Upload folder using huggingface_hub
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- ablation/ablation_segformer_mit_b2_segformer_head_unet_fc_single_step_ade_pretrained_freeze_embed_80k_ade20k151_logits/20230304_173902.log +1143 -0
- ablation/ablation_segformer_mit_b2_segformer_head_unet_fc_single_step_ade_pretrained_freeze_embed_80k_ade20k151_logits/20230304_173902.log.json +7 -0
- ablation/ablation_segformer_mit_b2_segformer_head_unet_fc_single_step_ade_pretrained_freeze_embed_80k_ade20k151_logits/20230304_174053.log +0 -0
- ablation/ablation_segformer_mit_b2_segformer_head_unet_fc_single_step_ade_pretrained_freeze_embed_80k_ade20k151_logits/20230304_174053.log.json +161 -0
- ablation/ablation_segformer_mit_b2_segformer_head_unet_fc_single_step_ade_pretrained_freeze_embed_80k_ade20k151_logits/20230304_184631.log +1139 -0
- ablation/ablation_segformer_mit_b2_segformer_head_unet_fc_single_step_ade_pretrained_freeze_embed_80k_ade20k151_logits/20230304_184631.log.json +1 -0
- ablation/ablation_segformer_mit_b2_segformer_head_unet_fc_single_step_ade_pretrained_freeze_embed_80k_ade20k151_logits/20230304_190322.log +1139 -0
- ablation/ablation_segformer_mit_b2_segformer_head_unet_fc_single_step_ade_pretrained_freeze_embed_80k_ade20k151_logits/20230304_190322.log.json +1 -0
- ablation/ablation_segformer_mit_b2_segformer_head_unet_fc_single_step_ade_pretrained_freeze_embed_80k_ade20k151_logits/20230304_211228.log +0 -0
- ablation/ablation_segformer_mit_b2_segformer_head_unet_fc_single_step_ade_pretrained_freeze_embed_80k_ade20k151_logits/20230304_211228.log.json +0 -0
- ablation/ablation_segformer_mit_b2_segformer_head_unet_fc_single_step_ade_pretrained_freeze_embed_80k_ade20k151_logits/ablation_segformer_mit_b2_segformer_head_unet_fc_single_step_ade_pretrained_freeze_embed_80k_ade20k151_logits.py +184 -0
- ablation/ablation_segformer_mit_b2_segformer_head_unet_fc_single_step_ade_pretrained_freeze_embed_80k_ade20k151_logits/best_mIoU_iter_72000.pth +3 -0
- ablation/ablation_segformer_mit_b2_segformer_head_unet_fc_single_step_ade_pretrained_freeze_embed_80k_ade20k151_logits/iter_16000.pth +3 -0
- ablation/ablation_segformer_mit_b2_segformer_head_unet_fc_single_step_ade_pretrained_freeze_embed_80k_ade20k151_logits/iter_24000.pth +3 -0
- ablation/ablation_segformer_mit_b2_segformer_head_unet_fc_single_step_ade_pretrained_freeze_embed_80k_ade20k151_logits/iter_32000.pth +3 -0
- ablation/ablation_segformer_mit_b2_segformer_head_unet_fc_single_step_ade_pretrained_freeze_embed_80k_ade20k151_logits/iter_40000.pth +3 -0
- ablation/ablation_segformer_mit_b2_segformer_head_unet_fc_single_step_ade_pretrained_freeze_embed_80k_ade20k151_logits/iter_48000.pth +3 -0
- ablation/ablation_segformer_mit_b2_segformer_head_unet_fc_single_step_ade_pretrained_freeze_embed_80k_ade20k151_logits/iter_56000.pth +3 -0
- ablation/ablation_segformer_mit_b2_segformer_head_unet_fc_single_step_ade_pretrained_freeze_embed_80k_ade20k151_logits/iter_64000.pth +3 -0
- ablation/ablation_segformer_mit_b2_segformer_head_unet_fc_single_step_ade_pretrained_freeze_embed_80k_ade20k151_logits/iter_72000.pth +3 -0
- ablation/ablation_segformer_mit_b2_segformer_head_unet_fc_single_step_ade_pretrained_freeze_embed_80k_ade20k151_logits/iter_8000.pth +3 -0
- ablation/ablation_segformer_mit_b2_segformer_head_unet_fc_single_step_ade_pretrained_freeze_embed_80k_ade20k151_logits/iter_80000.pth +3 -0
- ablation/ablation_segformer_mit_b2_segformer_head_unet_fc_single_step_ade_pretrained_freeze_embed_80k_ade20k151_logits/latest.pth +3 -0
- ablation/ablation_segformer_mit_b2_segformer_head_unet_fc_single_step_ade_pretrained_freeze_embed_80k_ade20k151_mask/20230304_103602.log +1151 -0
- ablation/ablation_segformer_mit_b2_segformer_head_unet_fc_single_step_ade_pretrained_freeze_embed_80k_ade20k151_mask/20230304_103602.log.json +15 -0
- ablation/ablation_segformer_mit_b2_segformer_head_unet_fc_single_step_ade_pretrained_freeze_embed_80k_ade20k151_mask/20230304_103934.log +0 -0
- ablation/ablation_segformer_mit_b2_segformer_head_unet_fc_single_step_ade_pretrained_freeze_embed_80k_ade20k151_mask/20230304_103934.log.json +161 -0
- ablation/ablation_segformer_mit_b2_segformer_head_unet_fc_single_step_ade_pretrained_freeze_embed_80k_ade20k151_mask/20230304_122534.log +0 -0
- ablation/ablation_segformer_mit_b2_segformer_head_unet_fc_single_step_ade_pretrained_freeze_embed_80k_ade20k151_mask/20230304_122534.log.json +0 -0
- ablation/ablation_segformer_mit_b2_segformer_head_unet_fc_single_step_ade_pretrained_freeze_embed_80k_ade20k151_mask/ablation_segformer_mit_b2_segformer_head_unet_fc_single_step_ade_pretrained_freeze_embed_80k_ade20k151_mask.py +184 -0
- ablation/ablation_segformer_mit_b2_segformer_head_unet_fc_single_step_ade_pretrained_freeze_embed_80k_ade20k151_mask/best_mIoU_iter_80000.pth +3 -0
- ablation/ablation_segformer_mit_b2_segformer_head_unet_fc_single_step_ade_pretrained_freeze_embed_80k_ade20k151_mask/iter_16000.pth +3 -0
- ablation/ablation_segformer_mit_b2_segformer_head_unet_fc_single_step_ade_pretrained_freeze_embed_80k_ade20k151_mask/iter_24000.pth +3 -0
- ablation/ablation_segformer_mit_b2_segformer_head_unet_fc_single_step_ade_pretrained_freeze_embed_80k_ade20k151_mask/iter_32000.pth +3 -0
- ablation/ablation_segformer_mit_b2_segformer_head_unet_fc_single_step_ade_pretrained_freeze_embed_80k_ade20k151_mask/iter_40000.pth +3 -0
- ablation/ablation_segformer_mit_b2_segformer_head_unet_fc_single_step_ade_pretrained_freeze_embed_80k_ade20k151_mask/iter_48000.pth +3 -0
- ablation/ablation_segformer_mit_b2_segformer_head_unet_fc_single_step_ade_pretrained_freeze_embed_80k_ade20k151_mask/iter_56000.pth +3 -0
- ablation/ablation_segformer_mit_b2_segformer_head_unet_fc_single_step_ade_pretrained_freeze_embed_80k_ade20k151_mask/iter_64000.pth +3 -0
- ablation/ablation_segformer_mit_b2_segformer_head_unet_fc_single_step_ade_pretrained_freeze_embed_80k_ade20k151_mask/iter_72000.pth +3 -0
- ablation/ablation_segformer_mit_b2_segformer_head_unet_fc_single_step_ade_pretrained_freeze_embed_80k_ade20k151_mask/iter_8000.pth +3 -0
- ablation/ablation_segformer_mit_b2_segformer_head_unet_fc_single_step_ade_pretrained_freeze_embed_80k_ade20k151_mask/iter_80000.pth +3 -0
- ablation/ablation_segformer_mit_b2_segformer_head_unet_fc_single_step_ade_pretrained_freeze_embed_80k_ade20k151_mask/latest.pth +3 -0
- ablation/ablation_segformer_mit_b2_segformer_head_unet_fc_small_multi_step_ade_pretrained_freeze_embed_160k_ade20k151_finetune_ema_ce/20230305_231050.log +1152 -0
- ablation/ablation_segformer_mit_b2_segformer_head_unet_fc_small_multi_step_ade_pretrained_freeze_embed_160k_ade20k151_finetune_ema_ce/20230305_231050.log.json +1 -0
- ablation/ablation_segformer_mit_b2_segformer_head_unet_fc_small_multi_step_ade_pretrained_freeze_embed_160k_ade20k151_finetune_ema_ce/20230305_231207.log +0 -0
- ablation/ablation_segformer_mit_b2_segformer_head_unet_fc_small_multi_step_ade_pretrained_freeze_embed_160k_ade20k151_finetune_ema_ce/20230305_231207.log.json +0 -0
- ablation/ablation_segformer_mit_b2_segformer_head_unet_fc_small_multi_step_ade_pretrained_freeze_embed_160k_ade20k151_finetune_ema_ce/ablation_segformer_mit_b2_segformer_head_unet_fc_small_multi_step_ade_pretrained_freeze_embed_160k_ade20k151_finetune_ema_ce.py +195 -0
- ablation/ablation_segformer_mit_b2_segformer_head_unet_fc_small_multi_step_ade_pretrained_freeze_embed_160k_ade20k151_finetune_ema_ce/best_mIoU_iter_32000.pth +3 -0
- ablation/ablation_segformer_mit_b2_segformer_head_unet_fc_small_multi_step_ade_pretrained_freeze_embed_160k_ade20k151_finetune_ema_ce/iter_160000.pth +3 -0
- ablation/ablation_segformer_mit_b2_segformer_head_unet_fc_small_multi_step_ade_pretrained_freeze_embed_160k_ade20k151_finetune_ema_ce/latest.pth +3 -0
ablation/ablation_segformer_mit_b2_segformer_head_unet_fc_single_step_ade_pretrained_freeze_embed_80k_ade20k151_logits/20230304_173902.log
ADDED
@@ -0,0 +1,1143 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2023-03-04 17:39:02,644 - mmseg - INFO - Multi-processing start method is `None`
|
2 |
+
2023-03-04 17:39:02,657 - mmseg - INFO - OpenCV num_threads is `128
|
3 |
+
2023-03-04 17:39:02,657 - mmseg - INFO - OMP num threads is 1
|
4 |
+
2023-03-04 17:39:02,719 - mmseg - INFO - Environment info:
|
5 |
+
------------------------------------------------------------
|
6 |
+
sys.platform: linux
|
7 |
+
Python: 3.7.16 (default, Jan 17 2023, 22:20:44) [GCC 11.2.0]
|
8 |
+
CUDA available: True
|
9 |
+
GPU 0,1,2,3,4,5,6,7: NVIDIA A100-SXM4-80GB
|
10 |
+
CUDA_HOME: /mnt/petrelfs/laizeqiang/miniconda3/envs/torch
|
11 |
+
NVCC: Cuda compilation tools, release 11.6, V11.6.124
|
12 |
+
GCC: gcc (GCC) 4.8.5 20150623 (Red Hat 4.8.5-44)
|
13 |
+
PyTorch: 1.13.1
|
14 |
+
PyTorch compiling details: PyTorch built with:
|
15 |
+
- GCC 9.3
|
16 |
+
- C++ Version: 201402
|
17 |
+
- Intel(R) oneAPI Math Kernel Library Version 2021.4-Product Build 20210904 for Intel(R) 64 architecture applications
|
18 |
+
- Intel(R) MKL-DNN v2.6.0 (Git Hash 52b5f107dd9cf10910aaa19cb47f3abf9b349815)
|
19 |
+
- OpenMP 201511 (a.k.a. OpenMP 4.5)
|
20 |
+
- LAPACK is enabled (usually provided by MKL)
|
21 |
+
- NNPACK is enabled
|
22 |
+
- CPU capability usage: AVX2
|
23 |
+
- CUDA Runtime 11.6
|
24 |
+
- NVCC architecture flags: -gencode;arch=compute_37,code=sm_37;-gencode;arch=compute_50,code=sm_50;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_61,code=sm_61;-gencode;arch=compute_70,code=sm_70;-gencode;arch=compute_75,code=sm_75;-gencode;arch=compute_80,code=sm_80;-gencode;arch=compute_86,code=sm_86;-gencode;arch=compute_37,code=compute_37
|
25 |
+
- CuDNN 8.3.2 (built against CUDA 11.5)
|
26 |
+
- Magma 2.6.1
|
27 |
+
- Build settings: BLAS_INFO=mkl, BUILD_TYPE=Release, CUDA_VERSION=11.6, CUDNN_VERSION=8.3.2, CXX_COMPILER=/opt/rh/devtoolset-9/root/usr/bin/c++, CXX_FLAGS= -fabi-version=11 -Wno-deprecated -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -fopenmp -DNDEBUG -DUSE_KINETO -DUSE_FBGEMM -DUSE_QNNPACK -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE -DEDGE_PROFILER_USE_KINETO -O2 -fPIC -Wno-narrowing -Wall -Wextra -Werror=return-type -Werror=non-virtual-dtor -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wunused-local-typedefs -Wno-unused-parameter -Wno-unused-function -Wno-unused-result -Wno-strict-overflow -Wno-strict-aliasing -Wno-error=deprecated-declarations -Wno-stringop-overflow -Wno-psabi -Wno-error=pedantic -Wno-error=redundant-decls -Wno-error=old-style-cast -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Werror=cast-function-type -Wno-stringop-overflow, LAPACK_INFO=mkl, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, PERF_WITH_AVX512=1, TORCH_VERSION=1.13.1, USE_CUDA=ON, USE_CUDNN=ON, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_MKL=ON, USE_MKLDNN=ON, USE_MPI=OFF, USE_NCCL=ON, USE_NNPACK=ON, USE_OPENMP=ON, USE_ROCM=OFF,
|
28 |
+
|
29 |
+
TorchVision: 0.14.1
|
30 |
+
OpenCV: 4.7.0
|
31 |
+
MMCV: 1.7.1
|
32 |
+
MMCV Compiler: GCC 9.3
|
33 |
+
MMCV CUDA Compiler: 11.6
|
34 |
+
MMSegmentation: 0.30.0+6749699
|
35 |
+
------------------------------------------------------------
|
36 |
+
|
37 |
+
2023-03-04 17:39:02,719 - mmseg - INFO - Distributed training: True
|
38 |
+
2023-03-04 17:39:03,384 - mmseg - INFO - Config:
|
39 |
+
norm_cfg = dict(type='SyncBN', requires_grad=True)
|
40 |
+
checkpoint = 'pretrained/segformer_mit-b2_512x512_160k_ade20k_20220620_114047-64e4feca.pth'
|
41 |
+
model = dict(
|
42 |
+
type='EncoderDecoderFreeze',
|
43 |
+
freeze_parameters=['backbone', 'decode_head'],
|
44 |
+
pretrained=
|
45 |
+
'pretrained/segformer_mit-b2_512x512_160k_ade20k_20220620_114047-64e4feca.pth',
|
46 |
+
backbone=dict(
|
47 |
+
type='MixVisionTransformerCustomInitWeights',
|
48 |
+
in_channels=3,
|
49 |
+
embed_dims=64,
|
50 |
+
num_stages=4,
|
51 |
+
num_layers=[3, 4, 6, 3],
|
52 |
+
num_heads=[1, 2, 5, 8],
|
53 |
+
patch_sizes=[7, 3, 3, 3],
|
54 |
+
sr_ratios=[8, 4, 2, 1],
|
55 |
+
out_indices=(0, 1, 2, 3),
|
56 |
+
mlp_ratio=4,
|
57 |
+
qkv_bias=True,
|
58 |
+
drop_rate=0.0,
|
59 |
+
attn_drop_rate=0.0,
|
60 |
+
drop_path_rate=0.1),
|
61 |
+
decode_head=dict(
|
62 |
+
type='SegformerHeadUnetFCHeadSingleStepLogits',
|
63 |
+
pretrained=
|
64 |
+
'pretrained/segformer_mit-b2_512x512_160k_ade20k_20220620_114047-64e4feca.pth',
|
65 |
+
dim=128,
|
66 |
+
out_dim=256,
|
67 |
+
unet_channels=166,
|
68 |
+
dim_mults=[1, 1, 1],
|
69 |
+
cat_embedding_dim=16,
|
70 |
+
in_channels=[64, 128, 320, 512],
|
71 |
+
in_index=[0, 1, 2, 3],
|
72 |
+
channels=256,
|
73 |
+
dropout_ratio=0.1,
|
74 |
+
num_classes=151,
|
75 |
+
norm_cfg=dict(type='SyncBN', requires_grad=True),
|
76 |
+
align_corners=False,
|
77 |
+
ignore_index=0,
|
78 |
+
loss_decode=dict(
|
79 |
+
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)),
|
80 |
+
train_cfg=dict(),
|
81 |
+
test_cfg=dict(mode='whole'))
|
82 |
+
dataset_type = 'ADE20K151Dataset'
|
83 |
+
data_root = 'data/ade/ADEChallengeData2016'
|
84 |
+
img_norm_cfg = dict(
|
85 |
+
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
|
86 |
+
crop_size = (512, 512)
|
87 |
+
train_pipeline = [
|
88 |
+
dict(type='LoadImageFromFile'),
|
89 |
+
dict(type='LoadAnnotations', reduce_zero_label=False),
|
90 |
+
dict(type='Resize', img_scale=(2048, 512), ratio_range=(0.5, 2.0)),
|
91 |
+
dict(type='RandomCrop', crop_size=(512, 512), cat_max_ratio=0.75),
|
92 |
+
dict(type='RandomFlip', prob=0.5),
|
93 |
+
dict(type='PhotoMetricDistortion'),
|
94 |
+
dict(
|
95 |
+
type='Normalize',
|
96 |
+
mean=[123.675, 116.28, 103.53],
|
97 |
+
std=[58.395, 57.12, 57.375],
|
98 |
+
to_rgb=True),
|
99 |
+
dict(type='Pad', size=(512, 512), pad_val=0, seg_pad_val=0),
|
100 |
+
dict(type='DefaultFormatBundle'),
|
101 |
+
dict(type='Collect', keys=['img', 'gt_semantic_seg'])
|
102 |
+
]
|
103 |
+
test_pipeline = [
|
104 |
+
dict(type='LoadImageFromFile'),
|
105 |
+
dict(
|
106 |
+
type='MultiScaleFlipAug',
|
107 |
+
img_scale=(2048, 512),
|
108 |
+
flip=False,
|
109 |
+
transforms=[
|
110 |
+
dict(type='Resize', keep_ratio=True),
|
111 |
+
dict(type='RandomFlip'),
|
112 |
+
dict(
|
113 |
+
type='Normalize',
|
114 |
+
mean=[123.675, 116.28, 103.53],
|
115 |
+
std=[58.395, 57.12, 57.375],
|
116 |
+
to_rgb=True),
|
117 |
+
dict(type='Pad', size_divisor=16, pad_val=0, seg_pad_val=0),
|
118 |
+
dict(type='ImageToTensor', keys=['img']),
|
119 |
+
dict(type='Collect', keys=['img'])
|
120 |
+
])
|
121 |
+
]
|
122 |
+
data = dict(
|
123 |
+
samples_per_gpu=4,
|
124 |
+
workers_per_gpu=4,
|
125 |
+
train=dict(
|
126 |
+
type='ADE20K151Dataset',
|
127 |
+
data_root='data/ade/ADEChallengeData2016',
|
128 |
+
img_dir='images/training',
|
129 |
+
ann_dir='annotations/training',
|
130 |
+
pipeline=[
|
131 |
+
dict(type='LoadImageFromFile'),
|
132 |
+
dict(type='LoadAnnotations', reduce_zero_label=False),
|
133 |
+
dict(type='Resize', img_scale=(2048, 512), ratio_range=(0.5, 2.0)),
|
134 |
+
dict(type='RandomCrop', crop_size=(512, 512), cat_max_ratio=0.75),
|
135 |
+
dict(type='RandomFlip', prob=0.5),
|
136 |
+
dict(type='PhotoMetricDistortion'),
|
137 |
+
dict(
|
138 |
+
type='Normalize',
|
139 |
+
mean=[123.675, 116.28, 103.53],
|
140 |
+
std=[58.395, 57.12, 57.375],
|
141 |
+
to_rgb=True),
|
142 |
+
dict(type='Pad', size=(512, 512), pad_val=0, seg_pad_val=0),
|
143 |
+
dict(type='DefaultFormatBundle'),
|
144 |
+
dict(type='Collect', keys=['img', 'gt_semantic_seg'])
|
145 |
+
]),
|
146 |
+
val=dict(
|
147 |
+
type='ADE20K151Dataset',
|
148 |
+
data_root='data/ade/ADEChallengeData2016',
|
149 |
+
img_dir='images/validation',
|
150 |
+
ann_dir='annotations/validation',
|
151 |
+
pipeline=[
|
152 |
+
dict(type='LoadImageFromFile'),
|
153 |
+
dict(
|
154 |
+
type='MultiScaleFlipAug',
|
155 |
+
img_scale=(2048, 512),
|
156 |
+
flip=False,
|
157 |
+
transforms=[
|
158 |
+
dict(type='Resize', keep_ratio=True),
|
159 |
+
dict(type='RandomFlip'),
|
160 |
+
dict(
|
161 |
+
type='Normalize',
|
162 |
+
mean=[123.675, 116.28, 103.53],
|
163 |
+
std=[58.395, 57.12, 57.375],
|
164 |
+
to_rgb=True),
|
165 |
+
dict(
|
166 |
+
type='Pad', size_divisor=16, pad_val=0, seg_pad_val=0),
|
167 |
+
dict(type='ImageToTensor', keys=['img']),
|
168 |
+
dict(type='Collect', keys=['img'])
|
169 |
+
])
|
170 |
+
]),
|
171 |
+
test=dict(
|
172 |
+
type='ADE20K151Dataset',
|
173 |
+
data_root='data/ade/ADEChallengeData2016',
|
174 |
+
img_dir='images/validation',
|
175 |
+
ann_dir='annotations/validation',
|
176 |
+
pipeline=[
|
177 |
+
dict(type='LoadImageFromFile'),
|
178 |
+
dict(
|
179 |
+
type='MultiScaleFlipAug',
|
180 |
+
img_scale=(2048, 512),
|
181 |
+
flip=False,
|
182 |
+
transforms=[
|
183 |
+
dict(type='Resize', keep_ratio=True),
|
184 |
+
dict(type='RandomFlip'),
|
185 |
+
dict(
|
186 |
+
type='Normalize',
|
187 |
+
mean=[123.675, 116.28, 103.53],
|
188 |
+
std=[58.395, 57.12, 57.375],
|
189 |
+
to_rgb=True),
|
190 |
+
dict(
|
191 |
+
type='Pad', size_divisor=16, pad_val=0, seg_pad_val=0),
|
192 |
+
dict(type='ImageToTensor', keys=['img']),
|
193 |
+
dict(type='Collect', keys=['img'])
|
194 |
+
])
|
195 |
+
]))
|
196 |
+
log_config = dict(
|
197 |
+
interval=50, hooks=[dict(type='TextLoggerHook', by_epoch=False)])
|
198 |
+
dist_params = dict(backend='nccl')
|
199 |
+
log_level = 'INFO'
|
200 |
+
load_from = None
|
201 |
+
resume_from = None
|
202 |
+
workflow = [('train', 1)]
|
203 |
+
cudnn_benchmark = True
|
204 |
+
optimizer = dict(
|
205 |
+
type='AdamW', lr=0.00015, betas=[0.9, 0.96], weight_decay=0.045)
|
206 |
+
optimizer_config = dict()
|
207 |
+
lr_config = dict(
|
208 |
+
policy='step',
|
209 |
+
warmup='linear',
|
210 |
+
warmup_iters=1000,
|
211 |
+
warmup_ratio=1e-06,
|
212 |
+
step=10000,
|
213 |
+
gamma=0.5,
|
214 |
+
min_lr=1e-06,
|
215 |
+
by_epoch=False)
|
216 |
+
runner = dict(type='IterBasedRunner', max_iters=80000)
|
217 |
+
checkpoint_config = dict(by_epoch=False, interval=8000)
|
218 |
+
evaluation = dict(
|
219 |
+
interval=8000, metric='mIoU', pre_eval=True, save_best='mIoU')
|
220 |
+
work_dir = './work_dirs2/ablation_segformer_mit_b2_segformer_head_unet_fc_single_step_ade_pretrained_freeze_embed_80k_ade20k151_logits'
|
221 |
+
gpu_ids = range(0, 8)
|
222 |
+
auto_resume = True
|
223 |
+
|
224 |
+
2023-03-04 17:39:07,974 - mmseg - INFO - Set random seed to 984079870, deterministic: False
|
225 |
+
2023-03-04 17:39:08,230 - mmseg - INFO - Parameters in backbone freezed!
|
226 |
+
2023-03-04 17:39:08,230 - mmseg - INFO - Trainable parameters in SegformerHeadUnetFCHeadSingleStep: ['unet.init_conv.weight', 'unet.init_conv.bias', 'unet.time_mlp.1.weight', 'unet.time_mlp.1.bias', 'unet.time_mlp.3.weight', 'unet.time_mlp.3.bias', 'unet.downs.0.0.mlp.1.weight', 'unet.downs.0.0.mlp.1.bias', 'unet.downs.0.0.block1.proj.weight', 'unet.downs.0.0.block1.proj.bias', 'unet.downs.0.0.block1.norm.weight', 'unet.downs.0.0.block1.norm.bias', 'unet.downs.0.0.block2.proj.weight', 'unet.downs.0.0.block2.proj.bias', 'unet.downs.0.0.block2.norm.weight', 'unet.downs.0.0.block2.norm.bias', 'unet.downs.0.1.mlp.1.weight', 'unet.downs.0.1.mlp.1.bias', 'unet.downs.0.1.block1.proj.weight', 'unet.downs.0.1.block1.proj.bias', 'unet.downs.0.1.block1.norm.weight', 'unet.downs.0.1.block1.norm.bias', 'unet.downs.0.1.block2.proj.weight', 'unet.downs.0.1.block2.proj.bias', 'unet.downs.0.1.block2.norm.weight', 'unet.downs.0.1.block2.norm.bias', 'unet.downs.0.2.fn.fn.to_qkv.weight', 'unet.downs.0.2.fn.fn.to_out.0.weight', 'unet.downs.0.2.fn.fn.to_out.0.bias', 'unet.downs.0.2.fn.fn.to_out.1.g', 'unet.downs.0.2.fn.norm.g', 'unet.downs.0.3.weight', 'unet.downs.0.3.bias', 'unet.downs.1.0.mlp.1.weight', 'unet.downs.1.0.mlp.1.bias', 'unet.downs.1.0.block1.proj.weight', 'unet.downs.1.0.block1.proj.bias', 'unet.downs.1.0.block1.norm.weight', 'unet.downs.1.0.block1.norm.bias', 'unet.downs.1.0.block2.proj.weight', 'unet.downs.1.0.block2.proj.bias', 'unet.downs.1.0.block2.norm.weight', 'unet.downs.1.0.block2.norm.bias', 'unet.downs.1.1.mlp.1.weight', 'unet.downs.1.1.mlp.1.bias', 'unet.downs.1.1.block1.proj.weight', 'unet.downs.1.1.block1.proj.bias', 'unet.downs.1.1.block1.norm.weight', 'unet.downs.1.1.block1.norm.bias', 'unet.downs.1.1.block2.proj.weight', 'unet.downs.1.1.block2.proj.bias', 'unet.downs.1.1.block2.norm.weight', 'unet.downs.1.1.block2.norm.bias', 'unet.downs.1.2.fn.fn.to_qkv.weight', 'unet.downs.1.2.fn.fn.to_out.0.weight', 'unet.downs.1.2.fn.fn.to_out.0.bias', 'unet.downs.1.2.fn.fn.to_out.1.g', 'unet.downs.1.2.fn.norm.g', 'unet.downs.1.3.weight', 'unet.downs.1.3.bias', 'unet.downs.2.0.mlp.1.weight', 'unet.downs.2.0.mlp.1.bias', 'unet.downs.2.0.block1.proj.weight', 'unet.downs.2.0.block1.proj.bias', 'unet.downs.2.0.block1.norm.weight', 'unet.downs.2.0.block1.norm.bias', 'unet.downs.2.0.block2.proj.weight', 'unet.downs.2.0.block2.proj.bias', 'unet.downs.2.0.block2.norm.weight', 'unet.downs.2.0.block2.norm.bias', 'unet.downs.2.1.mlp.1.weight', 'unet.downs.2.1.mlp.1.bias', 'unet.downs.2.1.block1.proj.weight', 'unet.downs.2.1.block1.proj.bias', 'unet.downs.2.1.block1.norm.weight', 'unet.downs.2.1.block1.norm.bias', 'unet.downs.2.1.block2.proj.weight', 'unet.downs.2.1.block2.proj.bias', 'unet.downs.2.1.block2.norm.weight', 'unet.downs.2.1.block2.norm.bias', 'unet.downs.2.2.fn.fn.to_qkv.weight', 'unet.downs.2.2.fn.fn.to_out.0.weight', 'unet.downs.2.2.fn.fn.to_out.0.bias', 'unet.downs.2.2.fn.fn.to_out.1.g', 'unet.downs.2.2.fn.norm.g', 'unet.downs.2.3.weight', 'unet.downs.2.3.bias', 'unet.ups.0.0.mlp.1.weight', 'unet.ups.0.0.mlp.1.bias', 'unet.ups.0.0.block1.proj.weight', 'unet.ups.0.0.block1.proj.bias', 'unet.ups.0.0.block1.norm.weight', 'unet.ups.0.0.block1.norm.bias', 'unet.ups.0.0.block2.proj.weight', 'unet.ups.0.0.block2.proj.bias', 'unet.ups.0.0.block2.norm.weight', 'unet.ups.0.0.block2.norm.bias', 'unet.ups.0.0.res_conv.weight', 'unet.ups.0.0.res_conv.bias', 'unet.ups.0.1.mlp.1.weight', 'unet.ups.0.1.mlp.1.bias', 'unet.ups.0.1.block1.proj.weight', 'unet.ups.0.1.block1.proj.bias', 'unet.ups.0.1.block1.norm.weight', 'unet.ups.0.1.block1.norm.bias', 'unet.ups.0.1.block2.proj.weight', 'unet.ups.0.1.block2.proj.bias', 'unet.ups.0.1.block2.norm.weight', 'unet.ups.0.1.block2.norm.bias', 'unet.ups.0.1.res_conv.weight', 'unet.ups.0.1.res_conv.bias', 'unet.ups.0.2.fn.fn.to_qkv.weight', 'unet.ups.0.2.fn.fn.to_out.0.weight', 'unet.ups.0.2.fn.fn.to_out.0.bias', 'unet.ups.0.2.fn.fn.to_out.1.g', 'unet.ups.0.2.fn.norm.g', 'unet.ups.0.3.1.weight', 'unet.ups.0.3.1.bias', 'unet.ups.1.0.mlp.1.weight', 'unet.ups.1.0.mlp.1.bias', 'unet.ups.1.0.block1.proj.weight', 'unet.ups.1.0.block1.proj.bias', 'unet.ups.1.0.block1.norm.weight', 'unet.ups.1.0.block1.norm.bias', 'unet.ups.1.0.block2.proj.weight', 'unet.ups.1.0.block2.proj.bias', 'unet.ups.1.0.block2.norm.weight', 'unet.ups.1.0.block2.norm.bias', 'unet.ups.1.0.res_conv.weight', 'unet.ups.1.0.res_conv.bias', 'unet.ups.1.1.mlp.1.weight', 'unet.ups.1.1.mlp.1.bias', 'unet.ups.1.1.block1.proj.weight', 'unet.ups.1.1.block1.proj.bias', 'unet.ups.1.1.block1.norm.weight', 'unet.ups.1.1.block1.norm.bias', 'unet.ups.1.1.block2.proj.weight', 'unet.ups.1.1.block2.proj.bias', 'unet.ups.1.1.block2.norm.weight', 'unet.ups.1.1.block2.norm.bias', 'unet.ups.1.1.res_conv.weight', 'unet.ups.1.1.res_conv.bias', 'unet.ups.1.2.fn.fn.to_qkv.weight', 'unet.ups.1.2.fn.fn.to_out.0.weight', 'unet.ups.1.2.fn.fn.to_out.0.bias', 'unet.ups.1.2.fn.fn.to_out.1.g', 'unet.ups.1.2.fn.norm.g', 'unet.ups.1.3.1.weight', 'unet.ups.1.3.1.bias', 'unet.ups.2.0.mlp.1.weight', 'unet.ups.2.0.mlp.1.bias', 'unet.ups.2.0.block1.proj.weight', 'unet.ups.2.0.block1.proj.bias', 'unet.ups.2.0.block1.norm.weight', 'unet.ups.2.0.block1.norm.bias', 'unet.ups.2.0.block2.proj.weight', 'unet.ups.2.0.block2.proj.bias', 'unet.ups.2.0.block2.norm.weight', 'unet.ups.2.0.block2.norm.bias', 'unet.ups.2.0.res_conv.weight', 'unet.ups.2.0.res_conv.bias', 'unet.ups.2.1.mlp.1.weight', 'unet.ups.2.1.mlp.1.bias', 'unet.ups.2.1.block1.proj.weight', 'unet.ups.2.1.block1.proj.bias', 'unet.ups.2.1.block1.norm.weight', 'unet.ups.2.1.block1.norm.bias', 'unet.ups.2.1.block2.proj.weight', 'unet.ups.2.1.block2.proj.bias', 'unet.ups.2.1.block2.norm.weight', 'unet.ups.2.1.block2.norm.bias', 'unet.ups.2.1.res_conv.weight', 'unet.ups.2.1.res_conv.bias', 'unet.ups.2.2.fn.fn.to_qkv.weight', 'unet.ups.2.2.fn.fn.to_out.0.weight', 'unet.ups.2.2.fn.fn.to_out.0.bias', 'unet.ups.2.2.fn.fn.to_out.1.g', 'unet.ups.2.2.fn.norm.g', 'unet.ups.2.3.weight', 'unet.ups.2.3.bias', 'unet.mid_block1.mlp.1.weight', 'unet.mid_block1.mlp.1.bias', 'unet.mid_block1.block1.proj.weight', 'unet.mid_block1.block1.proj.bias', 'unet.mid_block1.block1.norm.weight', 'unet.mid_block1.block1.norm.bias', 'unet.mid_block1.block2.proj.weight', 'unet.mid_block1.block2.proj.bias', 'unet.mid_block1.block2.norm.weight', 'unet.mid_block1.block2.norm.bias', 'unet.mid_attn.fn.fn.to_qkv.weight', 'unet.mid_attn.fn.fn.to_out.weight', 'unet.mid_attn.fn.fn.to_out.bias', 'unet.mid_attn.fn.norm.g', 'unet.mid_block2.mlp.1.weight', 'unet.mid_block2.mlp.1.bias', 'unet.mid_block2.block1.proj.weight', 'unet.mid_block2.block1.proj.bias', 'unet.mid_block2.block1.norm.weight', 'unet.mid_block2.block1.norm.bias', 'unet.mid_block2.block2.proj.weight', 'unet.mid_block2.block2.proj.bias', 'unet.mid_block2.block2.norm.weight', 'unet.mid_block2.block2.norm.bias', 'unet.final_res_block.mlp.1.weight', 'unet.final_res_block.mlp.1.bias', 'unet.final_res_block.block1.proj.weight', 'unet.final_res_block.block1.proj.bias', 'unet.final_res_block.block1.norm.weight', 'unet.final_res_block.block1.norm.bias', 'unet.final_res_block.block2.proj.weight', 'unet.final_res_block.block2.proj.bias', 'unet.final_res_block.block2.norm.weight', 'unet.final_res_block.block2.norm.bias', 'unet.final_res_block.res_conv.weight', 'unet.final_res_block.res_conv.bias', 'unet.final_conv.weight', 'unet.final_conv.bias', 'conv_seg_new.weight', 'conv_seg_new.bias']
|
227 |
+
2023-03-04 17:39:08,231 - mmseg - INFO - Parameters in decode_head freezed!
