.py ADDED
@@ -0,0 +1,141 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import copy
2
+ from pathlib import Path
3
+
4
+ import cv2
5
+ import numpy as np
6
+ import torch
7
+ from torch import torch_version
8
+
9
+ from r_facelib.detection.yolov5face.models.common import Conv
10
+ from r_facelib.detection.yolov5face.models.yolo import Model
11
+ from r_facelib.detection.yolov5face.utils.datasets import letterbox
12
+ from r_facelib.detection.yolov5face.utils.general import (
13
+ check_img_size,
14
+ non_max_suppression_face,
15
+ scale_coords,
16
+ scale_coords_landmarks,
17
+ )
18
+
19
+ print(f"Torch version: {torch.__version__}")
20
+ IS_HIGH_VERSION = torch_version.__version__ >= "1.9.0"
21
+
22
+ def isListempty(inList):
23
+ if isinstance(inList, list): # Is a list
24
+ return all(map(isListempty, inList))
25
+ return False # Not a list
26
+
27
+ class YoloDetector:
28
+ def __init__(
29
+ self,
30
+ config_name,
31
+ min_face=10,
32
+ target_size=None,
33
+ device='cuda',
34
+ ):
35
+ """
36
+ config_name: name of .yaml config with network configuration from models/ folder.
37
+ min_face : minimal face size in pixels.
38
+ target_size : target size of smaller image axis (choose lower for faster work). e.g. 480, 720, 1080.
39
+ None for original resolution.
40
+ """
41
+ self._class_path = Path(__file__).parent.absolute()
42
+ self.target_size = target_size
43
+ self.min_face = min_face
44
+ self.detector = Model(cfg=config_name)
45
+ self.device = device
46
+
47
+
48
+ def _preprocess(self, imgs):
49
+ """
50
+ Preprocessing image before passing through the network. Resize and conversion to torch tensor.
51
+ """
52
+ pp_imgs = []
53
+ for img in imgs:
54
+ h0, w0 = img.shape[:2] # orig hw
55
+ if self.target_size:
56
+ r = self.target_size / min(h0, w0) # resize image to img_size
57
+ if r < 1:
58
+ img = cv2.resize(img, (int(w0 * r), int(h0 * r)), interpolation=cv2.INTER_LINEAR)
59
+
60
+ imgsz = check_img_size(max(img.shape[:2]), s=self.detector.stride.max()) # check img_size
61
+ img = letterbox(img, new_shape=imgsz)[0]
62
+ pp_imgs.append(img)
63
+ pp_imgs = np.array(pp_imgs)
64
+ pp_imgs = pp_imgs.transpose(0, 3, 1, 2)
65
+ pp_imgs = torch.from_numpy(pp_imgs).to(self.device)
66
+ pp_imgs = pp_imgs.float() # uint8 to fp16/32
67
+ return pp_imgs / 255.0 # 0 - 255 to 0.0 - 1.0
68
+
69
+ def _postprocess(self, imgs, origimgs, pred, conf_thres, iou_thres):
70
+ """
71
+ Postprocessing of raw pytorch model output.
72
+ Returns:
73
+ bboxes: list of arrays with 4 coordinates of bounding boxes with format x1,y1,x2,y2.
74
+ points: list of arrays with coordinates of 5 facial keypoints (eyes, nose, lips corners).
75
+ """
76
+ bboxes = [[] for _ in range(len(origimgs))]
77
+ landmarks = [[] for _ in range(len(origimgs))]
78
+
79
+ pred = non_max_suppression_face(pred, conf_thres, iou_thres)
80
+
81
+ for image_id, origimg in enumerate(origimgs):
82
+ img_shape = origimg.shape
83
+ image_height, image_width = img_shape[:2]
84
+ gn = torch.tensor(img_shape)[[1, 0, 1, 0]] # normalization gain whwh
85
+ gn_lks = torch.tensor(img_shape)[[1, 0, 1, 0, 1, 0, 1, 0, 1, 0]] # normalization gain landmarks
86
+ det = pred[image_id].cpu()
87
+ scale_coords(imgs[image_id].shape[1:], det[:, :4], img_shape).round()
88
+ scale_coords_landmarks(imgs[image_id].shape[1:], det[:, 5:15], img_shape).round()
89
+
90
+ for j in range(det.size()[0]):
91
+ box = (det[j, :4].view(1, 4) / gn).view(-1).tolist()
92
+ box = list(
93
+ map(int, [box[0] * image_width, box[1] * image_height, box[2] * image_width, box[3] * image_height])
94
+ )
95
+ if box[3] - box[1] < self.min_face:
96
+ continue
97
+ lm = (det[j, 5:15].view(1, 10) / gn_lks).view(-1).tolist()
98
+ lm = list(map(int, [i * image_width if j % 2 == 0 else i * image_height for j, i in enumerate(lm)]))
99
+ lm = [lm[i : i + 2] for i in range(0, len(lm), 2)]
100
+ bboxes[image_id].append(box)
101
+ landmarks[image_id].append(lm)
102
+ return bboxes, landmarks
103
+
104
+ def detect_faces(self, imgs, conf_thres=0.7, iou_thres=0.5):
105
+ """
106
+ Get bbox coordinates and keypoints of faces on original image.
107
+ Params:
108
+ imgs: image or list of images to detect faces on with BGR order (convert to RGB order for inference)
109
+ conf_thres: confidence threshold for each prediction
110
+ iou_thres: threshold for NMS (filter of intersecting bboxes)
111
+ Returns:
112
+ bboxes: list of arrays with 4 coordinates of bounding boxes with format x1,y1,x2,y2.
113
+ points: list of arrays with coordinates of 5 facial keypoints (eyes, nose, lips corners).
114
+ """
115
+ # Pass input images through face detector
116
+ images = imgs if isinstance(imgs, list) else [imgs]
117
+ images = [cv2.cvtColor(img, cv2.COLOR_BGR2RGB) for img in images]
118
+ origimgs = copy.deepcopy(images)
119
+
120
+ images = self._preprocess(images)
121
+
122
+ if IS_HIGH_VERSION:
123
+ with torch.inference_mode(): # for pytorch>=1.9
124
+ pred = self.detector(images)[0]
125
+ else:
126
+ with torch.no_grad(): # for pytorch<1.9
127
+ pred = self.detector(images)[0]
128
+
129
+ bboxes, points = self._postprocess(images, origimgs, pred, conf_thres, iou_thres)
130
+
131
+ # return bboxes, points
132
+ if not isListempty(points):
133
+ bboxes = np.array(bboxes).reshape(-1,4)
134
+ points = np.array(points).reshape(-1,10)
135
+ padding = bboxes[:,0].reshape(-1,1)
136
+ return np.concatenate((bboxes, padding, points), axis=1)
137
+ else:
138
+ return None
139
+
140
+ def __call__(self, *args):
141
+ return self.predict(*args)
r_facelib/detection/yolov5face/models/__init__.py ADDED
File without changes
r_facelib/detection/yolov5face/models/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (205 Bytes). View file
 
r_facelib/detection/yolov5face/models/__pycache__/common.cpython-310.pyc ADDED
Binary file (12.7 kB). View file
 
r_facelib/detection/yolov5face/models/__pycache__/experimental.cpython-310.pyc ADDED
Binary file (2.52 kB). View file
 
r_facelib/detection/yolov5face/models/__pycache__/yolo.cpython-310.pyc ADDED
Binary file (9.1 kB). View file
 
r_facelib/detection/yolov5face/models/common.py ADDED
@@ -0,0 +1,299 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # This file contains modules common to various models
2
+
3
+ import math
4
+
5
+ import numpy as np
6
+ import torch
7
+ from torch import nn
8
+
9
+ from r_facelib.detection.yolov5face.utils.datasets import letterbox
10
+ from r_facelib.detection.yolov5face.utils.general import (
11
+ make_divisible,
12
+ non_max_suppression,
13
+ scale_coords,
14
+ xyxy2xywh,
15
+ )
16
+
17
+
18
+ def autopad(k, p=None): # kernel, padding
19
+ # Pad to 'same'
20
+ if p is None:
21
+ p = k // 2 if isinstance(k, int) else [x // 2 for x in k] # auto-pad
22
+ return p
23
+
24
+
25
+ def channel_shuffle(x, groups):
26
+ batchsize, num_channels, height, width = x.data.size()
27
+ channels_per_group = torch.div(num_channels, groups, rounding_mode="trunc")
28
+
29
+ # reshape
30
+ x = x.view(batchsize, groups, channels_per_group, height, width)
31
+ x = torch.transpose(x, 1, 2).contiguous()
32
+
33
+ # flatten
34
+ return x.view(batchsize, -1, height, width)
35
+
36
+
37
+ def DWConv(c1, c2, k=1, s=1, act=True):
38
+ # Depthwise convolution
39
+ return Conv(c1, c2, k, s, g=math.gcd(c1, c2), act=act)
40
+
41
+
42
+ class Conv(nn.Module):
43
+ # Standard convolution
44
+ def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True): # ch_in, ch_out, kernel, stride, padding, groups
