File size: 13,768 Bytes
6fa5e3d
1
2
{"env_info": "sys.platform: linux\nPython: 3.7.16 (default, Jan 17 2023, 22:20:44) [GCC 11.2.0]\nCUDA available: True\nGPU 0,1,2,3,4,5,6,7: NVIDIA A100-SXM4-80GB\nCUDA_HOME: /mnt/petrelfs/laizeqiang/miniconda3/envs/torch\nNVCC: Cuda compilation tools, release 11.6, V11.6.124\nGCC: gcc (GCC) 4.8.5 20150623 (Red Hat 4.8.5-44)\nPyTorch: 1.13.1\nPyTorch compiling details: PyTorch built with:\n  - GCC 9.3\n  - C++ Version: 201402\n  - Intel(R) oneAPI Math Kernel Library Version 2021.4-Product Build 20210904 for Intel(R) 64 architecture applications\n  - Intel(R) MKL-DNN v2.6.0 (Git Hash 52b5f107dd9cf10910aaa19cb47f3abf9b349815)\n  - OpenMP 201511 (a.k.a. OpenMP 4.5)\n  - LAPACK is enabled (usually provided by MKL)\n  - NNPACK is enabled\n  - CPU capability usage: AVX2\n  - CUDA Runtime 11.6\n  - NVCC architecture flags: -gencode;arch=compute_37,code=sm_37;-gencode;arch=compute_50,code=sm_50;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_61,code=sm_61;-gencode;arch=compute_70,code=sm_70;-gencode;arch=compute_75,code=sm_75;-gencode;arch=compute_80,code=sm_80;-gencode;arch=compute_86,code=sm_86;-gencode;arch=compute_37,code=compute_37\n  - CuDNN 8.3.2  (built against CUDA 11.5)\n  - Magma 2.6.1\n  - Build settings: BLAS_INFO=mkl, BUILD_TYPE=Release, CUDA_VERSION=11.6, CUDNN_VERSION=8.3.2, CXX_COMPILER=/opt/rh/devtoolset-9/root/usr/bin/c++, CXX_FLAGS= -fabi-version=11 -Wno-deprecated -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -fopenmp -DNDEBUG -DUSE_KINETO -DUSE_FBGEMM -DUSE_QNNPACK -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE -DEDGE_PROFILER_USE_KINETO -O2 -fPIC -Wno-narrowing -Wall -Wextra -Werror=return-type -Werror=non-virtual-dtor -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wunused-local-typedefs -Wno-unused-parameter -Wno-unused-function -Wno-unused-result -Wno-strict-overflow -Wno-strict-aliasing -Wno-error=deprecated-declarations -Wno-stringop-overflow -Wno-psabi -Wno-error=pedantic -Wno-error=redundant-decls -Wno-error=old-style-cast -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Werror=cast-function-type -Wno-stringop-overflow, LAPACK_INFO=mkl, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, PERF_WITH_AVX512=1, TORCH_VERSION=1.13.1, USE_CUDA=ON, USE_CUDNN=ON, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_MKL=ON, USE_MKLDNN=ON, USE_MPI=OFF, USE_NCCL=ON, USE_NNPACK=ON, USE_OPENMP=ON, USE_ROCM=OFF, \n\nTorchVision: 0.14.1\nOpenCV: 4.7.0\nMMCV: 1.7.1\nMMCV Compiler: GCC 9.3\nMMCV CUDA Compiler: 11.6\nMMSegmentation: 0.30.0+ad87029", "seed": 97773280, "exp_name": "segformer_mit_b2_segformer_head_unet_fc_single_step_ade_pretrained_freeze_embed_80k_ade20k151.py", "mmseg_version": "0.30.0+ad87029", "config": "norm_cfg = dict(type='SyncBN', requires_grad=True)\ncheckpoint = 'pretrained/segformer_mit-b2_512x512_160k_ade20k_20220620_114047-64e4feca.pth'\nmodel = dict(\n    type='EncoderDecoderFreeze',\n    freeze_parameters=['backbone', 'decode_head'],\n    pretrained=\n    'pretrained/segformer_mit-b2_512x512_160k_ade20k_20220620_114047-64e4feca.pth',\n    backbone=dict(\n        type='MixVisionTransformerCustomInitWeights',\n        in_channels=3,\n        embed_dims=64,\n        num_stages=4,\n        num_layers=[3, 4, 6, 3],\n        num_heads=[1, 2, 5, 8],\n        patch_sizes=[7, 3, 3, 3],\n        sr_ratios=[8, 4, 2, 1],\n        out_indices=(0, 1, 2, 3),\n        