|
228 |
+
2023-03-04 17:39:08,250 - mmseg - INFO - load checkpoint from local path: pretrained/segformer_mit-b2_512x512_160k_ade20k_20220620_114047-64e4feca.pth
|
229 |
+
2023-03-04 17:39:08,491 - mmseg - WARNING - The model and loaded state dict do not match exactly
|
230 |
+
|
231 |
+
unexpected key in source state_dict: decode_head.conv_seg.weight, decode_head.conv_seg.bias, decode_head.convs.0.conv.weight, decode_head.convs.0.bn.weight, decode_head.convs.0.bn.bias, decode_head.convs.0.bn.running_mean, decode_head.convs.0.bn.running_var, decode_head.convs.0.bn.num_batches_tracked, decode_head.convs.1.conv.weight, decode_head.convs.1.bn.weight, decode_head.convs.1.bn.bias, decode_head.convs.1.bn.running_mean, decode_head.convs.1.bn.running_var, decode_head.convs.1.bn.num_batches_tracked, decode_head.convs.2.conv.weight, decode_head.convs.2.bn.weight, decode_head.convs.2.bn.bias, decode_head.convs.2.bn.running_mean, decode_head.convs.2.bn.running_var, decode_head.convs.2.bn.num_batches_tracked, decode_head.convs.3.conv.weight, decode_head.convs.3.bn.weight, decode_head.convs.3.bn.bias, decode_head.convs.3.bn.running_mean, decode_head.convs.3.bn.running_var, decode_head.convs.3.bn.num_batches_tracked, decode_head.fusion_conv.conv.weight, decode_head.fusion_conv.bn.weight, decode_head.fusion_conv.bn.bias, decode_head.fusion_conv.bn.running_mean, decode_head.fusion_conv.bn.running_var, decode_head.fusion_conv.bn.num_batches_tracked
|
232 |
+
|
233 |
+
2023-03-04 17:39:08,504 - mmseg - INFO - load checkpoint from local path: pretrained/segformer_mit-b2_512x512_160k_ade20k_20220620_114047-64e4feca.pth
|
234 |
+
2023-03-04 17:39:08,721 - mmseg - WARNING - The model and loaded state dict do not match exactly
|
235 |
+
|
236 |
+
unexpected key in source state_dict: backbone.layers.0.0.projection.weight, backbone.layers.0.0.projection.bias, backbone.layers.0.0.norm.weight, backbone.layers.0.0.norm.bias, backbone.layers.0.1.0.norm1.weight, backbone.layers.0.1.0.norm1.bias, backbone.layers.0.1.0.attn.attn.in_proj_weight, backbone.layers.0.1.0.attn.attn.in_proj_bias, backbone.layers.0.1.0.attn.attn.out_proj.weight, backbone.layers.0.1.0.attn.attn.out_proj.bias, backbone.layers.0.1.0.attn.sr.weight, backbone.layers.0.1.0.attn.sr.bias, backbone.layers.0.1.0.attn.norm.weight, backbone.layers.0.1.0.attn.norm.bias, backbone.layers.0.1.0.norm2.weight, backbone.layers.0.1.0.norm2.bias, backbone.layers.0.1.0.ffn.layers.0.weight, backbone.layers.0.1.0.ffn.layers.0.bias, backbone.layers.0.1.0.ffn.layers.1.weight, backbone.layers.0.1.0.ffn.layers.1.bias, backbone.layers.0.1.0.ffn.layers.4.weight, backbone.layers.0.1.0.ffn.layers.4.bias, backbone.layers.0.1.1.norm1.weight, backbone.layers.0.1.1.norm1.bias, backbone.layers.0.1.1.attn.attn.in_proj_weight, backbone.layers.0.1.1.attn.attn.in_proj_bias, backbone.layers.0.1.1.attn.attn.out_proj.weight, backbone.layers.0.1.1.attn.attn.out_proj.bias, backbone.layers.0.1.1.attn.sr.weight, backbone.layers.0.1.1.attn.sr.bias, backbone.layers.0.1.1.attn.norm.weight, backbone.layers.0.1.1.attn.norm.bias, backbone.layers.0.1.1.norm2.weight, backbone.layers.0.1.1.norm2.bias, backbone.layers.0.1.1.ffn.layers.0.weight, backbone.layers.0.1.1.ffn.layers.0.bias, backbone.layers.0.1.1.ffn.layers.1.weight, backbone.layers.0.1.1.ffn.layers.1.bias, backbone.layers.0.1.1.ffn.layers.4.weight, backbone.layers.0.1.1.ffn.layers.4.bias, backbone.layers.0.1.2.norm1.weight, backbone.layers.0.1.2.norm1.bias, backbone.layers.0.1.2.attn.attn.in_proj_weight, backbone.layers.0.1.2.attn.attn.in_proj_bias, backbone.layers.0.1.2.attn.attn.out_proj.weight, backbone.layers.0.1.2.attn.attn.out_proj.bias, backbone.layers.0.1.2.attn.sr.weight, backbone.layers.0.1.2.attn.sr.bias, backbone.layers.0.1.2.attn.norm.weight, backbone.layers.0.1.2.attn.norm.bias, backbone.layers.0.1.2.norm2.weight, backbone.layers.0.1.2.norm2.bias, backbone.layers.0.1.2.ffn.layers.0.weight, backbone.layers.0.1.2.ffn.layers.0.bias, backbone.layers.0.1.2.ffn.layers.1.weight, backbone.layers.0.1.2.ffn.layers.1.bias, backbone.layers.0.1.2.ffn.layers.4.weight, backbone.layers.0.1.2.ffn.layers.4.bias, backbone.layers.0.2.weight, backbone.layers.0.2.bias, backbone.layers.1.0.projection.weight, backbone.layers.1.0.projection.bias, backbone.layers.1.0.norm.weight, backbone.layers.1.0.norm.bias, backbone.layers.1.1.0.norm1.weight, backbone.layers.1.1.0.norm1.bias, backbone.layers.1.1.0.attn.attn.in_proj_weight, backbone.layers.1.1.0.attn.attn.in_proj_bias, backbone.layers.1.1.0.attn.attn.out_proj.weight, backbone.layers.1.1.0.attn.attn.out_proj.bias, backbone.layers.1.1.0.attn.sr.weight, backbone.layers.1.1.0.attn.sr.bias, backbone.layers.1.1.0.attn.norm.weight, backbone.layers.1.1.0.attn.norm.bias, backbone.layers.1.1.0.norm2.weight, backbone.layers.1.1.0.norm2.bias, backbone.layers.1.1.0.ffn.layers.0.weight, backbone.layers.1.1.0.ffn.layers.0.bias, backbone.layers.1.1.0.ffn.layers.1.weight, backbone.layers.1.1.0.ffn.layers.1.bias, backbone.layers.1.1.0.ffn.layers.4.weight, backbone.layers.1.1.0.ffn.layers.4.bias, backbone.layers.1.1.1.norm1.weight, backbone.layers.1.1.1.norm1.bias, backbone.layers.1.1.1.attn.attn.in_proj_weight, backbone.layers.1.1.1.attn.attn.in_proj_bias, backbone.layers.1.1.1.attn.attn.out_proj.weight, backbone.layers.1.1.1.attn.attn.out_proj.bias, backbone.layers.1.1.1.attn.sr.weight, backbone.layers.1.1.1.attn.sr.bias, backbone.layers.1.1.1.attn.norm.weight, backbone.layers.1.1.1.attn.norm.bias, backbone.layers.1.1.1.norm2.weight, backbone.layers.1.1.1.norm2.bias, backbone.layers.1.1.1.ffn.layers.0.weight, backbone.layers.1.1.1.ffn.layers.0.bias, backbone.layers.1.1.1.ffn.layers.1.weight, backbone.layers.1.1.1.ffn.layers.1.bias, backbone.layers.1.1.1.ffn.layers.4.weight, backbone.layers.1.1.1.ffn.layers.4.bias, backbone.layers.1.1.2.norm1.weight, backbone.layers.1.1.2.norm1.bias, backbone.layers.1.1.2.attn.attn.in_proj_weight, backbone.layers.1.1.2.attn.attn.in_proj_bias, backbone.layers.1.1.2.attn.attn.out_proj.weight, backbone.layers.1.1.2.attn.attn.out_proj.bias, backbone.layers.1.1.2.attn.sr.weight, backbone.layers.1.1.2.attn.sr.bias, backbone.layers.1.1.2.attn.norm.weight, backbone.layers.1.1.2.attn.norm.bias, backbone.layers.1.1.2.norm2.weight, backbone.layers.1.1.2.norm2.bias, backbone.layers.1.1.2.ffn.layers.0.weight, backbone.layers.1.1.2.ffn.layers.0.bias, backbone.layers.1.1.2.ffn.layers.1.weight, backbone.layers.1.1.2.ffn.layers.1.bias, backbone.layers.1.1.2.ffn.layers.4.weight, backbone.layers.1.1.2.ffn.layers.4.bias, backbone.layers.1.1.3.norm1.weight, backbone.layers.1.1.3.norm1.bias, backbone.layers.1.1.3.attn.attn.in_proj_weight, backbone.layers.1.1.3.attn.attn.in_proj_bias, backbone.layers.1.1.3.attn.attn.out_proj.weight, backbone.layers.1.1.3.attn.attn.out_proj.bias, backbone.layers.1.1.3.attn.sr.weight, backbone.layers.1.1.3.attn.sr.bias, backbone.layers.1.1.3.attn.norm.weight, backbone.layers.1.1.3.attn.norm.bias, backbone.layers.1.1.3.norm2.weight, backbone.layers.1.1.3.norm2.bias, backbone.layers.1.1.3.ffn.layers.0.weight, backbone.layers.1.1.3.ffn.layers.0.bias, backbone.layers.1.1.3.ffn.layers.1.weight, backbone.layers.1.1.3.ffn.layers.1.bias, backbone.layers.1.1.3.ffn.layers.4.weight, backbone.layers.1.1.3.ffn.layers.4.bias, backbone.layers.1.2.weight, backbone.layers.1.2.bias, backbone.layers.2.0.projection.weight, backbone.layers.2.0.projection.bias, backbone.layers.2.0.norm.weight, backbone.layers.2.0.norm.bias, backbone.layers.2.1.0.norm1.weight, backbone.layers.2.1.0.norm1.bias, backbone.layers.2.1.0.attn.attn.in_proj_weight, backbone.layers.2.1.0.attn.attn.in_proj_bias, backbone.layers.2.1.0.attn.attn.out_proj.weight, backbone.layers.2.1.0.attn.attn.out_proj.bias, backbone.layers.2.1.0.attn.sr.weight, backbone.layers.2.1.0.attn.sr.bias, backbone.layers.2.1.0.attn.norm.weight, backbone.layers.2.1.0.attn.norm.bias, backbone.layers.2.1.0.norm2.weight, backbone.layers.2.1.0.norm2.bias, backbone.layers.2.1.0.ffn.layers.0.weight, backbone.layers.2.1.0.ffn.layers.0.bias, backbone.layers.2.1.0.ffn.layers.1.weight, backbone.layers.2.1.0.ffn.layers.1.bias, backbone.layers.2.1.0.ffn.layers.4.weight, backbone.layers.2.1.0.ffn.layers.4.bias, backbone.layers.2.1.1.norm1.weight, backbone.layers.2.1.1.norm1.bias, backbone.layers.2.1.1.attn.attn.in_proj_weight, backbone.layers.2.1.1.attn.attn.in_proj_bias, backbone.layers.2.1.1.attn.attn.out_proj.weight, backbone.layers.2.1.1.attn.attn.out_proj.bias, backbone.layers.2.1.1.attn.sr.weight, backbone.layers.2.1.1.attn.sr.bias, backbone.layers.2.1.1.attn.norm.weight, backbone.layers.2.1.1.attn.norm.bias, backbone.layers.2.1.1.norm2.weight, backbone.layers.2.1.1.norm2.bias, backbone.layers.2.1.1.ffn.layers.0.weight, backbone.layers.2.1.1.ffn.layers.0.bias, backbone.layers.2.1.1.ffn.layers.1.weight, backbone.layers.2.1.1.ffn.layers.1.bias, backbone.layers.2.1.1.ffn.layers.4.weight, backbone.layers.2.1.1.ffn.layers.4.bias, backbone.layers.2.1.2.norm1.weight, backbone.layers.2.1.2.norm1.bias, backbone.layers.2.1.2.attn.attn.in_proj_weight, backbone.layers.2.1.2.attn.attn.in_proj_bias, backbone.layers.2.1.2.attn.attn.out_proj.weight, backbone.layers.2.1.2.attn.attn.out_proj.bias, backbone.layers.2.1.2.attn.sr.weight, backbone.layers.2.1.2.attn.sr.bias, backbone.layers.2.1.2.attn.norm.weight, backbone.layers.2.1.2.attn.norm.bias, backbone.layers.2.1.2.norm2.weight, backbone.layers.2.1.2.norm2.bias, backbone.layers.2.1.2.ffn.layers.0.weight, backbone.layers.2.1.2.ffn.layers.0.bias, backbone.layers.2.1.2.ffn.layers.1.weight, backbone.layers.2.1.2.ffn.layers.1.bias, backbone.layers.2.1.2.ffn.layers.4.weight, backbone.layers.2.1.2.ffn.layers.4.bias, backbone.layers.2.1.3.norm1.weight, backbone.layers.2.1.3.norm1.bias, backbone.layers.2.1.3.attn.attn.in_proj_weight, backbone.layers.2.1.3.attn.attn.in_proj_bias, backbone.layers.2.1.3.attn.attn.out_proj.weight, backbone.layers.2.1.3.attn.attn.out_proj.bias, backbone.layers.2.1.3.attn.sr.weight, backbone.layers.2.1.3.attn.sr.bias, backbone.layers.2.1.3.attn.norm.weight, backbone.layers.2.1.3.attn.norm.bias, backbone.layers.2.1.3.norm2.weight, backbone.layers.2.1.3.norm2.bias, backbone.layers.2.1.3.ffn.layers.0.weight, backbone.layers.2.1.3.ffn.layers.0.bias, backbone.layers.2.1.3.ffn.layers.1.weight, backbone.layers.2.1.3.ffn.layers.1.bias, backbone.layers.2.1.3.ffn.layers.4.weight, backbone.layers.2.1.3.ffn.layers.4.bias, backbone.layers.2.1.4.norm1.weight, backbone.layers.2.1.4.norm1.bias, backbone.layers.2.1.4.attn.attn.in_proj_weight, backbone.layers.2.1.4.attn.attn.in_proj_bias, backbone.layers.2.1.4.attn.attn.out_proj.weight, backbone.layers.2.1.4.attn.attn.out_proj.bias, backbone.layers.2.1.4.attn.sr.weight, backbone.layers.2.1.4.attn.sr.bias, backbone.layers.2.1.4.attn.norm.weight, backbone.layers.2.1.4.attn.norm.bias, backbone.layers.2.1.4.norm2.weight, backbone.layers.2.1.4.norm2.bias, backbone.layers.2.1.4.ffn.layers.0.weight, backbone.layers.2.1.4.ffn.layers.0.bias, backbone.layers.2.1.4.ffn.layers.1.weight, backbone.layers.2.1.4.ffn.layers.1.bias, backbone.layers.2.1.4.ffn.layers.4.weight, backbone.layers.2.1.4.ffn.layers.4.bias, backbone.layers.2.1.5.norm1.weight, backbone.layers.2.1.5.norm1.bias, backbone.layers.2.1.5.attn.attn.in_proj_weight, backbone.layers.2.1.5.attn.attn.in_proj_bias, backbone.layers.2.1.5.attn.attn.out_proj.weight, backbone.layers.2.1.5.attn.attn.out_proj.bias, backbone.layers.2.1.5.attn.sr.weight, backbone.layers.2.1.5.attn.sr.bias, backbone.layers.2.1.5.attn.norm.weight, backbone.layers.2.1.5.attn.norm.bias, backbone.layers.2.1.5.norm2.weight, backbone.layers.2.1.5.norm2.bias, backbone.layers.2.1.5.ffn.layers.0.weight, backbone.layers.2.1.5.ffn.layers.0.bias, backbone.layers.2.1.5.ffn.layers.1.weight, backbone.layers.2.1.5.ffn.layers.1.bias, backbone.layers.2.1.5.ffn.layers.4.weight, backbone.layers.2.1.5.ffn.layers.4.bias, backbone.layers.2.2.weight, backbone.layers.2.2.bias, backbone.layers.3.0.projection.weight, backbone.layers.3.0.projection.bias, backbone.layers.3.0.norm.weight, backbone.layers.3.0.norm.bias, backbone.layers.3.1.0.norm1.weight, backbone.layers.3.1.0.norm1.bias, backbone.layers.3.1.0.attn.attn.in_proj_weight, backbone.layers.3.1.0.attn.attn.in_proj_bias, backbone.layers.3.1.0.attn.attn.out_proj.weight, backbone.layers.3.1.0.attn.attn.out_proj.bias, backbone.layers.3.1.0.norm2.weight, backbone.layers.3.1.0.norm2.bias, backbone.layers.3.1.0.ffn.layers.0.weight, backbone.layers.3.1.0.ffn.layers.0.bias, backbone.layers.3.1.0.ffn.layers.1.weight, backbone.layers.3.1.0.ffn.layers.1.bias, backbone.layers.3.1.0.ffn.layers.4.weight, backbone.layers.3.1.0.ffn.layers.4.bias, backbone.layers.3.1.1.norm1.weight, backbone.layers.3.1.1.norm1.bias, backbone.layers.3.1.1.attn.attn.in_proj_weight, backbone.layers.3.1.1.attn.attn.in_proj_bias, backbone.layers.3.1.1.attn.attn.out_proj.weight, backbone.layers.3.1.1.attn.attn.out_proj.bias, backbone.layers.3.1.1.norm2.weight, backbone.layers.3.1.1.norm2.bias, backbone.layers.3.1.1.ffn.layers.0.weight, backbone.layers.3.1.1.ffn.layers.0.bias, backbone.layers.3.1.1.ffn.layers.1.weight, backbone.layers.3.1.1.ffn.layers.1.bias, backbone.layers.3.1.1.ffn.layers.4.weight, backbone.layers.3.1.1.ffn.layers.4.bias, backbone.layers.3.1.2.norm1.weight, backbone.layers.3.1.2.norm1.bias, backbone.layers.3.1.2.attn.attn.in_proj_weight, backbone.layers.3.1.2.attn.attn.in_proj_bias, backbone.layers.3.1.2.attn.attn.out_proj.weight, backbone.layers.3.1.2.attn.attn.out_proj.bias, backbone.layers.3.1.2.norm2.weight, backbone.layers.3.1.2.norm2.bias, backbone.layers.3.1.2.ffn.layers.0.weight, backbone.layers.3.1.2.ffn.layers.0.bias, backbone.layers.3.1.2.ffn.layers.1.weight, backbone.layers.3.1.2.ffn.layers.1.bias, backbone.layers.3.1.2.ffn.layers.4.weight, backbone.layers.3.1.2.ffn.layers.4.bias, backbone.layers.3.2.weight, backbone.layers.3.2.bias
|
237 |
+
|
238 |
+
missing keys in source state_dict: unet.init_conv.weight, unet.init_conv.bias, unet.time_mlp.1.weight, unet.time_mlp.1.bias, unet.time_mlp.3.weight, unet.time_mlp.3.bias, unet.downs.0.0.mlp.1.weight, unet.downs.0.0.mlp.1.bias, unet.downs.0.0.block1.proj.weight, unet.downs.0.0.block1.proj.bias, unet.downs.0.0.block1.norm.weight, unet.downs.0.0.block1.norm.bias, unet.downs.0.0.block2.proj.weight, unet.downs.0.0.block2.proj.bias, unet.downs.0.0.block2.norm.weight, unet.downs.0.0.block2.norm.bias, unet.downs.0.1.mlp.1.weight, unet.downs.0.1.mlp.1.bias, unet.downs.0.1.block1.proj.weight, unet.downs.0.1.block1.proj.bias, unet.downs.0.1.block1.norm.weight, unet.downs.0.1.block1.norm.bias, unet.downs.0.1.block2.proj.weight, unet.downs.0.1.block2.proj.bias, unet.downs.0.1.block2.norm.weight, unet.downs.0.1.block2.norm.bias, unet.downs.0.2.fn.fn.to_qkv.weight, unet.downs.0.2.fn.fn.to_out.0.weight, unet.downs.0.2.fn.fn.to_out.0.bias, unet.downs.0.2.fn.fn.to_out.1.g, unet.downs.0.2.fn.norm.g, unet.downs.0.3.weight, unet.downs.0.3.bias, unet.downs.1.0.mlp.1.weight, unet.downs.1.0.mlp.1.bias, unet.downs.1.0.block1.proj.weight, unet.downs.1.0.block1.proj.bias, unet.downs.1.0.block1.norm.weight, unet.downs.1.0.block1.norm.bias, unet.downs.1.0.block2.proj.weight, unet.downs.1.0.block2.proj.bias, unet.downs.1.0.block2.norm.weight, unet.downs.1.0.block2.norm.bias, unet.downs.1.1.mlp.1.weight, unet.downs.1.1.mlp.1.bias, unet.downs.1.1.block1.proj.weight, unet.downs.1.1.block1.proj.bias, unet.downs.1.1.block1.norm.weight, unet.downs.1.1.block1.norm.bias, unet.downs.1.1.block2.proj.weight, unet.downs.1.1.block2.proj.bias, unet.downs.1.1.block2.norm.weight, unet.downs.1.1.block2.norm.bias, unet.downs.1.2.fn.fn.to_qkv.weight, unet.downs.1.2.fn.fn.to_out.0.weight, unet.downs.1.2.fn.fn.to_out.0.bias, unet.downs.1.2.fn.fn.to_out.1.g, unet.downs.1.2.fn.norm.g, unet.downs.1.3.weight, unet.downs.1.3.bias, unet.downs.2.0.mlp.1.weight, unet.downs.2.0.mlp.1.bias, unet.downs.2.0.block1.proj.weight, unet.downs.2.0.block1.proj.bias, unet.downs.2.0.block1.norm.weight, unet.downs.2.0.block1.norm.bias, unet.downs.2.0.block2.proj.weight, unet.downs.2.0.block2.proj.bias, unet.downs.2.0.block2.norm.weight, unet.downs.2.0.block2.norm.bias, unet.downs.2.1.mlp.1.weight, unet.downs.2.1.mlp.1.bias, unet.downs.2.1.block1.proj.weight, unet.downs.2.1.block1.proj.bias, unet.downs.2.1.block1.norm.weight, unet.downs.2.1.block1.norm.bias, unet.downs.2.1.block2.proj.weight, unet.downs.2.1.block2.proj.bias, unet.downs.2.1.block2.norm.weight, unet.downs.2.1.block2.norm.bias, unet.downs.2.2.fn.fn.to_qkv.weight, unet.downs.2.2.fn.fn.to_out.0.weight, unet.downs.2.2.fn.fn.to_out.0.bias, unet.downs.2.2.fn.fn.to_out.1.g, unet.downs.2.2.fn.norm.g, unet.downs.2.3.weight, unet.downs.2.3.bias, unet.ups.0.0.mlp.1.weight, unet.ups.0.0.mlp.1.bias, unet.ups.0.0.block1.proj.weight, unet.ups.0.0.block1.proj.bias, unet.ups.0.0.block1.norm.weight, unet.ups.0.0.block1.norm.bias, unet.ups.0.0.block2.proj.weight, unet.ups.0.0.block2.proj.bias, unet.ups.0.0.block2.norm.weight, unet.ups.0.0.block2.norm.bias, unet.ups.0.0.res_conv.weight, unet.ups.0.0.res_conv.bias, unet.ups.0.1.mlp.1.weight, unet.ups.0.1.mlp.1.bias, unet.ups.0.1.block1.proj.weight, unet.ups.0.1.block1.proj.bias, unet.ups.0.1.block1.norm.weight, unet.ups.0.1.block1.norm.bias, unet.ups.0.1.block2.proj.weight, unet.ups.0.1.block2.proj.bias, unet.ups.0.1.block2.norm.weight, unet.ups.0.1.block2.norm.bias, unet.ups.0.1.res_conv.weight, unet.ups.0.1.res_conv.bias, unet.ups.0.2.fn.fn.to_qkv.weight, unet.ups.0.2.fn.fn.to_out.0.weight, unet.ups.0.2.fn.fn.to_out.0.bias, unet.ups.0.2.fn.fn.to_out.1.g, unet.ups.0.2.fn.norm.g, unet.ups.0.3.1.weight, unet.ups.0.3.1.bias, unet.ups.1.0.mlp.1.weight, unet.ups.1.0.mlp.1.bias, unet.ups.1.0.block1.proj.weight, unet.ups.1.0.block1.proj.bias, unet.ups.1.0.block1.norm.weight, unet.ups.1.0.block1.norm.bias, unet.ups.1.0.block2.proj.weight, unet.ups.1.0.block2.proj.bias, unet.ups.1.0.block2.norm.weight, unet.ups.1.0.block2.norm.bias, unet.ups.1.0.res_conv.weight, unet.ups.1.0.res_conv.bias, unet.ups.1.1.mlp.1.weight, unet.ups.1.1.mlp.1.bias, unet.ups.1.1.block1.proj.weight, unet.ups.1.1.block1.proj.bias, unet.ups.1.1.block1.norm.weight, unet.ups.1.1.block1.norm.bias, unet.ups.1.1.block2.proj.weight, unet.ups.1.1.block2.proj.bias, unet.ups.1.1.block2.norm.weight, unet.ups.1.1.block2.norm.bias, unet.ups.1.1.res_conv.weight, unet.ups.1.1.res_conv.bias, unet.ups.1.2.fn.fn.to_qkv.weight, unet.ups.1.2.fn.fn.to_out.0.weight, unet.ups.1.2.fn.fn.to_out.0.bias, unet.ups.1.2.fn.fn.to_out.1.g, unet.ups.1.2.fn.norm.g, unet.ups.1.3.1.weight, unet.ups.1.3.1.bias, unet.ups.2.0.mlp.1.weight, unet.ups.2.0.mlp.1.bias, unet.ups.2.0.block1.proj.weight, unet.ups.2.0.block1.proj.bias, unet.ups.2.0.block1.norm.weight, unet.ups.2.0.block1.norm.bias, unet.ups.2.0.block2.proj.weight, unet.ups.2.0.block2.proj.bias, unet.ups.2.0.block2.norm.weight, unet.ups.2.0.block2.norm.bias, unet.ups.2.0.res_conv.weight, unet.ups.2.0.res_conv.bias, unet.ups.2.1.mlp.1.weight, unet.ups.2.1.mlp.1.bias, unet.ups.2.1.block1.proj.weight, unet.ups.2.1.block1.proj.bias, unet.ups.2.1.block1.norm.weight, unet.ups.2.1.block1.norm.bias, unet.ups.2.1.block2.proj.weight, unet.ups.2.1.block2.proj.bias, unet.ups.2.1.block2.norm.weight, unet.ups.2.1.block2.norm.bias, unet.ups.2.1.res_conv.weight, unet.ups.2.1.res_conv.bias, unet.ups.2.2.fn.fn.to_qkv.weight, unet.ups.2.2.fn.fn.to_out.0.weight, unet.ups.2.2.fn.fn.to_out.0.bias, unet.ups.2.2.fn.fn.to_out.1.g, unet.ups.2.2.fn.norm.g, unet.ups.2.3.weight, unet.ups.2.3.bias, unet.mid_block1.mlp.1.weight, unet.mid_block1.mlp.1.bias, unet.mid_block1.block1.proj.weight, unet.mid_block1.block1.proj.bias, unet.mid_block1.block1.norm.weight, unet.mid_block1.block1.norm.bias, unet.mid_block1.block2.proj.weight, unet.mid_block1.block2.proj.bias, unet.mid_block1.block2.norm.weight, unet.mid_block1.block2.norm.bias, unet.mid_attn.fn.fn.to_qkv.weight, unet.mid_attn.fn.fn.to_out.weight, unet.mid_attn.fn.fn.to_out.bias, unet.mid_attn.fn.norm.g, unet.mid_block2.mlp.1.weight, unet.mid_block2.mlp.1.bias, unet.mid_block2.block1.proj.weight, unet.mid_block2.block1.proj.bias, unet.mid_block2.block1.norm.weight, unet.mid_block2.block1.norm.bias, unet.mid_block2.block2.proj.weight, unet.mid_block2.block2.proj.bias, unet.mid_block2.block2.norm.weight, unet.mid_block2.block2.norm.bias, unet.final_res_block.mlp.1.weight, unet.final_res_block.mlp.1.bias, unet.final_res_block.block1.proj.weight, unet.final_res_block.block1.proj.bias, unet.final_res_block.block1.norm.weight, unet.final_res_block.block1.norm.bias, unet.final_res_block.block2.proj.weight, unet.final_res_block.block2.proj.bias, unet.final_res_block.block2.norm.weight, unet.final_res_block.block2.norm.bias, unet.final_res_block.res_conv.weight, unet.final_res_block.res_conv.bias, unet.final_conv.weight, unet.final_conv.bias, conv_seg_new.weight, conv_seg_new.bias, embed.weight
|
239 |
+
|
240 |
+
2023-03-04 17:39:08,744 - mmseg - INFO - EncoderDecoderFreeze(
|
241 |
+
(backbone): MixVisionTransformerCustomInitWeights(
|
242 |
+
(layers): ModuleList(
|
243 |
+
(0): ModuleList(
|
244 |
+
(0): PatchEmbed(
|
245 |
+
(projection): Conv2d(3, 64, kernel_size=(7, 7), stride=(4, 4), padding=(3, 3))
|
246 |
+
(norm): LayerNorm((64,), eps=1e-06, elementwise_affine=True)
|
247 |
+
)
|
248 |
+
(1): ModuleList(
|
249 |
+
(0): TransformerEncoderLayer(
|
250 |
+
(norm1): LayerNorm((64,), eps=1e-06, elementwise_affine=True)
|
251 |
+
(attn): EfficientMultiheadAttention(
|
252 |
+
(attn): MultiheadAttention(
|
253 |
+
(out_proj): NonDynamicallyQuantizableLinear(in_features=64, out_features=64, bias=True)
|
254 |
+
)
|
255 |
+
(proj_drop): Dropout(p=0.0, inplace=False)
|
256 |
+
(dropout_layer): DropPath()
|
257 |
+
(sr): Conv2d(64, 64, kernel_size=(8, 8), stride=(8, 8))
|
258 |
+
(norm): LayerNorm((64,), eps=1e-06, elementwise_affine=True)
|
259 |
+
)
|
260 |
+
(norm2): LayerNorm((64,), eps=1e-06, elementwise_affine=True)
|
261 |
+
(ffn): MixFFN(
|
262 |
+
(activate): GELU(approximate='none')
|
263 |
+
(layers): Sequential(
|
264 |
+
(0): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1))
|
265 |
+
(1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=256)
|
266 |
+
(2): GELU(approximate='none')
|
267 |
+
(3): Dropout(p=0.0, inplace=False)
|
268 |
+
(4): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1))
|
269 |
+
(5): Dropout(p=0.0, inplace=False)
|
270 |
+
)
|
271 |
+
(dropout_layer): DropPath()
|
272 |
+
)
|
273 |
+
)
|
274 |
+
(1): TransformerEncoderLayer(
|
275 |
+
(norm1): LayerNorm((64,), eps=1e-06, elementwise_affine=True)
|
276 |
+
(attn): EfficientMultiheadAttention(
|
277 |
+
(attn): MultiheadAttention(
|
278 |
+
(out_proj): NonDynamicallyQuantizableLinear(in_features=64, out_features=64, bias=True)
|
279 |
+
)
|
280 |
+
(proj_drop): Dropout(p=0.0, inplace=False)
|
281 |
+
(dropout_layer): DropPath()
|
282 |
+
(sr): Conv2d(64, 64, kernel_size=(8, 8), stride=(8, 8))
|
283 |
+
(norm): LayerNorm((64,), eps=1e-06, elementwise_affine=True)
|
284 |
+
)
|
285 |
+
(norm2): LayerNorm((64,), eps=1e-06, elementwise_affine=True)
|
286 |
+
(ffn): MixFFN(
|
287 |
+
(activate): GELU(approximate='none')
|
288 |
+
(layers): Sequential(
|
289 |
+
(0): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1))
|
290 |
+
(1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=256)
|
291 |
+
(2): GELU(approximate='none')
|
292 |
+
(3): Dropout(p=0.0, inplace=False)
|
293 |
+
(4): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1))
|
294 |
+
(5): Dropout(p=0.0, inplace=False)
|
295 |
+
)
|
296 |
+
(dropout_layer): DropPath()
|
297 |
+
)
|
298 |
+
)
|
299 |
+
(2): TransformerEncoderLayer(
|
300 |
+
(norm1): LayerNorm((64,), eps=1e-06, elementwise_affine=True)
|
301 |
+
(attn): EfficientMultiheadAttention(
|
302 |
+
(attn): MultiheadAttention(
|
303 |
+
(out_proj): NonDynamicallyQuantizableLinear(in_features=64, out_features=64, bias=True)
|
304 |
+
)
|
305 |
+
(proj_drop): Dropout(p=0.0, inplace=False)
|
306 |
+
(dropout_layer): DropPath()
|
307 |
+
(sr): Conv2d(64, 64, kernel_size=(8, 8), stride=(8, 8))
|
308 |
+
(norm): LayerNorm((64,), eps=1e-06, elementwise_affine=True)
|
309 |
+
)
|
310 |
+
(norm2): LayerNorm((64,), eps=1e-06, elementwise_affine=True)
|
311 |
+
(ffn): MixFFN(
|
312 |
+
(activate): GELU(approximate='none')
|
313 |
+
(layers): Sequential(
|
314 |
+
(0): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1))
|
315 |
+
(1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=256)
|
316 |
+
(2): GELU(approximate='none')
|
317 |
+
(3): Dropout(p=0.0, inplace=False)
|
318 |
+
(4): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1))
|
319 |
+