45
+ super().__init__()
46
+ self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g, bias=False)
47
+ self.bn = nn.BatchNorm2d(c2)
48
+ self.act = nn.SiLU() if act is True else (act if isinstance(act, nn.Module) else nn.Identity())
49
+
50
+ def forward(self, x):
51
+ return self.act(self.bn(self.conv(x)))
52
+
53
+ def fuseforward(self, x):
54
+ return self.act(self.conv(x))
55
+
56
+
57
+ class StemBlock(nn.Module):
58
+ def __init__(self, c1, c2, k=3, s=2, p=None, g=1, act=True):
59
+ super().__init__()
60
+ self.stem_1 = Conv(c1, c2, k, s, p, g, act)
61
+ self.stem_2a = Conv(c2, c2 // 2, 1, 1, 0)
62
+ self.stem_2b = Conv(c2 // 2, c2, 3, 2, 1)
63
+ self.stem_2p = nn.MaxPool2d(kernel_size=2, stride=2, ceil_mode=True)
64
+ self.stem_3 = Conv(c2 * 2, c2, 1, 1, 0)
65
+
66
+ def forward(self, x):
67
+ stem_1_out = self.stem_1(x)
68
+ stem_2a_out = self.stem_2a(stem_1_out)
69
+ stem_2b_out = self.stem_2b(stem_2a_out)
70
+ stem_2p_out = self.stem_2p(stem_1_out)
71
+ return self.stem_3(torch.cat((stem_2b_out, stem_2p_out), 1))
72
+
73
+
74
+ class Bottleneck(nn.Module):
75
+ # Standard bottleneck
76
+ def __init__(self, c1, c2, shortcut=True, g=1, e=0.5): # ch_in, ch_out, shortcut, groups, expansion
77
+ super().__init__()
78
+ c_ = int(c2 * e) # hidden channels
79
+ self.cv1 = Conv(c1, c_, 1, 1)
80
+ self.cv2 = Conv(c_, c2, 3, 1, g=g)
81
+ self.add = shortcut and c1 == c2
82
+
83
+ def forward(self, x):
84
+ return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))
85
+
86
+
87
+ class BottleneckCSP(nn.Module):
88
+ # CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks
89
+ def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
90
+ super().__init__()
91
+ c_ = int(c2 * e) # hidden channels
92
+ self.cv1 = Conv(c1, c_, 1, 1)
93
+ self.cv2 = nn.Conv2d(c1, c_, 1, 1, bias=False)
94
+ self.cv3 = nn.Conv2d(c_, c_, 1, 1, bias=False)
95
+ self.cv4 = Conv(2 * c_, c2, 1, 1)
96
+ self.bn = nn.BatchNorm2d(2 * c_) # applied to cat(cv2, cv3)
97
+ self.act = nn.LeakyReLU(0.1, inplace=True)
98
+ self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)))
99
+
100
+ def forward(self, x):
101
+ y1 = self.cv3(self.m(self.cv1(x)))
102
+ y2 = self.cv2(x)
103
+ return self.cv4(self.act(self.bn(torch.cat((y1, y2), dim=1))))
104
+
105
+
106
+ class C3(nn.Module):
107
+ # CSP Bottleneck with 3 convolutions
108
+ def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
109
+ super().__init__()
110
+ c_ = int(c2 * e) # hidden channels
111
+ self.cv1 = Conv(c1, c_, 1, 1)
112
+ self.cv2 = Conv(c1, c_, 1, 1)
113
+ self.cv3 = Conv(2 * c_, c2, 1) # act=FReLU(c2)
114
+ self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)))
115
+
116
+ def forward(self, x):
117
+ return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), dim=1))
118
+
119
+
120
+ class ShuffleV2Block(nn.Module):
121
+ def __init__(self, inp, oup, stride):
122
+ super().__init__()
123
+
124
+ if not 1 <= stride <= 3:
125
+ raise ValueError("illegal stride value")
126
+ self.stride = stride
127
+
128
+ branch_features = oup // 2
129
+
130
+ if self.stride > 1:
131
+ self.branch1 = nn.Sequential(
132
+ self.depthwise_conv(inp, inp, kernel_size=3, stride=self.stride, padding=1),
133
+ nn.BatchNorm2d(inp),
134
+ nn.Conv2d(inp, branch_features, kernel_size=1, stride=1, padding=0, bias=False),
135
+ nn.BatchNorm2d(branch_features),
136
+ nn.SiLU(),
137
+ )
138
+ else:
139
+ self.branch1 = nn.Sequential()
140
+
141
+ self.branch2 = nn.Sequential(
142
+ nn.Conv2d(
143
+ inp if (self.stride > 1) else branch_features,
144
+ branch_features,
145
+ kernel_size=1,
146
+ stride=1,
147
+ padding=0,
148
+ bias=False,
149
+ ),
150
+ nn.BatchNorm2d(branch_features),
151
+ nn.SiLU(),
152
+ self.depthwise_conv(branch_features, branch_features, kernel_size=3, stride=self.stride, padding=1),
153
+ nn.BatchNorm2d(branch_features),
154
+ nn.Conv2d(branch_features, branch_features, kernel_size=1, stride=1, padding=0, bias=False),
155
+ nn.BatchNorm2d(branch_features),
156
+ nn.SiLU(),
157
+ )
158
+
159
+ @staticmethod
160
+ def depthwise_conv(i, o, kernel_size, stride=1, padding=0, bias=False):
161
+ return nn.Conv2d(i, o, kernel_size, stride, padding, bias=bias, groups=i)
162
+
163
+ def forward(self, x):
164
+ if self.stride == 1:
165
+ x1, x2 = x.chunk(2, dim=1)
166
+ out = torch.cat((x1, self.branch2(x2)), dim=1)
167
+ else:
168
+ out = torch.cat((self.branch1(x), self.branch2(x)), dim=1)
169
+ out = channel_shuffle(out, 2)
170
+ return out
171
+
172
+
173
+ class SPP(nn.Module):
174
+ # Spatial pyramid pooling layer used in YOLOv3-SPP
175
+ def __init__(self, c1, c2, k=(5, 9, 13)):
176
+ super().__init__()
177
+ c_ = c1 // 2 # hidden channels
178
+ self.cv1 = Conv(c1, c_, 1, 1)
179
+ self.cv2 = Conv(c_ * (len(k) + 1), c2, 1, 1)
180
+ self.m = nn.ModuleList([nn.MaxPool2d(kernel_size=x, stride=1, padding=x // 2) for x in k])
181
+
182
+ def forward(self, x):
183
+ x = self.cv1(x)
184
+ return self.cv2(torch.cat([x] + [m(x) for m in self.m], 1))
185
+
186
+
187
+ class Focus(nn.Module):
188
+ # Focus wh information into c-space
189
+ def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True): # ch_in, ch_out, kernel, stride, padding, groups
190
+ super().__init__()
191
+ self.conv = Conv(c1 * 4, c2, k, s, p, g, act)
192
+
193
+ def forward(self, x): # x(b,c,w,h) -> y(b,4c,w/2,h/2)
194
+ return self.conv(torch.cat([x[..., ::2, ::2], x[..., 1::2, ::2], x[..., ::2, 1::2], x[..., 1::2, 1::2]], 1))
195
+
196
+
197
+ class Concat(nn.Module):
198
+ # Concatenate a list of tensors along dimension
199
+ def __init__(self, dimension=1):
200
+ super().__init__()
201
+ self.d = dimension
202
+
203
+ def forward(self, x):
204
+ return torch.cat(x, self.d)
205
+
206
+
207
+ class NMS(nn.Module):
208
+ # Non-Maximum Suppression (NMS) module
209
+ conf = 0.25 # confidence threshold
210
+ iou = 0.45 # IoU threshold
211
+ classes = None # (optional list) filter by class
212
+
213
+ def forward(self, x):
214
+ return non_max_suppression(x[0], conf_thres=self.conf, iou_thres=self.iou, classes=self.classes)
215
+
216
+
217
+ class AutoShape(nn.Module):
218
+ # input-robust model wrapper for passing cv2/np/PIL/torch inputs. Includes preprocessing, inference and NMS
219
+ img_size = 640 # inference size (pixels)
220
+ conf = 0.25 # NMS confidence threshold
221
+ iou = 0.45 # NMS IoU threshold
222
+ classes = None # (optional list) filter by class
223
+
224
+ def __init__(self, model):
225
+ super().__init__()
226
+ self.model = model.eval()
227
+
228
+ def autoshape(self):
229
+ print("autoShape already enabled, skipping... ") # model already converted to model.autoshape()
230
+ return self
231
+
232
+ def forward(self, imgs, size=640, augment=False, profile=False):
233
+ # Inference from various sources. For height=720, width=1280, RGB images example inputs are:
234
+ # OpenCV: = cv2.imread('image.jpg')[:,:,::-1] # HWC BGR to RGB x(720,1280,3)
235
+ # PIL: = Image.open('image.jpg') # HWC x(720,1280,3)
236
+ # numpy: = np.zeros((720,1280,3)) # HWC
237
+ # torch: = torch.zeros(16,3,720,1280) # BCHW
238
+ # multiple: = [Image.open('image1.jpg'), Image.open('image2.jpg'), ...] # list of images
239
+
240
+ p = next(self.model.parameters()) # for device and type
241
+ if isinstance(imgs, torch.Tensor): # torch
242
+ return self.model(imgs.to(p.device).type_as(p), augment, profile) # inference
243
+
244
+ # Pre-process
245
+ n, imgs = (len(imgs), imgs) if isinstance(imgs, list) else (1, [imgs]) # number of images, list of images
