File size: 5,506 Bytes
d622f9b 4883a2d d622f9b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 |
---
license: mit
base_model: microsoft/Phi-3-medium-128k-instruct
tags:
- generated_from_trainer
model-index:
- name: outputs/phi3-medium-128k-14b.8e6
results: []
---
**Exllamav2** quant (**exl2** / **3.75 bpw**) made with ExLlamaV2 v0.0.21
Other EXL2 quants:
| **Quant** | **Model Size** | **lm_head** |
| ----- | ---------- | ------- |
|<center>**[2.2](https://huggingface.co/Zoyd/shisa-ai_shisa-v1-phi3-14b-2_2bpw_exl2)**</center> | <center>4032 MB</center> | <center>6</center> |
|<center>**[2.5](https://huggingface.co/Zoyd/shisa-ai_shisa-v1-phi3-14b-2_5bpw_exl2)**</center> | <center>4500 MB</center> | <center>6</center> |
|<center>**[3.0](https://huggingface.co/Zoyd/shisa-ai_shisa-v1-phi3-14b-3_0bpw_exl2)**</center> | <center>5312 MB</center> | <center>6</center> |
|<center>**[3.5](https://huggingface.co/Zoyd/shisa-ai_shisa-v1-phi3-14b-3_5bpw_exl2)**</center> | <center>6124 MB</center> | <center>6</center> |
|<center>**[3.75](https://huggingface.co/Zoyd/shisa-ai_shisa-v1-phi3-14b-3_75bpw_exl2)**</center> | <center>6531 MB</center> | <center>6</center> |
|<center>**[4.0](https://huggingface.co/Zoyd/shisa-ai_shisa-v1-phi3-14b-4_0bpw_exl2)**</center> | <center>6937 MB</center> | <center>6</center> |
|<center>**[4.25](https://huggingface.co/Zoyd/shisa-ai_shisa-v1-phi3-14b-4_25bpw_exl2)**</center> | <center>7340 MB</center> | <center>6</center> |
|<center>**[5.0](https://huggingface.co/Zoyd/shisa-ai_shisa-v1-phi3-14b-5_0bpw_exl2)**</center> | <center>8554 MB</center> | <center>6</center> |
|<center>**[6.0](https://huggingface.co/Zoyd/shisa-ai_shisa-v1-phi3-14b-6_0bpw_exl2)**</center> | <center>10210 MB</center> | <center>8</center> |
|<center>**[6.5](https://huggingface.co/Zoyd/shisa-ai_shisa-v1-phi3-14b-6_5bpw_exl2)**</center> | <center>11018 MB</center> | <center>8</center> |
|<center>**[8.0](https://huggingface.co/Zoyd/shisa-ai_shisa-v1-phi3-14b-8_0bpw_exl2)**</center> | <center>12332 MB</center> | <center>8</center> |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.0`
```yaml
base_model: microsoft/Phi-3-medium-128k-instruct
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
trust_remote_code: true
load_in_8bit: false
load_in_4bit: false
strict: false
use_wandb: true
wandb_project: shisa-v2
wandb_entity: augmxnt
wandb_name: shisa-llama3-70b-v1.8e6
chat_template: chatml
datasets:
- path: augmxnt/ultra-orca-boros-en-ja-v1
type: sharegpt
dataset_prepared_path: last_run_prepared
val_set_size: 0.05
output_dir: ./outputs/phi3-medium-128k-14b.8e6
sequence_len: 4096
sample_packing: true
pad_to_sequence_len: true
neftune_noise_alpha: 5
gradient_accumulation_steps: 4
micro_batch_size: 2
num_epochs: 3
optimizer: paged_adamw_8bit
adam_beta2: 0.95
adam_epsilon: 0.00001
max_grad_norm: 1.0
lr_scheduler: linear
learning_rate: 0.000008
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: true
gradient_checkpointing: true
gradient_checkpointing_kwargs:
use_reentrant: True
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps: 100
evals_per_epoch: 4
saves_per_epoch: 1
debug:
deepspeed: axolotl/deepspeed_configs/zero3_bf16.json
weight_decay: 0.1
fsdp:
fsdp_config:
resize_token_embeddings_to_32x: true
special_tokens:
pad_token: "<|endoftext|>"
```
</details><br>
# outputs/phi3-medium-128k-14b.8e6
This model is a fine-tuned version of [microsoft/Phi-3-medium-128k-instruct](https://huggingface.co/microsoft/Phi-3-medium-128k-instruct) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3339
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 8e-06
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- total_eval_batch_size: 16
- optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-05
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 2.8309 | 0.0021 | 1 | 2.3406 |
| 0.7688 | 0.2513 | 121 | 0.4958 |
| 0.6435 | 0.5026 | 242 | 0.3830 |
| 0.5286 | 0.7539 | 363 | 0.3626 |
| 0.5559 | 1.0052 | 484 | 0.3549 |
| 0.4651 | 1.2425 | 605 | 0.3486 |
| 0.5294 | 1.4938 | 726 | 0.3432 |
| 0.5453 | 1.7451 | 847 | 0.3392 |
| 0.5258 | 1.9964 | 968 | 0.3376 |
| 0.4805 | 2.2331 | 1089 | 0.3357 |
| 0.4552 | 2.4844 | 1210 | 0.3352 |
| 0.5358 | 2.7357 | 1331 | 0.3339 |
### Framework versions
- Transformers 4.40.2
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1
|