(5): Dropout(p=0.0, inplace=False)
|
320 |
+
)
|
321 |
+
(dropout_layer): DropPath()
|
322 |
+
)
|
323 |
+
)
|
324 |
+
)
|
325 |
+
(2): LayerNorm((64,), eps=1e-06, elementwise_affine=True)
|
326 |
+
)
|
327 |
+
(1): ModuleList(
|
328 |
+
(0): PatchEmbed(
|
329 |
+
(projection): Conv2d(64, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
|
330 |
+
(norm): LayerNorm((128,), eps=1e-06, elementwise_affine=True)
|
331 |
+
)
|
332 |
+
(1): ModuleList(
|
333 |
+
(0): TransformerEncoderLayer(
|
334 |
+
(norm1): LayerNorm((128,), eps=1e-06, elementwise_affine=True)
|
335 |
+
(attn): EfficientMultiheadAttention(
|
336 |
+
(attn): MultiheadAttention(
|
337 |
+
(out_proj): NonDynamicallyQuantizableLinear(in_features=128, out_features=128, bias=True)
|
338 |
+
)
|
339 |
+
(proj_drop): Dropout(p=0.0, inplace=False)
|
340 |
+
(dropout_layer): DropPath()
|
341 |
+
(sr): Conv2d(128, 128, kernel_size=(4, 4), stride=(4, 4))
|
342 |
+
(norm): LayerNorm((128,), eps=1e-06, elementwise_affine=True)
|
343 |
+
)
|
344 |
+
(norm2): LayerNorm((128,), eps=1e-06, elementwise_affine=True)
|
345 |
+
(ffn): MixFFN(
|
346 |
+
(activate): GELU(approximate='none')
|
347 |
+
(layers): Sequential(
|
348 |
+
(0): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1))
|
349 |
+
(1): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=512)
|
350 |
+
(2): GELU(approximate='none')
|
351 |
+
(3): Dropout(p=0.0, inplace=False)
|
352 |
+
(4): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1))
|
353 |
+
(5): Dropout(p=0.0, inplace=False)
|
354 |
+
)
|
355 |
+
(dropout_layer): DropPath()
|
356 |
+
)
|
357 |
+
)
|
358 |
+
(1): TransformerEncoderLayer(
|
359 |
+
(norm1): LayerNorm((128,), eps=1e-06, elementwise_affine=True)
|
360 |
+
(attn): EfficientMultiheadAttention(
|
361 |
+
(attn): MultiheadAttention(
|
362 |
+
(out_proj): NonDynamicallyQuantizableLinear(in_features=128, out_features=128, bias=True)
|
363 |
+
)
|
364 |
+
(proj_drop): Dropout(p=0.0, inplace=False)
|
365 |
+
(dropout_layer): DropPath()
|
366 |
+
(sr): Conv2d(128, 128, kernel_size=(4, 4), stride=(4, 4))
|
367 |
+
(norm): LayerNorm((128,), eps=1e-06, elementwise_affine=True)
|
368 |
+
)
|
369 |
+
(norm2): LayerNorm((128,), eps=1e-06, elementwise_affine=True)
|
370 |
+
(ffn): MixFFN(
|
371 |
+
(activate): GELU(approximate='none')
|
372 |
+
(layers): Sequential(
|
373 |
+
(0): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1))
|
374 |
+
(1): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=512)
|
375 |
+
(2): GELU(approximate='none')
|
376 |
+
(3): Dropout(p=0.0, inplace=False)
|
377 |
+
(4): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1))
|
378 |
+
(5): Dropout(p=0.0, inplace=False)
|
379 |
+
)
|
380 |
+
(dropout_layer): DropPath()
|
381 |
+
)
|
382 |
+
)
|
383 |
+
(2): TransformerEncoderLayer(
|
384 |
+
(norm1): LayerNorm((128,), eps=1e-06, elementwise_affine=True)
|
385 |
+
(attn): EfficientMultiheadAttention(
|
386 |
+
(attn): MultiheadAttention(
|
387 |
+
(out_proj): NonDynamicallyQuantizableLinear(in_features=128, out_features=128, bias=True)
|
388 |
+
)
|
389 |
+
(proj_drop): Dropout(p=0.0, inplace=False)
|
390 |
+
(dropout_layer): DropPath()
|
391 |
+
(sr): Conv2d(128, 128, kernel_size=(4, 4), stride=(4, 4))
|
392 |
+
(norm): LayerNorm((128,), eps=1e-06, elementwise_affine=True)
|
393 |
+
)
|
394 |
+
(norm2): LayerNorm((128,), eps=1e-06, elementwise_affine=True)
|
395 |
+
(ffn): MixFFN(
|
396 |
+
(activate): GELU(approximate='none')
|
397 |
+
(layers): Sequential(
|
398 |
+
(0): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1))
|
399 |
+
(1): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=512)
|
400 |
+
(2): GELU(approximate='none')
|
401 |
+
(3): Dropout(p=0.0, inplace=False)
|
402 |
+
(4): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1))
|
403 |
+
(5): Dropout(p=0.0, inplace=False)
|
404 |
+
)
|
405 |
+
(dropout_layer): DropPath()
|
406 |
+
)
|
407 |
+
)
|
408 |
+
(3): TransformerEncoderLayer(
|
409 |
+
(norm1): LayerNorm((128,), eps=1e-06, elementwise_affine=True)
|
410 |
+
(attn): EfficientMultiheadAttention(
|
411 |
+
(attn): MultiheadAttention(
|
412 |
+
(out_proj): NonDynamicallyQuantizableLinear(in_features=128, out_features=128, bias=True)
|
413 |
+
)
|
414 |
+
(proj_drop): Dropout(p=0.0, inplace=False)
|
415 |
+
(dropout_layer): DropPath()
|
416 |
+
(sr): Conv2d(128, 128, kernel_size=(4, 4), stride=(4, 4))
|
417 |
+
(norm): LayerNorm((128,), eps=1e-06, elementwise_affine=True)
|
418 |
+
)
|
419 |
+
(norm2): LayerNorm((128,), eps=1e-06, elementwise_affine=True)
|
420 |
+
(ffn): MixFFN(
|
421 |
+
(activate): GELU(approximate='none')
|
422 |
+
(layers): Sequential(
|
423 |
+
(0): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1))
|
424 |
+
(1): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=512)
|
425 |
+
(2): GELU(approximate='none')
|
426 |
+
(3): Dropout(p=0.0, inplace=False)
|
427 |
+
(4): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1))
|
428 |
+
(5): Dropout(p=0.0, inplace=False)
|
429 |
+
)
|
430 |
+
(dropout_layer): DropPath()
|
431 |
+
)
|
432 |
+
)
|
433 |
+
)
|
434 |
+
(2): LayerNorm((128,), eps=1e-06, elementwise_affine=True)
|
435 |
+
)
|
436 |
+
(2): ModuleList(
|
437 |
+
(0): PatchEmbed(
|
438 |
+
(projection): Conv2d(128, 320, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
|
439 |
+
(norm): LayerNorm((320,), eps=1e-06, elementwise_affine=True)
|
440 |
+
)
|
441 |
+
(1): ModuleList(
|
442 |
+
(0): TransformerEncoderLayer(
|
443 |
+
(norm1): LayerNorm((320,), eps=1e-06, elementwise_affine=True)
|
444 |
+
(attn): EfficientMultiheadAttention(
|
445 |
+
(attn): MultiheadAttention(
|
446 |
+
(out_proj): NonDynamicallyQuantizableLinear(in_features=320, out_features=320, bias=True)
|
447 |
+
)
|
448 |
+
(proj_drop): Dropout(p=0.0, inplace=False)
|
449 |
+
(dropout_layer): DropPath()
|
450 |
+
(sr): Conv2d(320, 320, kernel_size=(2, 2), stride=(2, 2))
|
451 |
+
(norm): LayerNorm((320,), eps=1e-06, elementwise_affine=True)
|
452 |
+
)
|
453 |
+
(norm2): LayerNorm((320,), eps=1e-06, elementwise_affine=True)
|
454 |
+
(ffn): MixFFN(
|
455 |
+
(activate): GELU(approximate='none')
|
456 |
+
(layers): Sequential(
|
457 |
+
(0): Conv2d(320, 1280, kernel_size=(1, 1), stride=(1, 1))
|
458 |
+
(1): Conv2d(1280, 1280, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=1280)
|
459 |
+
(2): GELU(approximate='none')
|
460 |
+
(3): Dropout(p=0.0, inplace=False)
|
461 |
+
(4): Conv2d(1280, 320, kernel_size=(1, 1), stride=(1, 1))
|
462 |
+
(5): Dropout(p=0.0, inplace=False)
|
463 |
+
)
|
464 |
+
(dropout_layer): DropPath()
|
465 |
+
)
|
466 |
+
)
|
467 |
+
(1): TransformerEncoderLayer(
|
468 |
+
(norm1): LayerNorm((320,), eps=1e-06, elementwise_affine=True)
|
469 |
+
(attn): EfficientMultiheadAttention(
|
470 |
+
(attn): MultiheadAttention(
|
471 |
+
(out_proj): NonDynamicallyQuantizableLinear(in_features=320, out_features=320, bias=True)
|
472 |
+
)
|
473 |
+
(proj_drop): Dropout(p=0.0, inplace=False)
|
474 |
+
(dropout_layer): DropPath()
|
475 |
+
(sr): Conv2d(320, 320, kernel_size=(2, 2), stride=(2, 2))
|
476 |
+
(norm): LayerNorm((320,), eps=1e-06, elementwise_affine=True)
|
477 |
+
)
|
478 |
+
(norm2): LayerNorm((320,), eps=1e-06, elementwise_affine=True)
|
479 |
+
(ffn): MixFFN(
|
480 |
+
(activate): GELU(approximate='none')
|
481 |
+
(layers): Sequential(
|
482 |
+
(0): Conv2d(320, 1280, kernel_size=(1, 1), stride=(1, 1))
|
483 |
+
(1): Conv2d(1280, 1280, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=1280)
|
484 |
+
(2): GELU(approximate='none')
|
485 |
+
(3): Dropout(p=0.0, inplace=False)
|
486 |
+
(4): Conv2d(1280, 320, kernel_size=(1, 1), stride=(1, 1))
|
487 |
+
(5): Dropout(p=0.0, inplace=False)
|
488 |
+
)
|
489 |
+
(dropout_layer): DropPath()
|
490 |
+
)
|
491 |
+
)
|
492 |
+
(2): TransformerEncoderLayer(
|
493 |
+
(norm1): LayerNorm((320,), eps=1e-06, elementwise_affine=True)
|
494 |
+
(attn): EfficientMultiheadAttention(
|
495 |
+
(attn): MultiheadAttention(
|
496 |
+
(out_proj): NonDynamicallyQuantizableLinear(in_features=320, out_features=320, bias=True)
|
497 |
+
)
|
498 |
+
(proj_drop): Dropout(p=0.0, inplace=False)
|
499 |
+
(dropout_layer): DropPath()
|
500 |
+
(sr): Conv2d(320, 320, kernel_size=(2, 2), stride=(2, 2))
|
501 |
+
(norm): LayerNorm((320,), eps=1e-06, elementwise_affine=True)
|
502 |
+
)
|
503 |
+
(norm2): LayerNorm((320,), eps=1e-06, elementwise_affine=True)
|
504 |
+
(ffn): MixFFN(
|
505 |
+
(activate): GELU(approximate='none')
|
506 |
+
(layers): Sequential(
|
507 |
+
(0): Conv2d(320, 1280, kernel_size=(1, 1), stride=(1, 1))
|
508 |
+
(1): Conv2d(1280, 1280, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=1280)
|
509 |
+
(2): GELU(approximate='none')
|
510 |
+
(3): Dropout(p=0.0, inplace=False)
|
511 |
+
(4): Conv2d(1280, 320, kernel_size=(1, 1), stride=(1, 1))
|
512 |
+
(5): Dropout(p=0.0, inplace=False)
|
513 |
+
)
|
514 |
+
(dropout_layer): DropPath()
|
515 |
+
)
|
516 |
+
)
|
517 |
+
(3): TransformerEncoderLayer(
|
518 |
+
(norm1): LayerNorm((320,), eps=1e-06, elementwise_affine=True)
|
519 |
+
(attn): EfficientMultiheadAttention(
|
520 |
+
(attn): MultiheadAttention(
|
521 |
+
(out_proj): NonDynamicallyQuantizableLinear(in_features=320, out_features=320, bias=True)
|
522 |
+
)
|
523 |
+
(proj_drop): Dropout(p=0.0, inplace=False)
|
524 |
+
(dropout_layer): DropPath()
|
525 |
+
(sr): Conv2d(320, 320, kernel_size=(2, 2), stride=(2, 2))
|
526 |
+
(norm): LayerNorm((320,), eps=1e-06, elementwise_affine=True)
|
527 |
+
)
|
528 |
+
(norm2): LayerNorm((320,), eps=1e-06, elementwise_affine=True)
|
529 |
+
(ffn): MixFFN(
|
530 |
+
(activate): GELU(approximate='none')
|
531 |
+
(layers): Sequential(
|
532 |
+
(0): Conv2d(320, 1280, kernel_size=(1, 1), stride=(1, 1))
|
533 |
+
(1): Conv2d(1280, 1280, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=1280)
|
534 |
+
(2): GELU(approximate='none')
|
535 |
+
(3): Dropout(p=0.0, inplace=False)
|
536 |
+
(4): Conv2d(1280, 320, kernel_size=(1, 1), stride=(1, 1))
|
537 |
+
(5): Dropout(p=0.0, inplace=False)
|
538 |
+
)
|
539 |
+
(dropout_layer): DropPath()
|
540 |
+
)
|
541 |
+
)
|
542 |
+
(4): TransformerEncoderLayer(
|
543 |
+
(norm1): LayerNorm((320,), eps=1e-06, elementwise_affine=True)
|
544 |
+
(attn): EfficientMultiheadAttention(
|
545 |
+
(attn): MultiheadAttention(
|
546 |
+
(out_proj): NonDynamicallyQuantizableLinear(in_features=320, out_features=320, bias=True)
|
547 |
+
)
|
548 |
+
(proj_drop): Dropout(p=0.0, inplace=False)
|
549 |
+
(dropout_layer): DropPath()
|
550 |
+
(sr): Conv2d(320, 320, kernel_size=(2, 2), stride=(2, 2))
|
551 |
+
(norm): LayerNorm((320,), eps=1e-06, elementwise_affine=True)
|
552 |
+
)
|
553 |
+
(norm2): LayerNorm((320,), eps=1e-06, elementwise_affine=True)
|
554 |
+
(ffn): MixFFN(
|
555 |
+
(activate): GELU(approximate='none')
|
556 |
+
(layers): Sequential(
|
557 |
+
(0): Conv2d(320, 1280, kernel_size=(1, 1), stride=(1, 1))
|
558 |
+
(1): Conv2d(1280, 1280, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=1280)
|
559 |
+
(2): GELU(approximate='none')
|
560 |
+
(3): Dropout(p=0.0, inplace=False)
|
561 |
+
(4): Conv2d(1280, 320, kernel_size=(1, 1), stride=(1, 1))
|
562 |
+
(5): Dropout(p=0.0, inplace=False)
|
563 |
+
)
|
564 |
+
(dropout_layer): DropPath()
|
565 |
+
)
|
566 |
+
)
|
567 |
+
(5): TransformerEncoderLayer(
|
568 |
+
(norm1): LayerNorm((320,), eps=1e-06, elementwise_affine=True)
|
569 |
+
(attn): EfficientMultiheadAttention(
|
570 |
+
(attn): MultiheadAttention(
|
571 |
+
(out_proj): NonDynamicallyQuantizableLinear(in_features=320, out_features=320, bias=True)
|
572 |
+
)
|
573 |
+
(proj_drop): Dropout(p=0.0, inplace=False)
|
574 |
+
(dropout_layer): DropPath()
|
575 |
+
(sr): Conv2d(320, 320, kernel_size=(2, 2), stride=(2, 2))
|
576 |
+
(norm): LayerNorm((320,), eps=1e-06, elementwise_affine=True)
|
577 |
+
)
|
578 |
+
(norm2): LayerNorm((320,), eps=1e-06, elementwise_affine=True)
|
579 |
+
(ffn): MixFFN(
|
580 |
+
(activate): GELU(approximate='none')
|
581 |
+
(layers): Sequential(
|
582 |
+
(0): Conv2d(320, 1280, kernel_size=(1, 1), stride=(1, 1))
|
583 |
+
(1): Conv2d(1280, 1280, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=1280)
|
584 |
+
(2): GELU(approximate='none')
|
585 |
+
(3): Dropout(p=0.0, inplace=False)
|
586 |
+
(4): Conv2d(1280, 320, kernel_size=(1, 1), stride=(1, 1))
|
587 |
+
(5): Dropout(p=0.0, inplace=False)
|
588 |
+
)
|
589 |
+
(dropout_layer): DropPath()
|
590 |
+
)
|
591 |
+
)
|
592 |
+
)
|
593 |
+
(2): LayerNorm((320,), eps=1e-06, elementwise_affine=True)
|
594 |
+
)
|
595 |
+
(3): ModuleList(
|
596 |
+
(0): PatchEmbed(
|
597 |
+
(projection): Conv2d(320, 512, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
|
598 |
+
(norm): LayerNorm((512,), eps=1e-06, elementwise_affine=True)
|
599 |
+
)
|
600 |
+
(1): ModuleList(
|
601 |
+
(0): TransformerEncoderLayer(
|
602 |
+
(norm1): LayerNorm((512,), eps=1e-06, elementwise_affine=True)
|
603 |
+
(attn): EfficientMultiheadAttention(
|
604 |
+
(attn): MultiheadAttention(
|
605 |
+
(out_proj): NonDynamicallyQuantizableLinear(in_features=512, out_features=512, bias=True)
|
606 |
+
)
|
607 |
+
(proj_drop): Dropout(p=0.0, inplace=False)
|
608 |
+
(dropout_layer): DropPath()
|
609 |
+
)
|
610 |
+
(norm2): LayerNorm((512,), eps=1e-06, elementwise_affine=True)
|
611 |
+
(ffn): MixFFN(
|
612 |
+
(activate): GELU(approximate='none')
|
613 |
+
(layers): Sequential(
|
614 |
+
(0): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1))
|
615 |
+
(1): Conv2d(2048, 2048, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=2048)
|
616 |
+
(2): GELU(approximate='none')
|
617 |
+
(3): Dropout(p=0.0, inplace=False)
|
618 |
+
(4): Conv2d(2048, 512, kernel_size=(1, 1), stride=(1, 1))
|
619 |
+
(5): Dropout(p=0.0, inplace=False)
|
620 |
+
)
|
621 |
+
(dropout_layer): DropPath()
|
622 |
+
)
|
623 |
+
)
|
624 |
+
(1): TransformerEncoderLayer(
|
625 |
+
(norm1): LayerNorm((512,), eps=1e-06, elementwise_affine=True)
|
626 |
+
(attn): EfficientMultiheadAttention(
|
627 |
+
(attn): MultiheadAttention(
|
628 |
+
(out_proj): NonDynamicallyQuantizableLinear(in_features=512, out_features=512, bias=True)
|
629 |
+
)
|
630 |
+
(proj_drop): Dropout(p=0.0, inplace=False)
|
631 |
+
(dropout_layer): DropPath()
|
632 |
+
)
|
633 |
+
(norm2): LayerNorm((512,), eps=1e-06, elementwise_affine=True)
|
634 |
+
(ffn): MixFFN(
|
635 |
+
(activate): GELU(approximate='none')
|
636 |
+
(layers): Sequential(
|
637 |
+
(0): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1))
|
638 |
+
(1): Conv2d(2048, 2048, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=2048)
|
639 |
+
(2): GELU(approximate='none')
|
640 |
+
(3): Dropout(p=0.0, inplace=False)
|
641 |
+
(4): Conv2d(2048, 512, kernel_size=(1, 1), stride=(1, 1))
|
642 |
+
(5): Dropout(p=0.0, inplace=False)
|
643 |
+
)
|
644 |
+
(dropout_layer): DropPath()
|
645 |
+
)
|
646 |
+
)
|
647 |
+
(2): TransformerEncoderLayer(
|
648 |
+
(norm1): LayerNorm((512,), eps=1e-06, elementwise_affine=True)
|
649 |
+
(attn): EfficientMultiheadAttention(
|
650 |
+
(attn): MultiheadAttention(
|
651 |
+
(out_proj): NonDynamicallyQuantizableLinear(in_features=512, out_features=512, bias=True)
|
652 |
+
)
|
653 |
+
(proj_drop): Dropout(p=0.0, inplace=False)
|
654 |
+
(dropout_layer): DropPath()
|
655 |
+
)
|
656 |
+
(norm2): LayerNorm((512,), eps=1e-06, elementwise_affine=True)
|
657 |
+
(ffn): MixFFN(
|
658 |
+
(activate): GELU(approximate='none')
|
659 |
+
(layers): Sequential(
|
660 |
+
(0): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1))
|
661 |
+
(1): Conv2d(2048, 2048, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=2048)
|
662 |
+
(2): GELU(approximate='none')
|
663 |
+
(3): Dropout(p=0.0, inplace=False)
|
664 |
+
(4): Conv2d(2048, 512, kernel_size=(1, 1), stride=(1, 1))
|
665 |
+
(5): Dropout(p=0.0, inplace=False)
|
666 |
+
)
|
667 |
+
(dropout_layer): DropPath()
|
668 |
+
)
|
669 |
+
)
|
670 |
+
)
|
671 |
+
(2): LayerNorm((512,), eps=1e-06, elementwise_affine=True)
|
672 |
+
)
|
673 |
+
)
|
674 |
+
)
|
675 |
+
init_cfg={'type': 'Pretrained', 'checkpoint': 'pretrained/segformer_mit-b2_512x512_160k_ade20k_20220620_114047-64e4feca.pth'}
|
676 |
+
(decode_head): SegformerHeadUnetFCHeadSingleStepLogits(
|
677 |
+
input_transform=multiple_select, ignore_index=0, align_corners=False
|
678 |
+
(loss_decode): CrossEntropyLoss(avg_non_ignore=False)
|
679 |
+
(conv_seg): Conv2d(256, 150, kernel_size=(1, 1), stride=(1, 1))
|
680 |
+
(dropout): Dropout2d(p=0.1, inplace=False)
|
681 |
+
(convs): ModuleList(
|
682 |
+
(0): ConvModule(
|
683 |
+
(conv): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
684 |
+
(bn): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
685 |
+
(activate): ReLU(inplace=True)
|
686 |
+
)
|
687 |
+
(1): ConvModule(
|
688 |
+
(conv): Conv2d(128, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
689 |
+
(bn): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
690 |
+
(activate): ReLU(inplace=True)
|
691 |
+
)
|
692 |
+
(2): ConvModule(
|
693 |
+
(conv): Conv2d(320, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
694 |
+
(bn): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
695 |
+
(activate): ReLU(inplace=True)
|
696 |
+
)
|
697 |
+
(3): ConvModule(
|
698 |
+
(conv): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
699 |
+
(bn): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
700 |
+
(activate): ReLU(inplace=True)
|
701 |
+
)
|
702 |
+
)
|
703 |
+
(fusion_conv): ConvModule(
|
704 |
+
(conv): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
705 |
+
(bn): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
706 |
+
(activate): ReLU(inplace=True)
|
707 |
+
)
|
708 |
+
(unet): Unet(
|
709 |
+
(init_conv): Conv2d(166, 128, kernel_size=(7, 7), stride=(1, 1), padding=(3, 3))
|
710 |
+
(time_mlp): Sequential(
|
711 |
+
(0): SinusoidalPosEmb()
|
712 |
+
(1): Linear(in_features=128, out_features=512, bias=True)
|
713 |
+
(2): GELU(approximate='none')
|
714 |
+
(3): Linear(in_features=512, out_features=512, bias=True)
|
715 |
+
)
|
716 |
+
(downs): ModuleList(
|
717 |
+
(0): ModuleList(
|
718 |
+
(0): ResnetBlock(
|
719 |
+
(mlp): Sequential(
|
720 |
+
(0): SiLU()
|
721 |
+
(1): Linear(in_features=512, out_features=256, bias=True)
|
722 |
+
)
|
723 |
+
(block1): Block(
|
724 |
+
(proj): WeightStandardizedConv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
725 |
+
(norm): GroupNorm(8, 128, eps=1e-05, affine=True)
|
726 |
+
(act): SiLU()
|
727 |
+
)
|
728 |
+
(block2): Block(
|
729 |
+
(proj): WeightStandardizedConv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
730 |
+
(norm): GroupNorm(8, 128, eps=1e-05, affine=True)
|
731 |
+
(act): SiLU()
|
732 |
+
)
|
733 |
+
(res_conv): Identity()
|
734 |
+
)
|
735 |
+
(1): ResnetBlock(
|
736 |
+
(mlp): Sequential(
|
737 |
+
(0): SiLU()
|
738 |
+
(1): Linear(in_features=512, out_features=256, bias=True)
|
739 |
+
)
|
740 |
+
(block1): Block(
|
741 |
+
(proj): WeightStandardizedConv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
742 |
+
(norm): GroupNorm(8, 128, eps=1e-05, affine=True)
|
743 |
+
(act): SiLU()
|
744 |
+
)
|
745 |
+
(block2): Block(
|
746 |
+
(proj): WeightStandardizedConv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
747 |
+
(norm): GroupNorm(8, 128, eps=1e-05, affine=True)
|
748 |
+
(act): SiLU()
|
749 |
+
)
|
750 |
+
(res_conv): Identity()
|
751 |
+
)
|
752 |
+
(2): Residual(
|
753 |
+
(fn): PreNorm(
|
754 |
+
(fn): LinearAttention(
|
755 |
+
(to_qkv): Conv2d(128, 384, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
756 |
+
(to_out): Sequential(
|
757 |
+
(0): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1))
|
758 |
+
(1): LayerNorm()
|
759 |
+
)
|
760 |
+
)
|
761 |
+
(norm): LayerNorm()
|
762 |
+
)
|
763 |
+
)
|
764 |
+
(3): Conv2d(128, 128, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
|
765 |
+
)
|
766 |
+
(1): ModuleList(
|
767 |
+
(0): ResnetBlock(
|
768 |
+
(mlp): Sequential(
|
769 |
+
(0): SiLU()
|
770 |
+
(1): Linear(in_features=512, out_features=256, bias=True)
|
771 |
+
)
|
772 |
+
(block1): Block(
|
773 |
+
(proj): WeightStandardizedConv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
774 |
+
(norm): GroupNorm(8, 128, eps=1e-05, affine=True)
|
775 |
+
(act): SiLU()
|
776 |
+
)
|
777 |
+
(block2): Block(
|
778 |
+
(proj): WeightStandardizedConv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
779 |
+
(norm): GroupNorm(8, 128, eps=1e-05, affine=True)
|
780 |
+
(act): SiLU()
|
781 |
+
)
|
782 |
+
(res_conv): Identity()
|
783 |
+
)
|
784 |
+
(1): ResnetBlock(
|
785 |
+
(mlp): Sequential(
|
786 |
+
(0): SiLU()
|
787 |
+
(1): Linear(in_features=512, out_features=256, bias=True)
|
788 |
+
)
|
789 |
+
(block1): Block(
|
790 |
+
(proj): WeightStandardizedConv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
791 |
+
(norm): GroupNorm(8, 128, eps=1e-05, affine=True)
|
792 |
+
(act): SiLU()
|
793 |
+
)
|
794 |
+
(block2): Block(
|
795 |
+
(proj): WeightStandardizedConv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
796 |
+
(norm): GroupNorm(8, 128, eps=1e-05, affine=True)
|
797 |
+
(act): SiLU()
|
798 |
+
)
|
799 |
+
(res_conv): Identity()
|
800 |
+
)
|
801 |
+
(2): Residual(
|
802 |
+
(fn): PreNorm(
|
803 |
+
(fn): LinearAttention(
|
804 |
+
(to_qkv): Conv2d(128, 384, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
805 |
+
(to_out): Sequential(
|
806 |
+
(0): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1))
|
807 |
+
(1): LayerNorm()
|
808 |
+
)
|
809 |
+
)
|
810 |
+
(norm): LayerNorm()
|
811 |
+
)
|
812 |
+
)
|
813 |
+
(3): Conv2d(128, 128, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
|
814 |
+
)
|
815 |
+
(2): ModuleList(
|
816 |
+
(0): ResnetBlock(
|
817 |
+
(mlp): Sequential(
|
818 |
+
(0): SiLU()
|
819 |
+
(1): Linear(in_features=512, out_features=256, bias=True)
|
820 |
+
)
|
821 |
+
(block1): Block(
|
822 |
+
(proj): WeightStandardizedConv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
823 |
+
(norm): GroupNorm(8, 128, eps=1e-05, affine=True)
|
824 |
+
(act): SiLU()
|
825 |
+
)
|
826 |
+
(block2): Block(
|
827 |
+
(proj): WeightStandardizedConv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
828 |
+
(norm): GroupNorm(8, 128, eps=1e-05, affine=True)
|
829 |
+
(act): SiLU()
|
830 |
+
)
|
831 |
+
(res_conv): Identity()
|
832 |
+
)
|
833 |
+
(1): ResnetBlock(
|
834 |
+
(mlp): Sequential(
|
835 |
+
(0): SiLU()
|
836 |
+
(1): Linear(in_features=512, out_features=256, bias=True)
|
837 |
+
)
|
838 |
+
(block1): Block(
|
839 |
+
(proj): WeightStandardizedConv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
840 |
+
(norm): GroupNorm(8, 128, eps=1e-05, affine=True)
|
841 |
+
(act): SiLU()
|
842 |
+
)
|
843 |
+
(block2): Block(
|
844 |
+
(proj): WeightStandardizedConv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
845 |
+
(norm): GroupNorm(8, 128, eps=1e-05, affine=True)
|
846 |
+
(act): SiLU()
|
847 |
+
)
|
848 |
+
(res_conv): Identity()
|
849 |
+
)
|
850 |
+
(2): Residual(
|
851 |
+
(fn): PreNorm(
|
852 |
+
(fn): LinearAttention(
|
853 |
+
(to_qkv): Conv2d(128, 384, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
854 |
+
(to_out): Sequential(
|
855 |
+
(0): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1))
|
856 |
+
(1): LayerNorm()
|
857 |
+
)
|
858 |
+
)
|
859 |
+
(norm): LayerNorm()
|
860 |
+
)
|
861 |
+
)
|
862 |
+
(3): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
863 |
+
)
|
864 |
+
)
|
865 |
+
(ups): ModuleList(
|
866 |
+
(0): ModuleList(
|
867 |
+
(0): ResnetBlock(
|
868 |
+
(mlp): Sequential(
|
869 |
+
(0): SiLU()
|
870 |
+
(1): Linear(in_features=512, out_features=256, bias=True)
|
871 |
+
)
|
872 |
+
(block1): Block(
|
873 |
+
(proj): WeightStandardizedConv2d(256, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
874 |
+
(norm): GroupNorm(8, 128, eps=1e-05, affine=True)
|
875 |
+
(act): SiLU()
|
876 |
+
)
|
877 |
+
(block2): Block(
|
878 |
+
(proj): WeightStandardizedConv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
879 |
+
(norm): GroupNorm(8, 128, eps=1e-05, affine=True)
|
880 |
+
(act): SiLU()
|
881 |
+
)
|
882 |
+
(res_conv): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1))
|
883 |
+
)
|
884 |
+
(1): ResnetBlock(
|
885 |
+
(mlp): Sequential(
|
886 |
+
(0): SiLU()
|
887 |
+
(1): Linear(in_features=512, out_features=256, bias=True)
|
888 |
+
)
|
889 |
+
(block1): Block(
|
890 |
+
(proj): WeightStandardizedConv2d(256, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
891 |
+
(norm): GroupNorm(8, 128, eps=1e-05, affine=True)
|
892 |
+
(act): SiLU()
|
893 |
+
)
|
894 |
+
(block2): Block(
|
895 |
+
(proj): WeightStandardizedConv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
896 |
+
(norm): GroupNorm(8, 128, eps=1e-05, affine=True)
|
897 |
+
(act): SiLU()
