update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,117 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
model-index:
|
6 |
+
- name: wav2vec2-xlsr-1b-finnish-v2
|
7 |
+
results: []
|
8 |
+
---
|
9 |
+
|
10 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
11 |
+
should probably proofread and complete it, then remove this comment. -->
|
12 |
+
|
13 |
+
# wav2vec2-xlsr-1b-finnish-v2
|
14 |
+
|
15 |
+
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the None dataset.
|
16 |
+
It achieves the following results on the evaluation set:
|
17 |
+
- Loss: 0.0737
|
18 |
+
- Wer: 0.0975
|
19 |
+
|
20 |
+
## Model description
|
21 |
+
|
22 |
+
More information needed
|
23 |
+
|
24 |
+
## Intended uses & limitations
|
25 |
+
|
26 |
+
More information needed
|
27 |
+
|
28 |
+
## Training and evaluation data
|
29 |
+
|
30 |
+
More information needed
|
31 |
+
|
32 |
+
## Training procedure
|
33 |
+
|
34 |
+
### Training hyperparameters
|
35 |
+
|
36 |
+
The following hyperparameters were used during training:
|
37 |
+
- learning_rate: 5e-05
|
38 |
+
- train_batch_size: 32
|
39 |
+
- eval_batch_size: 8
|
40 |
+
- seed: 42
|
41 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
42 |
+
- lr_scheduler_type: linear
|
43 |
+
- lr_scheduler_warmup_steps: 500
|
44 |
+
- num_epochs: 10
|
45 |
+
- mixed_precision_training: Native AMP
|
46 |
+
|
47 |
+
### Training results
|
48 |
+
|
49 |
+
| Training Loss | Epoch | Step | Validation Loss | Wer |
|
50 |
+
|:-------------:|:-----:|:-----:|:---------------:|:------:|
|
51 |
+
| 0.7778 | 0.17 | 500 | 0.2851 | 0.3572 |
|
52 |
+
| 0.5506 | 0.34 | 1000 | 0.1595 | 0.2130 |
|
53 |
+
| 0.6569 | 0.5 | 1500 | 0.1458 | 0.2046 |
|
54 |
+
| 0.5997 | 0.67 | 2000 | 0.1374 | 0.1975 |
|
55 |
+
| 0.542 | 0.84 | 2500 | 0.1390 | 0.1956 |
|
56 |
+
| 0.4815 | 1.01 | 3000 | 0.1266 | 0.1813 |
|
57 |
+
| 0.6982 | 1.17 | 3500 | 0.1441 | 0.1965 |
|
58 |
+
| 0.4522 | 1.34 | 4000 | 0.1232 | 0.1822 |
|
59 |
+
| 0.4655 | 1.51 | 4500 | 0.1209 | 0.1702 |
|
60 |
+
| 0.4069 | 1.68 | 5000 | 0.1149 | 0.1688 |
|
61 |
+
| 0.4226 | 1.84 | 5500 | 0.1121 | 0.1560 |
|
62 |
+
| 0.3993 | 2.01 | 6000 | 0.1091 | 0.1557 |
|
63 |
+
| 0.406 | 2.18 | 6500 | 0.1115 | 0.1553 |
|
64 |
+
| 0.4098 | 2.35 | 7000 | 0.1144 | 0.1560 |
|
65 |
+
| 0.3995 | 2.51 | 7500 | 0.1028 | 0.1476 |
|
66 |
+
| 0.4101 | 2.68 | 8000 | 0.1129 | 0.1511 |
|
67 |
+
| 0.3636 | 2.85 | 8500 | 0.1025 | 0.1517 |
