--- license: apache-2.0 base_model: WinKawaks/vit-small-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: msi-vit-small-pretrain results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: validation args: default metrics: - name: Accuracy type: accuracy value: 0.6280752026838132 --- # msi-vit-small-pretrain This model is a fine-tuned version of [WinKawaks/vit-small-patch16-224](https://huggingface.co/WinKawaks/vit-small-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 2.9496 - Accuracy: 0.6281 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.1838 | 1.0 | 1008 | 1.0518 | 0.6251 | | 0.1096 | 2.0 | 2016 | 1.2599 | 0.6535 | | 0.0547 | 3.0 | 3024 | 1.9005 | 0.6331 | | 0.0415 | 4.0 | 4032 | 2.5122 | 0.6327 | | 0.0163 | 5.0 | 5040 | 2.9496 | 0.6281 | ### Framework versions - Transformers 4.36.0 - Pytorch 2.0.1+cu117 - Datasets 2.15.0 - Tokenizers 0.15.0