|
898 |
+
)
|
899 |
+
(res_conv): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1))
|
900 |
+
)
|
901 |
+
(2): Residual(
|
902 |
+
(fn): PreNorm(
|
903 |
+
(fn): LinearAttention(
|
904 |
+
(to_qkv): Conv2d(128, 384, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
905 |
+
(to_out): Sequential(
|
906 |
+
(0): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1))
|
907 |
+
(1): LayerNorm()
|
908 |
+
)
|
909 |
+
)
|
910 |
+
(norm): LayerNorm()
|
911 |
+
)
|
912 |
+
)
|
913 |
+
(3): Sequential(
|
914 |
+
(0): Upsample(scale_factor=2.0, mode=nearest)
|
915 |
+
(1): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
916 |
+
)
|
917 |
+
)
|
918 |
+
(1): ModuleList(
|
919 |
+
(0): ResnetBlock(
|
920 |
+
(mlp): Sequential(
|
921 |
+
(0): SiLU()
|
922 |
+
(1): Linear(in_features=512, out_features=256, bias=True)
|
923 |
+
)
|
924 |
+
(block1): Block(
|
925 |
+
(proj): WeightStandardizedConv2d(256, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
926 |
+
(norm): GroupNorm(8, 128, eps=1e-05, affine=True)
|
927 |
+
(act): SiLU()
|
928 |
+
)
|
929 |
+
(block2): Block(
|
930 |
+
(proj): WeightStandardizedConv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
931 |
+
(norm): GroupNorm(8, 128, eps=1e-05, affine=True)
|
932 |
+
(act): SiLU()
|
933 |
+
)
|
934 |
+
(res_conv): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1))
|
935 |
+
)
|
936 |
+
(1): ResnetBlock(
|
937 |
+
(mlp): Sequential(
|
938 |
+
(0): SiLU()
|
939 |
+
(1): Linear(in_features=512, out_features=256, bias=True)
|
940 |
+
)
|
941 |
+
(block1): Block(
|
942 |
+
(proj): WeightStandardizedConv2d(256, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
943 |
+
(norm): GroupNorm(8, 128, eps=1e-05, affine=True)
|
944 |
+
(act): SiLU()
|
945 |
+
)
|
946 |
+
(block2): Block(
|
947 |
+
(proj): WeightStandardizedConv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
948 |
+
(norm): GroupNorm(8, 128, eps=1e-05, affine=True)
|
949 |
+
(act): SiLU()
|
950 |
+
)
|
951 |
+
(res_conv): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1))
|
952 |
+
)
|
953 |
+
(2): Residual(
|
954 |
+
(fn): PreNorm(
|
955 |
+
(fn): LinearAttention(
|
956 |
+
(to_qkv): Conv2d(128, 384, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
957 |
+
(to_out): Sequential(
|
958 |
+
(0): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1))
|
959 |
+
(1): LayerNorm()
|
960 |
+
)
|
961 |
+
)
|
962 |
+
(norm): LayerNorm()
|
963 |
+
)
|
964 |
+
)
|
965 |
+
(3): Sequential(
|
966 |
+
(0): Upsample(scale_factor=2.0, mode=nearest)
|
967 |
+
(1): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
968 |
+
)
|
969 |
+
)
|
970 |
+
(2): ModuleList(
|
971 |
+
(0): ResnetBlock(
|
972 |
+
(mlp): Sequential(
|
973 |
+
(0): SiLU()
|
974 |
+
(1): Linear(in_features=512, out_features=256, bias=True)
|
975 |
+
)
|
976 |
+
(block1): Block(
|
977 |
+
(proj): WeightStandardizedConv2d(256, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
978 |
+
(norm): GroupNorm(8, 128, eps=1e-05, affine=True)
|
979 |
+
(act): SiLU()
|
980 |
+
)
|
981 |
+
(block2): Block(
|
982 |
+
(proj): WeightStandardizedConv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
983 |
+
(norm): GroupNorm(8, 128, eps=1e-05, affine=True)
|
984 |
+
(act): SiLU()
|
985 |
+
)
|
986 |
+
(res_conv): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1))
|
987 |
+
)
|
988 |
+
(1): ResnetBlock(
|
989 |
+
(mlp): Sequential(
|
990 |
+
(0): SiLU()
|
991 |
+
(1): Linear(in_features=512, out_features=256, bias=True)
|
992 |
+
)
|
993 |
+
(block1): Block(
|
994 |
+
(proj): WeightStandardizedConv2d(256, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
995 |
+
(norm): GroupNorm(8, 128, eps=1e-05, affine=True)
|
996 |
+
(act): SiLU()
|
997 |
+
)
|
998 |
+
(block2): Block(
|
999 |
+
(proj): WeightStandardizedConv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
1000 |
+
(norm): GroupNorm(8, 128, eps=1e-05, affine=True)
|
1001 |
+
(act): SiLU()
|
1002 |
+
)
|
1003 |
+
(res_conv): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1))
|
1004 |
+
)
|
1005 |
+
(2): Residual(
|
1006 |
+
(fn): PreNorm(
|
1007 |
+
(fn): LinearAttention(
|
1008 |
+
(to_qkv): Conv2d(128, 384, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
1009 |
+
(to_out): Sequential(
|
1010 |
+
(0): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1))
|
1011 |
+
(1): LayerNorm()
|
1012 |
+
)
|
1013 |
+
)
|
1014 |
+
(norm): LayerNorm()
|
1015 |
+
)
|
1016 |
+
)
|
1017 |
+
(3): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
1018 |
+
)
|
1019 |
+
)
|
1020 |
+
(mid_block1): ResnetBlock(
|
1021 |
+
(mlp): Sequential(
|
1022 |
+
(0): SiLU()
|
1023 |
+
(1): Linear(in_features=512, out_features=256, bias=True)
|
1024 |
+
)
|
1025 |
+
(block1): Block(
|
1026 |
+
(proj): WeightStandardizedConv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
1027 |
+
(norm): GroupNorm(8, 128, eps=1e-05, affine=True)
|
1028 |
+
(act): SiLU()
|
1029 |
+
)
|
1030 |
+
(block2): Block(
|
1031 |
+
(proj): WeightStandardizedConv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
1032 |
+
(norm): GroupNorm(8, 128, eps=1e-05, affine=True)
|
1033 |
+
(act): SiLU()
|
1034 |
+
)
|
1035 |
+
(res_conv): Identity()
|
1036 |
+
)
|
1037 |
+
(mid_attn): Residual(
|
1038 |
+
(fn): PreNorm(
|
1039 |
+
(fn): Attention(
|
1040 |
+
(to_qkv): Conv2d(128, 384, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
1041 |
+
(to_out): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1))
|
1042 |
+
)
|
1043 |
+
(norm): LayerNorm()
|
1044 |
+
)
|
1045 |
+
)
|
1046 |
+
(mid_block2): ResnetBlock(
|
1047 |
+
(mlp): Sequential(
|
1048 |
+
(0): SiLU()
|
1049 |
+
(1): Linear(in_features=512, out_features=256, bias=True)
|
1050 |
+
)
|
1051 |
+
(block1): Block(
|
1052 |
+
(proj): WeightStandardizedConv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
1053 |
+
(norm): GroupNorm(8, 128, eps=1e-05, affine=True)
|
1054 |
+
(act): SiLU()
|
1055 |
+
)
|
1056 |
+
(block2): Block(
|
1057 |
+
(proj): WeightStandardizedConv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
1058 |
+
(norm): GroupNorm(8, 128, eps=1e-05, affine=True)
|
1059 |
+
(act): SiLU()
|
1060 |
+
)
|
1061 |
+
(res_conv): Identity()
|
1062 |
+
)
|
1063 |
+
(final_res_block): ResnetBlock(
|
1064 |
+
(mlp): Sequential(
|
1065 |
+
(0): SiLU()
|
1066 |
+
(1): Linear(in_features=512, out_features=256, bias=True)
|
1067 |
+
)
|
1068 |
+
(block1): Block(
|
1069 |
+
(proj): WeightStandardizedConv2d(256, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
1070 |
+
(norm): GroupNorm(8, 128, eps=1e-05, affine=True)
|
1071 |
+
(act): SiLU()
|
1072 |
+
)
|
1073 |
+
(block2): Block(
|
1074 |
+
(proj): WeightStandardizedConv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
1075 |
+
(norm): GroupNorm(8, 128, eps=1e-05, affine=True)
|
1076 |
+
(act): SiLU()
|
1077 |
+
)
|
1078 |
+
(res_conv): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1))
|
1079 |
+
)
|
1080 |
+
(final_conv): Conv2d(128, 256, kernel_size=(1, 1), stride=(1, 1))
|
1081 |
+
)
|
1082 |
+
(conv_seg_new): Conv2d(256, 151, kernel_size=(1, 1), stride=(1, 1))
|
1083 |
+
(embed): Embedding(151, 16)
|
1084 |
+
)
|
1085 |
+
init_cfg={'type': 'Pretrained', 'checkpoint': 'pretrained/segformer_mit-b2_512x512_160k_ade20k_20220620_114047-64e4feca.pth'}
|
1086 |
+
)
|
1087 |
+
2023-03-04 17:39:09,635 - mmseg - INFO - Loaded 20210 images
|
1088 |
+
2023-03-04 17:39:10,639 - mmseg - INFO - Loaded 2000 images
|
1089 |
+
2023-03-04 17:39:10,642 - mmseg - INFO - Start running, host: laizeqiang@SH-IDC1-10-140-37-130, work_dir: /mnt/petrelfs/laizeqiang/mmseg-baseline/work_dirs2/ablation_segformer_mit_b2_segformer_head_unet_fc_single_step_ade_pretrained_freeze_embed_80k_ade20k151_logits
|
1090 |
+
2023-03-04 17:39:10,642 - mmseg - INFO - Hooks will be executed in the following order:
|
1091 |
+
before_run:
|
1092 |
+
(VERY_HIGH ) StepLrUpdaterHook
|
1093 |
+
(NORMAL ) CheckpointHook
|
1094 |
+
(LOW ) DistEvalHookMultiSteps
|
1095 |
+
(VERY_LOW ) TextLoggerHook
|
1096 |
+
--------------------
|
1097 |
+
before_train_epoch:
|
1098 |
+
(VERY_HIGH ) StepLrUpdaterHook
|
1099 |
+
(LOW ) IterTimerHook
|
1100 |
+
(LOW ) DistEvalHookMultiSteps
|
1101 |
+
(VERY_LOW ) TextLoggerHook
|
1102 |
+
--------------------
|
1103 |
+
before_train_iter:
|
1104 |
+
(VERY_HIGH ) StepLrUpdaterHook
|
1105 |
+
(LOW ) IterTimerHook
|
1106 |
+
(LOW ) DistEvalHookMultiSteps
|
1107 |
+
--------------------
|
1108 |
+
after_train_iter:
|
1109 |
+
(ABOVE_NORMAL) OptimizerHook
|
1110 |
+
(NORMAL ) CheckpointHook
|
1111 |
+
(LOW ) IterTimerHook
|
1112 |
+
(LOW ) DistEvalHookMultiSteps
|
1113 |
+
(VERY_LOW ) TextLoggerHook
|
1114 |
+
--------------------
|
1115 |
+
after_train_epoch:
|
1116 |
+
(NORMAL ) CheckpointHook
|
1117 |
+
(LOW ) DistEvalHookMultiSteps
|
1118 |
+
(VERY_LOW ) TextLoggerHook
|
1119 |
+
--------------------
|
1120 |
+
before_val_epoch:
|
1121 |
+
(LOW ) IterTimerHook
|
1122 |
+
(VERY_LOW ) TextLoggerHook
|
1123 |
+
--------------------
|
1124 |
+
before_val_iter:
|
1125 |
+
(LOW ) IterTimerHook
|
1126 |
+
--------------------
|
1127 |
+
after_val_iter:
|
1128 |
+
(LOW ) IterTimerHook
|
1129 |
+
--------------------
|
1130 |
+
after_val_epoch:
|
1131 |
+
(VERY_LOW ) TextLoggerHook
|
1132 |
+
--------------------
|
1133 |
+
after_run:
|
1134 |
+
(VERY_LOW ) TextLoggerHook
|
1135 |
+
--------------------
|
1136 |
+
2023-03-04 17:39:10,642 - mmseg - INFO - workflow: [('train', 1)], max: 80000 iters
|
1137 |
+
2023-03-04 17:39:10,642 - mmseg - INFO - Checkpoints will be saved to /mnt/petrelfs/laizeqiang/mmseg-baseline/work_dirs2/ablation_segformer_mit_b2_segformer_head_unet_fc_single_step_ade_pretrained_freeze_embed_80k_ade20k151_logits by HardDiskBackend.
|
1138 |
+
2023-03-04 17:39:48,984 - mmseg - INFO - Iter [50/80000] lr: 7.350e-06, eta: 6:37:37, time: 0.298, data_time: 0.015, memory: 19750, decode.loss_ce: 4.0785, decode.acc_seg: 8.5126, loss: 4.0785
|
1139 |
+
2023-03-04 17:39:57,554 - mmseg - INFO - Iter [100/80000] lr: 1.485e-05, eta: 5:12:50, time: 0.171, data_time: 0.007, memory: 19750, decode.loss_ce: 2.9187, decode.acc_seg: 27.5140, loss: 2.9187
|
1140 |
+
2023-03-04 17:40:06,040 - mmseg - INFO - Iter [150/80000] lr: 2.235e-05, eta: 4:43:42, time: 0.170, data_time: 0.007, memory: 19750, decode.loss_ce: 2.3354, decode.acc_seg: 43.1981, loss: 2.3354
|
1141 |
+
2023-03-04 17:40:14,295 - mmseg - INFO - Iter [200/80000] lr: 2.985e-05, eta: 4:27:32, time: 0.165, data_time: 0.007, memory: 19750, decode.loss_ce: 1.8341, decode.acc_seg: 55.2996, loss: 1.8341
|
1142 |
+
2023-03-04 17:40:22,579 - mmseg - INFO - Iter [250/80000] lr: 3.735e-05, eta: 4:17:56, time: 0.166, data_time: 0.007, memory: 19750, decode.loss_ce: 1.5030, decode.acc_seg: 63.0600, loss: 1.5030
|
1143 |
+
2023-03-04 17:40:30,864 - mmseg - INFO - Iter [300/80000] lr: 4.485e-05, eta: 4:11:29, time: 0.166, data_time: 0.006, memory: 19750, decode.loss_ce: 1.2782, decode.acc_seg: 67.0304, loss: 1.2782
|
ablation/ablation_segformer_mit_b2_segformer_head_unet_fc_single_step_ade_pretrained_freeze_embed_80k_ade20k151_logits/20230304_173902.log.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{"env_info": "sys.platform: linux\nPython: 3.7.16 (default, Jan 17 2023, 22:20:44) [GCC 11.2.0]\nCUDA available: True\nGPU 0,1,2,3,4,5,6,7: NVIDIA A100-SXM4-80GB\nCUDA_HOME: /mnt/petrelfs/laizeqiang/miniconda3/envs/torch\nNVCC: Cuda compilation tools, release 11.6, V11.6.124\nGCC: gcc (GCC) 4.8.5 20150623 (Red Hat 4.8.5-44)\nPyTorch: 1.13.1\nPyTorch compiling details: PyTorch built with:\n - GCC 9.3\n - C++ Version: 201402\n - Intel(R) oneAPI Math Kernel Library Version 2021.4-Product Build 20210904 for Intel(R) 64 architecture applications\n - Intel(R) MKL-DNN v2.6.0 (Git Hash 52b5f107dd9cf10910aaa19cb47f3abf9b349815)\n - OpenMP 201511 (a.k.a. OpenMP 4.5)\n - LAPACK is enabled (usually provided by MKL)\n - NNPACK is enabled\n - CPU capability usage: AVX2\n - CUDA Runtime 11.6\n - NVCC architecture flags: -gencode;arch=compute_37,code=sm_37;-gencode;arch=compute_50,code=sm_50;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_61,code=sm_61;-gencode;arch=compute_70,code=sm_70;-gencode;arch=compute_75,code=sm_75;-gencode;arch=compute_80,code=sm_80;-gencode;arch=compute_86,code=sm_86;-gencode;arch=compute_37,code=compute_37\n - CuDNN 8.3.2 (built against CUDA 11.5)\n - Magma 2.6.1\n - Build settings: BLAS_INFO=mkl, BUILD_TYPE=Release, CUDA_VERSION=11.6, CUDNN_VERSION=8.3.2, CXX_COMPILER=/opt/rh/devtoolset-9/root/usr/bin/c++, CXX_FLAGS= -fabi-version=11 -Wno-deprecated -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -fopenmp -DNDEBUG -DUSE_KINETO -DUSE_FBGEMM -DUSE_QNNPACK -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE -DEDGE_PROFILER_USE_KINETO -O2 -fPIC -Wno-narrowing -Wall -Wextra -Werror=return-type -Werror=non-virtual-dtor -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wunused-local-typedefs -Wno-unused-parameter -Wno-unused-function -Wno-unused-result -Wno-strict-overflow -Wno-strict-aliasing -Wno-error=deprecated-declarations -Wno-stringop-overflow -Wno-psabi -Wno-error=pedantic -Wno-error=redundant-decls -Wno-error=old-style-cast -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Werror=cast-function-type -Wno-stringop-overflow, LAPACK_INFO=mkl, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, PERF_WITH_AVX512=1, TORCH_VERSION=1.13.1, USE_CUDA=ON, USE_CUDNN=ON, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_MKL=ON, USE_MKLDNN=ON, USE_MPI=OFF, USE_NCCL=ON, USE_NNPACK=ON, USE_OPENMP=ON, USE_ROCM=OFF, \n\nTorchVision: 0.14.1\nOpenCV: 4.7.0\nMMCV: 1.7.1\nMMCV Compiler: GCC 9.3\nMMCV CUDA Compiler: 11.6\nMMSegmentation: 0.30.0+6749699", "seed": 984079870, "exp_name": "ablation_segformer_mit_b2_segformer_head_unet_fc_single_step_ade_pretrained_freeze_embed_80k_ade20k151_logits.py", "mmseg_version": "0.30.0+6749699", "config": "norm_cfg = dict(type='SyncBN', requires_grad=True)\ncheckpoint = 'pretrained/segformer_mit-b2_512x512_160k_ade20k_20220620_114047-64e4feca.pth'\nmodel = dict(\n type='EncoderDecoderFreeze',\n freeze_parameters=['backbone', 'decode_head'],\n pretrained=\n 'pretrained/segformer_mit-b2_512x512_160k_ade20k_20220620_114047-64e4feca.pth',\n backbone=dict(\n type='MixVisionTransformerCustomInitWeights',\n in_channels=3,\n embed_dims=64,\n num_stages=4,\n num_layers=[3, 4, 6, 3],\n num_heads=[1, 2, 5, 8],\n patch_sizes=[7, 3, 3, 3],\n sr_ratios=[8, 4, 2, 1],\n out_indices=(0, 1, 2, 3),\n mlp_ratio=4,\n qkv_bias=True,\n drop_rate=0.0,\n attn_drop_rate=0.0,\n drop_path_rate=0.1,\n pretrained=\n 'pretrained/segformer_mit-b2_512x512_160k_ade20k_20220620_114047-64e4feca.pth'\n ),\n decode_head=dict(\n type='SegformerHeadUnetFCHeadSingleStepLogits',\n pretrained=\n 'pretrained/segformer_mit-b2_512x512_160k_ade20k_20220620_114047-64e4feca.pth',\n dim=128,\n out_dim=256,\n unet_channels=166,\n dim_mults=[1, 1, 1],\n cat_embedding_dim=16,\n in_channels=[64, 128, 320, 512],\n in_index=[0, 1, 2, 3],\n channels=256,\n dropout_ratio=0.1,\n num_classes=151,\n norm_cfg=dict(type='SyncBN', requires_grad=True),\n align_corners=False,\n ignore_index=0,\n loss_decode=dict(\n type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)),\n train_cfg=dict(),\n test_cfg=dict(mode='whole'))\ndataset_type = 'ADE20K151Dataset'\ndata_root = 'data/ade/ADEChallengeData2016'\nimg_norm_cfg = dict(\n mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)\ncrop_size = (512, 512)\ntrain_pipeline = [\n dict(type='LoadImageFromFile'),\n dict(type='LoadAnnotations', reduce_zero_label=False),\n dict(type='Resize', img_scale=(2048, 512), ratio_range=(0.5, 2.0)),\n dict(type='RandomCrop', crop_size=(512, 512), cat_max_ratio=0.75),\n dict(type='RandomFlip', prob=0.5),\n dict(type='PhotoMetricDistortion'),\n dict(\n type='Normalize',\n mean=[123.675, 116.28, 103.53],\n std=[58.395, 57.12, 57.375],\n to_rgb=True),\n dict(type='Pad', size=(512, 512), pad_val=0, seg_pad_val=0),\n dict(type='DefaultFormatBundle'),\n dict(type='Collect', keys=['img', 'gt_semantic_seg'])\n]\ntest_pipeline = [\n dict(type='LoadImageFromFile'),\n dict(\n type='MultiScaleFlipAug',\n img_scale=(2048, 512),\n flip=False,\n transforms=[\n dict(type='Resize', keep_ratio=True),\n dict(type='RandomFlip'),\n dict(\n type='Normalize',\n mean=[123.675, 116.28, 103.53],\n std=[58.395, 57.12, 57.375],\n to_rgb=True),\n dict(type='Pad', size_divisor=16, pad_val=0, seg_pad_val=0),\n dict(type='ImageToTensor', keys=['img']),\n dict(type='Collect', keys=['img'])\n ])\n]\ndata = dict(\n samples_per_gpu=4,\n workers_per_gpu=4,\n train=dict(\n type='ADE20K151Dataset',\n data_root='data/ade/ADEChallengeData2016',\n img_dir='images/training',\n ann_dir='annotations/training',\n pipeline=[\n dict(type='LoadImageFromFile'),\n dict(type='LoadAnnotations', reduce_zero_label=False),\n dict(type='Resize', img_scale=(2048, 512), ratio_range=(0.5, 2.0)),\n dict(type='RandomCrop', crop_size=(512, 512), cat_max_ratio=0.75),\n dict(type='RandomFlip', prob=0.5),\n dict(type='PhotoMetricDistortion'),\n dict(\n type='Normalize',\n mean=[123.675, 116.28, 103.53],\n std=[58.395, 57.12, 57.375],\n to_rgb=True),\n dict(type='Pad', size=(512, 512), pad_val=0, seg_pad_val=0),\n dict(type='DefaultFormatBundle'),\n dict(type='Collect', keys=['img', 'gt_semantic_seg'])\n ]),\n val=dict(\n type='ADE20K151Dataset',\n data_root='data/ade/ADEChallengeData2016',\n img_dir='images/validation',\n ann_dir='annotations/validation',\n pipeline=[\n dict(type='LoadImageFromFile'),\n dict(\n type='MultiScaleFlipAug',\n img_scale=(2048, 512),\n flip=False,\n transforms=[\n dict(type='Resize', keep_ratio=True),\n dict(type='RandomFlip'),\n dict(\n type='Normalize',\n mean=[123.675, 116.28, 103.53],\n std=[58.395, 57.12, 57.375],\n to_rgb=True),\n dict(\n type='Pad', size_divisor=16, pad_val=0, seg_pad_val=0),\n dict(type='ImageToTensor', keys=['img']),\n dict(type='Collect', keys=['img'])\n ])\n ]),\n test=dict(\n type='ADE20K151Dataset',\n data_root='data/ade/ADEChallengeData2016',\n img_dir='images/validation',\n ann_dir='annotations/validation',\n pipeline=[\n dict(type='LoadImageFromFile'),\n dict(\n type='MultiScaleFlipAug',\n img_scale=(2048, 512),\n flip=False,\n transforms=[\n dict(type='Resize', keep_ratio=True),\n dict(type='RandomFlip'),\n dict(\n type='Normalize',\n mean=[123.675, 116.28, 103.53],\n std=[58.395, 57.12, 57.375],\n to_rgb=True),\n dict(\n type='Pad', size_divisor=16, pad_val=0, seg_pad_val=0),\n dict(type='ImageToTensor', keys=['img']),\n dict(type='Collect', keys=['img'])\n ])\n ]))\nlog_config = dict(\n interval=50, hooks=[dict(type='TextLoggerHook', by_epoch=False)])\ndist_params = dict(backend='nccl')\nlog_level = 'INFO'\nload_from = None\nresume_from = None\nworkflow = [('train', 1)]\ncudnn_benchmark = True\noptimizer = dict(\n type='AdamW', lr=0.00015, betas=[0.9, 0.96], weight_decay=0.045)\noptimizer_config = dict()\nlr_config = dict(\n policy='step',\n warmup='linear',\n warmup_iters=1000,\n warmup_ratio=1e-06,\n step=10000,\n gamma=0.5,\n min_lr=1e-06,\n by_epoch=False)\nrunner = dict(type='IterBasedRunner', max_iters=80000)\ncheckpoint_config = dict(by_epoch=False, interval=8000)\nevaluation = dict(\n interval=8000, metric='mIoU', pre_eval=True, save_best='mIoU')\nwork_dir = './work_dirs2/ablation_segformer_mit_b2_segformer_head_unet_fc_single_step_ade_pretrained_freeze_embed_80k_ade20k151_logits'\ngpu_ids = range(0, 8)\nauto_resume = True\ndevice = 'cuda'\nseed = 984079870\n", "CLASSES": ["background", "wall", "building", "sky", "floor", "tree", "ceiling", "road", "bed ", "windowpane", "grass", "cabinet", "sidewalk", "person", "earth", "door", "table", "mountain", "plant", "curtain", "chair", "car", "water", "painting", "sofa", "shelf", "house", "sea", "mirror", "rug", "field", "armchair", "seat", "fence", "desk", "rock", "wardrobe", "lamp", "bathtub", "railing", "cushion", "base", "box", "column", "signboard", "chest of drawers", "counter", "sand", "sink", "skyscraper", "fireplace", "refrigerator", "grandstand", "path", "stairs", "runway", "case", "pool table", "pillow", "screen door", "stairway", "river", "bridge", "bookcase", "blind", "coffee table", "toilet", "flower", "book", "hill", "bench", "countertop", "stove", "palm", "kitchen island", "computer", "swivel chair", "boat", "bar", "arcade machine", "hovel", "bus", "towel", "light", "truck", "tower", "chandelier", "awning", "streetlight", "booth", "television receiver", "airplane", "dirt track", "apparel", "pole", "land", "bannister", "escalator", "ottoman", "bottle", "buffet", "poster", "stage", "van", "ship", "fountain", "conveyer belt", "canopy", "washer", "plaything", "swimming pool", "stool", "barrel", "basket", "waterfall", "tent", "bag", "minibike", "cradle", "oven", "ball", "food", "step", "tank", "trade name", "microwave", "pot", "animal", "bicycle", "lake", "dishwasher", "screen", "blanket", "sculpture", "hood", "sconce", "vase", "traffic light", "tray", "ashcan", "fan", "pier", "crt screen", "plate", "monitor", "bulletin board", "shower", "radiator", "glass", "clock", "flag"], "PALETTE": [[0, 0, 0], [120, 120, 120], [180, 120, 120], [6, 230, 230], [80, 50, 50], [4, 200, 3], [120, 120, 80], [140, 140, 140], [204, 5, 255], [230, 230, 230], [4, 250, 7], [224, 5, 255], [235, 255, 7], [150, 5, 61], [120, 120, 70], [8, 255, 51], [255, 6, 82], [143, 255, 140], [204, 255, 4], [255, 51, 7], [204, 70, 3], [0, 102, 200], [61, 230, 250], [255, 6, 51], [11, 102, 255], [255, 7, 71], [255, 9, 224], [9, 7, 230], [220, 220, 220], [255, 9, 92], [112, 9, 255], [8, 255, 214], [7, 255, 224], [255, 184, 6], [10, 255, 71], [255, 41, 10], [7, 255, 255], [224, 255, 8], [102, 8, 255], [255, 61, 6], [255, 194, 7], [255, 122, 8], [0, 255, 20], [255, 8, 41], [255, 5, 153], [6, 51, 255], [235, 12, 255], [160, 150, 20], [0, 163, 255], [140, 140, 140], [250, 10, 15], [20, 255, 0], [31, 255, 0], [255, 31, 0], [255, 224, 0], [153, 255, 0], [0, 0, 255], [255, 71, 0], [0, 235, 255], [0, 173, 255], [31, 0, 255], [11, 200, 200], [255, 82, 0], [0, 255, 245], [0, 61, 255], [0, 255, 112], [0, 255, 133], [255, 0, 0], [255, 163, 0], [255, 102, 0], [194, 255, 0], [0, 143, 255], [51, 255, 0], [0, 82, 255], [0, 255, 41], [0, 255, 173], [10, 0, 255], [173, 255, 0], [0, 255, 153], [255, 92, 0], [255, 0, 255], [255, 0, 245], [255, 0, 102], [255, 173, 0], [255, 0, 20], [255, 184, 184], [0, 31, 255], [0, 255, 61], [0, 71, 255], [255, 0, 204], [0, 255, 194], [0, 255, 82], [0, 10, 255], [0, 112, 255], [51, 0, 255], [0, 194, 255], [0, 122, 255], [0, 255, 163], [255, 153, 0], [0, 255, 10], [255, 112, 0], [143, 255, 0], [82, 0, 255], [163, 255, 0], [255, 235, 0], [8, 184, 170], [133, 0, 255], [0, 255, 92], [184, 0, 255], [255, 0, 31], [0, 184, 255], [0, 214, 255], [255, 0, 112], [92, 255, 0], [0, 224, 255], [112, 224, 255], [70, 184, 160], [163, 0, 255], [153, 0, 255], [71, 255, 0], [255, 0, 163], [255, 204, 0], [255, 0, 143], [0, 255, 235], [133, 255, 0], [255, 0, 235], [245, 0, 255], [255, 0, 122], [255, 245, 0], [10, 190, 212], [214, 255, 0], [0, 204, 255], [20, 0, 255], [255, 255, 0], [0, 153, 255], [0, 41, 255], [0, 255, 204], [41, 0, 255], [41, 255, 0], [173, 0, 255], [0, 245, 255], [71, 0, 255], [122, 0, 255], [0, 255, 184], [0, 92, 255], [184, 255, 0], [0, 133, 255], [255, 214, 0], [25, 194, 194], [102, 255, 0], [92, 0, 255]], "hook_msgs": {}}
|
2 |
+
{"mode": "train", "epoch": 1, "iter": 50, "lr": 1e-05, "memory": 19750, "data_time": 0.01458, "decode.loss_ce": 4.07853, "decode.acc_seg": 8.51256, "loss": 4.07853, "time": 0.2984}
|
3 |
+
{"mode": "train", "epoch": 1, "iter": 100, "lr": 1e-05, "memory": 19750, "data_time": 0.00696, "decode.loss_ce": 2.91874, "decode.acc_seg": 27.51403, "loss": 2.91874, "time": 0.17144}
|
4 |
+
{"mode": "train", "epoch": 1, "iter": 150, "lr": 2e-05, "memory": 19750, "data_time": 0.00722, "decode.loss_ce": 2.33541, "decode.acc_seg": 43.1981, "loss": 2.33541, "time": 0.16968}
|
5 |
+
{"mode": "train", "epoch": 1, "iter": 200, "lr": 3e-05, "memory": 19750, "data_time": 0.00706, "decode.loss_ce": 1.83407, "decode.acc_seg": 55.29959, "loss": 1.83407, "time": 0.16511}
|
6 |
+
{"mode": "train", "epoch": 1, "iter": 250, "lr": 4e-05, "memory": 19750, "data_time": 0.00692, "decode.loss_ce": 1.50299, "decode.acc_seg": 63.05997, "loss": 1.50299, "time": 0.16567}
|
7 |
+
{"mode": "train", "epoch": 1, "iter": 300, "lr": 4e-05, "memory": 19750, "data_time": 0.00637, "decode.loss_ce": 1.27818, "decode.acc_seg": 67.03043, "loss": 1.27818, "time": 0.16569}
|
ablation/ablation_segformer_mit_b2_segformer_head_unet_fc_single_step_ade_pretrained_freeze_embed_80k_ade20k151_logits/20230304_174053.log
ADDED
The diff for this file is too large to render.