mlp_ratio=4,\n        qkv_bias=True,\n        drop_rate=0.0,\n        attn_drop_rate=0.0,\n        drop_path_rate=0.1,\n        pretrained=\n        'pretrained/segformer_mit-b2_512x512_160k_ade20k_20220620_114047-64e4feca.pth'\n    ),\n    decode_head=dict(\n        type='SegformerHeadUnetFCHeadSingleStep',\n        pretrained=\n        'pretrained/segformer_mit-b2_512x512_160k_ade20k_20220620_114047-64e4feca.pth',\n        dim=128,\n        out_dim=256,\n        unet_channels=272,\n        dim_mults=[1, 1, 1],\n        cat_embedding_dim=16,\n        in_channels=[64, 128, 320, 512],\n        in_index=[0, 1, 2, 3],\n        channels=256,\n        dropout_ratio=0.1,\n        num_classes=151,\n        norm_cfg=dict(type='SyncBN', requires_grad=True),\n        align_corners=False,\n        ignore_index=0,\n        loss_decode=dict(\n            type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)),\n    train_cfg=dict(),\n    test_cfg=dict(mode='whole'))\ndataset_type = 'ADE20K151Dataset'\ndata_root = 'data/ade/ADEChallengeData2016'\nimg_norm_cfg = dict(\n    mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)\ncrop_size = (512, 512)\ntrain_pipeline = [\n    dict(type='LoadImageFromFile'),\n    dict(type='LoadAnnotations', reduce_zero_label=False),\n    dict(type='Resize', img_scale=(2048, 512), ratio_range=(0.5, 2.0)),\n    dict(type='RandomCrop', crop_size=(512, 512), cat_max_ratio=0.75),\n    dict(type='RandomFlip', prob=0.5),\n    dict(type='PhotoMetricDistortion'),\n    dict(\n        type='Normalize',\n        mean=[123.675, 116.28, 103.53],\n        std=[58.395, 57.12, 57.375],\n        to_rgb=True),\n    dict(type='Pad', size=(512, 512), pad_val=0, seg_pad_val=0),\n    dict(type='DefaultFormatBundle'),\n    dict(type='Collect', keys=['img', 'gt_semantic_seg'])\n]\ntest_pipeline = [\n    dict(type='LoadImageFromFile'),\n    dict(\n        type='MultiScaleFlipAug',\n        img_scale=(2048, 512),\n        flip=False,\n        transforms=[\n            dict(type='Resize', keep_ratio=True),\n            dict(type='RandomFlip'),\n            dict(\n                type='Normalize',\n                mean=[123.675, 116.28, 103.53],\n                std=[58.395, 57.12, 57.375],\n                to_rgb=True),\n            dict(type='Pad', size_divisor=16, pad_val=0, seg_pad_val=0),\n            dict(type='ImageToTensor', keys=['img']),\n            dict(type='Collect', keys=['img'])\n        ])\n]\ndata = dict(\n    samples_per_gpu=4,\n    workers_per_gpu=4,\n    train=dict(\n        type='ADE20K151Dataset',\n        data_root='data/ade/ADEChallengeData2016',\n        img_dir='images/training',\n        ann_dir='annotations/training',\n        pipeline=[\n            dict(type='LoadImageFromFile'),\n            dict(type='LoadAnnotations', reduce_zero_label=False),\n            dict(type='Resize', img_scale=(2048, 512), ratio_range=(0.5, 2.0)),\n            dict(type='RandomCrop', crop_size=(512, 512), cat_max_ratio=0.75),\n            dict(type='RandomFlip', prob=0.5),\n            dict(type='PhotoMetricDistortion'),\n            dict(\n                type='Normalize',\n                mean=[123.675, 116.28, 103.53],\n                std=[58.395, 57.12, 57.375],\n                to_rgb=True),\n            dict(type='Pad', size=(512, 512), pad_val=0, seg_pad_val=0),\n            dict(type='DefaultFormatBundle'),\n            dict(type='Collect', keys=['img', 