Zoyd's picture
Upload folder using huggingface_hub
447e6df verified
metadata
library_name: transformers
license: llama3
base_model:
  - nbeerbower/llama-3-Stheno-Mahou-8B
datasets:
  - flammenai/FlameMix-DPO-v1
  - flammenai/Grill-preprod-v1_chatML
  - flammenai/Grill-preprod-v2_chatML

Exllamav2 quant (exl2 / 8.0 bpw) made with ExLlamaV2 v0.0.21

Other EXL2 quants:

Quant Model Size lm_head
2.2
3250 MB
6
2.5
3479 MB
6
3.0
3893 MB
6
3.5
4311 MB
6
3.75
4518 MB
6
4.0
4727 MB
6
4.25
4935 MB
6
5.0
5557 MB
6
6.0
6496 MB
8
6.5
6902 MB
8
8.0
8131 MB
8

image/png

Mahou-1.2a-llama3-8B

Mahou is our attempt to build a production-ready conversational/roleplay LLM.

Future versions will be released iteratively and finetuned from flammen.ai conversational data.

Chat Format

This model has been trained to use ChatML format.

<|im_start|>system
{{system}}<|im_end|>
<|im_start|>{{char}}
{{message}}<|im_end|>
<|im_start|>{{user}}
{{message}}<|im_end|>

Roleplay Format

  • Speech without quotes.
  • Actions in *asterisks*
*leans against wall cooly* so like, i just casted a super strong spell at magician academy today, not gonna lie, felt badass.

ST Settings

  1. Use ChatML for the Context Template.
  2. Turn on Instruct Mode for ChatML.
  3. Use the following stopping strings: ["<", "|", "<|", "\n"]

Method

Finetuned using an A100 on Google Colab.

Fine-tune a Mistral-7b model with Direct Preference Optimization - Maxime Labonne

Configuration

LoRA, model, and training settings:

# LoRA configuration
peft_config = LoraConfig(
    r=16,
    lora_alpha=16,
    lora_dropout=0.05,
    bias="none",
    task_type="CAUSAL_LM",
    target_modules=['k_proj', 'gate_proj', 'v_proj', 'up_proj', 'q_proj', 'o_proj', 'down_proj']
)

# Model to fine-tune
model = AutoModelForCausalLM.from_pretrained(
    model_name,
    torch_dtype=torch.bfloat16,
    load_in_4bit=True
)
model.config.use_cache = False

# Reference model
ref_model = AutoModelForCausalLM.from_pretrained(
    model_name,
    torch_dtype=torch.bfloat16,
    load_in_4bit=True
)

# Training arguments
training_args = TrainingArguments(
    per_device_train_batch_size=4,
    gradient_accumulation_steps=4,
    gradient_checkpointing=True,
    learning_rate=5e-5,
    lr_scheduler_type="cosine",
    max_steps=2000,
    save_strategy="no",
    logging_steps=1,
    output_dir=new_model,
    optim="paged_adamw_32bit",
    warmup_steps=100,
    bf16=True,
    report_to="wandb",
)

# Create DPO trainer
dpo_trainer = DPOTrainer(
    model,
    ref_model,
    args=training_args,
    train_dataset=dataset,
    tokenizer=tokenizer,
    peft_config=peft_config,
    beta=0.1,
    force_use_ref_model=True
)

# Fine-tune model with DPO
dpo_trainer.train()