See raw diff
|
|
ablation/ablation_segformer_mit_b2_segformer_head_unet_fc_single_step_ade_pretrained_freeze_embed_80k_ade20k151_logits/20230304_174053.log.json
ADDED
@@ -0,0 +1,161 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{"env_info": "sys.platform: linux\nPython: 3.7.16 (default, Jan 17 2023, 22:20:44) [GCC 11.2.0]\nCUDA available: True\nGPU 0,1,2,3,4,5,6,7: NVIDIA A100-SXM4-80GB\nCUDA_HOME: /mnt/petrelfs/laizeqiang/miniconda3/envs/torch\nNVCC: Cuda compilation tools, release 11.6, V11.6.124\nGCC: gcc (GCC) 4.8.5 20150623 (Red Hat 4.8.5-44)\nPyTorch: 1.13.1\nPyTorch compiling details: PyTorch built with:\n - GCC 9.3\n - C++ Version: 201402\n - Intel(R) oneAPI Math Kernel Library Version 2021.4-Product Build 20210904 for Intel(R) 64 architecture applications\n - Intel(R) MKL-DNN v2.6.0 (Git Hash 52b5f107dd9cf10910aaa19cb47f3abf9b349815)\n - OpenMP 201511 (a.k.a. OpenMP 4.5)\n - LAPACK is enabled (usually provided by MKL)\n - NNPACK is enabled\n - CPU capability usage: AVX2\n - CUDA Runtime 11.6\n - NVCC architecture flags: -gencode;arch=compute_37,code=sm_37;-gencode;arch=compute_50,code=sm_50;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_61,code=sm_61;-gencode;arch=compute_70,code=sm_70;-gencode;arch=compute_75,code=sm_75;-gencode;arch=compute_80,code=sm_80;-gencode;arch=compute_86,code=sm_86;-gencode;arch=compute_37,code=compute_37\n - CuDNN 8.3.2 (built against CUDA 11.5)\n - Magma 2.6.1\n - Build settings: BLAS_INFO=mkl, BUILD_TYPE=Release, CUDA_VERSION=11.6, CUDNN_VERSION=8.3.2, CXX_COMPILER=/opt/rh/devtoolset-9/root/usr/bin/c++, CXX_FLAGS= -fabi-version=11 -Wno-deprecated -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -fopenmp -DNDEBUG -DUSE_KINETO -DUSE_FBGEMM -DUSE_QNNPACK -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE -DEDGE_PROFILER_USE_KINETO -O2 -fPIC -Wno-narrowing -Wall -Wextra -Werror=return-type -Werror=non-virtual-dtor -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wunused-local-typedefs -Wno-unused-parameter -Wno-unused-function -Wno-unused-result -Wno-strict-overflow -Wno-strict-aliasing -Wno-error=deprecated-declarations -Wno-stringop-overflow -Wno-psabi -Wno-error=pedantic -Wno-error=redundant-decls -Wno-error=old-style-cast -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Werror=cast-function-type -Wno-stringop-overflow, LAPACK_INFO=mkl, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, PERF_WITH_AVX512=1, TORCH_VERSION=1.13.1, USE_CUDA=ON, USE_CUDNN=ON, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_MKL=ON, USE_MKLDNN=ON, USE_MPI=OFF, USE_NCCL=ON, USE_NNPACK=ON, USE_OPENMP=ON, USE_ROCM=OFF, \n\nTorchVision: 0.14.1\nOpenCV: 4.7.0\nMMCV: 1.7.1\nMMCV Compiler: GCC 9.3\nMMCV CUDA Compiler: 11.6\nMMSegmentation: 0.30.0+6749699", "seed": 358795777, "exp_name": "ablation_segformer_mit_b2_segformer_head_unet_fc_single_step_ade_pretrained_freeze_embed_80k_ade20k151_logits.py", "mmseg_version": "0.30.0+6749699", "config": "norm_cfg = dict(type='SyncBN', requires_grad=True)\ncheckpoint = 'pretrained/segformer_mit-b2_512x512_160k_ade20k_20220620_114047-64e4feca.pth'\nmodel = dict(\n type='EncoderDecoderFreeze',\n freeze_parameters=['backbone', 'decode_head'],\n pretrained=\n 'pretrained/segformer_mit-b2_512x512_160k_ade20k_20220620_114047-64e4feca.pth',\n backbone=dict(\n type='MixVisionTransformerCustomInitWeights',\n in_channels=3,\n embed_dims=64,\n num_stages=4,\n num_layers=[3, 4, 6, 3],\n num_heads=[1, 2, 5, 8],\n patch_sizes=[7, 3, 3, 3],\n sr_ratios=[8, 4, 2, 1],\n out_indices=(0, 1, 2, 3),\n mlp_ratio=4,\n qkv_bias=True,\n drop_rate=0.0,\n attn_drop_rate=0.0,\n drop_path_rate=0.1,\n pretrained=\n 'pretrained/segformer_mit-b2_512x512_160k_ade20k_20220620_114047-64e4feca.pth'\n ),\n decode_head=dict(\n type='SegformerHeadUnetFCHeadSingleStepLogits',\n pretrained=\n 'pretrained/segformer_mit-b2_512x512_160k_ade20k_20220620_114047-64e4feca.pth',\n dim=128,\n out_dim=256,\n unet_channels=166,\n dim_mults=[1, 1, 1],\n cat_embedding_dim=16,\n in_channels=[64, 128, 320, 512],\n in_index=[0, 1, 2, 3],\n channels=256,\n dropout_ratio=0.1,\n num_classes=151,\n norm_cfg=dict(type='SyncBN', requires_grad=True),\n align_corners=False,\n ignore_index=0,\n loss_decode=dict(\n type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)),\n train_cfg=dict(),\n test_cfg=dict(mode='whole'))\ndataset_type = 'ADE20K151Dataset'\ndata_root = 'data/ade/ADEChallengeData2016'\nimg_norm_cfg = dict(\n mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)\ncrop_size = (512, 512)\ntrain_pipeline = [\n dict(type='LoadImageFromFile'),\n dict(type='LoadAnnotations', reduce_zero_label=False),\n dict(type='Resize', img_scale=(2048, 512), ratio_range=(0.5, 2.0)),\n dict(type='RandomCrop', crop_size=(512, 512), cat_max_ratio=0.75),\n dict(type='RandomFlip', prob=0.5),\n dict(type='PhotoMetricDistortion'),\n dict(\n type='Normalize',\n mean=[123.675, 116.28, 103.53],\n std=[58.395, 57.12, 57.375],\n to_rgb=True),\n dict(type='Pad', size=(512, 512), pad_val=0, seg_pad_val=0),\n dict(type='DefaultFormatBundle'),\n dict(type='Collect', keys=['img', 'gt_semantic_seg'])\n]\ntest_pipeline = [\n dict(type='LoadImageFromFile'),\n dict(\n type='MultiScaleFlipAug',\n img_scale=(2048, 512),\n flip=False,\n transforms=[\n dict(type='Resize', keep_ratio=True),\n dict(type='RandomFlip'),\n dict(\n type='Normalize',\n mean=[123.675, 116.28, 103.53],\n std=[58.395, 57.12, 57.375],\n to_rgb=True),\n dict(type='Pad', size_divisor=16, pad_val=0, seg_pad_val=0),\n dict(type='ImageToTensor', keys=['img']),\n dict(type='Collect', keys=['img'])\n ])\n]\ndata = dict(\n samples_per_gpu=4,\n workers_per_gpu=4,\n train=dict(\n type='ADE20K151Dataset',\n data_root='data/ade/ADEChallengeData2016',\n img_dir='images/training',\n ann_dir='annotations/training',\n pipeline=[\n dict(type='LoadImageFromFile'),\n dict(type='LoadAnnotations', reduce_zero_label=False),\n dict(type='Resize', img_scale=(2048, 512), ratio_range=(0.5, 2.0)),\n dict(type='RandomCrop', crop_size=(512, 512), cat_max_ratio=0.75),\n dict(type='RandomFlip', prob=0.5),\n dict(type='PhotoMetricDistortion'),\n dict(\n type='Normalize',\n mean=[123.675, 116.28, 103.53],\n std=[58.395, 57.12, 57.375],\n to_rgb=True),\n dict(type='Pad', size=(512, 512), pad_val=0, seg_pad_val=0),\n dict(type='DefaultFormatBundle'),\n dict(type='Collect', keys=['img', 'gt_semantic_seg'])\n ]),\n val=dict(\n type='ADE20K151Dataset',\n data_root='data/ade/ADEChallengeData2016',\n img_dir='images/validation',\n ann_dir='annotations/validation',\n pipeline=[\n dict(type='LoadImageFromFile'),\n dict(\n type='MultiScaleFlipAug',\n img_scale=(2048, 512),\n flip=False,\n transforms=[\n dict(type='Resize', keep_ratio=True),\n dict(type='RandomFlip'),\n dict(\n type='Normalize',\n mean=[123.675, 116.28, 103.53],\n std=[58.395, 57.12, 57.375],\n to_rgb=True),\n dict(\n type='Pad', size_divisor=16, pad_val=0, seg_pad_val=0),\n dict(type='ImageToTensor', keys=['img']),\n dict(type='Collect', keys=['img'])\n ])\n ]),\n test=dict(\n type='ADE20K151Dataset',\n data_root='data/ade/ADEChallengeData2016',\n img_dir='images/validation',\n ann_dir='annotations/validation',\n pipeline=[\n dict(type='LoadImageFromFile'),\n dict(\n type='MultiScaleFlipAug',\n img_scale=(2048, 512),\n flip=False,\n transforms=[\n dict(type='Resize', keep_ratio=True),\n dict(type='RandomFlip'),\n dict(\n type='Normalize',\n mean=[123.675, 116.28, 103.53],\n std=[58.395, 57.12, 57.375],\n to_rgb=True),\n dict(\n type='Pad', size_divisor=16, pad_val=0, seg_pad_val=0),\n dict(type='ImageToTensor', keys=['img']),\n dict(type='Collect', keys=['img'])\n ])\n ]))\nlog_config = dict(\n interval=50, hooks=[dict(type='TextLoggerHook', by_epoch=False)])\ndist_params = dict(backend='nccl')\nlog_level = 'INFO'\nload_from = None\nresume_from = None\nworkflow = [('train', 1)]\ncudnn_benchmark = True\noptimizer = dict(\n type='AdamW', lr=0.00015, betas=[0.9, 0.96], weight_decay=0.045)\noptimizer_config = dict()\nlr_config = dict(\n policy='step',\n warmup='linear',\n warmup_iters=1000,\n warmup_ratio=1e-06,\n step=10000,\n gamma=0.5,\n min_lr=1e-06,\n by_epoch=False)\nrunner = dict(type='IterBasedRunner', max_iters=80000)\ncheckpoint_config = dict(by_epoch=False, interval=8000)\nevaluation = dict(\n interval=8000, metric='mIoU', pre_eval=True, save_best='mIoU')\nwork_dir = './work_dirs2/ablation_segformer_mit_b2_segformer_head_unet_fc_single_step_ade_pretrained_freeze_embed_80k_ade20k151_logits'\ngpu_ids = range(0, 8)\nauto_resume = True\ndevice = 'cuda'\nseed = 358795777\n", "CLASSES": ["background", "wall", "building", "sky", "floor", "tree", "ceiling", "road", "bed ", "windowpane", "grass", "cabinet", "sidewalk", "person", "earth", "door", "table", "mountain", "plant", "curtain", "chair", "car", "water", "painting", "sofa", "shelf", "house", "sea", "mirror", "rug", "field", "armchair", "seat", "fence", "desk", "rock", "wardrobe", "lamp", "bathtub", "railing", "cushion", "base", "box", "column", "signboard", "chest of drawers", "counter", "sand", "sink", "skyscraper", "fireplace", "refrigerator", "grandstand", "path", "stairs", "runway", "case", "pool table", "pillow", "screen door", "stairway", "river", "bridge", "bookcase", "blind", "coffee table", "toilet", "flower", "book", "hill", "bench", "countertop", "stove", "palm", "kitchen island", "computer", "swivel chair", "boat", "bar", "arcade machine", "hovel", "bus", "towel", "light", "truck", "tower", "chandelier", "awning", "streetlight", "booth", "television receiver", "airplane", "dirt track", "apparel", "pole", "land", "bannister", "escalator", "ottoman", "bottle", "buffet", "poster", "stage", "van", "ship", "fountain", "conveyer belt", "canopy", "washer", "plaything", "swimming pool", "stool", "barrel", "basket", "waterfall", "tent", "bag", "minibike", "cradle", "oven", "ball", "food", "step", "tank", "trade name", "microwave", "pot", "animal", "bicycle", "lake", "dishwasher", "screen", "blanket", "sculpture", "hood", "sconce", "vase", "traffic light", "tray", "ashcan", "fan", "pier", "crt screen", "plate", "monitor", "bulletin board", "shower", "radiator", "glass", "clock", "flag"], "PALETTE": [[0, 0, 0], [120, 120, 120], [180, 120, 120], [6, 230, 230], [80, 50, 50], [4, 200, 3], [120, 120, 80], [140, 140, 140], [204, 5, 255], [230, 230, 230], [4, 250, 7], [224, 5, 255], [235, 255, 7], [150, 5, 61], [120, 120, 70], [8, 255, 51], [255, 6, 82], [143, 255, 140], [204, 255, 4], [255, 51, 7], [204, 70, 3], [0, 102, 200], [61, 230, 250], [255, 6, 51], [11, 102, 255], [255, 7, 71], [255, 9, 224], [9, 7, 230], [220, 220, 220], [255, 9, 92], [112, 9, 255], [8, 255, 214], [7, 255, 224], [255, 184, 6], [10, 255, 71], [255, 41, 10], [7, 255, 255], [224, 255, 8], [102, 8, 255], [255, 61, 6], [255, 194, 7], [255, 122, 8], [0, 255, 20], [255, 8, 41], [255, 5, 153], [6, 51, 255], [235, 12, 255], [160, 150, 20], [0, 163, 255], [140, 140, 140], [250, 10, 15], [20, 255, 0], [31, 255, 0], [255, 31, 0], [255, 224, 0], [153, 255, 0], [0, 0, 255], [255, 71, 0], [0, 235, 255], [0, 173, 255], [31, 0, 255], [11, 200, 200], [255, 82, 0], [0, 255, 245], [0, 61, 255], [0, 255, 112], [0, 255, 133], [255, 0, 0], [255, 163, 0], [255, 102, 0], [194, 255, 0], [0, 143, 255], [51, 255, 0], [0, 82, 255], [0, 255, 41], [0, 255, 173], [10, 0, 255], [173, 255, 0], [0, 255, 153], [255, 92, 0], [255, 0, 255], [255, 0, 245], [255, 0, 102], [255, 173, 0], [255, 0, 20], [255, 184, 184], [0, 31, 255], [0, 255, 61], [0, 71, 255], [255, 0, 204], [0, 255, 194], [0, 255, 82], [0, 10, 255], [0, 112, 255], [51, 0, 255], [0, 194, 255], [0, 122, 255], [0, 255, 163], [255, 153, 0], [0, 255, 10], [255, 112, 0], [143, 255, 0], [82, 0, 255], [163, 255, 0], [255, 235, 0], [8, 184, 170], [133, 0, 255], [0, 255, 92], [184, 0, 255], [255, 0, 31], [0, 184, 255], [0, 214, 255], [255, 0, 112], [92, 255, 0], [0, 224, 255], [112, 224, 255], [70, 184, 160], [163, 0, 255], [153, 0, 255], [71, 255, 0], [255, 0, 163], [255, 204, 0], [255, 0, 143], [0, 255, 235], [133, 255, 0], [255, 0, 235], [245, 0, 255], [255, 0, 122], [255, 245, 0], [10, 190, 212], [214, 255, 0], [0, 204, 255], [20, 0, 255], [255, 255, 0], [0, 153, 255], [0, 41, 255], [0, 255, 204], [41, 0, 255], [41, 255, 0], [173, 0, 255], [0, 245, 255], [71, 0, 255], [122, 0, 255], [0, 255, 184], [0, 92, 255], [184, 255, 0], [0, 133, 255], [255, 214, 0], [25, 194, 194], [102, 255, 0], [92, 0, 255]], "hook_msgs": {}}
|
2 |
+
{"mode": "train", "epoch": 1, "iter": 50, "lr": 1e-05, "memory": 19750, "data_time": 0.01536, "decode.loss_ce": 3.70671, "decode.acc_seg": 12.7455, "loss": 3.70671, "time": 0.29152}
|
3 |
+
{"mode": "train", "epoch": 1, "iter": 100, "lr": 1e-05, "memory": 19750, "data_time": 0.0067, "decode.loss_ce": 2.83767, "decode.acc_seg": 33.79282, "loss": 2.83767, "time": 0.17411}
|
4 |
+
{"mode": "train", "epoch": 1, "iter": 150, "lr": 2e-05, "memory": 19750, "data_time": 0.00681, "decode.loss_ce": 2.29515, "decode.acc_seg": 45.9183, "loss": 2.29515, "time": 0.17116}
|
5 |
+
{"mode": "train", "epoch": 1, "iter": 200, "lr": 3e-05, "memory": 19750, "data_time": 0.00602, "decode.loss_ce": 1.87201, "decode.acc_seg": 55.43423, "loss": 1.87201, "time": 0.1687}
|
6 |
+
{"mode": "train", "epoch": 1, "iter": 250, "lr": 4e-05, "memory": 19750, "data_time": 0.0063, "decode.loss_ce": 1.58648, "decode.acc_seg": 61.11375, "loss": 1.58648, "time": 0.16766}
|
7 |
+
{"mode": "train", "epoch": 1, "iter": 300, "lr": 4e-05, "memory": 19750, "data_time": 0.00626, "decode.loss_ce": 1.29469, "decode.acc_seg": 67.78908, "loss": 1.29469, "time": 0.16954}
|
8 |
+
{"mode": "train", "epoch": 1, "iter": 350, "lr": 5e-05, "memory": 19750, "data_time": 0.00687, "decode.loss_ce": 1.17611, "decode.acc_seg": 69.68662, "loss": 1.17611, "time": 0.16891}
|
9 |
+
{"mode": "train", "epoch": 1, "iter": 400, "lr": 6e-05, "memory": 19750, "data_time": 0.00608, "decode.loss_ce": 1.04045, "decode.acc_seg": 72.46196, "loss": 1.04045, "time": 0.16652}
|
10 |
+
{"mode": "train", "epoch": 1, "iter": 450, "lr": 7e-05, "memory": 19750, "data_time": 0.00665, "decode.loss_ce": 0.90291, "decode.acc_seg": 73.95125, "loss": 0.90291, "time": 0.16492}
|
11 |
+
{"mode": "train", "epoch": 1, "iter": 500, "lr": 7e-05, "memory": 19750, "data_time": 0.00686, "decode.loss_ce": 0.84245, "decode.acc_seg": 75.08308, "loss": 0.84245, "time": 0.16755}
|
12 |
+
{"mode": "train", "epoch": 1, "iter": 550, "lr": 8e-05, "memory": 19750, "data_time": 0.00668, "decode.loss_ce": 0.72894, "decode.acc_seg": 77.32032, "loss": 0.72894, "time": 0.17103}
|
13 |
+
{"mode": "train", "epoch": 1, "iter": 600, "lr": 9e-05, "memory": 19750, "data_time": 0.00692, "decode.loss_ce": 0.70877, "decode.acc_seg": 77.56479, "loss": 0.70877, "time": 0.16587}
|
14 |
+
{"mode": "train", "epoch": 2, "iter": 650, "lr": 0.0001, "memory": 19750, "data_time": 0.05444, "decode.loss_ce": 0.70565, "decode.acc_seg": 77.28747, "loss": 0.70565, "time": 0.21387}
|
15 |
+
{"mode": "train", "epoch": 2, "iter": 700, "lr": 0.0001, "memory": 19750, "data_time": 0.00651, "decode.loss_ce": 0.60632, "decode.acc_seg": 79.73918, "loss": 0.60632, "time": 0.16371}
|
16 |
+
{"mode": "train", "epoch": 2, "iter": 750, "lr": 0.00011, "memory": 19750, "data_time": 0.00707, "decode.loss_ce": 0.59834, "decode.acc_seg": 79.62232, "loss": 0.59834, "time": 0.16193}
|
17 |
+
{"mode": "train", "epoch": 2, "iter": 800, "lr": 0.00012, "memory": 19750, "data_time": 0.00665, "decode.loss_ce": 0.60848, "decode.acc_seg": 79.37198, "loss": 0.60848, "time": 0.16804}
|
18 |
+
{"mode": "train", "epoch": 2, "iter": 850, "lr": 0.00013, "memory": 19750, "data_time": 0.0067, "decode.loss_ce": 0.55236, "decode.acc_seg": 80.7622, "loss": 0.55236, "time": 0.17566}
|
19 |
+
{"mode": "train", "epoch": 2, "iter": 900, "lr": 0.00013, "memory": 19750, "data_time": 0.00684, "decode.loss_ce": 0.51953, "decode.acc_seg": 81.87914, "loss": 0.51953, "time": 0.17055}
|
20 |
+
{"mode": "train", "epoch": 2, "iter": 950, "lr": 0.00014, "memory": 19750, "data_time": 0.00679, "decode.loss_ce": 0.58242, "decode.acc_seg": 80.09418, "loss": 0.58242, "time": 0.1658}
|
21 |
+
{"mode": "train", "epoch": 2, "iter": 1000, "lr": 0.00015, "memory": 19750, "data_time": 0.00717, "decode.loss_ce": 0.50039, "decode.acc_seg": 82.35546, "loss": 0.50039, "time": 0.16939}
|
22 |
+
{"mode": "train", "epoch": 2, "iter": 1050, "lr": 0.00015, "memory": 19750, "data_time": 0.00674, "decode.loss_ce": 0.56778, "decode.acc_seg": 80.58647, "loss": 0.56778, "time": 0.16986}
|
23 |
+
{"mode": "train", "epoch": 2, "iter": 1100, "lr": 0.00015, "memory": 19750, "data_time": 0.00664, "decode.loss_ce": 0.49441, "decode.acc_seg": 82.70061, "loss": 0.49441, "time": 0.16401}
|
24 |
+
{"mode": "train", "epoch": 2, "iter": 1150, "lr": 0.00015, "memory": 19750, "data_time": 0.00655, "decode.loss_ce": 0.51378, "decode.acc_seg": 82.00246, "loss": 0.51378, "time": 0.16508}
|
25 |
+
{"mode": "train", "epoch": 2, "iter": 1200, "lr": 0.00015, "memory": 19750, "data_time": 0.0066, "decode.loss_ce": 0.50145, "decode.acc_seg": 82.46899, "loss": 0.50145, "time": 0.17358}
|
26 |
+
{"mode": "train", "epoch": 2, "iter": 1250, "lr": 0.00015, "memory": 19750, "data_time": 0.00695, "decode.loss_ce": 0.47563, "decode.acc_seg": 83.09324, "loss": 0.47563, "time": 0.16785}
|
27 |
+
{"mode": "train", "epoch": 3, "iter": 1300, "lr": 0.00015, "memory": 19750, "data_time": 0.05795, "decode.loss_ce": 0.4762, "decode.acc_seg": 83.24759, "loss": 0.4762, "time": 0.23026}
|
28 |
+
{"mode": "train", "epoch": 3, "iter": 1350, "lr": 0.00015, "memory": 19750, "data_time": 0.00627, "decode.loss_ce": 0.44346, "decode.acc_seg": 84.0603, "loss": 0.44346, "time": 0.17177}
|
29 |
+
{"mode": "train", "epoch": 3, "iter": 1400, "lr": 0.00015, "memory": 19750, "data_time": 0.00717, "decode.loss_ce": 0.47084, "decode.acc_seg": 83.08637, "loss": 0.47084, "time": 0.16471}
|
30 |
+
{"mode": "train", "epoch": 3, "iter": 1450, "lr": 0.00015, "memory": 19750, "data_time": 0.00639, "decode.loss_ce": 0.48639, "decode.acc_seg": 83.01241, "loss": 0.48639, "time": 0.16727}
|
31 |
+
{"mode": "train", "epoch": 3, "iter": 1500, "lr": 0.00015, "memory": 19750, "data_time": 0.00674, "decode.loss_ce": 0.41735, "decode.acc_seg": 84.91397, "loss": 0.41735, "time": 0.16454}
|
32 |
+
{"mode": "train", "epoch": 3, "iter": 1550, "lr": 0.00015, "memory": 19750, "data_time": 0.00674, "decode.loss_ce": 0.43834, "decode.acc_seg": 84.30104, "loss": 0.43834, "time": 0.16501}
|
33 |
+
{"mode": "train", "epoch": 3, "iter": 1600, "lr": 0.00015, "memory": 19750, "data_time": 0.00687, "decode.loss_ce": 0.42182, "decode.acc_seg": 84.60363, "loss": 0.42182, "time": 0.16472}
|
34 |
+
{"mode": "train", "epoch": 3, "iter": 1650, "lr": 0.00015, "memory": 19750, "data_time": 0.00682, "decode.loss_ce": 0.44227, "decode.acc_seg": 84.10865, "loss": 0.44227, "time": 0.17544}
|
35 |
+
{"mode": "train", "epoch": 3, "iter": 1700, "lr": 0.00015, "memory": 19750, "data_time": 0.00676, "decode.loss_ce": 0.42305, "decode.acc_seg": 84.69608, "loss": 0.42305, "time": 0.16529}
|
36 |
+
{"mode": "train", "epoch": 3, "iter": 1750, "lr": 0.00015, "memory": 19750, "data_time": 0.00635, "decode.loss_ce": 0.40065, "decode.acc_seg": 85.28233, "loss": 0.40065, "time": 0.17015}
|
37 |
+
{"mode": "train", "epoch": 3, "iter": 1800, "lr": 0.00015, "memory": 19750, "data_time": 0.00687, "decode.loss_ce": 0.44377, "decode.acc_seg": 84.24874, "loss": 0.44377, "time": 0.17315}
|
38 |
+
{"mode": "train", "epoch": 3, "iter": 1850, "lr": 0.00015, "memory": 19750, "data_time": 0.00669, "decode.loss_ce": 0.38964, "decode.acc_seg": 85.73132, "loss": 0.38964, "time": 0.16534}
|
39 |
+
{"mode": "train", "epoch": 4, "iter": 1900, "lr": 0.00015, "memory": 19750, "data_time": 0.05387, "decode.loss_ce": 0.40727, "decode.acc_seg": 85.29138, "loss": 0.40727, "time": 0.21898}
|
40 |
+
{"mode": "train", "epoch": 4, "iter": 1950, "lr": 0.00015, "memory": 19750, "data_time": 0.00683, "decode.loss_ce": 0.40309, "decode.acc_seg": 85.37785, "loss": 0.40309, "time": 0.16413}
|
41 |
+
{"mode": "train", "epoch": 4, "iter": 2000, "lr": 0.00015, "memory": 19750, "data_time": 0.00651, "decode.loss_ce": 0.39313, "decode.acc_seg": 85.66311, "loss": 0.39313, "time": 0.16628}
|
42 |
+
{"mode": "train", "epoch": 4, "iter": 2050, "lr": 0.00015, "memory": 19750, "data_time": 0.00657, "decode.loss_ce": 0.37103, "decode.acc_seg": 86.2932, "loss": 0.37103, "time": 0.1699}
|
43 |
+
{"mode": "train", "epoch": 4, "iter": 2100, "lr": 0.00015, "memory": 19750, "data_time": 0.00694, "decode.loss_ce": 0.41258, "decode.acc_seg": 84.80687, "loss": 0.41258, "time": 0.16672}
|
44 |
+
{"mode": "train", "epoch": 4, "iter": 2150, "lr": 0.00015, "memory": 19750, "data_time": 0.00683, "decode.loss_ce": 0.37237, "decode.acc_seg": 85.9416, "loss": 0.37237, "time": 0.16772}
|
45 |
+
{"mode": "train", "epoch": 4, "iter": 2200, "lr": 0.00015, "memory": 19750, "data_time": 0.0067, "decode.loss_ce": 0.36418, "decode.acc_seg": 86.28289, "loss": 0.36418, "time": 0.16504}
|
46 |
+
{"mode": "train", "epoch": 4, "iter": 2250, "lr": 0.00015, "memory": 19750, "data_time": 0.00682, "decode.loss_ce": 0.37703, "decode.acc_seg": 86.25602, "loss": 0.37703, "time": 0.16477}
|
47 |
+
{"mode": "train", "epoch": 4, "iter": 2300, "lr": 0.00015, "memory": 19750, "data_time": 0.00658, "decode.loss_ce": 0.38606, "decode.acc_seg": 85.83164, "loss": 0.38606, "time": 0.17027}
|
48 |
+
{"mode": "train", "epoch": 4, "iter": 2350, "lr": 0.00015, "memory": 19750, "data_time": 0.00701, "decode.loss_ce": 0.36377, "decode.acc_seg": 86.44438, "loss": 0.36377, "time": 0.16446}
|
49 |
+
{"mode": "train", "epoch": 4, "iter": 2400, "lr": 0.00015, "memory": 19750, "data_time": 0.0069, "decode.loss_ce": 0.37793, "decode.acc_seg": 85.84639, "loss": 0.37793, "time": 0.16814}
|
50 |
+
{"mode": "train", "epoch": 4, "iter": 2450, "lr": 0.00015, "memory": 19750, "data_time": 0.00671, "decode.loss_ce": 0.38427, "decode.acc_seg": 85.96406, "loss": 0.38427, "time": 0.16932}
|
51 |
+
{"mode": "train", "epoch": 4, "iter": 2500, "lr": 0.00015, "memory": 19750, "data_time": 0.00823, "decode.loss_ce": 0.39177, "decode.acc_seg": 85.56283, "loss": 0.39177, "time": 0.17777}
|
52 |
+
{"mode": "train", "epoch": 5, "iter": 2550, "lr": 0.00015, "memory": 19750, "data_time": 0.05398, "decode.loss_ce": 0.38108, "decode.acc_seg": 86.09614, "loss": 0.38108, "time": 0.21458}
|
53 |
+
{"mode": "train", "epoch": 5, "iter": 2600, "lr": 0.00015, "memory": 19750, "data_time": 0.00655, "decode.loss_ce": 0.36287, "decode.acc_seg": 86.33698, "loss": 0.36287, "time": 0.16329}
|
54 |
+
{"mode": "train", "epoch": 5, "iter": 2650, "lr": 0.00015, "memory": 19750, "data_time": 0.00676, "decode.loss_ce": 0.35487, "decode.acc_seg": 86.52721, "loss": 0.35487, "time": 0.16696}
|
55 |
+
{"mode": "train", "epoch": 5, "iter": 2700, "lr": 0.00015, "memory": 19750, "data_time": 0.00703, "decode.loss_ce": 0.34173, "decode.acc_seg": 86.93155, "loss": 0.34173, "time": 0.16757}
|
56 |
+
{"mode": "train", "epoch": 5, "iter": 2750, "lr": 0.00015, "memory": 19750, "data_time": 0.00765, "decode.loss_ce": 0.367, "decode.acc_seg": 86.25868, "loss": 0.367, "time": 0.17299}
|
57 |
+
{"mode": "train", "epoch": 5, "iter": 2800, "lr": 0.00015, "memory": 19750, "data_time": 0.00677, "decode.loss_ce": 0.34542, "decode.acc_seg": 87.12672, "loss": 0.34542, "time": 0.16933}
|
58 |
+
{"mode": "train", "epoch": 5, "iter": 2850, "lr": 0.00015, "memory": 19750, "data_time": 0.00673, "decode.loss_ce": 0.33885, "decode.acc_seg": 86.94783, "loss": 0.33885, "time": 0.17544}
|
59 |
+
{"mode": "train", "epoch": 5, "iter": 2900, "lr": 0.00015, "memory": 19750, "data_time": 0.00719, "decode.loss_ce": 0.37236, "decode.acc_seg": 86.18583, "loss": 0.37236, "time": 0.16504}
|
60 |
+
{"mode": "train", "epoch": 5, "iter": 2950, "lr": 0.00015, "memory": 19750, "data_time": 0.00744, "decode.loss_ce": 0.35252, "decode.acc_seg": 86.69874, "loss": 0.35252, "time": 0.16951}
|
61 |
+
{"mode": "train", "epoch": 5, "iter": 3000, "lr": 0.00015, "memory": 19750, "data_time": 0.00674, "decode.loss_ce": 0.35913, "decode.acc_seg": 86.69249, "loss": 0.35913, "time": 0.16899}
|
62 |
+
{"mode": "train", "epoch": 5, "iter": 3050, "lr": 0.00015, "memory": 19750, "data_time": 0.00722, "decode.loss_ce": 0.34791, "decode.acc_seg": 86.99021, "loss": 0.34791, "time": 0.17252}
|
63 |
+
{"mode": "train", "epoch": 5, "iter": 3100, "lr": 0.00015, "memory": 19750, "data_time": 0.007, "decode.loss_ce": 0.3334, "decode.acc_seg": 87.31124, "loss": 0.3334, "time": 0.16188}
|
64 |
+
{"mode": "train", "epoch": 5, "iter": 3150, "lr": 0.00015, "memory": 19750, "data_time": 0.00757, "decode.loss_ce": 0.34055, "decode.acc_seg": 87.3015, "loss": 0.34055, "time": 0.16971}
|
65 |
+
{"mode": "train", "epoch": 6, "iter": 3200, "lr": 0.00015, "memory": 19750, "data_time": 0.05379, "decode.loss_ce": 0.36563, "decode.acc_seg": 86.3573, "loss": 0.36563, "time": 0.21416}
|
66 |
+
{"mode": "train", "epoch": 6, "iter": 3250, "lr": 0.00015, "memory": 19750, "data_time": 0.00682, "decode.loss_ce": 0.31579, "decode.acc_seg": 88.11451, "loss": 0.31579, "time": 0.17126}
|
67 |
+
{"mode": "train", "epoch": 6, "iter": 3300, "lr": 0.00015, "memory": 19750, "data_time": 0.00661, "decode.loss_ce": 0.36865, "decode.acc_seg": 86.31161, "loss": 0.36865, "time": 0.16823}
|
68 |
+
{"mode": "train", "epoch": 6, "iter": 3350, "lr": 0.00015, "memory": 19750, "data_time": 0.00672, "decode.loss_ce": 0.34042, "decode.acc_seg": 87.06849, "loss": 0.34042, "time": 0.17189}
|
69 |
+
{"mode": "train", "epoch": 6, "iter": 3400, "lr": 0.00015, "memory": 19750, "data_time": 0.00766, "decode.loss_ce": 0.33385, "decode.acc_seg": 87.29016, "loss": 0.33385, "time": 0.17741}
|
70 |
+
{"mode": "train", "epoch": 6, "iter": 3450, "lr": 0.00015, "memory": 19750, "data_time": 0.00694, "decode.loss_ce": 0.33919, "decode.acc_seg": 86.97043, "loss": 0.33919, "time": 0.16819}
|
71 |
+
{"mode": "train", "epoch": 6, "iter": 3500, "lr": 0.00015, "memory": 19750, "data_time": 0.00677, "decode.loss_ce": 0.33378, "decode.acc_seg": 87.10703, "loss": 0.33378, "time": 0.16973}
|
72 |
+
{"mode": "train", "epoch": 6, "iter": 3550, "lr": 0.00015, "memory": 19750, "data_time": 0.00703, "decode.loss_ce": 0.32859, "decode.acc_seg": 87.48225, "loss": 0.32859, "time": 0.17087}
|
73 |
+
{"mode": "train", "epoch": 6, "iter": 3600, "lr": 0.00015, "memory": 19750, "data_time": 0.00689, "decode.loss_ce": 0.34604, "decode.acc_seg": 86.52245, "loss": 0.34604, "time": 0.17393}
|
74 |
+
{"mode": "train", "epoch": 6, "iter": 3650, "lr": 0.00015, "memory": 19750, "data_time": 0.00642, "decode.loss_ce": 0.34195, "decode.acc_seg": 87.02483, "loss": 0.34195, "time": 0.17442}
|
75 |
+
{"mode": "train", "epoch": 6, "iter": 3700, "lr": 0.00015, "memory": 19750, "data_time": 0.00727, "decode.loss_ce": 0.3416, "decode.acc_seg": 87.16491, "loss": 0.3416, "time": 0.17331}
|
76 |
+
{"mode": "train", "epoch": 6, "iter": 3750, "lr": 0.00015, "memory": 19750, "data_time": 0.00681, "decode.loss_ce": 0.34954, "decode.acc_seg": 86.81752, "loss": 0.34954, "time": 0.16843}
|
77 |
+
{"mode": "train", "epoch": 7, "iter": 3800, "lr": 0.00015, "memory": 19750, "data_time": 0.05296, "decode.loss_ce": 0.34112, "decode.acc_seg": 87.0386, "loss": 0.34112, "time": 0.21411}
