File size: 1,392 Bytes
b81a4df
 
830102c
 
 
 
 
b81a4df
cd7af0e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
---
license: cc-by-nc-4.0
language:
  - gsw
  - multilingual
widget:
  - text: "Hinder s'Hans-Heiris Huus hani hundert Hase ghöre hueschte."
---

The [**google/canine-s**](https://huggingface.co/google/canine-s) model ([Clark et al., TACL 2022](https://aclanthology.org/2022.tacl-1.5/)) trained on Swiss German text data via continued pre-training.

## Training Objective
We used the CANINE-S objective combined with the subword vocabulary of [SwissBERT](https://huggingface.co/ZurichNLP/swissbert).

## Training Data
For continued pre-training, we used the following two datasets of written Swiss German:
1. [SwissCrawl](https://icosys.ch/swisscrawl) ([Linder et al., LREC 2020](https://aclanthology.org/2020.lrec-1.329)), a collection of Swiss German web text (forum discussions, social media).
2. A custom dataset of Swiss German tweets

In addition, we trained the model on an equal amount of Standard German data. We used news articles retrieved from [Swissdox@LiRI](https://t.uzh.ch/1hI).

## License
Attribution-NonCommercial 4.0 International (CC BY-NC 4.0).

## Citation
```bibtex
@inproceedings{vamvas-etal-2024-modular,
      title={Modular Adaptation of Multilingual Encoders to Written Swiss German Dialect},
      author={Jannis Vamvas and No{\"e}mi Aepli and Rico Sennrich},
      booktitle={First Workshop on Modular and Open Multilingual NLP},
      year={2024},
}
```