246
+ shape0, shape1 = [], [] # image and inference shapes
247
+ for i, im in enumerate(imgs):
248
+ im = np.array(im) # to numpy
249
+ if im.shape[0] < 5: # image in CHW
250
+ im = im.transpose((1, 2, 0)) # reverse dataloader .transpose(2, 0, 1)
251
+ im = im[:, :, :3] if im.ndim == 3 else np.tile(im[:, :, None], 3) # enforce 3ch input
252
+ s = im.shape[:2] # HWC
253
+ shape0.append(s) # image shape
254
+ g = size / max(s) # gain
255
+ shape1.append([y * g for y in s])
256
+ imgs[i] = im # update
257
+ shape1 = [make_divisible(x, int(self.stride.max())) for x in np.stack(shape1, 0).max(0)] # inference shape
258
+ x = [letterbox(im, new_shape=shape1, auto=False)[0] for im in imgs] # pad
259
+ x = np.stack(x, 0) if n > 1 else x[0][None] # stack
260
+ x = np.ascontiguousarray(x.transpose((0, 3, 1, 2))) # BHWC to BCHW
261
+ x = torch.from_numpy(x).to(p.device).type_as(p) / 255.0 # uint8 to fp16/32
262
+
263
+ # Inference
264
+ with torch.no_grad():
265
+ y = self.model(x, augment, profile)[0] # forward
266
+ y = non_max_suppression(y, conf_thres=self.conf, iou_thres=self.iou, classes=self.classes) # NMS
267
+
268
+ # Post-process
269
+ for i in range(n):
270
+ scale_coords(shape1, y[i][:, :4], shape0[i])
271
+
272
+ return Detections(imgs, y, self.names)
273
+
274
+
275
+ class Detections:
276
+ # detections class for YOLOv5 inference results
277
+ def __init__(self, imgs, pred, names=None):
278
+ super().__init__()
279
+ d = pred[0].device # device
280
+ gn = [torch.tensor([*(im.shape[i] for i in [1, 0, 1, 0]), 1.0, 1.0], device=d) for im in imgs] # normalizations
281
+ self.imgs = imgs # list of images as numpy arrays
282
+ self.pred = pred # list of tensors pred[0] = (xyxy, conf, cls)
283
+ self.names = names # class names
284
+ self.xyxy = pred # xyxy pixels
285
+ self.xywh = [xyxy2xywh(x) for x in pred] # xywh pixels
286
+ self.xyxyn = [x / g for x, g in zip(self.xyxy, gn)] # xyxy normalized
287
+ self.xywhn = [x / g for x, g in zip(self.xywh, gn)] # xywh normalized
288
+ self.n = len(self.pred)
289
+
290
+ def __len__(self):
291
+ return self.n
292
+
293
+ def tolist(self):
294
+ # return a list of Detections objects, i.e. 'for result in results.tolist():'
295
+ x = [Detections([self.imgs[i]], [self.pred[i]], self.names) for i in range(self.n)]
296
+ for d in x:
297
+ for k in ["imgs", "pred", "xyxy", "xyxyn", "xywh", "xywhn"]:
298
+ setattr(d, k, getattr(d, k)[0]) # pop out of list
299
+ return x
r_facelib/detection/yolov5face/models/experimental.py ADDED
@@ -0,0 +1,45 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # # This file contains experimental modules
2
+
3
+ import numpy as np
4
+ import torch
5
+ from torch import nn
6
+
7
+ from r_facelib.detection.yolov5face.models.common import Conv
8
+
9
+
10
+ class CrossConv(nn.Module):
11
+ # Cross Convolution Downsample
12
+ def __init__(self, c1, c2, k=3, s=1, g=1, e=1.0, shortcut=False):
13
+ # ch_in, ch_out, kernel, stride, groups, expansion, shortcut
14
+ super().__init__()
15
+ c_ = int(c2 * e) # hidden channels
16
+ self.cv1 = Conv(c1, c_, (1, k), (1, s))
17
+ self.cv2 = Conv(c_, c2, (k, 1), (s, 1), g=g)
18
+ self.add = shortcut and c1 == c2
19
+
20
+ def forward(self, x):
21
+ return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))
22
+
23
+
24
+ class MixConv2d(nn.Module):
25
+ # Mixed Depthwise Conv https://arxiv.org/abs/1907.09595
26
+ def __init__(self, c1, c2, k=(1, 3), s=1, equal_ch=True):
27
+ super().__init__()
28
+ groups = len(k)
29
+ if equal_ch: # equal c_ per group
30
+ i = torch.linspace(0, groups - 1e-6, c2).floor() # c2 indices
31
+ c_ = [(i == g).sum() for g in range(groups)] # intermediate channels
32
+ else: # equal weight.numel() per group
33
+ b = [c2] + [0] * groups
34
+ a = np.eye(groups + 1, groups, k=-1)
35
+ a -= np.roll(a, 1, axis=1)
36
+ a *= np.array(k) ** 2
37
+ a[0] = 1
38
+ c_ = np.linalg.lstsq(a, b, rcond=None)[0].round() # solve for equal weight indices, ax = b
39
+
40
+ self.m = nn.ModuleList([nn.Conv2d(c1, int(c_[g]), k[g], s, k[g] // 2, bias=False) for g in range(groups)])
41
+ self.bn = nn.BatchNorm2d(c2)
42
+ self.act = nn.LeakyReLU(0.1, inplace=True)
43
+
44
+ def forward(self, x):
45
+ return x + self.act(self.bn(torch.cat([m(x) for m in self.m], 1)))
r_facelib/detection/yolov5face/models/yolo.py ADDED
@@ -0,0 +1,235 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ from copy import deepcopy
3
+ from pathlib import Path
4
+
5
+ import torch
6
+ import yaml # for torch hub
7
+ from torch import nn
8
+
9
+ from r_facelib.detection.yolov5face.models.common import (
10
+ C3,
11
+ NMS,
12
+ SPP,
13
+ AutoShape,
14
+ Bottleneck,
15
+ BottleneckCSP,
16
+ Concat,
17
+ Conv,
18
+ DWConv,
19
+ Focus,
20
+ ShuffleV2Block,
21
+ StemBlock,
22
+ )
23
+ from r_facelib.detection.yolov5face.models.experimental import CrossConv, MixConv2d
24
+ from r_facelib.detection.yolov5face.utils.autoanchor import check_anchor_order
25
+ from r_facelib.detection.yolov5face.utils.general import make_divisible
26
+ from r_facelib.detection.yolov5face.utils.torch_utils import copy_attr, fuse_conv_and_bn
27
+
28
+
29
+ class Detect(nn.Module):
30
+ stride = None # strides computed during build
31
+ export = False # onnx export
32
+
33
+ def __init__(self, nc=80, anchors=(), ch=()): # detection layer
34
+ super().__init__()
35
+ self.nc = nc # number of classes
36
+ self.no = nc + 5 + 10 # number of outputs per anchor
37
+
38
+ self.nl = len(anchors) # number of detection layers
39
+ self.na = len(anchors[0]) // 2 # number of anchors
40
+ self.grid = [torch.zeros(1)] * self.nl # init grid
41
+ a = torch.tensor(anchors).float().view(self.nl, -1, 2)
42
+ self.register_buffer("anchors", a) # shape(nl,na,2)
43
+ self.register_buffer("anchor_grid", a.clone().view(self.nl, 1, -1, 1, 1, 2)) # shape(nl,1,na,1,1,2)
44
+ self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch) # output conv
45
+
46
+ def forward(self, x):
47
+ z = [] # inference output
48
+ if self.export:
49
+ for i in range(self.nl):
50
+ x[i] = self.m[i](x[i])
51
+ return x
52
+ for i in range(self.nl):
53
+ x[i] = self.m[i](x[i]) # conv
54
+ bs, _, ny, nx = x[i].shape # x(bs,255,20,20) to x(bs,3,20,20,85)
55
+ x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()
56
+
57
+ if not self.training: # inference
58
+ if self.grid[i].shape[2:4] != x[i].shape[2:4]:
59
+ self.grid[i] = self._make_grid(nx, ny).to(x[i].device)
60
+
61
+ y = torch.full_like(x[i], 0)
62
+ y[..., [0, 1, 2, 3, 4, 15]] = x[i][..., [0, 1, 2, 3, 4, 15]].sigmoid()
63
+ y[..., 5:15] = x[i][..., 5:15]
64
+
65
+ y[..., 0:2] = (y[..., 0:2] * 2.0 - 0.5 + self.grid[i].to(x[i].device)) * self.stride[i] # xy
66
+ y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] # wh
67
+
68
+ y[..., 5:7] = (
69
+ y[..., 5:7] * self.anchor_grid[i] + self.grid[i].to(x[i].device) * self.stride[i]
70
+ ) # landmark x1 y1
71
+ y[..., 7:9] = (
72
+ y[..., 7:9] * self.anchor_grid[i] + self.grid[i].to(x[i].device) * self.stride[i]
73
+ ) # landmark x2 y2
74
+ y[..., 9:11] = (
75
+ y[..., 9:11] * self.anchor_grid[i] + self.grid[i].to(x[i].device) * self.stride[i]
76
+ ) # landmark x3 y3
77
+ y[..., 11:13] = (
78
+ y[..., 11:13] * self.anchor_grid[i] + self.grid[i].to(x[i].device) * self.stride[i]
79
+ ) # landmark x4 y4
80
+ y[..., 13:15] = (
81
+ y[..., 13:15] * self.anchor_grid[i] + self.grid[i].to(x[i].device) * self.stride[i]
82
+ ) # landmark x5 y5
83
+
84
+ z.append(y.view(bs, -1, self.no))
85
+
86
