AnyText / original /ms_wrapper.py
a-r-r-o-w's picture
a-r-r-o-w HF staff
add original
9c3e26d
'''
AnyText: Multilingual Visual Text Generation And Editing
Paper: https://arxiv.org/abs/2311.03054
Code: https://github.com/tyxsspa/AnyText
Copyright (c) Alibaba, Inc. and its affiliates.
'''
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
import torch
import random
import re
import numpy as np
import cv2
import einops
import time
from PIL import ImageFont
from cldm.model import create_model, load_state_dict
from cldm.ddim_hacked import DDIMSampler
from t3_dataset import draw_glyph, draw_glyph2
from util import check_channels, resize_image, save_images
from pytorch_lightning import seed_everything
from modelscope.pipelines import pipeline
from modelscope.utils.constant import Tasks
from modelscope.models.base import TorchModel
from modelscope.preprocessors.base import Preprocessor
from modelscope.pipelines.base import Model, Pipeline
from modelscope.utils.config import Config
from modelscope.pipelines.builder import PIPELINES
from modelscope.preprocessors.builder import PREPROCESSORS
from modelscope.models.builder import MODELS
from bert_tokenizer import BasicTokenizer
checker = BasicTokenizer()
BBOX_MAX_NUM = 8
PLACE_HOLDER = '*'
max_chars = 20
@MODELS.register_module('my-anytext-task', module_name='my-custom-model')
class MyCustomModel(TorchModel):
def __init__(self, model_dir, *args, **kwargs):
super().__init__(model_dir, *args, **kwargs)
self.init_model(**kwargs)
'''
return:
result: list of images in numpy.ndarray format
rst_code: 0: normal -1: error 1:warning
rst_info: string of error or warning
debug_info: string for debug, only valid if show_debug=True
'''
def forward(self, input_tensor, **forward_params):
tic = time.time()
str_warning = ''
# get inputs
seed = input_tensor.get('seed', -1)
if seed == -1:
seed = random.randint(0, 99999999)
seed_everything(seed)
prompt = input_tensor.get('prompt')
draw_pos = input_tensor.get('draw_pos')
ori_image = input_tensor.get('ori_image')
mode = forward_params.get('mode')
sort_priority = forward_params.get('sort_priority', '↕')
show_debug = forward_params.get('show_debug', False)
revise_pos = forward_params.get('revise_pos', False)
img_count = forward_params.get('image_count', 4)
ddim_steps = forward_params.get('ddim_steps', 20)
w = forward_params.get('image_width', 512)
h = forward_params.get('image_height', 512)
strength = forward_params.get('strength', 1.0)
cfg_scale = forward_params.get('cfg_scale', 9.0)
eta = forward_params.get('eta', 0.0)
a_prompt = forward_params.get('a_prompt', 'best quality, extremely detailed,4k, HD, supper legible text, clear text edges, clear strokes, neat writing, no watermarks')
n_prompt = forward_params.get('n_prompt', 'low-res, bad anatomy, extra digit, fewer digits, cropped, worst quality, low quality, watermark, unreadable text, messy words, distorted text, disorganized writing, advertising picture')
prompt, texts = self.modify_prompt(prompt)
n_lines = len(texts)
if mode in ['text-generation', 'gen']:
edit_image = np.ones((h, w, 3)) * 127.5 # empty mask image
elif mode in ['text-editing', 'edit']:
if draw_pos is None or ori_image is None:
return None, -1, "Reference image and position image are needed for text editing!", ""
if isinstance(ori_image, str):
ori_image = cv2.imread(ori_image)[..., ::-1]
assert ori_image is not None, f"Can't read ori_image image from{ori_image}!"
elif isinstance(ori_image, torch.Tensor):
ori_image = ori_image.cpu().numpy()
else:
assert isinstance(ori_image, np.ndarray), f'Unknown format of ori_image: {type(ori_image)}'
edit_image = ori_image.clip(1, 255) # for mask reason
edit_image = check_channels(edit_image)
edit_image = resize_image(edit_image, max_length=768) # make w h multiple of 64, resize if w or h > max_length
h, w = edit_image.shape[:2] # change h, w by input ref_img
# preprocess pos_imgs(if numpy, make sure it's white pos in black bg)
if draw_pos is None:
pos_imgs = np.zeros((w, h, 1))
if isinstance(draw_pos, str):
draw_pos = cv2.imread(draw_pos)[..., ::-1]
assert draw_pos is not None, f"Can't read draw_pos image from{draw_pos}!"
