File size: 5,506 Bytes
d622f9b
 
 
 
 
 
 
 
 
4883a2d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d622f9b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
---
license: mit
base_model: microsoft/Phi-3-medium-128k-instruct
tags:
- generated_from_trainer
model-index:
- name: outputs/phi3-medium-128k-14b.8e6
  results: []
---
**Exllamav2** quant (**exl2** / **3.75 bpw**) made with ExLlamaV2 v0.0.21

Other EXL2 quants:
| **Quant** | **Model Size** | **lm_head** |
| ----- | ---------- | ------- |
|<center>**[2.2](https://huggingface.co/Zoyd/shisa-ai_shisa-v1-phi3-14b-2_2bpw_exl2)**</center> | <center>4032 MB</center> | <center>6</center> |
|<center>**[2.5](https://huggingface.co/Zoyd/shisa-ai_shisa-v1-phi3-14b-2_5bpw_exl2)**</center> | <center>4500 MB</center> | <center>6</center> |
|<center>**[3.0](https://huggingface.co/Zoyd/shisa-ai_shisa-v1-phi3-14b-3_0bpw_exl2)**</center> | <center>5312 MB</center> | <center>6</center> |
|<center>**[3.5](https://huggingface.co/Zoyd/shisa-ai_shisa-v1-phi3-14b-3_5bpw_exl2)**</center> | <center>6124 MB</center> | <center>6</center> |
|<center>**[3.75](https://huggingface.co/Zoyd/shisa-ai_shisa-v1-phi3-14b-3_75bpw_exl2)**</center> | <center>6531 MB</center> | <center>6</center> |
|<center>**[4.0](https://huggingface.co/Zoyd/shisa-ai_shisa-v1-phi3-14b-4_0bpw_exl2)**</center> | <center>6937 MB</center> | <center>6</center> |
|<center>**[4.25](https://huggingface.co/Zoyd/shisa-ai_shisa-v1-phi3-14b-4_25bpw_exl2)**</center> | <center>7340 MB</center> | <center>6</center> |
|<center>**[5.0](https://huggingface.co/Zoyd/shisa-ai_shisa-v1-phi3-14b-5_0bpw_exl2)**</center> | <center>8554 MB</center> | <center>6</center> |
|<center>**[6.0](https://huggingface.co/Zoyd/shisa-ai_shisa-v1-phi3-14b-6_0bpw_exl2)**</center> | <center>10210 MB</center> | <center>8</center> |
|<center>**[6.5](https://huggingface.co/Zoyd/shisa-ai_shisa-v1-phi3-14b-6_5bpw_exl2)**</center> | <center>11018 MB</center> | <center>8</center> |
|<center>**[8.0](https://huggingface.co/Zoyd/shisa-ai_shisa-v1-phi3-14b-8_0bpw_exl2)**</center> | <center>12332 MB</center> | <center>8</center> |


<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
<details><summary>See axolotl config</summary>

axolotl version: `0.4.0`
```yaml
base_model: microsoft/Phi-3-medium-128k-instruct
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
trust_remote_code: true

load_in_8bit: false
load_in_4bit: false
strict: false

use_wandb: true
wandb_project: shisa-v2
wandb_entity: augmxnt
wandb_name: shisa-llama3-70b-v1.8e6

chat_template: chatml
datasets:
  - path: augmxnt/ultra-orca-boros-en-ja-v1
    type: sharegpt
dataset_prepared_path: last_run_prepared
val_set_size: 0.05
output_dir: ./outputs/phi3-medium-128k-14b.8e6

sequence_len: 4096
sample_packing: true
pad_to_sequence_len: true
neftune_noise_alpha: 5

gradient_accumulation_steps: 4
micro_batch_size: 2
num_epochs: 3
optimizer: paged_adamw_8bit
adam_beta2: 0.95
adam_epsilon: 0.00001
max_grad_norm: 1.0
lr_scheduler: linear
learning_rate: 0.000008

train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: true

gradient_checkpointing: true
gradient_checkpointing_kwargs:
  use_reentrant: True
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true

warmup_steps: 100
evals_per_epoch: 4
saves_per_epoch: 1
debug:
deepspeed: axolotl/deepspeed_configs/zero3_bf16.json
weight_decay: 0.1
fsdp:
fsdp_config:
resize_token_embeddings_to_32x: true
special_tokens:
  pad_token: "<|endoftext|>"

```

</details><br>

# outputs/phi3-medium-128k-14b.8e6

This model is a fine-tuned version of [microsoft/Phi-3-medium-128k-instruct](https://huggingface.co/microsoft/Phi-3-medium-128k-instruct) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3339

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 8e-06
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- total_eval_batch_size: 16
- optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-05
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 3

### Training results

| Training Loss | Epoch  | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 2.8309        | 0.0021 | 1    | 2.3406          |
| 0.7688        | 0.2513 | 121  | 0.4958          |
| 0.6435        | 0.5026 | 242  | 0.3830          |
| 0.5286        | 0.7539 | 363  | 0.3626          |
| 0.5559        | 1.0052 | 484  | 0.3549          |
| 0.4651        | 1.2425 | 605  | 0.3486          |
| 0.5294        | 1.4938 | 726  | 0.3432          |
| 0.5453        | 1.7451 | 847  | 0.3392          |
| 0.5258        | 1.9964 | 968  | 0.3376          |
| 0.4805        | 2.2331 | 1089 | 0.3357          |
| 0.4552        | 2.4844 | 1210 | 0.3352          |
| 0.5358        | 2.7357 | 1331 | 0.3339          |


### Framework versions

- Transformers 4.40.2
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1