import importlib import numpy as np import random import torch import torch.utils.data from copy import deepcopy from functools import partial from os import path as osp from r_basicsr.data.prefetch_dataloader import PrefetchDataLoader from r_basicsr.utils import get_root_logger, scandir from r_basicsr.utils.dist_util import get_dist_info from r_basicsr.utils.registry import DATASET_REGISTRY __all__ = ['build_dataset', 'build_dataloader'] # automatically scan and import dataset modules for registry # scan all the files under the data folder with '_dataset' in file names data_folder = osp.dirname(osp.abspath(__file__)) dataset_filenames = [osp.splitext(osp.basename(v))[0] for v in scandir(data_folder) if v.endswith('_dataset.py')] # import all the dataset modules _dataset_modules = [importlib.import_module(f'r_basicsr.data.{file_name}') for file_name in dataset_filenames] def build_dataset(dataset_opt): """Build dataset from options. Args: dataset_opt (dict): Configuration for dataset. It must contain: name (str): Dataset name. type (str): Dataset type. """ dataset_opt = deepcopy(dataset_opt) dataset = DATASET_REGISTRY.get(dataset_opt['type'])(dataset_opt) logger = get_root_logger() logger.info(f'Dataset [{dataset.__class__.__name__}] - {dataset_opt["name"]} is built.') return dataset def build_dataloader(dataset, dataset_opt, num_gpu=1, dist=False, sampler=None, seed=None): """Build dataloader. Args: dataset (torch.utils.data.Dataset): Dataset. dataset_opt (dict): Dataset options. It contains the following keys: phase (str): 'train' or 'val'. num_worker_per_gpu (int): Number of workers for each GPU. batch_size_per_gpu (int): Training batch size for each GPU. num_gpu (int): Number of GPUs. Used only in the train phase. Default: 1. dist (bool): Whether in distributed training. Used only in the train phase. Default: False. sampler (torch.utils.data.sampler): Data sampler. Default: None. seed (int | None): Seed. Default: None """ phase = dataset_opt['phase'] rank, _ = get_dist_info() if phase == 'train': if dist: # distributed training batch_size = dataset_opt['batch_size_per_gpu'] num_workers = dataset_opt['num_worker_per_gpu'] else: # non-distributed training multiplier = 1 if num_gpu == 0 else num_gpu batch_size = dataset_opt['batch_size_per_gpu'] * multiplier num_workers = dataset_opt['num_worker_per_gpu'] * multiplier dataloader_args = dict( dataset=dataset, batch_size=batch_size, shuffle=False, num_workers=num_workers, sampler=sampler, drop_last=True) if sampler is None: dataloader_args['shuffle'] = True dataloader_args['worker_init_fn'] = partial( worker_init_fn, num_workers=num_workers, rank=rank, seed=seed) if seed is not None else None elif phase in ['val', 'test']: # validation dataloader_args = dict(dataset=dataset, batch_size=1, shuffle=False, num_workers=0) else: raise ValueError(f"Wrong dataset phase: {phase}. Supported ones are 'train', 'val' and 'test'.") dataloader_args['pin_memory'] = dataset_opt.get('pin_memory', False) dataloader_args['persistent_workers'] = dataset_opt.get('persistent_workers', False) prefetch_mode = dataset_opt.get('prefetch_mode') if prefetch_mode == 'cpu': # CPUPrefetcher num_prefetch_queue = dataset_opt.get('num_prefetch_queue', 1) logger = get_root_logger() logger.info(f'Use {prefetch_mode} prefetch dataloader: num_prefetch_queue = {num_prefetch_queue}') return PrefetchDataLoader(num_prefetch_queue=num_prefetch_queue, **dataloader_args) else: # prefetch_mode=None: Normal dataloader # prefetch_mode='cuda': dataloader for CUDAPrefetcher return torch.utils.data.DataLoader(**dataloader_args) def worker_init_fn(worker_id, num_workers, rank, seed): # Set the worker seed to num_workers * rank + worker_id + seed worker_seed = num_workers * rank + worker_id + seed np.random.seed(worker_seed) random.seed(worker_seed)