pos_imgs = 255-draw_pos
elif isinstance(draw_pos, torch.Tensor):
pos_imgs = draw_pos.cpu().numpy()
else:
assert isinstance(draw_pos, np.ndarray), f'Unknown format of draw_pos: {type(draw_pos)}'
pos_imgs = pos_imgs[..., 0:1]
pos_imgs = cv2.convertScaleAbs(pos_imgs)
_, pos_imgs = cv2.threshold(pos_imgs, 254, 255, cv2.THRESH_BINARY)
# seprate pos_imgs
pos_imgs = self.separate_pos_imgs(pos_imgs, sort_priority)
if len(pos_imgs) == 0:
pos_imgs = [np.zeros((h, w, 1))]
if len(pos_imgs) < n_lines:
if n_lines == 1 and texts[0] == ' ':
pass # text-to-image without text
else:
return None, -1, f'Found {len(pos_imgs)} positions that < needed {n_lines} from prompt, check and try again!', ''
elif len(pos_imgs) > n_lines:
str_warning = f'Warning: found {len(pos_imgs)} positions that > needed {n_lines} from prompt.'
# get pre_pos, poly_list, hint that needed for anytext
pre_pos = []
poly_list = []
for input_pos in pos_imgs:
if input_pos.mean() != 0:
input_pos = input_pos[..., np.newaxis] if len(input_pos.shape) == 2 else input_pos
poly, pos_img = self.find_polygon(input_pos)
pre_pos += [pos_img/255.]
poly_list += [poly]
else:
pre_pos += [np.zeros((h, w, 1))]
poly_list += [None]
np_hint = np.sum(pre_pos, axis=0).clip(0, 1)
# prepare info dict
info = {}
info['glyphs'] = []
info['gly_line'] = []
info['positions'] = []
info['n_lines'] = [len(texts)]*img_count
gly_pos_imgs = []
for i in range(len(texts)):
text = texts[i]
if len(text) > max_chars:
str_warning = f'"{text}" length > max_chars: {max_chars}, will be cut off...'
text = text[:max_chars]
gly_scale = 2
if pre_pos[i].mean() != 0:
gly_line = draw_glyph(self.font, text)
glyphs = draw_glyph2(self.font, text, poly_list[i], scale=gly_scale, width=w, height=h, add_space=False)
gly_pos_img = cv2.drawContours(glyphs*255, [poly_list[i]*gly_scale], 0, (255, 255, 255), 1)
if revise_pos:
resize_gly = cv2.resize(glyphs, (pre_pos[i].shape[1], pre_pos[i].shape[0]))
new_pos = cv2.morphologyEx((resize_gly*255).astype(np.uint8), cv2.MORPH_CLOSE, kernel=np.ones((resize_gly.shape[0]//10, resize_gly.shape[1]//10), dtype=np.uint8), iterations=1)
new_pos = new_pos[..., np.newaxis] if len(new_pos.shape) == 2 else new_pos
contours, _ = cv2.findContours(new_pos, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
if len(contours) != 1:
str_warning = f'Fail to revise position {i} to bounding rect, remain position unchanged...'
else:
rect = cv2.minAreaRect(contours[0])
poly = np.int0(cv2.boxPoints(rect))
pre_pos[i] = cv2.drawContours(new_pos, [poly], -1, 255, -1) / 255.
gly_pos_img = cv2.drawContours(glyphs*255, [poly*gly_scale], 0, (255, 255, 255), 1)
gly_pos_imgs += [gly_pos_img] # for show
else:
glyphs = np.zeros((h*gly_scale, w*gly_scale, 1))
gly_line = np.zeros((80, 512, 1))
gly_pos_imgs += [np.zeros((h*gly_scale, w*gly_scale, 1))] # for show
pos = pre_pos[i]
info['glyphs'] += [self.arr2tensor(glyphs, img_count)]
info['gly_line'] += [self.arr2tensor(gly_line, img_count)]
info['positions'] += [self.arr2tensor(pos, img_count)]
# get masked_x
masked_img = ((edit_image.astype(np.float32) / 127.5) - 1.0)*(1-np_hint)
masked_img = np.transpose(masked_img, (2, 0, 1))
masked_img = torch.from_numpy(masked_img.copy()).float().cuda()
encoder_posterior = self.model.encode_first_stage(masked_img[None, ...])
