--- inference: false license: other license_name: mnpl license_link: https://mistral.ai/licences/MNPL-0.1.md tags: - code language: - code --- **Exllamav2** quant (**exl2** / **8.0 bpw**) made with ExLlamaV2 v0.1.1 Other EXL2 quants: | **Quant** | **Model Size** | **lm_head** | | ----- | ---------- | ------- | |
**[2.2](https://huggingface.co/Zoyd/bullerwins_Codestral-22B-v0.1-hf-2_2bpw_exl2)**
|
6296 MB
|
6
| |
**[2.5](https://huggingface.co/Zoyd/bullerwins_Codestral-22B-v0.1-hf-2_5bpw_exl2)**
|
7045 MB
|
6
| |
**[3.0](https://huggingface.co/Zoyd/bullerwins_Codestral-22B-v0.1-hf-3_0bpw_exl2)**
|
8347 MB
|
6
| |
**[3.5](https://huggingface.co/Zoyd/bullerwins_Codestral-22B-v0.1-hf-3_5bpw_exl2)**
|
9652 MB
|
6
| |
**[3.75](https://huggingface.co/Zoyd/bullerwins_Codestral-22B-v0.1-hf-3_75bpw_exl2)**
|
10297 MB
|
6
| |
**[4.0](https://huggingface.co/Zoyd/bullerwins_Codestral-22B-v0.1-hf-4_0bpw_exl2)**
|
10953 MB
|
6
| |
**[4.25](https://huggingface.co/Zoyd/bullerwins_Codestral-22B-v0.1-hf-4_25bpw_exl2)**
|
11603 MB
|
6
| |
**[5.0](https://huggingface.co/Zoyd/bullerwins_Codestral-22B-v0.1-hf-5_0bpw_exl2)**
|
13553 MB
|
6
| |
**[6.0](https://huggingface.co/Zoyd/bullerwins_Codestral-22B-v0.1-hf-6_0bpw_exl2)**
|
16185 MB
|
8
| |
**[6.5](https://huggingface.co/Zoyd/bullerwins_Codestral-22B-v0.1-hf-6_5bpw_exl2)**
|
17484 MB
|
8
| |
**[8.0](https://huggingface.co/Zoyd/bullerwins_Codestral-22B-v0.1-hf-8_0bpw_exl2)**
|
19350 MB
|
8
| Converted using [this](https://huggingface.co/bullerwins/Codestral-22B-v0.1-hf/blob/main/convert_mistral_weights_to_hf-22B.py) script # Model Card for Codestral-22B-v0.1 Codestrall-22B-v0.1 is trained on a diverse dataset of 80+ programming languages, including the most popular ones, such as Python, Java, C, C++, JavaScript, and Bash (more details in the [Blogpost](https://mistral.ai/news/codestral/)). The model can be queried: - As instruct, for instance to answer any questions about a code snippet (write documentation, explain, factorize) or to generate code following specific indications - As Fill in the Middle (FIM), to predict the middle tokens between a prefix and a suffix (very useful for software development add-ons like in VS Code) ## Installation It is recommended to use `mistralai/Codestral-22B-v0.1` with [mistral-inference](https://github.com/mistralai/mistral-inference). ``` pip install mistral_inference ``` ## Download ```py from huggingface_hub import snapshot_download from pathlib import Path mistral_models_path = Path.home().joinpath('mistral_models', 'Codestral-22B-v0.1') mistral_models_path.mkdir(parents=True, exist_ok=True) snapshot_download(repo_id="mistralai/Codestral-22B-v0.1", allow_patterns=["params.json", "consolidated.safetensors", "tokenizer.model.v3"], local_dir=mistral_models_path) ``` ### Chat After installing `mistral_inference`, a `mistral-chat` CLI command should be available in your environment. ``` mistral-chat $HOME/mistral_models/Codestral-22B-v0.1 --instruct --max_tokens 256 ``` Will generate an answer to "Write me a function that computes fibonacci in Rust" and should give something along the following lines: ``` Sure, here's a simple implementation of a function that computes the Fibonacci sequence in Rust. This function takes an integer `n` as an argument and returns the `n`th Fibonacci number. fn fibonacci(n: u32) -> u32 { match n { 0 => 0, 1 => 1, _ => fibonacci(n - 1) + fibonacci(n - 2), } } fn main() { let n = 10; println!("The {}th Fibonacci number is: {}", n, fibonacci(n)); } This function uses recursion to calculate the Fibonacci number. However, it's not the most efficient solution because it performs a lot of redundant calculations. A more efficient solution would use a loop to iteratively calculate the Fibonacci numbers. ``` ### Fill-in-the-middle (FIM) After installing `mistral_inference` and running `pip install --upgrade mistral_common` to make sure to have mistral_common>=1.2 installed: ```py from mistral_inference.model import Transformer from mistral_inference.generate import generate from mistral_common.tokens.tokenizers.mistral import MistralTokenizer from mistral_common.tokens.instruct.request import FIMRequest tokenizer = MistralTokenizer.v3() model = Transformer.from_folder("~/codestral-22B-240529") prefix = """def add(""" suffix = """ return sum""" request = FIMRequest(prompt=prefix, suffix=suffix) tokens = tokenizer.encode_fim(request).tokens out_tokens, _ = generate([tokens], model, max_tokens=256, temperature=0.0, eos_id=tokenizer.instruct_tokenizer.tokenizer.eos_id) result = tokenizer.decode(out_tokens[0]) middle = result.split(suffix)[0].strip() print(middle) ``` Should give something along the following lines: ``` num1, num2): # Add two numbers sum = num1 + num2 # return the sum ``` ## Limitations The Codestral-22B-v0.1 does not have any moderation mechanisms. We're looking forward to engaging with the community on ways to make the model finely respect guardrails, allowing for deployment in environments requiring moderated outputs. ## License Codestral-22B-v0.1 is released under the `MNLP-0.1` license. ## The Mistral AI Team Albert Jiang, Alexandre Sablayrolles, Alexis Tacnet, Antoine Roux, Arthur Mensch, Audrey Herblin-Stoop, Baptiste Bout, Baudouin de Monicault, Blanche Savary, Bam4d, Caroline Feldman, Devendra Singh Chaplot, Diego de las Casas, Eleonore Arcelin, Emma Bou Hanna, Etienne Metzger, Gianna Lengyel, Guillaume Bour, Guillaume Lample, Harizo Rajaona, Henri Roussez, Jean-Malo Delignon, Jia Li, Justus Murke, Kartik Khandelwal, Lawrence Stewart, Louis Martin, Louis Ternon, Lucile Saulnier, Lélio Renard Lavaud, Margaret Jennings, Marie Pellat, Marie Torelli, Marie-Anne Lachaux, Marjorie Janiewicz, Mickael Seznec, Nicolas Schuhl, Patrick von Platen, Romain Sauvestre, Pierre Stock, Sandeep Subramanian, Saurabh Garg, Sophia Yang, Szymon Antoniak, Teven Le Scao, Thibaut Lavril, Thibault Schueller, Timothée Lacroix, Théophile Gervet, Thomas Wang, Valera Nemychnikova, Wendy Shang, William El Sayed, William Marshall