|
78 |
+
{"mode": "train", "epoch": 7, "iter": 3850, "lr": 0.00015, "memory": 19750, "data_time": 0.00656, "decode.loss_ce": 0.34441, "decode.acc_seg": 86.98191, "loss": 0.34441, "time": 0.16859}
|
79 |
+
{"mode": "train", "epoch": 7, "iter": 3900, "lr": 0.00015, "memory": 19750, "data_time": 0.00633, "decode.loss_ce": 0.3237, "decode.acc_seg": 87.60705, "loss": 0.3237, "time": 0.17053}
|
80 |
+
{"mode": "train", "epoch": 7, "iter": 3950, "lr": 0.00015, "memory": 19750, "data_time": 0.00643, "decode.loss_ce": 0.34264, "decode.acc_seg": 87.06793, "loss": 0.34264, "time": 0.16719}
|
81 |
+
{"mode": "train", "epoch": 7, "iter": 4000, "lr": 0.00015, "memory": 19750, "data_time": 0.00677, "decode.loss_ce": 0.33751, "decode.acc_seg": 86.86388, "loss": 0.33751, "time": 0.17013}
|
82 |
+
{"mode": "train", "epoch": 7, "iter": 4050, "lr": 0.00015, "memory": 19750, "data_time": 0.00773, "decode.loss_ce": 0.32156, "decode.acc_seg": 87.75299, "loss": 0.32156, "time": 0.17056}
|
83 |
+
{"mode": "train", "epoch": 7, "iter": 4100, "lr": 0.00015, "memory": 19750, "data_time": 0.00679, "decode.loss_ce": 0.33281, "decode.acc_seg": 87.0733, "loss": 0.33281, "time": 0.16674}
|
84 |
+
{"mode": "train", "epoch": 7, "iter": 4150, "lr": 0.00015, "memory": 19750, "data_time": 0.00678, "decode.loss_ce": 0.29832, "decode.acc_seg": 88.33082, "loss": 0.29832, "time": 0.17049}
|
85 |
+
{"mode": "train", "epoch": 7, "iter": 4200, "lr": 0.00015, "memory": 19750, "data_time": 0.00734, "decode.loss_ce": 0.31208, "decode.acc_seg": 88.04595, "loss": 0.31208, "time": 0.17608}
|
86 |
+
{"mode": "train", "epoch": 7, "iter": 4250, "lr": 0.00015, "memory": 19750, "data_time": 0.00708, "decode.loss_ce": 0.33336, "decode.acc_seg": 87.25302, "loss": 0.33336, "time": 0.16545}
|
87 |
+
{"mode": "train", "epoch": 7, "iter": 4300, "lr": 0.00015, "memory": 19750, "data_time": 0.00665, "decode.loss_ce": 0.32272, "decode.acc_seg": 87.632, "loss": 0.32272, "time": 0.16879}
|
88 |
+
{"mode": "train", "epoch": 7, "iter": 4350, "lr": 0.00015, "memory": 19750, "data_time": 0.00716, "decode.loss_ce": 0.32937, "decode.acc_seg": 87.48962, "loss": 0.32937, "time": 0.17403}
|
89 |
+
{"mode": "train", "epoch": 7, "iter": 4400, "lr": 0.00015, "memory": 19750, "data_time": 0.00672, "decode.loss_ce": 0.30072, "decode.acc_seg": 88.43203, "loss": 0.30072, "time": 0.17436}
|
90 |
+
{"mode": "train", "epoch": 8, "iter": 4450, "lr": 0.00015, "memory": 19750, "data_time": 0.05521, "decode.loss_ce": 0.33604, "decode.acc_seg": 87.22331, "loss": 0.33604, "time": 0.21903}
|
91 |
+
{"mode": "train", "epoch": 8, "iter": 4500, "lr": 0.00015, "memory": 19750, "data_time": 0.00658, "decode.loss_ce": 0.34547, "decode.acc_seg": 86.72177, "loss": 0.34547, "time": 0.1719}
|
92 |
+
{"mode": "train", "epoch": 8, "iter": 4550, "lr": 0.00015, "memory": 19750, "data_time": 0.00647, "decode.loss_ce": 0.3248, "decode.acc_seg": 87.55375, "loss": 0.3248, "time": 0.16413}
|
93 |
+
{"mode": "train", "epoch": 8, "iter": 4600, "lr": 0.00015, "memory": 19750, "data_time": 0.00625, "decode.loss_ce": 0.32307, "decode.acc_seg": 87.64411, "loss": 0.32307, "time": 0.16697}
|
94 |
+
{"mode": "train", "epoch": 8, "iter": 4650, "lr": 0.00015, "memory": 19750, "data_time": 0.00598, "decode.loss_ce": 0.31148, "decode.acc_seg": 87.99871, "loss": 0.31148, "time": 0.18192}
|
95 |
+
{"mode": "train", "epoch": 8, "iter": 4700, "lr": 0.00015, "memory": 19750, "data_time": 0.00623, "decode.loss_ce": 0.31103, "decode.acc_seg": 87.92522, "loss": 0.31103, "time": 0.17117}
|
96 |
+
{"mode": "train", "epoch": 8, "iter": 4750, "lr": 0.00015, "memory": 19750, "data_time": 0.00687, "decode.loss_ce": 0.31458, "decode.acc_seg": 87.946, "loss": 0.31458, "time": 0.17047}
|
97 |
+
{"mode": "train", "epoch": 8, "iter": 4800, "lr": 0.00015, "memory": 19750, "data_time": 0.00641, "decode.loss_ce": 0.32922, "decode.acc_seg": 87.34764, "loss": 0.32922, "time": 0.17031}
|
98 |
+
{"mode": "train", "epoch": 8, "iter": 4850, "lr": 0.00015, "memory": 19750, "data_time": 0.00626, "decode.loss_ce": 0.3118, "decode.acc_seg": 87.8422, "loss": 0.3118, "time": 0.16599}
|
99 |
+
{"mode": "train", "epoch": 8, "iter": 4900, "lr": 0.00015, "memory": 19750, "data_time": 0.00597, "decode.loss_ce": 0.29622, "decode.acc_seg": 88.33316, "loss": 0.29622, "time": 0.17134}
|
100 |
+
{"mode": "train", "epoch": 8, "iter": 4950, "lr": 0.00015, "memory": 19750, "data_time": 0.00671, "decode.loss_ce": 0.31746, "decode.acc_seg": 87.63461, "loss": 0.31746, "time": 0.1665}
|
101 |
+
{"mode": "train", "epoch": 8, "iter": 5000, "lr": 0.00015, "memory": 19750, "data_time": 0.00622, "decode.loss_ce": 0.30714, "decode.acc_seg": 88.24625, "loss": 0.30714, "time": 0.17579}
|
102 |
+
{"mode": "train", "epoch": 9, "iter": 5050, "lr": 0.00015, "memory": 19750, "data_time": 0.05469, "decode.loss_ce": 0.29698, "decode.acc_seg": 88.53975, "loss": 0.29698, "time": 0.21976}
|
103 |
+
{"mode": "train", "epoch": 9, "iter": 5100, "lr": 0.00015, "memory": 19750, "data_time": 0.00639, "decode.loss_ce": 0.30807, "decode.acc_seg": 88.01767, "loss": 0.30807, "time": 0.16527}
|
104 |
+
{"mode": "train", "epoch": 9, "iter": 5150, "lr": 0.00015, "memory": 19750, "data_time": 0.00624, "decode.loss_ce": 0.3155, "decode.acc_seg": 88.08894, "loss": 0.3155, "time": 0.17069}
|
105 |
+
{"mode": "train", "epoch": 9, "iter": 5200, "lr": 0.00015, "memory": 19750, "data_time": 0.00592, "decode.loss_ce": 0.29819, "decode.acc_seg": 88.41932, "loss": 0.29819, "time": 0.16355}
|
106 |
+
{"mode": "train", "epoch": 9, "iter": 5250, "lr": 0.00015, "memory": 19750, "data_time": 0.00656, "decode.loss_ce": 0.2976, "decode.acc_seg": 88.17167, "loss": 0.2976, "time": 0.17297}
|
107 |
+
{"mode": "train", "epoch": 9, "iter": 5300, "lr": 0.00015, "memory": 19750, "data_time": 0.00595, "decode.loss_ce": 0.31431, "decode.acc_seg": 87.96738, "loss": 0.31431, "time": 0.17553}
|
108 |
+
{"mode": "train", "epoch": 9, "iter": 5350, "lr": 0.00015, "memory": 19750, "data_time": 0.00632, "decode.loss_ce": 0.31812, "decode.acc_seg": 87.89434, "loss": 0.31812, "time": 0.16414}
|
109 |
+
{"mode": "train", "epoch": 9, "iter": 5400, "lr": 0.00015, "memory": 19750, "data_time": 0.00631, "decode.loss_ce": 0.32172, "decode.acc_seg": 87.40795, "loss": 0.32172, "time": 0.16415}
|
110 |
+
{"mode": "train", "epoch": 9, "iter": 5450, "lr": 0.00015, "memory": 19750, "data_time": 0.00636, "decode.loss_ce": 0.29955, "decode.acc_seg": 88.12618, "loss": 0.29955, "time": 0.1643}
|
111 |
+
{"mode": "train", "epoch": 9, "iter": 5500, "lr": 0.00015, "memory": 19750, "data_time": 0.00622, "decode.loss_ce": 0.29215, "decode.acc_seg": 88.49556, "loss": 0.29215, "time": 0.16871}
|
112 |
+
{"mode": "train", "epoch": 9, "iter": 5550, "lr": 0.00015, "memory": 19750, "data_time": 0.00596, "decode.loss_ce": 0.32296, "decode.acc_seg": 87.6716, "loss": 0.32296, "time": 0.17221}
|
113 |
+
{"mode": "train", "epoch": 9, "iter": 5600, "lr": 0.00015, "memory": 19750, "data_time": 0.00725, "decode.loss_ce": 0.30732, "decode.acc_seg": 88.08342, "loss": 0.30732, "time": 0.17205}
|
114 |
+
{"mode": "train", "epoch": 9, "iter": 5650, "lr": 0.00015, "memory": 19750, "data_time": 0.00639, "decode.loss_ce": 0.31748, "decode.acc_seg": 87.74626, "loss": 0.31748, "time": 0.17152}
|
115 |
+
{"mode": "train", "epoch": 10, "iter": 5700, "lr": 0.00015, "memory": 19750, "data_time": 0.05224, "decode.loss_ce": 0.2968, "decode.acc_seg": 88.33484, "loss": 0.2968, "time": 0.22297}
|
116 |
+
{"mode": "train", "epoch": 10, "iter": 5750, "lr": 0.00015, "memory": 19750, "data_time": 0.00603, "decode.loss_ce": 0.2844, "decode.acc_seg": 88.79802, "loss": 0.2844, "time": 0.16865}
|
117 |
+
{"mode": "train", "epoch": 10, "iter": 5800, "lr": 0.00015, "memory": 19750, "data_time": 0.00642, "decode.loss_ce": 0.30396, "decode.acc_seg": 88.12515, "loss": 0.30396, "time": 0.16799}
|
118 |
+
{"mode": "train", "epoch": 10, "iter": 5850, "lr": 0.00015, "memory": 19750, "data_time": 0.00617, "decode.loss_ce": 0.30582, "decode.acc_seg": 87.97682, "loss": 0.30582, "time": 0.1653}
|
119 |
+
{"mode": "train", "epoch": 10, "iter": 5900, "lr": 0.00015, "memory": 19750, "data_time": 0.00661, "decode.loss_ce": 0.29512, "decode.acc_seg": 88.46608, "loss": 0.29512, "time": 0.16527}
|
120 |
+
{"mode": "train", "epoch": 10, "iter": 5950, "lr": 0.00015, "memory": 19750, "data_time": 0.00597, "decode.loss_ce": 0.31263, "decode.acc_seg": 87.92211, "loss": 0.31263, "time": 0.17091}
|
121 |
+
{"mode": "train", "epoch": 10, "iter": 6000, "lr": 0.00015, "memory": 19750, "data_time": 0.00653, "decode.loss_ce": 0.29545, "decode.acc_seg": 88.35079, "loss": 0.29545, "time": 0.16982}
|
122 |
+
{"mode": "train", "epoch": 10, "iter": 6050, "lr": 0.00015, "memory": 19750, "data_time": 0.00631, "decode.loss_ce": 0.28433, "decode.acc_seg": 88.93129, "loss": 0.28433, "time": 0.16613}
|
123 |
+
{"mode": "train", "epoch": 10, "iter": 6100, "lr": 0.00015, "memory": 19750, "data_time": 0.00695, "decode.loss_ce": 0.30451, "decode.acc_seg": 88.19103, "loss": 0.30451, "time": 0.16886}
|
124 |
+
{"mode": "train", "epoch": 10, "iter": 6150, "lr": 0.00015, "memory": 19750, "data_time": 0.00623, "decode.loss_ce": 0.30189, "decode.acc_seg": 88.29146, "loss": 0.30189, "time": 0.16576}
|
125 |
+
{"mode": "train", "epoch": 10, "iter": 6200, "lr": 0.00015, "memory": 19750, "data_time": 0.0065, "decode.loss_ce": 0.30363, "decode.acc_seg": 88.20825, "loss": 0.30363, "time": 0.17004}
|
126 |
+
{"mode": "train", "epoch": 10, "iter": 6250, "lr": 0.00015, "memory": 19750, "data_time": 0.00627, "decode.loss_ce": 0.30805, "decode.acc_seg": 88.04902, "loss": 0.30805, "time": 0.16293}
|
127 |
+
{"mode": "train", "epoch": 10, "iter": 6300, "lr": 0.00015, "memory": 19750, "data_time": 0.00655, "decode.loss_ce": 0.30825, "decode.acc_seg": 88.29885, "loss": 0.30825, "time": 0.16624}
|
128 |
+
{"mode": "train", "epoch": 11, "iter": 6350, "lr": 0.00015, "memory": 19750, "data_time": 0.0546, "decode.loss_ce": 0.30881, "decode.acc_seg": 87.92228, "loss": 0.30881, "time": 0.21774}
|
129 |
+
{"mode": "train", "epoch": 11, "iter": 6400, "lr": 0.00015, "memory": 19750, "data_time": 0.0062, "decode.loss_ce": 0.30339, "decode.acc_seg": 88.08356, "loss": 0.30339, "time": 0.17795}
|
130 |
+
{"mode": "train", "epoch": 11, "iter": 6450, "lr": 0.00015, "memory": 19750, "data_time": 0.00668, "decode.loss_ce": 0.28164, "decode.acc_seg": 88.88014, "loss": 0.28164, "time": 0.16356}
|
131 |
+
{"mode": "train", "epoch": 11, "iter": 6500, "lr": 0.00015, "memory": 19750, "data_time": 0.00635, "decode.loss_ce": 0.29401, "decode.acc_seg": 88.49332, "loss": 0.29401, "time": 0.17147}
|
132 |
+
{"mode": "train", "epoch": 11, "iter": 6550, "lr": 0.00015, "memory": 19750, "data_time": 0.00621, "decode.loss_ce": 0.29546, "decode.acc_seg": 88.55466, "loss": 0.29546, "time": 0.17142}
|
133 |
+
{"mode": "train", "epoch": 11, "iter": 6600, "lr": 0.00015, "memory": 19750, "data_time": 0.00676, "decode.loss_ce": 0.32099, "decode.acc_seg": 87.74059, "loss": 0.32099, "time": 0.16338}
|
134 |
+
{"mode": "train", "epoch": 11, "iter": 6650, "lr": 0.00015, "memory": 19750, "data_time": 0.00609, "decode.loss_ce": 0.31259, "decode.acc_seg": 87.85196, "loss": 0.31259, "time": 0.17431}
|
135 |
+
{"mode": "train", "epoch": 11, "iter": 6700, "lr": 0.00015, "memory": 19750, "data_time": 0.00688, "decode.loss_ce": 0.28936, "decode.acc_seg": 88.58093, "loss": 0.28936, "time": 0.16549}
|
136 |
+
{"mode": "train", "epoch": 11, "iter": 6750, "lr": 0.00015, "memory": 19750, "data_time": 0.00625, "decode.loss_ce": 0.31332, "decode.acc_seg": 88.07452, "loss": 0.31332, "time": 0.17283}
|
137 |
+
{"mode": "train", "epoch": 11, "iter": 6800, "lr": 0.00015, "memory": 19750, "data_time": 0.00632, "decode.loss_ce": 0.30062, "decode.acc_seg": 88.2473, "loss": 0.30062, "time": 0.16795}
|
138 |
+
{"mode": "train", "epoch": 11, "iter": 6850, "lr": 0.00015, "memory": 19750, "data_time": 0.00607, "decode.loss_ce": 0.30173, "decode.acc_seg": 88.37736, "loss": 0.30173, "time": 0.17001}
|
139 |
+
{"mode": "train", "epoch": 11, "iter": 6900, "lr": 0.00015, "memory": 19750, "data_time": 0.00638, "decode.loss_ce": 0.28008, "decode.acc_seg": 88.99362, "loss": 0.28008, "time": 0.16775}
|
140 |
+
{"mode": "train", "epoch": 12, "iter": 6950, "lr": 0.00015, "memory": 19750, "data_time": 0.05632, "decode.loss_ce": 0.28848, "decode.acc_seg": 88.79085, "loss": 0.28848, "time": 0.22683}
|
141 |
+
{"mode": "train", "epoch": 12, "iter": 7000, "lr": 0.00015, "memory": 19750, "data_time": 0.00659, "decode.loss_ce": 0.29346, "decode.acc_seg": 88.4865, "loss": 0.29346, "time": 0.16459}
|
142 |
+
{"mode": "train", "epoch": 12, "iter": 7050, "lr": 0.00015, "memory": 19750, "data_time": 0.00658, "decode.loss_ce": 0.28864, "decode.acc_seg": 88.43235, "loss": 0.28864, "time": 0.17538}
|
143 |
+
{"mode": "train", "epoch": 12, "iter": 7100, "lr": 0.00015, "memory": 19750, "data_time": 0.00727, "decode.loss_ce": 0.29303, "decode.acc_seg": 88.31878, "loss": 0.29303, "time": 0.16954}
|
144 |
+
{"mode": "train", "epoch": 12, "iter": 7150, "lr": 0.00015, "memory": 19750, "data_time": 0.00733, "decode.loss_ce": 0.2804, "decode.acc_seg": 89.1287, "loss": 0.2804, "time": 0.16794}
|
145 |
+
{"mode": "train", "epoch": 12, "iter": 7200, "lr": 0.00015, "memory": 19750, "data_time": 0.00645, "decode.loss_ce": 0.29176, "decode.acc_seg": 88.75452, "loss": 0.29176, "time": 0.16516}
|
146 |
+
{"mode": "train", "epoch": 12, "iter": 7250, "lr": 0.00015, "memory": 19750, "data_time": 0.00696, "decode.loss_ce": 0.27544, "decode.acc_seg": 89.21126, "loss": 0.27544, "time": 0.16841}
|
147 |
+
{"mode": "train", "epoch": 12, "iter": 7300, "lr": 0.00015, "memory": 19750, "data_time": 0.00684, "decode.loss_ce": 0.28735, "decode.acc_seg": 88.76757, "loss": 0.28735, "time": 0.16692}
|
148 |
+
{"mode": "train", "epoch": 12, "iter": 7350, "lr": 0.00015, "memory": 19750, "data_time": 0.00643, "decode.loss_ce": 0.3013, "decode.acc_seg": 88.42977, "loss": 0.3013, "time": 0.1705}
|
149 |
+
{"mode": "train", "epoch": 12, "iter": 7400, "lr": 0.00015, "memory": 19750, "data_time": 0.00599, "decode.loss_ce": 0.27759, "decode.acc_seg": 88.99402, "loss": 0.27759, "time": 0.17244}
|
150 |
+
{"mode": "train", "epoch": 12, "iter": 7450, "lr": 0.00015, "memory": 19750, "data_time": 0.00631, "decode.loss_ce": 0.29072, "decode.acc_seg": 88.72828, "loss": 0.29072, "time": 0.16272}
|
151 |
+
{"mode": "train", "epoch": 12, "iter": 7500, "lr": 0.00015, "memory": 19750, "data_time": 0.00608, "decode.loss_ce": 0.28911, "decode.acc_seg": 88.82428, "loss": 0.28911, "time": 0.16917}
|
152 |
+
{"mode": "train", "epoch": 12, "iter": 7550, "lr": 0.00015, "memory": 19750, "data_time": 0.00694, "decode.loss_ce": 0.26827, "decode.acc_seg": 89.13525, "loss": 0.26827, "time": 0.1668}
|
153 |
+
{"mode": "train", "epoch": 13, "iter": 7600, "lr": 0.00015, "memory": 19750, "data_time": 0.05774, "decode.loss_ce": 0.2865, "decode.acc_seg": 88.82241, "loss": 0.2865, "time": 0.22449}
|
154 |
+
{"mode": "train", "epoch": 13, "iter": 7650, "lr": 0.00015, "memory": 19750, "data_time": 0.00617, "decode.loss_ce": 0.29029, "decode.acc_seg": 88.68461, "loss": 0.29029, "time": 0.16747}
|
155 |
+
{"mode": "train", "epoch": 13, "iter": 7700, "lr": 0.00015, "memory": 19750, "data_time": 0.00615, "decode.loss_ce": 0.27594, "decode.acc_seg": 88.94087, "loss": 0.27594, "time": 0.17627}
|
156 |
+
{"mode": "train", "epoch": 13, "iter": 7750, "lr": 0.00015, "memory": 19750, "data_time": 0.00641, "decode.loss_ce": 0.29474, "decode.acc_seg": 88.3407, "loss": 0.29474, "time": 0.16154}
|
157 |
+
{"mode": "train", "epoch": 13, "iter": 7800, "lr": 0.00015, "memory": 19750, "data_time": 0.0066, "decode.loss_ce": 0.29451, "decode.acc_seg": 88.5218, "loss": 0.29451, "time": 0.16433}
|
158 |
+
{"mode": "train", "epoch": 13, "iter": 7850, "lr": 0.00015, "memory": 19750, "data_time": 0.00625, "decode.loss_ce": 0.29442, "decode.acc_seg": 88.53064, "loss": 0.29442, "time": 0.17425}
|
159 |
+
{"mode": "train", "epoch": 13, "iter": 7900, "lr": 0.00015, "memory": 19750, "data_time": 0.0062, "decode.loss_ce": 0.27688, "decode.acc_seg": 89.11096, "loss": 0.27688, "time": 0.17571}
|
160 |
+
{"mode": "train", "epoch": 13, "iter": 7950, "lr": 0.00015, "memory": 19750, "data_time": 0.0068, "decode.loss_ce": 0.28287, "decode.acc_seg": 88.81269, "loss": 0.28287, "time": 0.16731}
|
161 |
+
{"mode": "train", "epoch": 13, "iter": 8000, "lr": 0.00015, "memory": 19750, "data_time": 0.00737, "decode.loss_ce": 0.28287, "decode.acc_seg": 88.78357, "loss": 0.28287, "time": 0.17956}
|
ablation/ablation_segformer_mit_b2_segformer_head_unet_fc_single_step_ade_pretrained_freeze_embed_80k_ade20k151_logits/20230304_184631.log
ADDED
@@ -0,0 +1,1139 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2023-03-04 18:46:31,289 - mmseg - INFO - Multi-processing start method is `None`
|
2 |
+
2023-03-04 18:46:31,301 - mmseg - INFO - OpenCV num_threads is `128
|
3 |
+
2023-03-04 18:46:31,301 - mmseg - INFO - OMP num threads is 1
|
4 |
+
2023-03-04 18:46:31,368 - mmseg - INFO - Environment info:
|
5 |
+
------------------------------------------------------------
|
6 |
+
sys.platform: linux
|
7 |
+
Python: 3.7.16 (default, Jan 17 2023, 22:20:44) [GCC 11.2.0]
|
8 |
+
CUDA available: True
|
9 |
+
GPU 0,1,2,3,4,5,6,7: NVIDIA A100-SXM4-80GB
|
10 |
+
CUDA_HOME: /mnt/petrelfs/laizeqiang/miniconda3/envs/torch
|
11 |
+
NVCC: Cuda compilation tools, release 11.6, V11.6.124
|
12 |
+
GCC: gcc (GCC) 4.8.5 20150623 (Red Hat 4.8.5-44)
|
13 |
+
PyTorch: 1.13.1
|
14 |
+
PyTorch compiling details: PyTorch built with:
|
15 |
+
- GCC 9.3
|
16 |
+
- C++ Version: 201402
|
17 |
+
- Intel(R) oneAPI Math Kernel Library Version 2021.4-Product Build 20210904 for Intel(R) 64 architecture applications
|
18 |
+
- Intel(R) MKL-DNN v2.6.0 (Git Hash 52b5f107dd9cf10910aaa19cb47f3abf9b349815)
|
19 |
+
- OpenMP 201511 (a.k.a. OpenMP 4.5)
|
20 |
+
- LAPACK is enabled (usually provided by MKL)
|
21 |
+
- NNPACK is enabled
|
22 |
+
- CPU capability usage: AVX2
|
23 |
+
- CUDA Runtime 11.6
|
24 |
+
- NVCC architecture flags: -gencode;arch=compute_37,code=sm_37;-gencode;arch=compute_50,code=sm_50;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_61,code=sm_61;-gencode;arch=compute_70,code=sm_70;-gencode;arch=compute_75,code=sm_75;-gencode;arch=compute_80,code=sm_80;-gencode;arch=compute_86,code=sm_86;-gencode;arch=compute_37,code=compute_37
|
25 |
+
- CuDNN 8.3.2 (built against CUDA 11.5)
|
26 |
+
- Magma 2.6.1
|
27 |
+
- Build settings: BLAS_INFO=mkl, BUILD_TYPE=Release, CUDA_VERSION=11.6, CUDNN_VERSION=8.3.2, CXX_COMPILER=/opt/rh/devtoolset-9/root/usr/bin/c++, CXX_FLAGS= -fabi-version=11 -Wno-deprecated -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -fopenmp -DNDEBUG -DUSE_KINETO -DUSE_FBGEMM -DUSE_QNNPACK -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE -DEDGE_PROFILER_USE_KINETO -O2 -fPIC -Wno-narrowing -Wall -Wextra -Werror=return-type -Werror=non-virtual-dtor -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wunused-local-typedefs -Wno-unused-parameter -Wno-unused-function -Wno-unused-result -Wno-strict-overflow -Wno-strict-aliasing -Wno-error=deprecated-declarations -Wno-stringop-overflow -Wno-psabi -Wno-error=pedantic -Wno-error=redundant-decls -Wno-error=old-style-cast -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Werror=cast-function-type -Wno-stringop-overflow, LAPACK_INFO=mkl, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, PERF_WITH_AVX512=1, TORCH_VERSION=1.13.1, USE_CUDA=ON, USE_CUDNN=ON, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_MKL=ON, USE_MKLDNN=ON, USE_MPI=OFF, USE_NCCL=ON, USE_NNPACK=ON, USE_OPENMP=ON, USE_ROCM=OFF,
|
28 |
+
|
29 |
+
TorchVision: 0.14.1
|
30 |
+
OpenCV: 4.7.0
|
31 |
+
MMCV: 1.7.1
|
32 |
+
MMCV Compiler: GCC 9.3
|
33 |
+
MMCV CUDA Compiler: 11.6
|
34 |
+
MMSegmentation: 0.30.0+6749699
|
35 |
+
------------------------------------------------------------
|
36 |
+
|
37 |
+
2023-03-04 18:46:31,368 - mmseg - INFO - Distributed training: True
|
38 |
+
2023-03-04 18:46:32,081 - mmseg - INFO - Config:
|
39 |
+
norm_cfg = dict(type='SyncBN', requires_grad=True)
|
40 |
+
checkpoint = 'pretrained/segformer_mit-b2_512x512_160k_ade20k_20220620_114047-64e4feca.pth'
|
41 |
+
model = dict(
|
42 |
+
type='EncoderDecoderFreeze',
|
43 |
+
freeze_parameters=['backbone', 'decode_head'],
|
44 |
+
pretrained=
|
45 |
+
'pretrained/segformer_mit-b2_512x512_160k_ade20k_20220620_114047-64e4feca.pth',
|
46 |
+
backbone=dict(
|
47 |
+
type='MixVisionTransformerCustomInitWeights',
|
48 |
+
in_channels=3,
|
49 |
+
embed_dims=64,
|
50 |
+
num_stages=4,
|
51 |
+
num_layers=[3, 4, 6, 3],
|
52 |
+
num_heads=[1, 2, 5, 8],
|
53 |
+
patch_sizes=[7, 3, 3, 3],
|
54 |
+
sr_ratios=[8, 4, 2, 1],
|
55 |
+
out_indices=(0, 1, 2, 3),
|
56 |
+
mlp_ratio=4,
|
57 |
+
qkv_bias=True,
|
58 |
+
drop_rate=0.0,
|
59 |
+
attn_drop_rate=0.0,
|
60 |
+
drop_path_rate=0.1),
|
61 |
+
decode_head=dict(
|
62 |
+
type='SegformerHeadUnetFCHeadSingleStepLogits',
|
63 |
+
pretrained=
|
64 |
+
'pretrained/segformer_mit-b2_512x512_160k_ade20k_20220620_114047-64e4feca.pth',
|
65 |
+
dim=128,
|
66 |
+
out_dim=256,
|
67 |
+
unet_channels=166,
|
68 |
+
dim_mults=[1, 1, 1],
|
69 |
+
cat_embedding_dim=16,
|
70 |
+
in_channels=[64, 128, 320, 512],
|
71 |
+
in_index=[0, 1, 2, 3],
|
72 |
+
channels=256,
|
73 |
+
dropout_ratio=0.1,
|
74 |
+
num_classes=151,
|
75 |
+
norm_cfg=dict(type='SyncBN', requires_grad=True),
|
76 |
+
align_corners=False,
|
77 |
+
ignore_index=0,
|
78 |
+
loss_decode=dict(
|
79 |
+
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)),
|
80 |
+
train_cfg=dict(),
|
81 |
+
test_cfg=dict(mode='whole'))
|
82 |
+
dataset_type = 'ADE20K151Dataset'
|
83 |
+
data_root = 'data/ade/ADEChallengeData2016'
|
84 |
+
img_norm_cfg = dict(
|
85 |
+
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
|
86 |
+
crop_size = (512, 512)
|
87 |
+
train_pipeline = [
|
88 |
+
dict(type='LoadImageFromFile'),
|
89 |
+
dict(type='LoadAnnotations', reduce_zero_label=False),
|
90 |
+
dict(type='Resize', img_scale=(2048, 512), ratio_range=(0.5, 2.0)),
|
91 |
+
dict(type='RandomCrop', crop_size=(512, 512), cat_max_ratio=0.75),
|
92 |
+
dict(type='RandomFlip', prob=0.5),
|
93 |
+
dict(type='PhotoMetricDistortion'),
|
94 |
+
dict(
|
95 |
+
type='Normalize',
|
96 |
+
mean=[123.675, 116.28, 103.53],
|
97 |
+
std=[58.395, 57.12, 57.375],
|
98 |
+
to_rgb=True),
|
99 |
+
dict(type='Pad', size=(512, 512), pad_val=0, seg_pad_val=0),
|
100 |
+
dict(type='DefaultFormatBundle'),
|
101 |
+
dict(type='Collect', keys=['img', 'gt_semantic_seg'])
|
102 |
+
]
|
103 |
+
test_pipeline = [
|
104 |
+
dict(type='LoadImageFromFile'),
|
105 |
+
dict(
|
106 |
+
type='MultiScaleFlipAug',
|
107 |
+
img_scale=(2048, 512),
|
108 |
+
flip=False,
|
109 |
+
transforms=[
|
110 |
+
dict(type='Resize', keep_ratio=True),
|
111 |
+
dict(type='RandomFlip'),
|
112 |
+
dict(
|
113 |
+
type='Normalize',
|
114 |
+
mean=[123.675, 116.28, 103.53],
|
115 |
+
std=[58.395, 57.12, 57.375],
|
116 |
+
to_rgb=True),
|
117 |
+
dict(type='Pad', size_divisor=16, pad_val=0, seg_pad_val=0),
|
118 |
+
dict(type='ImageToTensor', keys=['img']),
|
119 |
+
dict(type='Collect', keys=['img'])
|
120 |
+
])
|
121 |
+
]
|
122 |
+
data = dict(
|
123 |
+
samples_per_gpu=4,
|
124 |
+
workers_per_gpu=4,
|
125 |
+
train=dict(
|
126 |
+
type='ADE20K151Dataset',
|
127 |
+
data_root='data/ade/ADEChallengeData2016',
|
128 |
+
img_dir='images/training',
|
129 |
+
ann_dir='annotations/training',
|
130 |
+
pipeline=[
|
131 |
+
dict(type='LoadImageFromFile'),
|
132 |
+
dict(type='LoadAnnotations', reduce_zero_label=False),
|
133 |
+
dict(type='Resize', img_scale=(2048, 512), ratio_range=(0.5, 2.0)),
|
134 |
+
dict(type='RandomCrop', crop_size=(512, 512), cat_max_ratio=0.75),
|
135 |
+
dict(type='RandomFlip', prob=0.5),
|
136 |
+
dict(type='PhotoMetricDistortion'),
|
137 |
+
dict(
|
138 |
+
type='Normalize',
|
139 |
+
mean=[123.675, 116.28, 103.53],
|
140 |
+
std=[58.395, 57.12, 57.375],
|
141 |
+
to_rgb=True),
|
142 |
+
dict(type='Pad', size=(512, 512), pad_val=0, seg_pad_val=0),
|
143 |
+
dict(type='DefaultFormatBundle'),
|
144 |
+
dict(type='Collect', keys=['img', 'gt_semantic_seg'])
|
145 |
+
]),
|
146 |
+
val=dict(
|
147 |
+
type='ADE20K151Dataset',
|
148 |
+
data_root='data/ade/ADEChallengeData2016',
|
149 |
+
img_dir='images/validation',
|
150 |
+
ann_dir='annotations/validation',
|
151 |
+
pipeline=[
|
152 |
+
dict(type='LoadImageFromFile'),
|
153 |
+
dict(
|
154 |
+
type='MultiScaleFlipAug',
|
155 |
+
img_scale=(2048, 512),
|
156 |
+
flip=False,
|
157 |
+
transforms=[
|
158 |
+
dict(type='Resize', keep_ratio=True),
|
159 |
+
dict(type='RandomFlip'),
|
160 |
+
dict(
|
161 |
+
type='Normalize',
|
162 |
+
mean=[123.675, 116.28, 103.53],
|
163 |
+
std=[58.395, 57.12, 57.375],
|
164 |
+
to_rgb=True),
|
165 |
+
dict(
|
166 |
+
type='Pad', size_divisor=16, pad_val=0, seg_pad_val=0),
|
167 |
+
dict(type='ImageToTensor', keys=['img']),
|
168 |
+
dict(type='Collect', keys=['img'])
|
169 |
+
])
|
170 |
+
]),
|
171 |
+
test=dict(
|
172 |
+
type='ADE20K151Dataset',
|
173 |
+
data_root='data/ade/ADEChallengeData2016',
|
174 |
+
img_dir='images/validation',
|
175 |
+
ann_dir='annotations/validation',
|
176 |
+
pipeline=[
|
177 |
+
dict(type='LoadImageFromFile'),
|
178 |
+
dict(
|
179 |
+
type='MultiScaleFlipAug',
|
180 |
+
img_scale=(2048, 512),
|
181 |
+
flip=False,
|
182 |
+
transforms=[
|
183 |
+
dict(type='Resize', keep_ratio=True),
|
184 |
+
dict(type='RandomFlip'),
|
185 |
+
dict(
|
186 |
+
type='Normalize',
|
187 |
+
mean=[123.675, 116.28, 103.53],
|
188 |
+
std=[58.395, 57.12, 57.375],
|
189 |
+
to_rgb=True),
|
190 |
+
dict(
|
191 |
+
type='Pad', size_divisor=16, pad_val=0, seg_pad_val=0),
|
192 |
+
dict(type='ImageToTensor', keys=['img']),
|
193 |
+
dict(type='Collect', keys=['img'])
|
194 |
+
])
|
195 |
+
]))
|
196 |
+
log_config = dict(
|
197 |
+
interval=50, hooks=[dict(type='TextLoggerHook', by_epoch=False)])
|
198 |
+
dist_params = dict(backend='nccl')
|
199 |
+
log_level = 'INFO'
|
200 |
+
load_from = None
|
201 |
+
resume_from = None
|
202 |
+
workflow = [('train', 1)]
|
203 |
+
cudnn_benchmark = True
|
204 |
+
optimizer = dict(
|
205 |
+
type='AdamW', lr=0.00015, betas=[0.9, 0.96], weight_decay=0.045)
|
206 |
+
optimizer_config = dict()
|
207 |
+
lr_config = dict(
|
208 |
+
policy='step',
|
209 |
+
warmup='linear',
|
210 |
+
warmup_iters=1000,
|
211 |
+
warmup_ratio=1e-06,
|
212 |
+
step=10000,
|
213 |
+
gamma=0.5,
|
214 |
+
min_lr=1e-06,
|
215 |
+
by_epoch=False)
|
216 |
+
runner = dict(type='IterBasedRunner', max_iters=80000)
|
217 |
+
checkpoint_config = dict(by_epoch=False, interval=8000)
|
218 |
+
evaluation = dict(
|
219 |
+
interval=8000, metric='mIoU', pre_eval=True, save_best='mIoU')
|
220 |
+
work_dir = './work_dirs2/ablation_segformer_mit_b2_segformer_head_unet_fc_single_step_ade_pretrained_freeze_embed_80k_ade20k151_logits'
|
221 |
+
gpu_ids = range(0, 8)
|
222 |
+
auto_resume = True
|
223 |
+
|
224 |
+
2023-03-04 18:46:38,332 - mmseg - INFO - Set random seed to 1082958590, deterministic: False
|
225 |
+
2023-03-04 18:46:38,583 - mmseg - INFO - Parameters in backbone freezed!