|
68 |
+
| 0.3534 | 3.02 | 9000 | 0.1068 | 0.1480 |
|
69 |
+
| 0.3836 | 3.18 | 9500 | 0.1072 | 0.1459 |
|
70 |
+
| 0.3531 | 3.35 | 10000 | 0.0928 | 0.1367 |
|
71 |
+
| 0.3649 | 3.52 | 10500 | 0.1042 | 0.1426 |
|
72 |
+
| 0.3645 | 3.69 | 11000 | 0.0979 | 0.1433 |
|
73 |
+
| 0.3685 | 3.85 | 11500 | 0.0947 | 0.1346 |
|
74 |
+
| 0.3325 | 4.02 | 12000 | 0.0991 | 0.1352 |
|
75 |
+
| 0.3497 | 4.19 | 12500 | 0.0919 | 0.1358 |
|
76 |
+
| 0.3303 | 4.36 | 13000 | 0.0888 | 0.1272 |
|
77 |
+
| 0.3323 | 4.52 | 13500 | 0.0888 | 0.1277 |
|
78 |
+
| 0.3452 | 4.69 | 14000 | 0.0894 | 0.1279 |
|
79 |
+
| 0.337 | 4.86 | 14500 | 0.0917 | 0.1289 |
|
80 |
+
| 0.3114 | 5.03 | 15000 | 0.0942 | 0.1313 |
|
81 |
+
| 0.3099 | 5.19 | 15500 | 0.0902 | 0.1239 |
|
82 |
+
| 0.3079 | 5.36 | 16000 | 0.0871 | 0.1256 |
|
83 |
+
| 0.3293 | 5.53 | 16500 | 0.0861 | 0.1263 |
|
84 |
+
| 0.3123 | 5.7 | 17000 | 0.0876 | 0.1203 |
|
85 |
+
| 0.3093 | 5.86 | 17500 | 0.0848 | 0.1226 |
|
86 |
+
| 0.2903 | 6.03 | 18000 | 0.0914 | 0.1221 |
|
87 |
+
| 0.297 | 6.2 | 18500 | 0.0841 | 0.1185 |
|
88 |
+
| 0.2797 | 6.37 | 19000 | 0.0858 | 0.1165 |
|
89 |
+
| 0.2878 | 6.53 | 19500 | 0.0874 | 0.1161 |
|
90 |
+
| 0.2974 | 6.7 | 20000 | 0.0835 | 0.1173 |
|
91 |
+
| 0.3051 | 6.87 | 20500 | 0.0835 | 0.1178 |
|
92 |
+
| 0.2941 | 7.04 | 21000 | 0.0852 | 0.1155 |
|
93 |
+
| 0.258 | 7.21 | 21500 | 0.0832 | 0.1132 |
|
94 |
+
| 0.2778 | 7.37 | 22000 | 0.0829 | 0.1110 |
|
95 |
+
| 0.2751 | 7.54 | 22500 | 0.0822 | 0.1069 |
|
96 |
+
| 0.2887 | 7.71 | 23000 | 0.0819 | 0.1103 |
|
97 |
+
| 0.2509 | 7.88 | 23500 | 0.0787 | 0.1055 |
|
98 |
+
| 0.2501 | 8.04 | 24000 | 0.0807 | 0.1076 |
|
99 |
+
| 0.2399 | 8.21 | 24500 | 0.0784 | 0.1052 |
|
100 |
+
| 0.2539 | 8.38 | 25000 | 0.0772 | 0.1075 |
|
101 |
+
| 0.248 | 8.55 | 25500 | 0.0772 | 0.1055 |
|
102 |
+
| 0.2689 | 8.71 | 26000 | 0.0763 | 0.1027 |
|
103 |
+
| 0.2855 | 8.88 | 26500 | 0.0756 | 0.1035 |
|
104 |
+
| 0.2421 | 9.05 | 27000 | 0.0771 | 0.0998 |
|
105 |
+
| 0.2497 | 9.22 | 27500 | 0.0756 | 0.0971 |
|
106 |
+
| 0.2367 | 9.38 | 28000 | 0.0741 | 0.0974 |
|
107 |
+
| 0.2473 | 9.55 | 28500 | 0.0739 | 0.0982 |
|
108 |
+
| 0.2396 | 9.72 | 29000 | 0.0756 | 0.0991 |
|
109 |
+
| 0.2602 | 9.89 | 29500 | 0.0737 | 0.0975 |
|
110 |
+
|
111 |
+
|
112 |
+
### Framework versions
|
113 |
+
|
114 |
+
- Transformers 4.17.0.dev0
|
115 |
+
- Pytorch 1.10.2+cu102
|
116 |
+
- Datasets 1.18.3
|
117 |
+
- Tokenizers 0.11.0
|