+ return x if self.training else (torch.cat(z, 1), x)
87
+
88
+ @staticmethod
89
+ def _make_grid(nx=20, ny=20):
90
+ # yv, xv = torch.meshgrid([torch.arange(ny), torch.arange(nx)], indexing="ij") # for pytorch>=1.10
91
+ yv, xv = torch.meshgrid([torch.arange(ny), torch.arange(nx)])
92
+ return torch.stack((xv, yv), 2).view((1, 1, ny, nx, 2)).float()
93
+
94
+
95
+ class Model(nn.Module):
96
+ def __init__(self, cfg="yolov5s.yaml", ch=3, nc=None): # model, input channels, number of classes
97
+ super().__init__()
98
+ self.yaml_file = Path(cfg).name
99
+ with Path(cfg).open(encoding="utf8") as f:
100
+ self.yaml = yaml.safe_load(f) # model dict
101
+
102
+ # Define model
103
+ ch = self.yaml["ch"] = self.yaml.get("ch", ch) # input channels
104
+ if nc and nc != self.yaml["nc"]:
105
+ self.yaml["nc"] = nc # override yaml value
106
+
107
+ self.model, self.save = parse_model(deepcopy(self.yaml), ch=[ch]) # model, savelist
108
+ self.names = [str(i) for i in range(self.yaml["nc"])] # default names
109
+
110
+ # Build strides, anchors
111
+ m = self.model[-1] # Detect()
112
+ if isinstance(m, Detect):
113
+ s = 128 # 2x min stride
114
+ m.stride = torch.tensor([s / x.shape[-2] for x in self.forward(torch.zeros(1, ch, s, s))]) # forward
115
+ m.anchors /= m.stride.view(-1, 1, 1)
116
+ check_anchor_order(m)
117
+ self.stride = m.stride
118
+ self._initialize_biases() # only run once
119
+
120
+ def forward(self, x):
121
+ return self.forward_once(x) # single-scale inference, train
122
+
123
+ def forward_once(self, x):
124
+ y = [] # outputs
125
+ for m in self.model:
126
+ if m.f != -1: # if not from previous layer
127
+ x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f] # from earlier layers
128
+
129
+ x = m(x) # run
130
+ y.append(x if m.i in self.save else None) # save output
131
+
132
+ return x
133
+
134
+ def _initialize_biases(self, cf=None): # initialize biases into Detect(), cf is class frequency
135
+ # https://arxiv.org/abs/1708.02002 section 3.3
136
+ m = self.model[-1] # Detect() module
137
+ for mi, s in zip(m.m, m.stride): # from
138
+ b = mi.bias.view(m.na, -1) # conv.bias(255) to (3,85)
139
+ b.data[:, 4] += math.log(8 / (640 / s) ** 2) # obj (8 objects per 640 image)
140
+ b.data[:, 5:] += math.log(0.6 / (m.nc - 0.99)) if cf is None else torch.log(cf / cf.sum()) # cls
141
+ mi.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
142
+
143
+ def _print_biases(self):
144
+ m = self.model[-1] # Detect() module
145
+ for mi in m.m: # from
146
+ b = mi.bias.detach().view(m.na, -1).T # conv.bias(255) to (3,85)
147
+ print(("%6g Conv2d.bias:" + "%10.3g" * 6) % (mi.weight.shape[1], *b[:5].mean(1).tolist(), b[5:].mean()))
148
+
149
+ def fuse(self): # fuse model Conv2d() + BatchNorm2d() layers
150
+ print("Fusing layers... ")
151
+ for m in self.model.modules():
152
+ if isinstance(m, Conv) and hasattr(m, "bn"):
153
+ m.conv = fuse_conv_and_bn(m.conv, m.bn) # update conv
154
+ delattr(m, "bn") # remove batchnorm
155
+ m.forward = m.fuseforward # update forward
156
+ elif type(m) is nn.Upsample:
157
+ m.recompute_scale_factor = None # torch 1.11.0 compatibility
158
+ return self
159
+
160
+ def nms(self, mode=True): # add or remove NMS module
161
+ present = isinstance(self.model[-1], NMS) # last layer is NMS
162
+ if mode and not present:
163
+ print("Adding NMS... ")
164
+ m = NMS() # module
165
+ m.f = -1 # from
166
+ m.i = self.model[-1].i + 1 # index
167
+ self.model.add_module(name=str(m.i), module=m) # add
168
+ self.eval()
169
+ elif not mode and present:
170
+ print("Removing NMS... ")
171
+ self.model = self.model[:-1] # remove
172
+ return self
173
+
174
+ def autoshape(self): # add autoShape module
175
+ print("Adding autoShape... ")
176
+ m = AutoShape(self) # wrap model
177
+ copy_attr(m, self, include=("yaml", "nc", "hyp", "names", "stride"), exclude=()) # copy attributes
178
+ return m
179
+
180
+
181
+ def parse_model(d, ch): # model_dict, input_channels(3)
182
+ anchors, nc, gd, gw = d["anchors"], d["nc"], d["depth_multiple"], d["width_multiple"]
183
+ na = (len(anchors[0]) // 2) if isinstance(anchors, list) else anchors # number of anchors
184
+ no = na * (nc + 5) # number of outputs = anchors * (classes + 5)
185
+
186
+ layers, save, c2 = [], [], ch[-1] # layers, savelist, ch out
187
+ for i, (f, n, m, args) in enumerate(d["backbone"] + d["head"]): # from, number, module, args
188
+ m = eval(m) if isinstance(m, str) else m # eval strings
189
+ for j, a in enumerate(args):
190
+ try:
191
+ args[j] = eval(a) if isinstance(a, str) else a # eval strings
192
+ except:
193
+ pass
194
+
195
+ n = max(round(n * gd), 1) if n > 1 else n # depth gain
196
+ if m in [
197
+ Conv,
198
+ Bottleneck,
199
+ SPP,
200
+ DWConv,
201
+ MixConv2d,
202
+ Focus,
203
+ CrossConv,
204
+ BottleneckCSP,
205
+ C3,
206
+ ShuffleV2Block,
207
+ StemBlock,
208
+ ]:
209
+ c1, c2 = ch[f], args[0]
210
+
211
+ c2 = make_divisible(c2 * gw, 8) if c2 != no else c2
212
+
213
+ args = [c1, c2, *args[1:]]
214
+ if m in [BottleneckCSP, C3]:
215
+ args.insert(2, n)
216
+ n = 1
217
+ elif m is nn.BatchNorm2d:
218
+ args = [ch[f]]
219
+ elif m is Concat:
220
+ c2 = sum(ch[-1 if x == -1 else x + 1] for x in f)
221
+ elif m is Detect:
222
+ args.append([ch[x + 1] for x in f])
223
+ if isinstance(args[1], int): # number of anchors
224
+ args[1] = [list(range(args[1] * 2))] * len(f)
225
+ else:
226
+ c2 = ch[f]
227
+
228
+ m_ = nn.Sequential(*(m(*args) for _ in range(n))) if n > 1 else m(*args) # module
229
+ t = str(m)[8:-2].replace("__main__.", "") # module type
230
+ np = sum(x.numel() for x in m_.parameters()) # number params
231
+ m_.i, m_.f, m_.type, m_.np = i, f, t, np # attach index, 'from' index, type, number params
232
+ save.extend(x % i for x in ([f] if isinstance(f, int) else f) if x != -1) # append to savelist
233
+ layers.append(m_)
234
+ ch.append(c2)
235
+ return nn.Sequential(*layers), sorted(save)
r_facelib/detection/yolov5face/models/yolov5l.yaml ADDED
@@ -0,0 +1,47 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # parameters
2
+ nc: 1 # number of classes
3
+ depth_multiple: 1.0 # model depth multiple
4
+ width_multiple: 1.0 # layer channel multiple
5
+
6
+ # anchors
7
+ anchors:
8
+ - [4,5, 8,10, 13,16] # P3/8
9
+ - [23,29, 43,55, 73,105] # P4/16
10
+ - [146,217, 231,300, 335,433] # P5/32
11
+
12
+ # YOLOv5 backbone
13
+ backbone:
14
+ # [from, number, module, args]
15
+ [[-1, 1, StemBlock, [64, 3, 2]], # 0-P1/2
16
+ [-1, 3, C3, [128]],
17
+ [-1, 1, Conv, [256, 3, 2]], # 2-P3/8
18
+ [-1, 9, C3, [256]],
19
+ [-1, 1, Conv, [512, 3, 2]], # 4-P4/16
20
+ [-1, 9, C3, [512]],
21
+ [-1, 1, Conv, [1024, 3, 2]], # 6-P5/32
22
+ [-1, 1, SPP, [1024, [3,5,7]]],
23
+ [-1, 3, C3, [1024, False]], # 8
24
+ ]
25
+
26
+ # YOLOv5 head
27
+ head:
28
+ [[-1, 1, Conv, [512, 1, 1]],
29
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
30
+ [[-1, 5], 1, Concat, [1]], # cat backbone P4
31
+ [-1, 3, C3, [512, False]], # 12
32
+
33
+ [-1, 1, Conv, [256, 1, 1]],
34
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
35
+ [[-1, 3], 1, Concat, [1]], # cat backbone P3
36
+ [-1, 3, C3, [256, False]], # 16 (P3/8-small)
37
+
38
+ [-1, 1, Conv, [256, 3, 2]],
39
+ [[-1, 13], 1, Concat, [1]], # cat head P4
40
+ [-1, 3, C3, [512, False]], # 19 (P4/16-medium)
41
+
42
+ [-1, 1, Conv, [512, 3, 2]],
43
+ [[-1, 9], 1, Concat, [1]], # cat head P5
44
+ [-1, 3, C3, [1024, False]], # 22 (P5/32-large)
45
+
46
+ [[16, 19, 22], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