masked_x = self.model.get_first_stage_encoding(encoder_posterior).detach()
info['masked_x'] = torch.cat([masked_x for _ in range(img_count)], dim=0)
hint = self.arr2tensor(np_hint, img_count)
cond = self.model.get_learned_conditioning(dict(c_concat=[hint], c_crossattn=[[prompt + ' , ' + a_prompt] * img_count], text_info=info))
un_cond = self.model.get_learned_conditioning(dict(c_concat=[hint], c_crossattn=[[n_prompt] * img_count], text_info=info))
shape = (4, h // 8, w // 8)
self.model.control_scales = ([strength] * 13)
samples, intermediates = self.ddim_sampler.sample(ddim_steps, img_count,
shape, cond, verbose=False, eta=eta,
unconditional_guidance_scale=cfg_scale,
unconditional_conditioning=un_cond)
x_samples = self.model.decode_first_stage(samples)
x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0, 255).astype(np.uint8)
results = [x_samples[i] for i in range(img_count)]
if mode == 'edit' and False: # replace backgound in text editing but not ideal yet
results = [r*np_hint+edit_image*(1-np_hint) for r in results]
results = [r.clip(0, 255).astype(np.uint8) for r in results]
if len(gly_pos_imgs) > 0 and show_debug:
glyph_bs = np.stack(gly_pos_imgs, axis=2)
glyph_img = np.sum(glyph_bs, axis=2) * 255
glyph_img = glyph_img.clip(0, 255).astype(np.uint8)
results += [np.repeat(glyph_img, 3, axis=2)]
# debug_info
if not show_debug:
debug_info = ''
else:
input_prompt = prompt
for t in texts:
input_prompt = input_prompt.replace('*', f'"{t}"', 1)
debug_info = f'<span style="color:black;font-size:18px">Prompt: </span>{input_prompt}<br> \
<span style="color:black;font-size:18px">Size: </span>{w}x{h}<br> \
<span style="color:black;font-size:18px">Image Count: </span>{img_count}<br> \
<span style="color:black;font-size:18px">Seed: </span>{seed}<br> \
<span style="color:black;font-size:18px">Cost Time: </span>{(time.time()-tic):.2f}s'
rst_code = 1 if str_warning else 0
return results, rst_code, str_warning, debug_info
def init_model(self, **kwargs):
font_path = kwargs.get('font_path', 'font/Arial_Unicode.ttf')
self.font = ImageFont.truetype(font_path, size=60)
cfg_path = kwargs.get('cfg_path', 'models_yaml/anytext_sd15.yaml')
ckpt_path = kwargs.get('model_path', os.path.join(self.model_dir, 'anytext_v1.1.ckpt'))
clip_path = os.path.join(self.model_dir, 'clip-vit-large-patch14')
self.model = create_model(cfg_path, cond_stage_path=clip_path).cuda().eval()
self.model.load_state_dict(load_state_dict(ckpt_path, location='cuda'), strict=False)
self.ddim_sampler = DDIMSampler(self.model)
self.trans_pipe = pipeline(task=Tasks.translation, model=os.path.join(self.model_dir, 'nlp_csanmt_translation_zh2en'))
def modify_prompt(self, prompt):
prompt = prompt.replace('“', '"')
prompt = prompt.replace('”', '"')
p = '"(.*?)"'
