aaa12963337 commited on
Commit
fa80ada
1 Parent(s): 01dd590

End of training

Browse files
Files changed (2) hide show
  1. README.md +9 -9
  2. model.safetensors +1 -1
README.md CHANGED
@@ -22,7 +22,7 @@ model-index:
22
  metrics:
23
  - name: Accuracy
24
  type: accuracy
25
- value: 0.7247910863509749
26
  ---
27
 
28
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -32,8 +32,8 @@ should probably proofread and complete it, then remove this comment. -->
32
 
33
  This model is a fine-tuned version of [microsoft/swinv2-tiny-patch4-window8-256](https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256) on the imagefolder dataset.
34
  It achieves the following results on the evaluation set:
35
- - Loss: 3.0045
36
- - Accuracy: 0.7248
37
 
38
  ## Model description
39
 
@@ -53,11 +53,11 @@ More information needed
53
 
54
  The following hyperparameters were used during training:
55
  - learning_rate: 5e-05
56
- - train_batch_size: 128
57
- - eval_batch_size: 128
58
  - seed: 42
59
  - gradient_accumulation_steps: 4
60
- - total_train_batch_size: 512
61
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
62
  - lr_scheduler_type: linear
63
  - lr_scheduler_warmup_ratio: 0.1
@@ -67,9 +67,9 @@ The following hyperparameters were used during training:
67
 
68
  | Training Loss | Epoch | Step | Validation Loss | Accuracy |
69
  |:-------------:|:-----:|:----:|:---------------:|:--------:|
70
- | 0.182 | 1.0 | 195 | -0.8006 | 0.7227 |
71
- | 0.1055 | 2.0 | 391 | -1.0724 | 0.7400 |
72
- | 0.0931 | 2.99 | 585 | 3.0045 | 0.7248 |
73
 
74
 
75
  ### Framework versions
 
22
  metrics:
23
  - name: Accuracy
24
  type: accuracy
25
+ value: 0.9233983286908078
26
  ---
27
 
28
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
32
 
33
  This model is a fine-tuned version of [microsoft/swinv2-tiny-patch4-window8-256](https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256) on the imagefolder dataset.
34
  It achieves the following results on the evaluation set:
35
+ - Loss: 0.3754
36
+ - Accuracy: 0.9234
37
 
38
  ## Model description
39
 
 
53
 
54
  The following hyperparameters were used during training:
55
  - learning_rate: 5e-05
56
+ - train_batch_size: 16
57
+ - eval_batch_size: 16
58
  - seed: 42
59
  - gradient_accumulation_steps: 4
60
+ - total_train_batch_size: 64
61
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
62
  - lr_scheduler_type: linear
63
  - lr_scheduler_warmup_ratio: 0.1
 
67
 
68
  | Training Loss | Epoch | Step | Validation Loss | Accuracy |
69
  |:-------------:|:-----:|:----:|:---------------:|:--------:|
70
+ | 0.0776 | 1.0 | 1562 | 0.2637 | 0.9251 |
71
+ | 0.0241 | 2.0 | 3125 | 0.3806 | 0.9213 |
72
+ | 0.0367 | 3.0 | 4686 | 0.3754 | 0.9234 |
73
 
74
 
75
  ### Framework versions
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:3c45b9009043eea3acfda99353da5a722eb719cc61e14be5ba9136974c0115ea
3
  size 110371676
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:580d2f27d23634c0f75781261cf0abd5035a872c98da0b098278ebc6e2527c9f
3
  size 110371676