47
+ ]
r_facelib/detection/yolov5face/models/yolov5n.yaml ADDED
@@ -0,0 +1,45 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # parameters
2
+ nc: 1 # number of classes
3
+ depth_multiple: 1.0 # model depth multiple
4
+ width_multiple: 1.0 # layer channel multiple
5
+
6
+ # anchors
7
+ anchors:
8
+ - [4,5, 8,10, 13,16] # P3/8
9
+ - [23,29, 43,55, 73,105] # P4/16
10
+ - [146,217, 231,300, 335,433] # P5/32
11
+
12
+ # YOLOv5 backbone
13
+ backbone:
14
+ # [from, number, module, args]
15
+ [[-1, 1, StemBlock, [32, 3, 2]], # 0-P2/4
16
+ [-1, 1, ShuffleV2Block, [128, 2]], # 1-P3/8
17
+ [-1, 3, ShuffleV2Block, [128, 1]], # 2
18
+ [-1, 1, ShuffleV2Block, [256, 2]], # 3-P4/16
19
+ [-1, 7, ShuffleV2Block, [256, 1]], # 4
20
+ [-1, 1, ShuffleV2Block, [512, 2]], # 5-P5/32
21
+ [-1, 3, ShuffleV2Block, [512, 1]], # 6
22
+ ]
23
+
24
+ # YOLOv5 head
25
+ head:
26
+ [[-1, 1, Conv, [128, 1, 1]],
27
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
28
+ [[-1, 4], 1, Concat, [1]], # cat backbone P4
29
+ [-1, 1, C3, [128, False]], # 10
30
+
31
+ [-1, 1, Conv, [128, 1, 1]],
32
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
33
+ [[-1, 2], 1, Concat, [1]], # cat backbone P3
34
+ [-1, 1, C3, [128, False]], # 14 (P3/8-small)
35
+
36
+ [-1, 1, Conv, [128, 3, 2]],
37
+ [[-1, 11], 1, Concat, [1]], # cat head P4
38
+ [-1, 1, C3, [128, False]], # 17 (P4/16-medium)
39
+
40
+ [-1, 1, Conv, [128, 3, 2]],
41
+ [[-1, 7], 1, Concat, [1]], # cat head P5
42
+ [-1, 1, C3, [128, False]], # 20 (P5/32-large)
43
+
44
+ [[14, 17, 20], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
45
+ ]
r_facelib/detection/yolov5face/utils/__init__.py ADDED
File without changes
r_facelib/detection/yolov5face/utils/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (204 Bytes). View file
 
r_facelib/detection/yolov5face/utils/__pycache__/autoanchor.cpython-310.pyc ADDED
Binary file (557 Bytes). View file
 
r_facelib/detection/yolov5face/utils/__pycache__/datasets.cpython-310.pyc ADDED
Binary file (1.14 kB). View file
 
r_facelib/detection/yolov5face/utils/__pycache__/general.cpython-310.pyc ADDED
Binary file (7.11 kB). View file
 
r_facelib/detection/yolov5face/utils/__pycache__/torch_utils.cpython-310.pyc ADDED
Binary file (1.23 kB). View file
 
r_facelib/detection/yolov5face/utils/autoanchor.py ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Auto-anchor utils
2
+
3
+
4
+ def check_anchor_order(m):
5
+ # Check anchor order against stride order for YOLOv5 Detect() module m, and correct if necessary
6
+ a = m.anchor_grid.prod(-1).view(-1) # anchor area
7
+ da = a[-1] - a[0] # delta a
8
+ ds = m.stride[-1] - m.stride[0] # delta s
9
+ if da.sign() != ds.sign(): # same order
10
+ print("Reversing anchor order")
11
+ m.anchors[:] = m.anchors.flip(0)
12
+ m.anchor_grid[:] = m.anchor_grid.flip(0)
r_facelib/detection/yolov5face/utils/datasets.py ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import cv2
2
+ import numpy as np
3
+
4
+
5
+ def letterbox(img, new_shape=(640, 640), color=(114, 114, 114), auto=True, scale_fill=False, scaleup=True):
6
+ # Resize image to a 32-pixel-multiple rectangle https://github.com/ultralytics/yolov3/issues/232
7
+ shape = img.shape[:2] # current shape [height, width]
8
+ if isinstance(new_shape, int):
9
+ new_shape = (new_shape, new_shape)
10
+
11
+ # Scale ratio (new / old)
12
+ r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
13
+ if not scaleup: # only scale down, do not scale up (for better test mAP)
14
+ r = min(r, 1.0)
15
+
16
+ # Compute padding
17
+ ratio = r, r # width, height ratios
18
+ new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
19
+ dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1] # wh padding
20
+ if auto: # minimum rectangle
21
+ dw, dh = np.mod(dw, 64), np.mod(dh, 64) # wh padding
22
+ elif scale_fill: # stretch
23
+ dw, dh = 0.0, 0.0
24
+ new_unpad = (new_shape[1], new_shape[0])
25
+ ratio = new_shape[1] / shape[1], new_shape[0] / shape[0] # width, height ratios
26
+
27
+ dw /= 2 # divide padding into 2 sides
28
+ dh /= 2
29
+
30
+ if shape[::-1] != new_unpad: # resize
31
+ img = cv2.resize(img, new_unpad, interpolation=cv2.INTER_LINEAR)
32
+ top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
33
+ left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
34
+ img = cv2.copyMakeBorder(img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color) # add border
35
+ return img, ratio, (dw, dh)
r_facelib/detection/yolov5face/utils/extract_ckpt.py ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ import torch
2
+ import sys
3
+ sys.path.insert(0,'./facelib/detection/yolov5face')
4
+ model = torch.load('facelib/detection/yolov5face/yolov5n-face.pt', map_location='cpu')['model']
5
+ torch.save(model.state_dict(),'../../models/facedetection')
r_facelib/detection/yolov5face/utils/general.py ADDED
@@ -0,0 +1,271 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ import time
3
+
4
+ import numpy as np
5
+ import torch
6
+ import torchvision
7
+
8
+
9
+ def check_img_size(img_size, s=32):
10
+ # Verify img_size is a multiple of stride s
11
+ new_size = make_divisible(img_size, int(s)) # ceil gs-multiple
12
+ # if new_size != img_size:
13
+ # print(f"WARNING: --img-size {img_size:g} must be multiple of max stride {s:g}, updating to {new_size:g}")
14
+ return new_size
15
+
16
+
17
+ def make_divisible(x, divisor):
18
+ # Returns x evenly divisible by divisor
19
+ return math.ceil(x / divisor) * divisor
20
+
21
+
22
+ def xyxy2xywh(x):
23
+ # Convert nx4 boxes from [x1, y1, x2, y2] to [x, y, w, h] where xy1=top-left, xy2=bottom-right
24
+ y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
25
+ y[:, 0] = (x[:, 0] + x[:, 2]) / 2 # x center
26
+ y[:, 1] = (x[:, 1] + x[:, 3]) / 2 # y center
27
+ y[:, 2] = x[:, 2] - x[:, 0] # width
28
+ y[:, 3] = x[:, 3] - x[:, 1] # height
29
+ return y
30
+
31
+
32
+ def xywh2xyxy(x):
33
+ # Convert nx4 boxes from [x, y, w, h] to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right
34
+ y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
35
+ y[:, 0] = x[:, 0] - x[:, 2] / 2 # top left x
36
+ y[:, 1] = x[:, 1] - x[:, 3] / 2 # top left y
37
+ y[:, 2] = x[:, 0] + x[:, 2] / 2 # bottom right x
38
+ y[:, 3] = x[:, 1] + x[:, 3] / 2 # bottom right y
39
+ return y
40
+
41
+
42
+ def scale_coords(img1_shape, coords, img0_shape, ratio_pad=None):
43
+ # Rescale coords (xyxy) from img1_shape to img0_shape
44
+ if ratio_pad is None: # calculate from img0_shape
45
+ gain = min(img1_shape[0] / img0_shape[0], img1_shape[1] / img0_shape[1]) # gain = old / new
46
+ pad = (img1_shape[1] - img0_shape[1] * gain) / 2, (img1_shape[0] - img0_shape[0] * gain) / 2 # wh padding
47
+ else:
48
+ gain = ratio_pad[0][0]
49
+ pad = ratio_pad[1]
50
+
51
+ coords[:, [0, 2]] -= pad[0] # x padding
52
+ coords[:, [1, 3]] -= pad[1] # y padding
53
+ coords[:, :4] /= gain
54
+ clip_coords(coords, img0_shape)
55
+ return coords
56
+
57
+
58
+ def clip_coords(boxes, img_shape):
59
+ # Clip bounding xyxy bounding boxes to image shape (height, width)
60
+ boxes[:, 0].clamp_(0, img_shape[1]) # x1
61
+ boxes[:, 1].clamp_(0, img_shape[0]) # y1
62
+ boxes[:, 2].clamp_(0, img_shape[1]) # x2
63
+ boxes[:, 3].clamp_(0, img_shape[0]) # y2
64
+
65
+
66
+ def box_iou(box1, box2):
67
+ # https://github.com/pytorch/vision/blob/master/torchvision/ops/boxes.py
68
+ """
69
+ Return intersection-over-union (Jaccard index) of boxes.
70
+ Both sets of boxes are expected to be in (x1, y1, x2, y2) format.