|
226 |
+
2023-03-04 18:46:38,583 - mmseg - INFO - Trainable parameters in SegformerHeadUnetFCHeadSingleStep: ['unet.init_conv.weight', 'unet.init_conv.bias', 'unet.time_mlp.1.weight', 'unet.time_mlp.1.bias', 'unet.time_mlp.3.weight', 'unet.time_mlp.3.bias', 'unet.downs.0.0.mlp.1.weight', 'unet.downs.0.0.mlp.1.bias', 'unet.downs.0.0.block1.proj.weight', 'unet.downs.0.0.block1.proj.bias', 'unet.downs.0.0.block1.norm.weight', 'unet.downs.0.0.block1.norm.bias', 'unet.downs.0.0.block2.proj.weight', 'unet.downs.0.0.block2.proj.bias', 'unet.downs.0.0.block2.norm.weight', 'unet.downs.0.0.block2.norm.bias', 'unet.downs.0.1.mlp.1.weight', 'unet.downs.0.1.mlp.1.bias', 'unet.downs.0.1.block1.proj.weight', 'unet.downs.0.1.block1.proj.bias', 'unet.downs.0.1.block1.norm.weight', 'unet.downs.0.1.block1.norm.bias', 'unet.downs.0.1.block2.proj.weight', 'unet.downs.0.1.block2.proj.bias', 'unet.downs.0.1.block2.norm.weight', 'unet.downs.0.1.block2.norm.bias', 'unet.downs.0.2.fn.fn.to_qkv.weight', 'unet.downs.0.2.fn.fn.to_out.0.weight', 'unet.downs.0.2.fn.fn.to_out.0.bias', 'unet.downs.0.2.fn.fn.to_out.1.g', 'unet.downs.0.2.fn.norm.g', 'unet.downs.0.3.weight', 'unet.downs.0.3.bias', 'unet.downs.1.0.mlp.1.weight', 'unet.downs.1.0.mlp.1.bias', 'unet.downs.1.0.block1.proj.weight', 'unet.downs.1.0.block1.proj.bias', 'unet.downs.1.0.block1.norm.weight', 'unet.downs.1.0.block1.norm.bias', 'unet.downs.1.0.block2.proj.weight', 'unet.downs.1.0.block2.proj.bias', 'unet.downs.1.0.block2.norm.weight', 'unet.downs.1.0.block2.norm.bias', 'unet.downs.1.1.mlp.1.weight', 'unet.downs.1.1.mlp.1.bias', 'unet.downs.1.1.block1.proj.weight', 'unet.downs.1.1.block1.proj.bias', 'unet.downs.1.1.block1.norm.weight', 'unet.downs.1.1.block1.norm.bias', 'unet.downs.1.1.block2.proj.weight', 'unet.downs.1.1.block2.proj.bias', 'unet.downs.1.1.block2.norm.weight', 'unet.downs.1.1.block2.norm.bias', 'unet.downs.1.2.fn.fn.to_qkv.weight', 'unet.downs.1.2.fn.fn.to_out.0.weight', 'unet.downs.1.2.fn.fn.to_out.0.bias', 'unet.downs.1.2.fn.fn.to_out.1.g', 'unet.downs.1.2.fn.norm.g', 'unet.downs.1.3.weight', 'unet.downs.1.3.bias', 'unet.downs.2.0.mlp.1.weight', 'unet.downs.2.0.mlp.1.bias', 'unet.downs.2.0.block1.proj.weight', 'unet.downs.2.0.block1.proj.bias', 'unet.downs.2.0.block1.norm.weight', 'unet.downs.2.0.block1.norm.bias', 'unet.downs.2.0.block2.proj.weight', 'unet.downs.2.0.block2.proj.bias', 'unet.downs.2.0.block2.norm.weight', 'unet.downs.2.0.block2.norm.bias', 'unet.downs.2.1.mlp.1.weight', 'unet.downs.2.1.mlp.1.bias', 'unet.downs.2.1.block1.proj.weight', 'unet.downs.2.1.block1.proj.bias', 'unet.downs.2.1.block1.norm.weight', 'unet.downs.2.1.block1.norm.bias', 'unet.downs.2.1.block2.proj.weight', 'unet.downs.2.1.block2.proj.bias', 'unet.downs.2.1.block2.norm.weight', 'unet.downs.2.1.block2.norm.bias', 'unet.downs.2.2.fn.fn.to_qkv.weight', 'unet.downs.2.2.fn.fn.to_out.0.weight', 'unet.downs.2.2.fn.fn.to_out.0.bias', 'unet.downs.2.2.fn.fn.to_out.1.g', 'unet.downs.2.2.fn.norm.g', 'unet.downs.2.3.weight', 'unet.downs.2.3.bias', 'unet.ups.0.0.mlp.1.weight', 'unet.ups.0.0.mlp.1.bias', 'unet.ups.0.0.block1.proj.weight', 'unet.ups.0.0.block1.proj.bias', 'unet.ups.0.0.block1.norm.weight', 'unet.ups.0.0.block1.norm.bias', 'unet.ups.0.0.block2.proj.weight', 'unet.ups.0.0.block2.proj.bias', 'unet.ups.0.0.block2.norm.weight', 'unet.ups.0.0.block2.norm.bias', 'unet.ups.0.0.res_conv.weight', 'unet.ups.0.0.res_conv.bias', 'unet.ups.0.1.mlp.1.weight', 'unet.ups.0.1.mlp.1.bias', 'unet.ups.0.1.block1.proj.weight', 'unet.ups.0.1.block1.proj.bias', 'unet.ups.0.1.block1.norm.weight', 'unet.ups.0.1.block1.norm.bias', 'unet.ups.0.1.block2.proj.weight', 'unet.ups.0.1.block2.proj.bias', 'unet.ups.0.1.block2.norm.weight', 'unet.ups.0.1.block2.norm.bias', 'unet.ups.0.1.res_conv.weight', 'unet.ups.0.1.res_conv.bias', 'unet.ups.0.2.fn.fn.to_qkv.weight', 'unet.ups.0.2.fn.fn.to_out.0.weight', 'unet.ups.0.2.fn.fn.to_out.0.bias', 'unet.ups.0.2.fn.fn.to_out.1.g', 'unet.ups.0.2.fn.norm.g', 'unet.ups.0.3.1.weight', 'unet.ups.0.3.1.bias', 'unet.ups.1.0.mlp.1.weight', 'unet.ups.1.0.mlp.1.bias', 'unet.ups.1.0.block1.proj.weight', 'unet.ups.1.0.block1.proj.bias', 'unet.ups.1.0.block1.norm.weight', 'unet.ups.1.0.block1.norm.bias', 'unet.ups.1.0.block2.proj.weight', 'unet.ups.1.0.block2.proj.bias', 'unet.ups.1.0.block2.norm.weight', 'unet.ups.1.0.block2.norm.bias', 'unet.ups.1.0.res_conv.weight', 'unet.ups.1.0.res_conv.bias', 'unet.ups.1.1.mlp.1.weight', 'unet.ups.1.1.mlp.1.bias', 'unet.ups.1.1.block1.proj.weight', 'unet.ups.1.1.block1.proj.bias', 'unet.ups.1.1.block1.norm.weight', 'unet.ups.1.1.block1.norm.bias', 'unet.ups.1.1.block2.proj.weight', 'unet.ups.1.1.block2.proj.bias', 'unet.ups.1.1.block2.norm.weight', 'unet.ups.1.1.block2.norm.bias', 'unet.ups.1.1.res_conv.weight', 'unet.ups.1.1.res_conv.bias', 'unet.ups.1.2.fn.fn.to_qkv.weight', 'unet.ups.1.2.fn.fn.to_out.0.weight', 'unet.ups.1.2.fn.fn.to_out.0.bias', 'unet.ups.1.2.fn.fn.to_out.1.g', 'unet.ups.1.2.fn.norm.g', 'unet.ups.1.3.1.weight', 'unet.ups.1.3.1.bias', 'unet.ups.2.0.mlp.1.weight', 'unet.ups.2.0.mlp.1.bias', 'unet.ups.2.0.block1.proj.weight', 'unet.ups.2.0.block1.proj.bias', 'unet.ups.2.0.block1.norm.weight', 'unet.ups.2.0.block1.norm.bias', 'unet.ups.2.0.block2.proj.weight', 'unet.ups.2.0.block2.proj.bias', 'unet.ups.2.0.block2.norm.weight', 'unet.ups.2.0.block2.norm.bias', 'unet.ups.2.0.res_conv.weight', 'unet.ups.2.0.res_conv.bias', 'unet.ups.2.1.mlp.1.weight', 'unet.ups.2.1.mlp.1.bias', 'unet.ups.2.1.block1.proj.weight', 'unet.ups.2.1.block1.proj.bias', 'unet.ups.2.1.block1.norm.weight', 'unet.ups.2.1.block1.norm.bias', 'unet.ups.2.1.block2.proj.weight', 'unet.ups.2.1.block2.proj.bias', 'unet.ups.2.1.block2.norm.weight', 'unet.ups.2.1.block2.norm.bias', 'unet.ups.2.1.res_conv.weight', 'unet.ups.2.1.res_conv.bias', 'unet.ups.2.2.fn.fn.to_qkv.weight', 'unet.ups.2.2.fn.fn.to_out.0.weight', 'unet.ups.2.2.fn.fn.to_out.0.bias', 'unet.ups.2.2.fn.fn.to_out.1.g', 'unet.ups.2.2.fn.norm.g', 'unet.ups.2.3.weight', 'unet.ups.2.3.bias', 'unet.mid_block1.mlp.1.weight', 'unet.mid_block1.mlp.1.bias', 'unet.mid_block1.block1.proj.weight', 'unet.mid_block1.block1.proj.bias', 'unet.mid_block1.block1.norm.weight', 'unet.mid_block1.block1.norm.bias', 'unet.mid_block1.block2.proj.weight', 'unet.mid_block1.block2.proj.bias', 'unet.mid_block1.block2.norm.weight', 'unet.mid_block1.block2.norm.bias', 'unet.mid_attn.fn.fn.to_qkv.weight', 'unet.mid_attn.fn.fn.to_out.weight', 'unet.mid_attn.fn.fn.to_out.bias', 'unet.mid_attn.fn.norm.g', 'unet.mid_block2.mlp.1.weight', 'unet.mid_block2.mlp.1.bias', 'unet.mid_block2.block1.proj.weight', 'unet.mid_block2.block1.proj.bias', 'unet.mid_block2.block1.norm.weight', 'unet.mid_block2.block1.norm.bias', 'unet.mid_block2.block2.proj.weight', 'unet.mid_block2.block2.proj.bias', 'unet.mid_block2.block2.norm.weight', 'unet.mid_block2.block2.norm.bias', 'unet.final_res_block.mlp.1.weight', 'unet.final_res_block.mlp.1.bias', 'unet.final_res_block.block1.proj.weight', 'unet.final_res_block.block1.proj.bias', 'unet.final_res_block.block1.norm.weight', 'unet.final_res_block.block1.norm.bias', 'unet.final_res_block.block2.proj.weight', 'unet.final_res_block.block2.proj.bias', 'unet.final_res_block.block2.norm.weight', 'unet.final_res_block.block2.norm.bias', 'unet.final_res_block.res_conv.weight', 'unet.final_res_block.res_conv.bias', 'unet.final_conv.weight', 'unet.final_conv.bias', 'conv_seg_new.weight', 'conv_seg_new.bias']
|
227 |
+
2023-03-04 18:46:38,584 - mmseg - INFO - Parameters in decode_head freezed!
|
228 |
+
2023-03-04 18:46:38,606 - mmseg - INFO - load checkpoint from local path: pretrained/segformer_mit-b2_512x512_160k_ade20k_20220620_114047-64e4feca.pth
|
229 |
+
2023-03-04 18:46:38,852 - mmseg - WARNING - The model and loaded state dict do not match exactly
|
230 |
+
|
231 |
+
unexpected key in source state_dict: decode_head.conv_seg.weight, decode_head.conv_seg.bias, decode_head.convs.0.conv.weight, decode_head.convs.0.bn.weight, decode_head.convs.0.bn.bias, decode_head.convs.0.bn.running_mean, decode_head.convs.0.bn.running_var, decode_head.convs.0.bn.num_batches_tracked, decode_head.convs.1.conv.weight, decode_head.convs.1.bn.weight, decode_head.convs.1.bn.bias, decode_head.convs.1.bn.running_mean, decode_head.convs.1.bn.running_var, decode_head.convs.1.bn.num_batches_tracked, decode_head.convs.2.conv.weight, decode_head.convs.2.bn.weight, decode_head.convs.2.bn.bias, decode_head.convs.2.bn.running_mean, decode_head.convs.2.bn.running_var, decode_head.convs.2.bn.num_batches_tracked, decode_head.convs.3.conv.weight, decode_head.convs.3.bn.weight, decode_head.convs.3.bn.bias, decode_head.convs.3.bn.running_mean, decode_head.convs.3.bn.running_var, decode_head.convs.3.bn.num_batches_tracked, decode_head.fusion_conv.conv.weight, decode_head.fusion_conv.bn.weight, decode_head.fusion_conv.bn.bias, decode_head.fusion_conv.bn.running_mean, decode_head.fusion_conv.bn.running_var, decode_head.fusion_conv.bn.num_batches_tracked
|
232 |
+
|
233 |
+
2023-03-04 18:46:38,865 - mmseg - INFO - load checkpoint from local path: pretrained/segformer_mit-b2_512x512_160k_ade20k_20220620_114047-64e4feca.pth
|
234 |
+
2023-03-04 18:46:39,075 - mmseg - WARNING - The model and loaded state dict do not match exactly
|
235 |
+
|
236 |
+
unexpected key in source state_dict: backbone.layers.0.0.projection.weight, backbone.layers.0.0.projection.bias, backbone.layers.0.0.norm.weight, backbone.layers.0.0.norm.bias, backbone.layers.0.1.0.norm1.weight, backbone.layers.0.1.0.norm1.bias, backbone.layers.0.1.0.attn.attn.in_proj_weight, backbone.layers.0.1.0.attn.attn.in_proj_bias, backbone.layers.0.1.0.attn.attn.out_proj.weight, backbone.layers.0.1.0.attn.attn.out_proj.bias, backbone.layers.0.1.0.attn.sr.weight, backbone.layers.0.1.0.attn.sr.bias, backbone.layers.0.1.0.attn.norm.weight, backbone.layers.0.1.0.attn.norm.bias, backbone.layers.0.1.0.norm2.weight, backbone.layers.0.1.0.norm2.bias, backbone.layers.0.1.0.ffn.layers.0.weight, backbone.layers.0.1.0.ffn.layers.0.bias, backbone.layers.0.1.0.ffn.layers.1.weight, backbone.layers.0.1.0.ffn.layers.1.bias, backbone.layers.0.1.0.ffn.layers.4.weight, backbone.layers.0.1.0.ffn.layers.4.bias, backbone.layers.0.1.1.norm1.weight, backbone.layers.0.1.1.norm1.bias, backbone.layers.0.1.1.attn.attn.in_proj_weight, backbone.layers.0.1.1.attn.attn.in_proj_bias, backbone.layers.0.1.1.attn.attn.out_proj.weight, backbone.layers.0.1.1.attn.attn.out_proj.bias, backbone.layers.0.1.1.attn.sr.weight, backbone.layers.0.1.1.attn.sr.bias, backbone.layers.0.1.1.attn.norm.weight, backbone.layers.0.1.1.attn.norm.bias, backbone.layers.0.1.1.norm2.weight, backbone.layers.0.1.1.norm2.bias, backbone.layers.0.1.1.ffn.layers.0.weight, backbone.layers.0.1.1.ffn.layers.0.bias, backbone.layers.0.1.1.ffn.layers.1.weight, backbone.layers.0.1.1.ffn.layers.1.bias, backbone.layers.0.1.1.ffn.layers.4.weight, backbone.layers.0.1.1.ffn.layers.4.bias, backbone.layers.0.1.2.norm1.weight, backbone.layers.0.1.2.norm1.bias, backbone.layers.0.1.2.attn.attn.in_proj_weight, backbone.layers.0.1.2.attn.attn.in_proj_bias, backbone.layers.0.1.2.attn.attn.out_proj.weight, backbone.layers.0.1.2.attn.attn.out_proj.bias, backbone.layers.0.1.2.attn.sr.weight, backbone.layers.0.1.2.attn.sr.bias, backbone.layers.0.1.2.attn.norm.weight, backbone.layers.0.1.2.attn.norm.bias, backbone.layers.0.1.2.norm2.weight, backbone.layers.0.1.2.norm2.bias, backbone.layers.0.1.2.ffn.layers.0.weight, backbone.layers.0.1.2.ffn.layers.0.bias, backbone.layers.0.1.2.ffn.layers.1.weight, backbone.layers.0.1.2.ffn.layers.1.bias, backbone.layers.0.1.2.ffn.layers.4.weight, backbone.layers.0.1.2.ffn.layers.4.bias, backbone.layers.0.2.weight, backbone.layers.0.2.bias, backbone.layers.1.0.projection.weight, backbone.layers.1.0.projection.bias, backbone.layers.1.0.norm.weight, backbone.layers.1.0.norm.bias, backbone.layers.1.1.0.norm1.weight, backbone.layers.1.1.0.norm1.bias, backbone.layers.1.1.0.attn.attn.in_proj_weight, backbone.layers.1.1.0.attn.attn.in_proj_bias, backbone.layers.1.1.0.attn.attn.out_proj.weight, backbone.layers.1.1.0.attn.attn.out_proj.bias, backbone.layers.1.1.0.attn.sr.weight, backbone.layers.1.1.0.attn.sr.bias, backbone.layers.1.1.0.attn.norm.weight, backbone.layers.1.1.0.attn.norm.bias, backbone.layers.1.1.0.norm2.weight, backbone.layers.1.1.0.norm2.bias, backbone.layers.1.1.0.ffn.layers.0.weight, backbone.layers.1.1.0.ffn.layers.0.bias, backbone.layers.1.1.0.ffn.layers.1.weight, backbone.layers.1.1.0.ffn.layers.1.bias, backbone.layers.1.1.0.ffn.layers.4.weight, backbone.layers.1.1.0.ffn.layers.4.bias, backbone.layers.1.1.1.norm1.weight, backbone.layers.1.1.1.norm1.bias, backbone.layers.1.1.1.attn.attn.in_proj_weight, backbone.layers.1.1.1.attn.attn.in_proj_bias, backbone.layers.1.1.1.attn.attn.out_proj.weight, backbone.layers.1.1.1.attn.attn.out_proj.bias, backbone.layers.1.1.1.attn.sr.weight, backbone.layers.1.1.1.attn.sr.bias, backbone.layers.1.1.1.attn.norm.weight, backbone.layers.1.1.1.attn.norm.bias, backbone.layers.1.1.1.norm2.weight, backbone.layers.1.1.1.norm2.bias, backbone.layers.1.1.1.ffn.layers.0.weight, backbone.layers.1.1.1.ffn.layers.0.bias, backbone.layers.1.1.1.ffn.layers.1.weight, backbone.layers.1.1.1.ffn.layers.1.bias, backbone.layers.1.1.1.ffn.layers.4.weight, backbone.layers.1.1.1.ffn.layers.4.bias, backbone.layers.1.1.2.norm1.weight, backbone.layers.1.1.2.norm1.bias, backbone.layers.1.1.2.attn.attn.in_proj_weight, backbone.layers.1.1.2.attn.attn.in_proj_bias, backbone.layers.1.1.2.attn.attn.out_proj.weight, backbone.layers.1.1.2.attn.attn.out_proj.bias, backbone.layers.1.1.2.attn.sr.weight, backbone.layers.1.1.2.attn.sr.bias, backbone.layers.1.1.2.attn.norm.weight, backbone.layers.1.1.2.attn.norm.bias, backbone.layers.1.1.2.norm2.weight, backbone.layers.1.1.2.norm2.bias, backbone.layers.1.1.2.ffn.layers.0.weight, backbone.layers.1.1.2.ffn.layers.0.bias, backbone.layers.1.1.2.ffn.layers.1.weight, backbone.layers.1.1.2.ffn.layers.1.bias, backbone.layers.1.1.2.ffn.layers.4.weight, backbone.layers.1.1.2.ffn.layers.4.bias, backbone.layers.1.1.3.norm1.weight, backbone.layers.1.1.3.norm1.bias, backbone.layers.1.1.3.attn.attn.in_proj_weight, backbone.layers.1.1.3.attn.attn.in_proj_bias, backbone.layers.1.1.3.attn.attn.out_proj.weight, backbone.layers.1.1.3.attn.attn.out_proj.bias, backbone.layers.1.1.3.attn.sr.weight, backbone.layers.1.1.3.attn.sr.bias, backbone.layers.1.1.3.attn.norm.weight, backbone.layers.1.1.3.attn.norm.bias, backbone.layers.1.1.3.norm2.weight, backbone.layers.1.1.3.norm2.bias, backbone.layers.1.1.3.ffn.layers.0.weight, backbone.layers.1.1.3.ffn.layers.0.bias, backbone.layers.1.1.3.ffn.layers.1.weight, backbone.layers.1.1.3.ffn.layers.1.bias, backbone.layers.1.1.3.ffn.layers.4.weight, backbone.layers.1.1.3.ffn.layers.4.bias, backbone.layers.1.2.weight, backbone.layers.1.2.bias, backbone.layers.2.0.projection.weight, backbone.layers.2.0.projection.bias, backbone.layers.2.0.norm.weight, backbone.layers.2.0.norm.bias, backbone.layers.2.1.0.norm1.weight, backbone.layers.2.1.0.norm1.bias, backbone.layers.2.1.0.attn.attn.in_proj_weight, backbone.layers.2.1.0.attn.attn.in_proj_bias, backbone.layers.2.1.0.attn.attn.out_proj.weight, backbone.layers.2.1.0.attn.attn.out_proj.bias, backbone.layers.2.1.0.attn.sr.weight, backbone.layers.2.1.0.attn.sr.bias, backbone.layers.2.1.0.attn.norm.weight, backbone.layers.2.1.0.attn.norm.bias, backbone.layers.2.1.0.norm2.weight, backbone.layers.2.1.0.norm2.bias, backbone.layers.2.1.0.ffn.layers.0.weight, backbone.layers.2.1.0.ffn.layers.0.bias, backbone.layers.2.1.0.ffn.layers.1.weight, backbone.layers.2.1.0.ffn.layers.1.bias, backbone.layers.2.1.0.ffn.layers.4.weight, backbone.layers.2.1.0.ffn.layers.4.bias, backbone.layers.2.1.1.norm1.weight, backbone.layers.2.1.1.norm1.bias, backbone.layers.2.1.1.attn.attn.in_proj_weight, backbone.layers.2.1.1.attn.attn.in_proj_bias, backbone.layers.2.1.1.attn.attn.out_proj.weight, backbone.layers.2.1.1.attn.attn.out_proj.bias, backbone.layers.2.1.1.attn.sr.weight, backbone.layers.2.1.1.attn.sr.bias, backbone.layers.2.1.1.attn.norm.weight, backbone.layers.2.1.1.attn.norm.bias, backbone.layers.2.1.1.norm2.weight, backbone.layers.2.1.1.norm2.bias, backbone.layers.2.1.1.ffn.layers.0.weight, backbone.layers.2.1.1.ffn.layers.0.bias, backbone.layers.2.1.1.ffn.layers.1.weight, backbone.layers.2.1.1.ffn.layers.1.bias, backbone.layers.2.1.1.ffn.layers.4.weight, backbone.layers.2.1.1.ffn.layers.4.bias, backbone.layers.2.1.2.norm1.weight, backbone.layers.2.1.2.norm1.bias, backbone.layers.2.1.2.attn.attn.in_proj_weight, backbone.layers.2.1.2.attn.attn.in_proj_bias, backbone.layers.2.1.2.attn.attn.out_proj.weight, backbone.layers.2.1.2.attn.attn.out_proj.bias, backbone.layers.2.1.2.attn.sr.weight, backbone.layers.2.1.2.attn.sr.bias, backbone.layers.2.1.2.attn.norm.weight, backbone.layers.2.1.2.attn.norm.bias, backbone.layers.2.1.2.norm2.weight, backbone.layers.2.1.2.norm2.bias, backbone.layers.2.1.2.ffn.layers.0.weight, backbone.layers.2.1.2.ffn.layers.0.bias, backbone.layers.2.1.2.ffn.layers.1.weight, backbone.layers.2.1.2.ffn.layers.1.bias, backbone.layers.2.1.2.ffn.layers.4.weight, backbone.layers.2.1.2.ffn.layers.4.bias, backbone.layers.2.1.3.norm1.weight, backbone.layers.2.1.3.norm1.bias, backbone.layers.2.1.3.attn.attn.in_proj_weight, backbone.layers.2.1.3.attn.attn.in_proj_bias, backbone.layers.2.1.3.attn.attn.out_proj.weight, backbone.layers.2.1.3.attn.attn.out_proj.bias, backbone.layers.2.1.3.attn.sr.weight, backbone.layers.2.1.3.attn.sr.bias, backbone.layers.2.1.3.attn.norm.weight, backbone.layers.2.1.3.attn.norm.bias, backbone.layers.2.1.3.norm2.weight, backbone.layers.2.1.3.norm2.bias, backbone.layers.2.1.3.ffn.layers.0.weight, backbone.layers.2.1.3.ffn.layers.0.bias, backbone.layers.2.1.3.ffn.layers.1.weight, backbone.layers.2.1.3.ffn.layers.1.bias, backbone.layers.2.1.3.ffn.layers.4.weight, backbone.layers.2.1.3.ffn.layers.4.bias, backbone.layers.2.1.4.norm1.weight, backbone.layers.2.1.4.norm1.bias, backbone.layers.2.1.4.attn.attn.in_proj_weight, backbone.layers.2.1.4.attn.attn.in_proj_bias, backbone.layers.2.1.4.attn.attn.out_proj.weight, backbone.layers.2.1.4.attn.attn.out_proj.bias, backbone.layers.2.1.4.attn.sr.weight, backbone.layers.2.1.4.attn.sr.bias, backbone.layers.2.1.4.attn.norm.weight, backbone.layers.2.1.4.attn.norm.bias, backbone.layers.2.1.4.norm2.weight, backbone.layers.2.1.4.norm2.bias, backbone.layers.2.1.4.ffn.layers.0.weight, backbone.layers.2.1.4.ffn.layers.0.bias, backbone.layers.2.1.4.ffn.layers.1.weight, backbone.layers.2.1.4.ffn.layers.1.bias, backbone.layers.2.1.4.ffn.layers.4.weight, backbone.layers.2.1.4.ffn.layers.4.bias, backbone.layers.2.1.5.norm1.weight, backbone.layers.2.1.5.norm1.bias, backbone.layers.2.1.5.attn.attn.in_proj_weight, backbone.layers.2.1.5.attn.attn.in_proj_bias, backbone.layers.2.1.5.attn.attn.out_proj.weight, backbone.layers.2.1.5.attn.attn.out_proj.bias, backbone.layers.2.1.5.attn.sr.weight, backbone.layers.2.1.5.attn.sr.bias, backbone.layers.2.1.5.attn.norm.weight, backbone.layers.2.1.5.attn.norm.bias, backbone.layers.2.1.5.norm2.weight, backbone.layers.2.1.5.norm2.bias, backbone.layers.2.1.5.ffn.layers.0.weight, backbone.layers.2.1.5.ffn.layers.0.bias, backbone.layers.2.1.5.ffn.layers.1.weight, backbone.layers.2.1.5.ffn.layers.1.bias, backbone.layers.2.1.5.ffn.layers.4.weight, backbone.layers.2.1.5.ffn.layers.4.bias, backbone.layers.2.2.weight, backbone.layers.2.2.bias, backbone.layers.3.0.projection.weight, backbone.layers.3.0.projection.bias, backbone.layers.3.0.norm.weight, backbone.layers.3.0.norm.bias, backbone.layers.3.1.0.norm1.weight, backbone.layers.3.1.0.norm1.bias, backbone.layers.3.1.0.attn.attn.in_proj_weight, backbone.layers.3.1.0.attn.attn.in_proj_bias, backbone.layers.3.1.0.attn.attn.out_proj.weight, backbone.layers.3.1.0.attn.attn.out_proj.bias, backbone.layers.3.1.0.norm2.weight, backbone.layers.3.1.0.norm2.bias, backbone.layers.3.1.0.ffn.layers.0.weight, backbone.layers.3.1.0.ffn.layers.0.bias, backbone.layers.3.1.0.ffn.layers.1.weight, backbone.layers.3.1.0.ffn.layers.1.bias, backbone.layers.3.1.0.ffn.layers.4.weight, backbone.layers.3.1.0.ffn.layers.4.bias, backbone.layers.3.1.1.norm1.weight, backbone.layers.3.1.1.norm1.bias, backbone.layers.3.1.1.attn.attn.in_proj_weight, backbone.layers.3.1.1.attn.attn.in_proj_bias, backbone.layers.3.1.1.attn.attn.out_proj.weight, backbone.layers.3.1.1.attn.attn.out_proj.bias, backbone.layers.3.1.1.norm2.weight, backbone.layers.3.1.1.norm2.bias, backbone.layers.3.1.1.ffn.layers.0.weight, backbone.layers.3.1.1.ffn.layers.0.bias, backbone.layers.3.1.1.ffn.layers.1.weight, backbone.layers.3.1.1.ffn.layers.1.bias, backbone.layers.3.1.1.ffn.layers.4.weight, backbone.layers.3.1.1.ffn.layers.4.bias, backbone.layers.3.1.2.norm1.weight, backbone.layers.3.1.2.norm1.bias, backbone.layers.3.1.2.attn.attn.in_proj_weight, backbone.layers.3.1.2.attn.attn.in_proj_bias, backbone.layers.3.1.2.attn.attn.out_proj.weight, backbone.layers.3.1.2.attn.attn.out_proj.bias, backbone.layers.3.1.2.norm2.weight, backbone.layers.3.1.2.norm2.bias, backbone.layers.3.1.2.ffn.layers.0.weight, backbone.layers.3.1.2.ffn.layers.0.bias, backbone.layers.3.1.2.ffn.layers.1.weight, backbone.layers.3.1.2.ffn.layers.1.bias, backbone.layers.3.1.2.ffn.layers.4.weight, backbone.layers.3.1.2.ffn.layers.4.bias, backbone.layers.3.2.weight, backbone.layers.3.2.bias
|
237 |
+
|
238 |
+