strs = re.findall(p, prompt)
if len(strs) == 0:
strs = [' ']
else:
for s in strs:
prompt = prompt.replace(f'"{s}"', f' {PLACE_HOLDER} ', 1)
if self.is_chinese(prompt):
old_prompt = prompt
prompt = self.trans_pipe(input=prompt + ' .')['translation'][:-1]
print(f'Translate: {old_prompt} --> {prompt}')
return prompt, strs
def is_chinese(self, text):
text = checker._clean_text(text)
for char in text:
cp = ord(char)
if checker._is_chinese_char(cp):
return True
return False
def separate_pos_imgs(self, img, sort_priority, gap=102):
num_labels, labels, stats, centroids = cv2.connectedComponentsWithStats(img)
components = []
for label in range(1, num_labels):
component = np.zeros_like(img)
component[labels == label] = 255
components.append((component, centroids[label]))
if sort_priority == '↕':
fir, sec = 1, 0 # top-down first
elif sort_priority == '↔':
fir, sec = 0, 1 # left-right first
components.sort(key=lambda c: (c[1][fir]//gap, c[1][sec]//gap))
sorted_components = [c[0] for c in components]
return sorted_components
def find_polygon(self, image, min_rect=False):
contours, hierarchy = cv2.findContours(image, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
max_contour = max(contours, key=cv2.contourArea) # get contour with max area
if min_rect:
# get minimum enclosing rectangle
rect = cv2.minAreaRect(max_contour)
poly = np.int0(cv2.boxPoints(rect))
else:
# get approximate polygon
epsilon = 0.01 * cv2.arcLength(max_contour, True)
poly = cv2.approxPolyDP(max_contour, epsilon, True)
n, _, xy = poly.shape
poly = poly.reshape(n, xy)
cv2.drawContours(image, [poly], -1, 255, -1)
return poly, image
def arr2tensor(self, arr, bs):
arr = np.transpose(arr, (2, 0, 1))
_arr = torch.from_numpy(arr.copy()).float().cuda()
_arr = torch.stack([_arr for _ in range(bs)], dim=0)
return _arr
@PREPROCESSORS.register_module('my-anytext-task', module_name='my-custom-preprocessor')
class MyCustomPreprocessor(Preprocessor):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.trainsforms = self.init_preprocessor(**kwargs)
def __call__(self, results):
return self.trainsforms(results)
def init_preprocessor(self, **kwarg):
""" Provide default implementation based on preprocess_cfg and user can reimplement it.
if nothing to do, then return lambda x: x
"""
return lambda x: x
@PIPELINES.register_module('my-anytext-task', module_name='my-custom-pipeline')
class MyCustomPipeline(Pipeline):
""" Give simple introduction to this pipeline.
Examples:
>>> from modelscope.pipelines import pipeline
>>> input = "Hello, ModelScope!"
>>> my_pipeline = pipeline('my-task', 'my-model-id')
>>> result = my_pipeline(input)
"""
def __init__(self, model, preprocessor=None, **kwargs):
super().__init__(model=model, auto_collate=False)
assert isinstance(model, str) or isinstance(model, Model), \
'model must be a single str or Model'
pipe_model = self.model
pipe_model.eval()
if preprocessor is None:
preprocessor = MyCustomPreprocessor()
super().__init__(model=pipe_model, preprocessor=preprocessor, **kwargs)
def _sanitize_parameters(self, **pipeline_parameters):
return {}, pipeline_parameters, {}
def _check_input(self, inputs):
pass
def _check_output(self, outputs):
pass
def forward(self, inputs, **forward_params):
return super().forward(inputs, **forward_params)
def postprocess(self, inputs):
return inputs
usr_config_path = 'models'
config = Config({
"framework": 'pytorch',
"task": 'my-anytext-task',
"model": {'type': 'my-custom-model'},
"pipeline": {"type": "my-custom-pipeline"},
"allow_remote": True
})
# config.dump('models/' + 'configuration.json')
if __name__ == "__main__":
img_save_folder = "SaveImages"
inference = pipeline('my-anytext-task', model=usr_config_path)
params = {
"show_debug": True,
"image_count": 2,
"ddim_steps": 20,
}
# 1. text generation
mode = 'text-generation'
input_data = {
"prompt": 'photo of caramel macchiato coffee on the table, top-down perspective, with "Any" "Text" written on it using cream',
"seed": 66273235,
"draw_pos": 'example_images/gen9.png'
}
results, rtn_code, rtn_warning, debug_info = inference(input_data, mode=mode, **params)
if rtn_code >= 0:
save_images(results, img_save_folder)
# 2. text editing
mode = 'text-editing'
input_data = {
"prompt": 'A cake with colorful characters that reads "EVERYDAY"',
"seed": 8943410,
"draw_pos": 'example_images/edit7.png',
"ori_image": 'example_images/ref7.jpg'
}
results, rtn_code, rtn_warning, debug_info = inference(input_data, mode=mode, **params)
if rtn_code >= 0:
save_images(results, img_save_folder)
print(f'Done, result images are saved in: {img_save_folder}')