71
+ Arguments:
72
+ box1 (Tensor[N, 4])
73
+ box2 (Tensor[M, 4])
74
+ Returns:
75
+ iou (Tensor[N, M]): the NxM matrix containing the pairwise
76
+ IoU values for every element in boxes1 and boxes2
77
+ """
78
+
79
+ def box_area(box):
80
+ return (box[2] - box[0]) * (box[3] - box[1])
81
+
82
+ area1 = box_area(box1.T)
83
+ area2 = box_area(box2.T)
84
+
85
+ inter = (torch.min(box1[:, None, 2:], box2[:, 2:]) - torch.max(box1[:, None, :2], box2[:, :2])).clamp(0).prod(2)
86
+ return inter / (area1[:, None] + area2 - inter)
87
+
88
+
89
+ def non_max_suppression_face(prediction, conf_thres=0.25, iou_thres=0.45, classes=None, agnostic=False, labels=()):
90
+ """Performs Non-Maximum Suppression (NMS) on inference results
91
+ Returns:
92
+ detections with shape: nx6 (x1, y1, x2, y2, conf, cls)
93
+ """
94
+
95
+ nc = prediction.shape[2] - 15 # number of classes
96
+ xc = prediction[..., 4] > conf_thres # candidates
97
+
98
+ # Settings
99
+ # (pixels) maximum box width and height
100
+ max_wh = 4096
101
+ time_limit = 10.0 # seconds to quit after
102
+ redundant = True # require redundant detections
103
+ multi_label = nc > 1 # multiple labels per box (adds 0.5ms/img)
104
+ merge = False # use merge-NMS
105
+
106
+ t = time.time()
107
+ output = [torch.zeros((0, 16), device=prediction.device)] * prediction.shape[0]
108
+ for xi, x in enumerate(prediction): # image index, image inference
109
+ # Apply constraints
110
+ x = x[xc[xi]] # confidence
111
+
112
+ # Cat apriori labels if autolabelling
113
+ if labels and len(labels[xi]):
114
+ label = labels[xi]
115
+ v = torch.zeros((len(label), nc + 15), device=x.device)
116
+ v[:, :4] = label[:, 1:5] # box
117
+ v[:, 4] = 1.0 # conf
118
+ v[range(len(label)), label[:, 0].long() + 15] = 1.0 # cls
119
+ x = torch.cat((x, v), 0)
120
+
121
+ # If none remain process next image
122
+ if not x.shape[0]:
123
+ continue
124
+
125
+ # Compute conf
126
+ x[:, 15:] *= x[:, 4:5] # conf = obj_conf * cls_conf
127
+
128
+ # Box (center x, center y, width, height) to (x1, y1, x2, y2)
129
+ box = xywh2xyxy(x[:, :4])
130
+
131
+ # Detections matrix nx6 (xyxy, conf, landmarks, cls)
132
+ if multi_label:
133
+ i, j = (x[:, 15:] > conf_thres).nonzero(as_tuple=False).T
134
+ x = torch.cat((box[i], x[i, j + 15, None], x[:, 5:15], j[:, None].float()), 1)
135
+ else: # best class only
136
+ conf, j = x[:, 15:].max(1, keepdim=True)
137
+ x = torch.cat((box, conf, x[:, 5:15], j.float()), 1)[conf.view(-1) > conf_thres]
138
+
139
+ # Filter by class
140
+ if classes is not None:
141
+ x = x[(x[:, 5:6] == torch.tensor(classes, device=x.device)).any(1)]
142
+
143
+ # If none remain process next image
144
+ n = x.shape[0] # number of boxes
145
+ if not n:
146
+ continue
147
+
148
+ # Batched NMS
149
+ c = x[:, 15:16] * (0 if agnostic else max_wh) # classes
150
+ boxes, scores = x[:, :4] + c, x[:, 4] # boxes (offset by class), scores
151
+ i = torchvision.ops.nms(boxes, scores, iou_thres) # NMS
152
+
153
+ if merge and (1 < n < 3e3): # Merge NMS (boxes merged using weighted mean)
154
+ # update boxes as boxes(i,4) = weights(i,n) * boxes(n,4)
155
+ iou = box_iou(boxes[i], boxes) > iou_thres # iou matrix
156
+ weights = iou * scores[None] # box weights
157
+ x[i, :4] = torch.mm(weights, x[:, :4]).float() / weights.sum(1, keepdim=True) # merged boxes
158
+ if redundant:
159
+ i = i[iou.sum(1) > 1] # require redundancy
160
+
161
+ output[xi] = x[i]
162
+ if (time.time() - t) > time_limit:
163
+ break # time limit exceeded
164
+
165
+ return output
166
+
167
+
168
+ def non_max_suppression(prediction, conf_thres=0.25, iou_thres=0.45, classes=None, agnostic=False, labels=()):
169
+ """Performs Non-Maximum Suppression (NMS) on inference results
170
+
171
+ Returns:
172
+ detections with shape: nx6 (x1, y1, x2, y2, conf, cls)
173
+ """
174
+
175
+ nc = prediction.shape[2] - 5 # number of classes
176
+ xc = prediction[..., 4] > conf_thres # candidates
177
+
178
+ # Settings
179
+ # (pixels) maximum box width and height
180
+ max_wh = 4096
181
+ time_limit = 10.0 # seconds to quit after
182
+ redundant = True # require redundant detections
183
+ multi_label = nc > 1 # multiple labels per box (adds 0.5ms/img)
184
+ merge = False # use merge-NMS
185
+
186
+ t = time.time()
187
+ output = [torch.zeros((0, 6), device=prediction.device)] * prediction.shape[0]
188
+ for xi, x in enumerate(prediction): # image index, image inference
189
+ x = x[xc[xi]] # confidence
190
+
191
+ # Cat apriori labels if autolabelling
192
+ if labels and len(labels[xi]):
193
+ label_id = labels[xi]
194
+ v = torch.zeros((len(label_id), nc + 5), device=x.device)
195
+ v[:, :4] = label_id[:, 1:5] # box
196
+ v[:, 4] = 1.0 # conf
197
+ v[range(len(label_id)), label_id[:, 0].long() + 5] = 1.0 # cls
198
+ x = torch.cat((x, v), 0)
199
+
200
+ # If none remain process next image
201
+ if not x.shape[0]:
202
+ continue
203
+
204
+ # Compute conf
205
+ x[:, 5:] *= x[:, 4:5] # conf = obj_conf * cls_conf
206
+
207
+ # Box (center x, center y, width, height) to (x1, y1, x2, y2)
208
+ box = xywh2xyxy(x[:, :4])
209
+
210
+ # Detections matrix nx6 (xyxy, conf, cls)
211
+ if multi_label:
212
+ i, j = (x[:, 5:] > conf_thres).nonzero(as_tuple=False).T
213
+ x = torch.cat((box[i], x[i, j + 5, None], j[:, None].float()), 1)
214
+ else: # best class only
215
+ conf, j = x[:, 5:].max(1, keepdim=True)
216
+ x = torch.cat((box, conf, j.float()), 1)[conf.view(-1) > conf_thres]
217
+
218
+ # Filter by class
219
+ if classes is not None:
220
+ x = x[(x[:, 5:6] == torch.tensor(classes, device=x.device)).any(1)]
221
+
222
+ # Check shape
223
+ n = x.shape[0] # number of boxes
224
+ if not n: # no boxes
225
+ continue
226
+
227
+ x = x[x[:, 4].argsort(descending=True)] # sort by confidence
228
+
229
+ # Batched NMS
230
+ c = x[:, 5:6] * (0 if agnostic else max_wh) # classes
231
+ boxes, scores = x[:, :4] + c, x[:, 4] # boxes (offset by class), scores
232
+ i = torchvision.ops.nms(boxes, scores, iou_thres) # NMS
233
+ if merge and (1 < n < 3e3): # Merge NMS (boxes merged using weighted mean)
234
+ # update boxes as boxes(i,4) = weights(i,n) * boxes(n,4)
235
+ iou = box_iou(boxes[i], boxes) > iou_thres # iou matrix
236
+ weights = iou * scores[None] # box weights
237
+ x[i, :4] = torch.mm(weights, x[:, :4]).float() / weights.sum(1, keepdim=True) # merged boxes
238
+ if redundant:
239
+ i = i[iou.sum(1) > 1] # require redundancy
240
+
241
+ output[xi] = x[i]
242
+ if (time.time() - t) > time_limit:
243
+ print(f"WARNING: NMS time limit {time_limit}s exceeded")
244
+ break # time limit exceeded
245
+
246
+ return output
247
+
248
+
249
+ def scale_coords_landmarks(img1_shape, coords, img0_shape, ratio_pad=None):
250
+ # Rescale coords (xyxy) from img1_shape to img0_shape
251
+ if ratio_pad is None: # calculate from img0_shape
252
+ gain = min(img1_shape[0] / img0_shape[0], img1_shape[1] / img0_shape[1]) # gain = old / new
253
+ pad = (img1_shape[1] - img0_shape[1] * gain) / 2, (img1_shape[0] - img0_shape[0] * gain) / 2 # wh padding
254
+ else:
255
+ gain = ratio_pad[0][0]
256
+ pad = ratio_pad[1]
257
+
258
+ coords[:, [0, 2, 4, 6, 8]] -= pad[0] # x padding
259
+ coords[:, [1, 3, 5, 7, 9]] -= pad[1] # y padding
260
+ coords[:, :10] /= gain
261
+ coords[:, 0].clamp_(0, img0_shape[1]) # x1
262
+ coords[:, 1].clamp_(0, img0_shape[0]) # y1
263
+ coords[:, 2].clamp_(0, img0_shape[1]) # x2
264
+ coords[:, 3].clamp_(0, img0_shape[0]) # y2
265
+ coords[:, 4].clamp_(0, img0_shape[1]) # x3
266
+ coords[:, 5].clamp_(0, img0_shape[0]) # y3
267
+ coords[:, 6].clamp_(0, img0_shape[1]) # x4
268
+ coords[:, 7].clamp_(0, img0_shape[0]) # y4
269
+ coords[:, 8].clamp_(0, img0_shape[1]) # x5
270
+ coords[:, 9].clamp_(0, img0_shape[0]) # y5
271
+ return coords
r_facelib/detection/yolov5face/utils/torch_utils.py ADDED
@@ -0,0 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from torch import nn
3
+
4
+
5
+ def fuse_conv_and_bn(conv, bn):
6
+ # Fuse convolution and batchnorm layers https://tehnokv.com/posts/fusing-batchnorm-and-conv/
7
+ fusedconv = (
8
+ nn.Conv2d(
9
+ conv.in_channels,
10
+ conv.out_channels,
11
+ kernel_size=conv.kernel_size,
12
+ stride=conv.stride,
13
+ padding=conv.padding,
14
+ groups=conv.groups,
15
+ bias=True,
16
+ )
17
+ .requires_grad_(False)
18
+ .to(conv.weight.device)
19
+ )
20
+
21
+ # prepare filters
22
+ w_conv = conv.weight.clone().view(conv.out_channels, -1)
23
+ w_bn = torch.diag(bn.weight.div(torch.sqrt(bn.eps + bn.running_var)))
24
+ fusedconv.weight.copy_(torch.mm(w_bn, w_conv).view(fusedconv.weight.size()))
25
+
26
+ # prepare spatial bias
27
+ b_conv = torch.zeros(conv.weight.size(0), device=conv.weight.device) if conv.bias is None else conv.bias
28
+ b_bn = bn.bias - bn.weight.mul(bn.running_mean).div(torch.sqrt(bn.running_var + bn.eps))
29
+ fusedconv.bias.copy_(torch.mm(w_bn, b_conv.reshape(-1, 1)).reshape(-1) + b_bn)
30
+
31
+ return fusedconv
32
+
33
+
34
+ def copy_attr(a, b, include=(), exclude=()):
35
+ # Copy attributes from b to a, options to only include [...] and to exclude [...]
36
+ for k, v in b.__dict__.items():
37
+ if (include and k not in include) or k.startswith("_") or k in exclude:
38
+ continue
39
+
40
+ setattr(a, k, v)
r_facelib/parsing/__init__.py ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+
3
+ from r_facelib.utils import load_file_from_url
4
+ from .bisenet import BiSeNet
5
+ from .parsenet import ParseNet
6
+
7
+
8
+ def init_parsing_model(model_name='bisenet', half=False, device='cuda'):
9
+ if model_name == 'bisenet':
10
+ model = BiSeNet(num_class=19)
11
+ model_url = 'https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/parsing_bisenet.pth'
12
+ elif model_name == 'parsenet':
13
+ model = ParseNet(in_size=512, out_size=512, parsing_ch=19)
14
+ model_url = 'https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/parsing_parsenet.pth'
15
+ else:
16
+ raise NotImplementedError(f'{model_name} is not implemented.')