'gt_semantic_seg'])\n        ]),\n    val=dict(\n        type='ADE20K151Dataset',\n        data_root='data/ade/ADEChallengeData2016',\n        img_dir='images/validation',\n        ann_dir='annotations/validation',\n        pipeline=[\n            dict(type='LoadImageFromFile'),\n            dict(\n                type='MultiScaleFlipAug',\n                img_scale=(2048, 512),\n                flip=False,\n                transforms=[\n                    dict(type='Resize', keep_ratio=True),\n                    dict(type='RandomFlip'),\n                    dict(\n                        type='Normalize',\n                        mean=[123.675, 116.28, 103.53],\n                        std=[58.395, 57.12, 57.375],\n                        to_rgb=True),\n                    dict(\n                        type='Pad', size_divisor=16, pad_val=0, seg_pad_val=0),\n                    dict(type='ImageToTensor', keys=['img']),\n                    dict(type='Collect', keys=['img'])\n                ])\n        ]),\n    test=dict(\n        type='ADE20K151Dataset',\n        data_root='data/ade/ADEChallengeData2016',\n        img_dir='images/validation',\n        ann_dir='annotations/validation',\n        pipeline=[\n            dict(type='LoadImageFromFile'),\n            dict(\n                type='MultiScaleFlipAug',\n                img_scale=(2048, 512),\n                flip=False,\n                transforms=[\n                    dict(type='Resize', keep_ratio=True),\n                    dict(type='RandomFlip'),\n                    dict(\n                        type='Normalize',\n                        mean=[123.675, 116.28, 103.53],\n                        std=[58.395, 57.12, 57.375],\n                        to_rgb=True),\n                    dict(\n                        type='Pad', size_divisor=16, pad_val=0, seg_pad_val=0),\n                    dict(type='ImageToTensor', keys=['img']),\n                    dict(type='Collect', keys=['img'])\n                ])\n        ]))\nlog_config = dict(\n    interval=50, hooks=[dict(type='TextLoggerHook', by_epoch=False)])\ndist_params = dict(backend='nccl')\nlog_level = 'INFO'\nload_from = None\nresume_from = None\nworkflow = [('train', 1)]\ncudnn_benchmark = True\noptimizer = dict(\n    type='AdamW', lr=0.00015, betas=[0.9, 0.96], weight_decay=0.045)\noptimizer_config = dict()\nlr_config = dict(\n    policy='step',\n    warmup='linear',\n    warmup_iters=1000,\n    warmup_ratio=1e-06,\n    step=10000,\n    gamma=0.5,\n    min_lr=1e-06,\n    by_epoch=False)\nrunner = dict(type='IterBasedRunner', max_iters=80000)\ncheckpoint_config = dict(by_epoch=False, interval=8000)\nevaluation = dict(\n    interval=8000, metric='mIoU', pre_eval=True, save_best='mIoU')\nwork_dir = './work_dirs/segformer_mit_b2_segformer_head_unet_fc_single_step_ade_pretrained_freeze_embed_80k_ade20k151'\ngpu_ids = range(0, 8)\nauto_resume = True\ndevice = 'cuda'\nseed = 97773280\n", "CLASSES": ["background", "wall", "building", "sky", "floor", "tree", "ceiling", "road", "bed ", "windowpane", "grass", "cabinet", "sidewalk", "person", "earth", "door", "table", "mountain", "plant", "curtain", "chair", "car", "water", "painting", "sofa", "shelf", "house", "sea", "mirror", "rug", "field", "armchair", "seat", "fence", "desk", "rock", "wardrobe", "lamp", "bathtub", "railing", "cushion", "base", "box", "column", "signboard", "chest