17
+
18
+ model_path = load_file_from_url(url=model_url, model_dir='../../models/facedetection', progress=True, file_name=None)
19
+ load_net = torch.load(model_path, map_location=lambda storage, loc: storage)
20
+ model.load_state_dict(load_net, strict=True)
21
+ model.eval()
22
+ model = model.to(device)
23
+ return model
r_facelib/parsing/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (1.26 kB). View file
 
r_facelib/parsing/__pycache__/bisenet.cpython-310.pyc ADDED
Binary file (5.17 kB). View file
 
r_facelib/parsing/__pycache__/parsenet.cpython-310.pyc ADDED
Binary file (6.54 kB). View file
 
r_facelib/parsing/__pycache__/resnet.cpython-310.pyc ADDED
Binary file (2.55 kB). View file
 
r_facelib/parsing/bisenet.py ADDED
@@ -0,0 +1,140 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ import torch.nn.functional as F
4
+
5
+ from .resnet import ResNet18
6
+
7
+
8
+ class ConvBNReLU(nn.Module):
9
+
10
+ def __init__(self, in_chan, out_chan, ks=3, stride=1, padding=1):
11
+ super(ConvBNReLU, self).__init__()
12
+ self.conv = nn.Conv2d(in_chan, out_chan, kernel_size=ks, stride=stride, padding=padding, bias=False)
13
+ self.bn = nn.BatchNorm2d(out_chan)
14
+
15
+ def forward(self, x):
16
+ x = self.conv(x)
17
+ x = F.relu(self.bn(x))
18
+ return x
19
+
20
+
21
+ class BiSeNetOutput(nn.Module):
22
+
23
+ def __init__(self, in_chan, mid_chan, num_class):
24
+ super(BiSeNetOutput, self).__init__()
25
+ self.conv = ConvBNReLU(in_chan, mid_chan, ks=3, stride=1, padding=1)
26
+ self.conv_out = nn.Conv2d(mid_chan, num_class, kernel_size=1, bias=False)
27
+
28
+ def forward(self, x):
29
+ feat = self.conv(x)
30
+ out = self.conv_out(feat)
31
+ return out, feat
32
+
33
+
34
+ class AttentionRefinementModule(nn.Module):
35
+
36
+ def __init__(self, in_chan, out_chan):
37
+ super(AttentionRefinementModule, self).__init__()
38
+ self.conv = ConvBNReLU(in_chan, out_chan, ks=3, stride=1, padding=1)
39
+ self.conv_atten = nn.Conv2d(out_chan, out_chan, kernel_size=1, bias=False)
40
+ self.bn_atten = nn.BatchNorm2d(out_chan)
41
+ self.sigmoid_atten = nn.Sigmoid()
42
+
43
+ def forward(self, x):
44
+ feat = self.conv(x)
45
+ atten = F.avg_pool2d(feat, feat.size()[2:])
46
+ atten = self.conv_atten(atten)
47
+ atten = self.bn_atten(atten)
48
+ atten = self.sigmoid_atten(atten)
49
+ out = torch.mul(feat, atten)
50
+ return out
51
+
52
+
53
+ class ContextPath(nn.Module):
54
+
55
+ def __init__(self):
56
+ super(ContextPath, self).__init__()
57
+ self.resnet = ResNet18()
58
+ self.arm16 = AttentionRefinementModule(256, 128)
59
+ self.arm32 = AttentionRefinementModule(512, 128)
60
+ self.conv_head32 = ConvBNReLU(128, 128, ks=3, stride=1, padding=1)
61
+ self.conv_head16 = ConvBNReLU(128, 128, ks=3, stride=1, padding=1)
62
+ self.conv_avg = ConvBNReLU(512, 128, ks=1, stride=1, padding=0)
63
+
64
+ def forward(self, x):
65
+ feat8, feat16, feat32 = self.resnet(x)
66
+ h8, w8 = feat8.size()[2:]
67
+ h16, w16 = feat16.size()[2:]
68
+ h32, w32 = feat32.size()[2:]
69
+
70
+ avg = F.avg_pool2d(feat32, feat32.size()[2:])
71
+ avg = self.conv_avg(avg)
72
+ avg_up = F.interpolate(avg, (h32, w32), mode='nearest')
73
+
74
+ feat32_arm = self.arm32(feat32)
75
+ feat32_sum = feat32_arm + avg_up
76
+ feat32_up = F.interpolate(feat32_sum, (h16, w16), mode='nearest')
77
+ feat32_up = self.conv_head32(feat32_up)
78
+
79
+ feat16_arm = self.arm16(feat16)
80
+ feat16_sum = feat16_arm + feat32_up
81
+ feat16_up = F.interpolate(feat16_sum, (h8, w8), mode='nearest')
82
+ feat16_up = self.conv_head16(feat16_up)
83
+
84
+ return feat8, feat16_up, feat32_up # x8, x8, x16
85
+
86
+
87
+ class FeatureFusionModule(nn.Module):
88
+
89
+ def __init__(self, in_chan, out_chan):
90
+ super(FeatureFusionModule, self).__init__()
91
+ self.convblk = ConvBNReLU(in_chan, out_chan, ks=1, stride=1, padding=0)
92
+ self.conv1 = nn.Conv2d(out_chan, out_chan // 4, kernel_size=1, stride=1, padding=0, bias=False)
93
+ self.conv2 = nn.Conv2d(out_chan // 4, out_chan, kernel_size=1, stride=1, padding=0, bias=False)
94
+ self.relu = nn.ReLU(inplace=True)
95
+ self.sigmoid = nn.Sigmoid()
96
+
97
+ def forward(self, fsp, fcp):
98
+ fcat = torch.cat([fsp, fcp], dim=1)
99
+ feat = self.convblk(fcat)
100
+ atten = F.avg_pool2d(feat, feat.size()[2:])
101
+ atten = self.conv1(atten)
102
+ atten = self.relu(atten)
103
+ atten = self.conv2(atten)
104
+ atten = self.sigmoid(atten)
105
+ feat_atten = torch.mul(feat, atten)
106
+ feat_out = feat_atten + feat
107
+ return feat_out
108
+
109
+
110
+ class BiSeNet(nn.Module):
111
+
112
+ def __init__(self, num_class):
113
+ super(BiSeNet, self).__init__()
114
+ self.cp = ContextPath()
115
+ self.ffm = FeatureFusionModule(256, 256)
116
+ self.conv_out = BiSeNetOutput(256, 256, num_class)
117
+ self.conv_out16 = BiSeNetOutput(128, 64, num_class)
118
+ self.conv_out32 = BiSeNetOutput(128, 64, num_class)
119
+
120
+ def forward(self, x, return_feat=False):
121
+ h, w = x.size()[2:]
122
+ feat_res8, feat_cp8, feat_cp16 = self.cp(x) # return res3b1 feature
123
+ feat_sp = feat_res8 # replace spatial path feature with res3b1 feature
124
+ feat_fuse = self.ffm(feat_sp, feat_cp8)
125
+
126
+ out, feat = self.conv_out(feat_fuse)
127
+ out16, feat16 = self.conv_out16(feat_cp8)
128
+ out32, feat32 = self.conv_out32(feat_cp16)
129
+
130
+ out = F.interpolate(out, (h, w), mode='bilinear', align_corners=True)
131
+ out16 = F.interpolate(out16, (h, w), mode='bilinear', align_corners=True)
132
+ out32 = F.interpolate(out32, (h, w), mode='bilinear', align_corners=True)
133
+
134
+ if return_feat:
135
+ feat = F.interpolate(feat, (h, w), mode='bilinear', align_corners=True)
136
+ feat16 = F.interpolate(feat16, (h, w), mode='bilinear', align_corners=True)
137
+ feat32 = F.interpolate(feat32, (h, w), mode='bilinear', align_corners=True)
138
+ return out, out16, out32, feat, feat16, feat32
139
+ else:
140
+ return out, out16, out32
r_facelib/parsing/parsenet.py ADDED
@@ -0,0 +1,194 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Modified from https://github.com/chaofengc/PSFRGAN
2
+ """
3
+ import numpy as np
4
+ import torch.nn as nn
5
+ from torch.nn import functional as F
6
+
7
+
8
+ class NormLayer(nn.Module):
9
+ """Normalization Layers.
10
+
11
+ Args:
12
+ channels: input channels, for batch norm and instance norm.
13
+ input_size: input shape without batch size, for layer norm.
14
+ """
15
+
16
+ def __init__(self, channels, normalize_shape=None, norm_type='bn'):
17
+ super(NormLayer, self).__init__()
18
+ norm_type = norm_type.lower()
19
+ self.norm_type = norm_type
20
+ if norm_type == 'bn':
21
+ self.norm = nn.BatchNorm2d(channels, affine=True)
22
+ elif norm_type == 'in':
23
+ self.norm = nn.InstanceNorm2d(channels, affine=False)
24
+ elif norm_type == 'gn':
25
+ self.norm = nn.GroupNorm(32, channels, affine=True)
26
+ elif norm_type == 'pixel':
27
+ self.norm = lambda x: F.normalize(x, p=2, dim=1)
28
+ elif norm_type == 'layer':
29
+ self.norm = nn.LayerNorm(normalize_shape)
30
+ elif norm_type == 'none':
31
+ self.norm = lambda x: x * 1.0
32
+ else:
33
+ assert 1 == 0, f'Norm type {norm_type} not support.'
34
+
35
+ def forward(self, x, ref=None):
36
+ if self.norm_type == 'spade':
37
+ return self.norm(x, ref)
38
+ else:
39
+ return self.norm(x)
40
+
41
+
42
+ class ReluLayer(nn.Module):
43
+ """Relu Layer.