of drawers", "counter", "sand", "sink", "skyscraper", "fireplace", "refrigerator", "grandstand", "path", "stairs", "runway", "case", "pool table", "pillow", "screen door", "stairway", "river", "bridge", "bookcase", "blind", "coffee table", "toilet", "flower", "book", "hill", "bench", "countertop", "stove", "palm", "kitchen island", "computer", "swivel chair", "boat", "bar", "arcade machine", "hovel", "bus", "towel", "light", "truck", "tower", "chandelier", "awning", "streetlight", "booth", "television receiver", "airplane", "dirt track", "apparel", "pole", "land", "bannister", "escalator", "ottoman", "bottle", "buffet", "poster", "stage", "van", "ship", "fountain", "conveyer belt", "canopy", "washer", "plaything", "swimming pool", "stool", "barrel", "basket", "waterfall", "tent", "bag", "minibike", "cradle", "oven", "ball", "food", "step", "tank", "trade name", "microwave", "pot", "animal", "bicycle", "lake", "dishwasher", "screen", "blanket", "sculpture", "hood", "sconce", "vase", "traffic light", "tray", "ashcan", "fan", "pier", "crt screen", "plate", "monitor", "bulletin board", "shower", "radiator", "glass", "clock", "flag"], "PALETTE": [[0, 0, 0], [120, 120, 120], [180, 120, 120], [6, 230, 230], [80, 50, 50], [4, 200, 3], [120, 120, 80], [140, 140, 140], [204, 5, 255], [230, 230, 230], [4, 250, 7], [224, 5, 255], [235, 255, 7], [150, 5, 61], [120, 120, 70], [8, 255, 51], [255, 6, 82], [143, 255, 140], [204, 255, 4], [255, 51, 7], [204, 70, 3], [0, 102, 200], [61, 230, 250], [255, 6, 51], [11, 102, 255], [255, 7, 71], [255, 9, 224], [9, 7, 230], [220, 220, 220], [255, 9, 92], [112, 9, 255], [8, 255, 214], [7, 255, 224], [255, 184, 6], [10, 255, 71], [255, 41, 10], [7, 255, 255], [224, 255, 8], [102, 8, 255], [255, 61, 6], [255, 194, 7], [255, 122, 8], [0, 255, 20], [255, 8, 41], [255, 5, 153], [6, 51, 255], [235, 12, 255], [160, 150, 20], [0, 163, 255], [140, 140, 140], [250, 10, 15], [20, 255, 0], [31, 255, 0], [255, 31, 0], [255, 224, 0], [153, 255, 0], [0, 0, 255], [255, 71, 0], [0, 235, 255], [0, 173, 255], [31, 0, 255], [11, 200, 200], [255, 82, 0], [0, 255, 245], [0, 61, 255], [0, 255, 112], [0, 255, 133], [255, 0, 0], [255, 163, 0], [255, 102, 0], [194, 255, 0], [0, 143, 255], [51, 255, 0], [0, 82, 255], [0, 255, 41], [0, 255, 173], [10, 0, 255], [173, 255, 0], [0, 255, 153], [255, 92, 0], [255, 0, 255], [255, 0, 245], [255, 0, 102], [255, 173, 0], [255, 0, 20], [255, 184, 184], [0, 31, 255], [0, 255, 61], [0, 71, 255], [255, 0, 204], [0, 255, 194], [0, 255, 82], [0, 10, 255], [0, 112, 255], [51, 0, 255], [0, 194, 255], [0, 122, 255], [0, 255, 163], [255, 153, 0], [0, 255, 10], [255, 112, 0], [143, 255, 0], [82, 0, 255], [163, 255, 0], [255, 235, 0], [8, 184, 170], [133, 0, 255], [0, 255, 92], [184, 0, 255], [255, 0, 31], [0, 184, 255], [0, 214, 255], [255, 0, 112], [92, 255, 0], [0, 224, 255], [112, 224, 255], [70, 184, 160], [163, 0, 255], [153, 0, 255], [71, 255, 0], [255, 0, 163], [255, 204, 0], [255, 0, 143], [0, 255, 235], [133, 255, 0], [255, 0, 235], [245, 0, 255], [255, 0, 122], [255, 245, 0], [10, 190, 212], [214, 255, 0], [0, 204, 255], [20, 0, 255], [255, 255, 0], [0, 153, 255], [0, 41, 255], [0, 255, 204], [41, 0, 255], [41, 255, 0], [173, 0, 255], [0, 245, 255], [71, 0, 255], [122, 0, 255], [0, 255, 184], [0, 92, 255], [184, 255, 0], [0, 133, 255], [255, 214, 0], [25, 194, 194], [102, 255, 0], [92, 0, 255]], "hook_msgs": {}}