44
+
45
+ Args:
46
+ relu type: type of relu layer, candidates are
47
+ - ReLU
48
+ - LeakyReLU: default relu slope 0.2
49
+ - PRelu
50
+ - SELU
51
+ - none: direct pass
52
+ """
53
+
54
+ def __init__(self, channels, relu_type='relu'):
55
+ super(ReluLayer, self).__init__()
56
+ relu_type = relu_type.lower()
57
+ if relu_type == 'relu':
58
+ self.func = nn.ReLU(True)
59
+ elif relu_type == 'leakyrelu':
60
+ self.func = nn.LeakyReLU(0.2, inplace=True)
61
+ elif relu_type == 'prelu':
62
+ self.func = nn.PReLU(channels)
63
+ elif relu_type == 'selu':
64
+ self.func = nn.SELU(True)
65
+ elif relu_type == 'none':
66
+ self.func = lambda x: x * 1.0
67
+ else:
68
+ assert 1 == 0, f'Relu type {relu_type} not support.'
69
+
70
+ def forward(self, x):
71
+ return self.func(x)
72
+
73
+
74
+ class ConvLayer(nn.Module):
75
+
76
+ def __init__(self,
77
+ in_channels,
78
+ out_channels,
79
+ kernel_size=3,
80
+ scale='none',
81
+ norm_type='none',
82
+ relu_type='none',
83
+ use_pad=True,
84
+ bias=True):
85
+ super(ConvLayer, self).__init__()
86
+ self.use_pad = use_pad
87
+ self.norm_type = norm_type
88
+ if norm_type in ['bn']:
89
+ bias = False
90
+
91
+ stride = 2 if scale == 'down' else 1
92
+
93
+ self.scale_func = lambda x: x
94
+ if scale == 'up':
95
+ self.scale_func = lambda x: nn.functional.interpolate(x, scale_factor=2, mode='nearest')
96
+
97
+ self.reflection_pad = nn.ReflectionPad2d(int(np.ceil((kernel_size - 1.) / 2)))
98
+ self.conv2d = nn.Conv2d(in_channels, out_channels, kernel_size, stride, bias=bias)
99
+
100
+ self.relu = ReluLayer(out_channels, relu_type)
101
+ self.norm = NormLayer(out_channels, norm_type=norm_type)
102
+
103
+ def forward(self, x):
104
+ out = self.scale_func(x)
105
+ if self.use_pad:
106
+ out = self.reflection_pad(out)
107
+ out = self.conv2d(out)
108
+ out = self.norm(out)
109
+ out = self.relu(out)
110
+ return out
111
+
112
+
113
+ class ResidualBlock(nn.Module):
114
+ """
115
+ Residual block recommended in: http://torch.ch/blog/2016/02/04/resnets.html
116
+ """
117
+
118
+ def __init__(self, c_in, c_out, relu_type='prelu', norm_type='bn', scale='none'):
119
+ super(ResidualBlock, self).__init__()
120
+
121
+ if scale == 'none' and c_in == c_out:
122
+ self.shortcut_func = lambda x: x
123
+ else:
124
+ self.shortcut_func = ConvLayer(c_in, c_out, 3, scale)
125
+
126
+ scale_config_dict = {'down': ['none', 'down'], 'up': ['up', 'none'], 'none': ['none', 'none']}
127
+ scale_conf = scale_config_dict[scale]
128
+
129
+ self.conv1 = ConvLayer(c_in, c_out, 3, scale_conf[0], norm_type=norm_type, relu_type=relu_type)
130
+ self.conv2 = ConvLayer(c_out, c_out, 3, scale_conf[1], norm_type=norm_type, relu_type='none')
131
+
132
+ def forward(self, x):
133
+ identity = self.shortcut_func(x)
134
+
135
+ res = self.conv1(x)
136
+ res = self.conv2(res)
137
+ return identity + res
138
+
139
+
140
+ class ParseNet(nn.Module):
141
+
142
+ def __init__(self,
143
+ in_size=128,
144
+ out_size=128,
145
+ min_feat_size=32,
146
+ base_ch=64,
147
+ parsing_ch=19,
148
+ res_depth=10,
149
+ relu_type='LeakyReLU',
150
+ norm_type='bn',
151
+ ch_range=[32, 256]):
152
+ super().__init__()
153
+ self.res_depth = res_depth
154
+ act_args = {'norm_type': norm_type, 'relu_type': relu_type}
155
+ min_ch, max_ch = ch_range
156
+
157
+ ch_clip = lambda x: max(min_ch, min(x, max_ch)) # noqa: E731
158
+ min_feat_size = min(in_size, min_feat_size)
159
+
160
+ down_steps = int(np.log2(in_size // min_feat_size))
161
+ up_steps = int(np.log2(out_size // min_feat_size))
162
+
163
+ # =============== define encoder-body-decoder ====================
164
+ self.encoder = []
165
+ self.encoder.append(ConvLayer(3, base_ch, 3, 1))
166
+ head_ch = base_ch
167
+ for i in range(down_steps):
168
+ cin, cout = ch_clip(head_ch), ch_clip(head_ch * 2)
169
+ self.encoder.append(ResidualBlock(cin, cout, scale='down', **act_args))
170
+ head_ch = head_ch * 2
171
+
172
+ self.body = []
173
+ for i in range(res_depth):
174
+ self.body.append(ResidualBlock(ch_clip(head_ch), ch_clip(head_ch), **act_args))
175
+
176
+ self.decoder = []
177
+ for i in range(up_steps):
178
+ cin, cout = ch_clip(head_ch), ch_clip(head_ch // 2)
179
+ self.decoder.append(ResidualBlock(cin, cout, scale='up', **act_args))
180
+ head_ch = head_ch // 2
181
+
182
+ self.encoder = nn.Sequential(*self.encoder)
183
+ self.body = nn.Sequential(*self.body)
184
+ self.decoder = nn.Sequential(*self.decoder)
185
+ self.out_img_conv = ConvLayer(ch_clip(head_ch), 3)
186
+ self.out_mask_conv = ConvLayer(ch_clip(head_ch), parsing_ch)
187
+
188
+ def forward(self, x):
189
+ feat = self.encoder(x)
190
+ x = feat + self.body(feat)
191
+ x = self.decoder(x)
192
+ out_img = self.out_img_conv(x)
193
+ out_mask = self.out_mask_conv(x)
194
+ return out_mask, out_img
r_facelib/parsing/resnet.py ADDED
@@ -0,0 +1,69 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch.nn as nn
2
+ import torch.nn.functional as F
3
+
4
+
5
+ def conv3x3(in_planes, out_planes, stride=1):
6
+ """3x3 convolution with padding"""
7
+ return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False)
8
+
9
+
10
+ class BasicBlock(nn.Module):
11
+
12
+ def __init__(self, in_chan, out_chan, stride=1):
13
+ super(BasicBlock, self).__init__()
14
+ self.conv1 = conv3x3(in_chan, out_chan, stride)
15
+ self.bn1 = nn.BatchNorm2d(out_chan)
16
+ self.conv2 = conv3x3(out_chan, out_chan)
17
+ self.bn2 = nn.BatchNorm2d(out_chan)
18
+ self.relu = nn.ReLU(inplace=True)
19
+ self.downsample = None
20
+ if in_chan != out_chan or stride != 1:
21
+ self.downsample = nn.Sequential(
22
+ nn.Conv2d(in_chan, out_chan, kernel_size=1, stride=stride, bias=False),
23
+ nn.BatchNorm2d(out_chan),
24
+ )
25
+
26
+ def forward(self, x):
27
+ residual = self.conv1(x)
28
+ residual = F.relu(self.bn1(residual))
29
+ residual = self.conv2(residual)
30
+ residual = self.bn2(residual)
31
+
32
+ shortcut = x
33
+ if self.downsample is not None:
34
+ shortcut = self.downsample(x)
35
+
36
+ out = shortcut + residual
37
+ out = self.relu(out)
38
+ return out
39
+
40
+
41
+ def create_layer_basic(in_chan, out_chan, bnum, stride=1):
42
+ layers = [BasicBlock(in_chan, out_chan, stride=stride)]
43
+ for i in range(bnum - 1):
44
+ layers.append(BasicBlock(out_chan, out_chan, stride=1))
45
+ return nn.Sequential(*layers)
46
+
47
+
48
+ class ResNet18(nn.Module):
49
+
50
+ def __init__(self):
51
+ super(ResNet18, self).__init__()
52
+ self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False)
53
+ self.bn1 = nn.BatchNorm2d(64)
54
+ self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
55
+ self.layer1 = create_layer_basic(64, 64, bnum=2, stride=1)
56
+ self.layer2 = create_layer_basic(64, 128, bnum=2, stride=2)
57
+ self.layer3 = create_layer_basic(128, 256, bnum=2, stride=2)
58
+ self.layer4 = create_layer_basic(256, 512, bnum=2, stride=2)
59
+
60
+ def forward(self, x):
61
+ x = self.conv1(x)
62
+ x = F.relu(self.bn1(x))
63
+ x = self.maxpool(x)
64
+
65
+ x = self.layer1(x)
66
+ feat8 = self.layer2(x) # 1/8
67
+ feat16 = self.layer3(feat8) # 1/16
68
+ feat32 = self.layer4(feat16) # 1/32
69
+ return feat8, feat16, feat32
r_facelib/utils/__init__.py ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ from .face_utils import align_crop_face_landmarks, compute_increased_bbox, get_valid_bboxes, paste_face_back
2
+ from .misc import img2tensor, load_file_from_url, download_pretrained_models, scandir
3
+
4
+ __all__ = [
5
+ 'align_crop_face_landmarks', 'compute_increased_bbox', 'get_valid_bboxes', 'load_file_from_url',
6
+ 'download_pretrained_models', 'paste_face_back', 'img2tensor', 'scandir'
7
+ ]
r_facelib/utils/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (513 Bytes). View file
 
r_facelib/utils/__pycache__/face_restoration_helper.cpython-310.pyc ADDED
Binary file (11.5 kB). View file