missing keys in source state_dict: unet.init_conv.weight, unet.init_conv.bias, unet.time_mlp.1.weight, unet.time_mlp.1.bias, unet.time_mlp.3.weight, unet.time_mlp.3.bias, unet.downs.0.0.mlp.1.weight, unet.downs.0.0.mlp.1.bias, unet.downs.0.0.block1.proj.weight, unet.downs.0.0.block1.proj.bias, unet.downs.0.0.block1.norm.weight, unet.downs.0.0.block1.norm.bias, unet.downs.0.0.block2.proj.weight, unet.downs.0.0.block2.proj.bias, unet.downs.0.0.block2.norm.weight, unet.downs.0.0.block2.norm.bias, unet.downs.0.1.mlp.1.weight, unet.downs.0.1.mlp.1.bias, unet.downs.0.1.block1.proj.weight, unet.downs.0.1.block1.proj.bias, unet.downs.0.1.block1.norm.weight, unet.downs.0.1.block1.norm.bias, unet.downs.0.1.block2.proj.weight, unet.downs.0.1.block2.proj.bias, unet.downs.0.1.block2.norm.weight, unet.downs.0.1.block2.norm.bias, unet.downs.0.2.fn.fn.to_qkv.weight, unet.downs.0.2.fn.fn.to_out.0.weight, unet.downs.0.2.fn.fn.to_out.0.bias, unet.downs.0.2.fn.fn.to_out.1.g, unet.downs.0.2.fn.norm.g, unet.downs.0.3.weight, unet.downs.0.3.bias, unet.downs.1.0.mlp.1.weight, unet.downs.1.0.mlp.1.bias, unet.downs.1.0.block1.proj.weight, unet.downs.1.0.block1.proj.bias, unet.downs.1.0.block1.norm.weight, unet.downs.1.0.block1.norm.bias, unet.downs.1.0.block2.proj.weight, unet.downs.1.0.block2.proj.bias, unet.downs.1.0.block2.norm.weight, unet.downs.1.0.block2.norm.bias, unet.downs.1.1.mlp.1.weight, unet.downs.1.1.mlp.1.bias, unet.downs.1.1.block1.proj.weight, unet.downs.1.1.block1.proj.bias, unet.downs.1.1.block1.norm.weight, unet.downs.1.1.block1.norm.bias, unet.downs.1.1.block2.proj.weight, unet.downs.1.1.block2.proj.bias, unet.downs.1.1.block2.norm.weight, unet.downs.1.1.block2.norm.bias, unet.downs.1.2.fn.fn.to_qkv.weight, unet.downs.1.2.fn.fn.to_out.0.weight, unet.downs.1.2.fn.fn.to_out.0.bias, unet.downs.1.2.fn.fn.to_out.1.g, unet.downs.1.2.fn.norm.g, unet.downs.1.3.weight, unet.downs.1.3.bias, unet.downs.2.0.mlp.1.weight, unet.downs.2.0.mlp.1.bias, unet.downs.2.0.block1.proj.weight, unet.downs.2.0.block1.proj.bias, unet.downs.2.0.block1.norm.weight, unet.downs.2.0.block1.norm.bias, unet.downs.2.0.block2.proj.weight, unet.downs.2.0.block2.proj.bias, unet.downs.2.0.block2.norm.weight, unet.downs.2.0.block2.norm.bias, unet.downs.2.1.mlp.1.weight, unet.downs.2.1.mlp.1.bias, unet.downs.2.1.block1.proj.weight, unet.downs.2.1.block1.proj.bias, unet.downs.2.1.block1.norm.weight, unet.downs.2.1.block1.norm.bias, unet.downs.2.1.block2.proj.weight, unet.downs.2.1.block2.proj.bias, unet.downs.2.1.block2.norm.weight, unet.downs.2.1.block2.norm.bias, unet.downs.2.2.fn.fn.to_qkv.weight, unet.downs.2.2.fn.fn.to_out.0.weight, unet.downs.2.2.fn.fn.to_out.0.bias, unet.downs.2.2.fn.fn.to_out.1.g, unet.downs.2.2.fn.norm.g, unet.downs.2.3.weight, unet.downs.2.3.bias, unet.ups.0.0.mlp.1.weight, unet.ups.0.0.mlp.1.bias, unet.ups.0.0.block1.proj.weight, unet.ups.0.0.block1.proj.bias, unet.ups.0.0.block1.norm.weight, unet.ups.0.0.block1.norm.bias, unet.ups.0.0.block2.proj.weight, unet.ups.0.0.block2.proj.bias, unet.ups.0.0.block2.norm.weight, unet.ups.0.0.block2.norm.bias, unet.ups.0.0.res_conv.weight, unet.ups.0.0.res_conv.bias, unet.ups.0.1.mlp.1.weight, unet.ups.0.1.mlp.1.bias, unet.ups.0.1.block1.proj.weight, unet.ups.0.1.block1.proj.bias, unet.ups.0.1.block1.norm.weight, unet.ups.0.1.block1.norm.bias, unet.ups.0.1.block2.proj.weight, unet.ups.0.1.block2.proj.bias, unet.ups.0.1.block2.norm.weight, unet.ups.0.1.block2.norm.bias, unet.ups.0.1.res_conv.weight, unet.ups.0.1.res_conv.bias, unet.ups.0.2.fn.fn.to_qkv.weight, unet.ups.0.2.fn.fn.to_out.0.weight, unet.ups.0.2.fn.fn.to_out.0.bias, unet.ups.0.2.fn.fn.to_out.1.g, unet.ups.0.2.fn.norm.g, unet.ups.0.3.1.weight, unet.ups.0.3.1.bias, unet.ups.1.0.mlp.1.weight, unet.ups.1.0.mlp.1.bias, unet.ups.1.0.block1.proj.weight, unet.ups.1.0.block1.proj.bias, unet.ups.1.0.block1.norm.weight, unet.ups.1.0.block1.norm.bias, unet.ups.1.0.block2.proj.weight, unet.ups.1.0.block2.proj.bias, unet.ups.1.0.block2.norm.weight, unet.ups.1.0.block2.norm.bias, unet.ups.1.0.res_conv.weight, unet.ups.1.0.res_conv.bias, unet.ups.1.1.mlp.1.weight, unet.ups.1.1.mlp.1.bias, unet.ups.1.1.block1.proj.weight, unet.ups.1.1.block1.proj.bias, unet.ups.1.1.block1.norm.weight, unet.ups.1.1.block1.norm.bias, unet.ups.1.1.block2.proj.weight, unet.ups.1.1.block2.proj.bias, unet.ups.1.1.block2.norm.weight, unet.ups.1.1.block2.norm.bias, unet.ups.1.1.res_conv.weight, unet.ups.1.1.res_conv.bias, unet.ups.1.2.fn.fn.to_qkv.weight, unet.ups.1.2.fn.fn.to_out.0.weight, unet.ups.1.2.fn.fn.to_out.0.bias, unet.ups.1.2.fn.fn.to_out.1.g, unet.ups.1.2.fn.norm.g, unet.ups.1.3.1.weight, unet.ups.1.3.1.bias, unet.ups.2.0.mlp.1.weight, unet.ups.2.0.mlp.1.bias, unet.ups.2.0.block1.proj.weight, unet.ups.2.0.block1.proj.bias, unet.ups.2.0.block1.norm.weight, unet.ups.2.0.block1.norm.bias, unet.ups.2.0.block2.proj.weight, unet.ups.2.0.block2.proj.bias, unet.ups.2.0.block2.norm.weight, unet.ups.2.0.block2.norm.bias, unet.ups.2.0.res_conv.weight, unet.ups.2.0.res_conv.bias, unet.ups.2.1.mlp.1.weight, unet.ups.2.1.mlp.1.bias, unet.ups.2.1.block1.proj.weight, unet.ups.2.1.block1.proj.bias, unet.ups.2.1.block1.norm.weight, unet.ups.2.1.block1.norm.bias, unet.ups.2.1.block2.proj.weight, unet.ups.2.1.block2.proj.bias, unet.ups.2.1.block2.norm.weight, unet.ups.2.1.block2.norm.bias, unet.ups.2.1.res_conv.weight, unet.ups.2.1.res_conv.bias, unet.ups.2.2.fn.fn.to_qkv.weight, unet.ups.2.2.fn.fn.to_out.0.weight, unet.ups.2.2.fn.fn.to_out.0.bias, unet.ups.2.2.fn.fn.to_out.1.g, unet.ups.2.2.fn.norm.g, unet.ups.2.3.weight, unet.ups.2.3.bias, unet.mid_block1.mlp.1.weight, unet.mid_block1.mlp.1.bias, unet.mid_block1.block1.proj.weight, unet.mid_block1.block1.proj.bias, unet.mid_block1.block1.norm.weight, unet.mid_block1.block1.norm.bias, unet.mid_block1.block2.proj.weight, unet.mid_block1.block2.proj.bias, unet.mid_block1.block2.norm.weight, unet.mid_block1.block2.norm.bias, unet.mid_attn.fn.fn.to_qkv.weight, unet.mid_attn.fn.fn.to_out.weight, unet.mid_attn.fn.fn.to_out.bias, unet.mid_attn.fn.norm.g, unet.mid_block2.mlp.1.weight, unet.mid_block2.mlp.1.bias, unet.mid_block2.block1.proj.weight, unet.mid_block2.block1.proj.bias, unet.mid_block2.block1.norm.weight, unet.mid_block2.block1.norm.bias, unet.mid_block2.block2.proj.weight, unet.mid_block2.block2.proj.bias, unet.mid_block2.block2.norm.weight, unet.mid_block2.block2.norm.bias, unet.final_res_block.mlp.1.weight, unet.final_res_block.mlp.1.bias, unet.final_res_block.block1.proj.weight, unet.final_res_block.block1.proj.bias, unet.final_res_block.block1.norm.weight, unet.final_res_block.block1.norm.bias, unet.final_res_block.block2.proj.weight, unet.final_res_block.block2.proj.bias, unet.final_res_block.block2.norm.weight, unet.final_res_block.block2.norm.bias, unet.final_res_block.res_conv.weight, unet.final_res_block.res_conv.bias, unet.final_conv.weight, unet.final_conv.bias, conv_seg_new.weight, conv_seg_new.bias, embed.weight
|
239 |
+
|
240 |
+
2023-03-04 18:46:39,098 - mmseg - INFO - EncoderDecoderFreeze(
|
241 |
+
(backbone): MixVisionTransformerCustomInitWeights(
|
242 |
+
(layers): ModuleList(
|
243 |
+
(0): ModuleList(
|
244 |
+
(0): PatchEmbed(
|
245 |
+
(projection): Conv2d(3, 64, kernel_size=(7, 7), stride=(4, 4), padding=(3, 3))
|
246 |
+
(norm): LayerNorm((64,), eps=1e-06, elementwise_affine=True)
|
247 |
+
)
|
248 |
+
(1): ModuleList(
|
249 |
+
(0): TransformerEncoderLayer(
|
250 |
+
(norm1): LayerNorm((64,), eps=1e-06, elementwise_affine=True)
|
251 |
+
(attn): EfficientMultiheadAttention(
|
252 |
+
(attn): MultiheadAttention(
|
253 |
+
(out_proj): NonDynamicallyQuantizableLinear(in_features=64, out_features=64, bias=True)
|
254 |
+
)
|
255 |
+
(proj_drop): Dropout(p=0.0, inplace=False)
|
256 |
+
(dropout_layer): DropPath()
|
257 |
+
(sr): Conv2d(64, 64, kernel_size=(8, 8), stride=(8, 8))
|
258 |
+
(norm): LayerNorm((64,), eps=1e-06, elementwise_affine=True)
|
259 |
+
)
|
260 |
+
(norm2): LayerNorm((64,), eps=1e-06, elementwise_affine=True)
|
261 |
+
(ffn): MixFFN(
|
262 |
+
(activate): GELU(approximate='none')
|
263 |
+
(layers): Sequential(
|
264 |
+
(0): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1))
|
265 |
+
(1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=256)
|
266 |
+
(2): GELU(approximate='none')
|
267 |
+
(3): Dropout(p=0.0, inplace=False)
|
268 |
+
(4): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1))
|
269 |
+
(5): Dropout(p=0.0, inplace=False)
|
270 |
+
)
|
271 |
+
(dropout_layer): DropPath()
|
272 |
+
)
|
273 |
+
)
|
274 |
+
(1): TransformerEncoderLayer(
|
275 |
+
(norm1): LayerNorm((64,), eps=1e-06, elementwise_affine=True)
|
276 |
+
(attn): EfficientMultiheadAttention(
|
277 |
+
(attn): MultiheadAttention(
|
278 |
+
(out_proj): NonDynamicallyQuantizableLinear(in_features=64, out_features=64, bias=True)
|
279 |
+
)
|
280 |
+
(proj_drop): Dropout(p=0.0, inplace=False)
|
281 |
+
(dropout_layer): DropPath()
|
282 |
+
(sr): Conv2d(64, 64, kernel_size=(8, 8), stride=(8, 8))
|
283 |
+
(norm): LayerNorm((64,), eps=1e-06, elementwise_affine=True)
|
284 |
+
)
|
285 |
+
(norm2): LayerNorm((64,), eps=1e-06, elementwise_affine=True)
|
286 |
+
(ffn): MixFFN(
|
287 |
+
(activate): GELU(approximate='none')
|
288 |
+
(layers): Sequential(
|
289 |
+
(0): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1))
|
290 |
+
(1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=256)
|
291 |
+
(2): GELU(approximate='none')
|
292 |
+
(3): Dropout(p=0.0, inplace=False)
|
293 |
+
(4): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1))
|
294 |
+
(5): Dropout(p=0.0, inplace=False)
|
295 |
+
)
|
296 |
+
(dropout_layer): DropPath()
|
297 |
+
)
|
298 |
+
)
|
299 |
+
(2): TransformerEncoderLayer(
|
300 |
+
(norm1): LayerNorm((64,), eps=1e-06, elementwise_affine=True)
|
301 |
+
(attn): EfficientMultiheadAttention(
|
302 |
+
(attn): MultiheadAttention(
|
303 |
+
(out_proj): NonDynamicallyQuantizableLinear(in_features=64, out_features=64, bias=True)
|
304 |
+
)
|
305 |
+
(proj_drop): Dropout(p=0.0, inplace=False)
|
306 |
+
(dropout_layer): DropPath()
|
307 |
+
(sr): Conv2d(64, 64, kernel_size=(8, 8), stride=(8, 8))
|
308 |
+
(norm): LayerNorm((64,), eps=1e-06, elementwise_affine=True)
|
309 |
+
)
|
310 |
+
(norm2): LayerNorm((64,), eps=1e-06, elementwise_affine=True)
|
311 |
+
(ffn): MixFFN(
|
312 |
+
(activate): GELU(approximate='none')
|
313 |
+
(layers): Sequential(
|
314 |
+
(0): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1))
|
315 |
+
(1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=256)
|
316 |
+
(2): GELU(approximate='none')
|
317 |
+
(3): Dropout(p=0.0, inplace=False)
|
318 |
+
(4): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1))
|
319 |
+
(5): Dropout(p=0.0, inplace=False)
|
320 |
+
)
|
321 |
+
(dropout_layer): DropPath()
|
322 |
+
)
|
323 |
+
)
|
324 |
+
)
|
325 |
+
(2): LayerNorm((64,), eps=1e-06, elementwise_affine=True)
|
326 |
+
)
|
327 |
+
(1): ModuleList(
|
328 |
+
(0): PatchEmbed(
|
329 |
+
(projection): Conv2d(64, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
|
330 |
+
(norm): LayerNorm((128,), eps=1e-06, elementwise_affine=True)
|
331 |
+
)
|
332 |
+
(1): ModuleList(
|
333 |
+
(0): TransformerEncoderLayer(
|
334 |
+
(norm1): LayerNorm((128,), eps=1e-06, elementwise_affine=True)
|
335 |
+
(attn): EfficientMultiheadAttention(
|
336 |
+
(attn): MultiheadAttention(
|
337 |
+
(out_proj): NonDynamicallyQuantizableLinear(in_features=128, out_features=128, bias=True)
|
338 |
+
)
|
339 |
+
(proj_drop): Dropout(p=0.0, inplace=False)
|
340 |
+
(dropout_layer): DropPath()
|
341 |
+
(sr): Conv2d(128, 128, kernel_size=(4, 4), stride=(4, 4))
|
342 |
+
(norm): LayerNorm((128,), eps=1e-06, elementwise_affine=True)
|
343 |
+
)
|
344 |
+
(norm2): LayerNorm((128,), eps=1e-06, elementwise_affine=True)
|
345 |
+
(ffn): MixFFN(
|
346 |
+
(activate): GELU(approximate='none')
|
347 |
+
(layers): Sequential(
|
348 |
+
(0): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1))
|
349 |
+
(1): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=512)
|
350 |
+
(2): GELU(approximate='none')
|
351 |
+
(3): Dropout(p=0.0, inplace=False)
|
352 |
+
(4): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1))
|
353 |
+
(5): Dropout(p=0.0, inplace=False)
|
354 |
+
)
|
355 |
+
(dropout_layer): DropPath()
|
356 |
+
)
|
357 |
+
)
|
358 |
+
(1): TransformerEncoderLayer(
|
359 |
+
(norm1): LayerNorm((128,), eps=1e-06, elementwise_affine=True)
|
360 |
+
(attn): EfficientMultiheadAttention(
|
361 |
+
(attn): MultiheadAttention(
|
362 |
+
(out_proj): NonDynamicallyQuantizableLinear(in_features=128, out_features=128, bias=True)
|
363 |
+
)
|
364 |
+
(proj_drop): Dropout(p=0.0, inplace=False)
|
365 |
+
(dropout_layer): DropPath()
|
366 |
+
(sr): Conv2d(128, 128, kernel_size=(4, 4), stride=(4, 4))
|
367 |
+
(norm): LayerNorm((128,), eps=1e-06, elementwise_affine=True)
|
368 |
+
)
|
369 |
+
(norm2): LayerNorm((128,), eps=1e-06, elementwise_affine=True)
|
370 |
+
(ffn): MixFFN(
|
371 |
+
(activate): GELU(approximate='none')
|
372 |
+
(layers): Sequential(
|
373 |
+
(0): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1))
|
374 |
+
(1): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=512)
|
375 |
+
(2): GELU(approximate='none')
|
376 |
+
(3): Dropout(p=0.0, inplace=False)
|
377 |
+
(4): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1))
|
378 |
+
(5): Dropout(p=0.0, inplace=False)
|
379 |
+
)
|
380 |
+
(dropout_layer): DropPath()
|
381 |
+
)
|
382 |
+
)
|
383 |
+
(2): TransformerEncoderLayer(
|
384 |
+
(norm1): LayerNorm((128,), eps=1e-06, elementwise_affine=True)
|
385 |
+
(attn): EfficientMultiheadAttention(
|
386 |
+
(attn): MultiheadAttention(
|
387 |
+
(out_proj): NonDynamicallyQuantizableLinear(in_features=128, out_features=128, bias=True)
|
388 |
+
)
|
389 |
+
(proj_drop): Dropout(p=0.0, inplace=False)
|
390 |
+
(dropout_layer): DropPath()
|
391 |
+
(sr): Conv2d(128, 128, kernel_size=(4, 4), stride=(4, 4))
|
392 |
+
(norm): LayerNorm((128,), eps=1e-06, elementwise_affine=True)
|
393 |
+
)
|
394 |
+
(norm2): LayerNorm((128,), eps=1e-06, elementwise_affine=True)
|
395 |
+
(ffn): MixFFN(
|
396 |
+
(activate): GELU(approximate='none')
|
397 |
+
(layers): Sequential(
|
398 |
+
(0): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1))
|
399 |
+
(1): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=512)
|
400 |
+
(2): GELU(approximate='none')
|
401 |
+
(3): Dropout(p=0.0, inplace=False)
|
402 |
+
(4): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1))
|
403 |
+
(5): Dropout(p=0.0, inplace=False)
|
404 |
+
)
|
405 |
+
(dropout_layer): DropPath()
|
406 |
+
)
|
407 |
+
)
|
408 |
+
(3): TransformerEncoderLayer(
|
409 |
+
(norm1): LayerNorm((128,), eps=1e-06, elementwise_affine=True)
|
410 |
+
(attn): EfficientMultiheadAttention(
|
411 |
+
(attn): MultiheadAttention(
|
412 |
+
(out_proj): NonDynamicallyQuantizableLinear(in_features=128, out_features=128, bias=True)
|
413 |
+
)
|
414 |
+
(proj_drop): Dropout(p=0.0, inplace=False)
|
415 |
+
(dropout_layer): DropPath()
|
416 |
+
(sr): Conv2d(128, 128, kernel_size=(4, 4), stride=(4, 4))
|
417 |
+
(norm): LayerNorm((128,), eps=1e-06, elementwise_affine=True)
|
418 |
+
)
|
419 |
+
(norm2): LayerNorm((128,), eps=1e-06, elementwise_affine=True)
|
420 |
+
(ffn): MixFFN(
|
421 |
+
(activate): GELU(approximate='none')
|
422 |
+
(layers): Sequential(
|
423 |
+
(0): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1))
|
424 |
+
(1): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=512)
|
425 |
+
(2): GELU(approximate='none')
|
426 |
+
(3): Dropout(p=0.0, inplace=False)
|
427 |
+
(4): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1))
|
428 |
+
(5): Dropout(p=0.0, inplace=False)
|
429 |
+
)
|
430 |
+
(dropout_layer): DropPath()
|
431 |
+
)
|
432 |
+
)
|
433 |
+
)
|
434 |
+
(2): LayerNorm((128,), eps=1e-06, elementwise_affine=True)
|
435 |
+
)
|
436 |
+
(2): ModuleList(
|
437 |
+
(0): PatchEmbed(
|
438 |
+
(projection): Conv2d(128, 320, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
|
439 |
+
(norm): LayerNorm((320,), eps=1e-06, elementwise_affine=True)
|
440 |
+
)
|
441 |
+
(1): ModuleList(
|
442 |
+
(0): TransformerEncoderLayer(
|
443 |
+
(norm1): LayerNorm((320,), eps=1e-06, elementwise_affine=True)
|
444 |
+
(attn): EfficientMultiheadAttention(
|
445 |
+
(attn): MultiheadAttention(
|
446 |
+
(out_proj): NonDynamicallyQuantizableLinear(in_features=320, out_features=320, bias=True)
|
447 |
+
)
|
448 |
+
(proj_drop): Dropout(p=0.0, inplace=False)
|
449 |
+
(dropout_layer): DropPath()
|
450 |
+
(sr): Conv2d(320, 320, kernel_size=(2, 2), stride=(2, 2))
|
451 |
+
(norm): LayerNorm((320,), eps=1e-06, elementwise_affine=True)
|
452 |
+
)
|
453 |
+
(norm2): LayerNorm((320,), eps=1e-06, elementwise_affine=True)
|
454 |
+
(ffn): MixFFN(
|
455 |
+
(activate): GELU(approximate='none')
|
456 |
+
(layers): Sequential(
|
457 |
+
(0): Conv2d(320, 1280, kernel_size=(1, 1), stride=(1, 1))
|
458 |
+
(1): Conv2d(1280, 1280, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=1280)
|
459 |
+
(2): GELU(approximate='none')
|
460 |
+
(3): Dropout(p=0.0, inplace=False)
|
461 |
+
(4): Conv2d(1280, 320, kernel_size=(1, 1), stride=(1, 1))
|
462 |
+
(5): Dropout(p=0.0, inplace=False)
|
463 |
+
)
|
464 |
+
(dropout_layer): DropPath()
|
465 |
+
)
|
466 |
+
)
|
467 |
+
(1): TransformerEncoderLayer(
|
468 |
+
(norm1): LayerNorm((320,), eps=1e-06, elementwise_affine=True)
|
469 |
+
(attn): EfficientMultiheadAttention(
|
470 |
+
(attn): MultiheadAttention(
|
471 |
+
(out_proj): NonDynamicallyQuantizableLinear(in_features=320, out_features=320, bias=True)
|
472 |
+
)
|
473 |
+
(proj_drop): Dropout(p=0.0, inplace=False)
|
474 |
+
(dropout_layer): DropPath()
|
475 |
+
(sr): Conv2d(320, 320, kernel_size=(2, 2), stride=(2, 2))
|
476 |
+
(norm): LayerNorm((320,), eps=1e-06, elementwise_affine=True)
|
477 |
+
)
|
478 |
+
(norm2): LayerNorm((320,), eps=1e-06, elementwise_affine=True)
|
479 |
+
(ffn): MixFFN(
|
480 |
+
(activate): GELU(approximate='none')
|
481 |
+
(layers): Sequential(
|
482 |
+
(0): Conv2d(320, 1280, kernel_size=(1, 1), stride=(1, 1))
|
483 |
+
(1): Conv2d(1280, 1280, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=1280)
|
484 |
+
(2): GELU(approximate='none')
|
485 |
+
(3): Dropout(p=0.0, inplace=False)
|
486 |
+
(4): Conv2d(1280, 320, kernel_size=(1, 1), stride=(1, 1))
|
487 |
+
(5): Dropout(p=0.0, inplace=False)
|
488 |
+
)
|
489 |
+
(dropout_layer): DropPath()
|
490 |
+
)
|
491 |
+
)
|
492 |
+
(2): TransformerEncoderLayer(
|
493 |
+
(norm1): LayerNorm((320,), eps=1e-06, elementwise_affine=True)
|
494 |
+
(attn): EfficientMultiheadAttention(
|
495 |
+
(attn): MultiheadAttention(
|
496 |
+
(out_proj): NonDynamicallyQuantizableLinear(in_features=320, out_features=320, bias=True)
|
497 |
+
)
|
498 |
+
(proj_drop): Dropout(p=0.0, inplace=False)
|
499 |
+
(dropout_layer): DropPath()
|
500 |
+
(sr): Conv2d(320, 320, kernel_size=(2, 2), stride=(2, 2))
|
501 |
+
(norm): LayerNorm((320,), eps=1e-06, elementwise_affine=True)
|
502 |
+
)
|
503 |
+
(norm2): LayerNorm((320,), eps=1e-06, elementwise_affine=True)
|
504 |
+
(ffn): MixFFN(
|
505 |
+
(activate): GELU(approximate='none')
|
506 |
+
(layers): Sequential(
|
507 |
+
(0): Conv2d(320, 1280, kernel_size=(1, 1), stride=(1, 1))
|
508 |
+
(1): Conv2d(1280, 1280, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=1280)
|
509 |
+
(2): GELU(approximate='none')
|
510 |
+
(3): Dropout(p=0.0, inplace=False)
|
511 |
+
(4): Conv2d(1280, 320, kernel_size=(1, 1), stride=(1, 1))
|
512 |
+
(5): Dropout(p=0.0, inplace=False)
|
513 |
+
)
|
514 |
+
(dropout_layer): DropPath()
|
515 |
+
)
|
516 |
+
)
|
517 |
+
(3): TransformerEncoderLayer(
|
518 |
+
(norm1): LayerNorm((320,), eps=1e-06, elementwise_affine=True)
|
519 |
+
(attn): EfficientMultiheadAttention(
|
520 |
+
(attn): MultiheadAttention(
|
521 |
+
(out_proj): NonDynamicallyQuantizableLinear(in_features=320, out_features=320, bias=True)
|
522 |
+
)
|
523 |
+
(proj_drop): Dropout(p=0.0, inplace=False)
|
524 |
+
(dropout_layer): DropPath()
|
525 |
+
(sr): Conv2d(320, 320, kernel_size=(2, 2), stride=(2, 2))
|
526 |
+
(norm): LayerNorm((320,), eps=1e-06, elementwise_affine=True)
|
527 |
+
)
|
528 |
+
(norm2): LayerNorm((320,), eps=1e-06, elementwise_affine=True)
|
529 |
+
(ffn): MixFFN(
|
530 |
+
(activate): GELU(approximate='none')
|
531 |
+
(layers): Sequential(
|
532 |
+
(0): Conv2d(320, 1280, kernel_size=(1, 1), stride=(1, 1))
|
533 |
+
(1): Conv2d(1280, 1280, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=1280)
|
534 |
+
(2): GELU(approximate='none')
|
535 |
+
(3): Dropout(p=0.0, inplace=False)
|
536 |
+
(4): Conv2d(1280, 320, kernel_size=(1, 1), stride=(1, 1))
|
537 |
+
(5): Dropout(p=0.0, inplace=False)
|
538 |
+
)
|
539 |
+
(dropout_layer): DropPath()
|
540 |
+
)
|
541 |
+
)
|
542 |
+
(4): TransformerEncoderLayer(
|
543 |
+
(norm1): LayerNorm((320,), eps=1e-06, elementwise_affine=True)
|
544 |
+
(attn): EfficientMultiheadAttention(
|
545 |
+
(attn): MultiheadAttention(
|
546 |
+
(out_proj): NonDynamicallyQuantizableLinear(in_features=320, out_features=320, bias=True)
|
547 |
+
)
|
548 |
+
(proj_drop): Dropout(p=0.0, inplace=False)
|
549 |
+
(dropout_layer): DropPath()
|
550 |
+
(sr): Conv2d(320, 320, kernel_size=(2, 2), stride=(2, 2))
|
551 |
+
(norm): LayerNorm((320,), eps=1e-06, elementwise_affine=True)
|
552 |
+
)
|
553 |
+
(norm2): LayerNorm((320,), eps=1e-06, elementwise_affine=True)
|
554 |
+
(ffn): MixFFN(
|
555 |
+
(activate): GELU(approximate='none')
|
556 |
+
(layers): Sequential(
|
557 |
+
(0): Conv2d(320, 1280, kernel_size=(1, 1), stride=(1, 1))
|
558 |
+
(1): Conv2d(1280, 1280, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=1280)
|
559 |
+
(2): GELU(approximate='none')
|
560 |
+
(3): Dropout(p=0.0, inplace=False)
|
561 |
+
(4): Conv2d(1280, 320, kernel_size=(1, 1), stride=(1, 1))
|
562 |
+
(5): Dropout(p=0.0, inplace=False)
|
563 |
+
)
|
564 |
+
(dropout_layer): DropPath()
|
565 |
+
)
|
566 |
+
)
|
567 |
+
(5): TransformerEncoderLayer(
|
568 |
+
(norm1): LayerNorm((320,), eps=1e-06, elementwise_affine=True)
|
569 |
+
(attn): EfficientMultiheadAttention(
|
570 |
+
(attn): MultiheadAttention(
|
571 |
+
(out_proj): NonDynamicallyQuantizableLinear(in_features=320, out_features=320, bias=True)
|
572 |
+
)
|
573 |
+
(proj_drop): Dropout(p=0.0, inplace=False)
|
574 |
+
(dropout_layer): DropPath()
|
575 |
+
(sr): Conv2d(320, 320, kernel_size=(2, 2), stride=(2, 2))
|
576 |
+
(norm): LayerNorm((320,), eps=1e-06, elementwise_affine=True)
|
577 |
+
)
|
578 |
+
(norm2): LayerNorm((320,), eps=1e-06, elementwise_affine=True)
|
579 |
+
(ffn): MixFFN(
|
580 |
+
(activate): GELU(approximate='none')
|
581 |
+
(layers): Sequential(
|
582 |
+
(0): Conv2d(320, 1280, kernel_size=(1, 1), stride=(1, 1))
|
583 |
+
(1): Conv2d(1280, 1280, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=1280)
|
584 |
+
(2): GELU(approximate='none')
|
585 |
+
(3): Dropout(p=0.0, inplace=False)
|
586 |
+
(4): Conv2d(1280, 320, kernel_size=(1, 1), stride=(1, 1))
|
587 |
+
(5): Dropout(p=0.0, inplace=False)
|
588 |
+
)
|
589 |
+
(dropout_layer): DropPath()
|
590 |
+
)
|
591 |
+
)
|
592 |
+
)
|
593 |
+
(2): LayerNorm((320,), eps=1e-06, elementwise_affine=True)
|
594 |
+
)
|
595 |
+
(3): ModuleList(
|
596 |
+
(0): PatchEmbed(
|
597 |
+
(projection): Conv2d(320, 512, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
|
598 |
+
(norm): LayerNorm((512,), eps=1e-06, elementwise_affine=True)
|
599 |
+
)
|
600 |
+
(1): ModuleList(
|
601 |
+
(0): TransformerEncoderLayer(
|
602 |
+
(norm1): LayerNorm((512,), eps=1e-06, elementwise_affine=True)
|
603 |
+
(attn): EfficientMultiheadAttention(
|
604 |
+
(attn): MultiheadAttention(
|
605 |
+
(out_proj): NonDynamicallyQuantizableLinear(in_features=512, out_features=512, bias=True)
|
606 |
+
)
|
607 |
+
(proj_drop): Dropout(p=0.0, inplace=False)
|
608 |
+
(dropout_layer): DropPath()
|
609 |
+
)
|
610 |
+
(norm2): LayerNorm((512,), eps=1e-06, elementwise_affine=True)
|
611 |
+
(ffn): MixFFN(
|
612 |
+
(activate): GELU(approximate='none')
|
613 |
+
(layers): Sequential(
|
614 |
+
(0): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1))
|
615 |
+
(1): Conv2d(2048, 2048, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=2048)
|
616 |
+
(2): GELU(approximate='none')
|
617 |
+
(3): Dropout(p=0.0, inplace=False)
|
618 |
+
(4): Conv2d(2048, 512, kernel_size=(1, 1), stride=(1, 1))
|
619 |
+
(5): Dropout(p=0.0, inplace=False)
|
620 |
+
)
|
621 |
+
(dropout_layer): DropPath()
|
622 |
+
)
|
623 |
+
)
|
624 |
+
(1): TransformerEncoderLayer(
|
625 |
+
(norm1): LayerNorm((512,), eps=1e-06, elementwise_affine=True)
|
626 |
+
(attn): EfficientMultiheadAttention(
|
627 |
+
(attn): MultiheadAttention(
|
628 |
+
(out_proj): NonDynamicallyQuantizableLinear(in_features=512, out_features=512, bias=True)
|
629 |
+
)
|
630 |
+
(proj_drop): Dropout(p=0.0, inplace=False)
|
631 |
+
(dropout_layer): DropPath()
|
632 |
+
)
|
633 |
+
(norm2): LayerNorm((512,), eps=1e-06, elementwise_affine=True)
|
634 |
+
(ffn): MixFFN(
|
635 |
+
(activate): GELU(approximate='none')
|
636 |
+
(layers): Sequential(
|
637 |
+
(0): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1))
|
638 |
+
(1): Conv2d(2048, 2048, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=2048)
|
639 |
+
(2): GELU(approximate='none')
|
640 |
+
(3): Dropout(p=0.0, inplace=False)
|
641 |
+
(4): Conv2d(2048, 512, kernel_size=(1, 1), stride=(1, 1))
|
642 |
+
(5): Dropout(p=0.0, inplace=False)
|
643 |
+
)
|
644 |
+
(dropout_layer): DropPath()
|
645 |
+
)
|
646 |
+
)
|
647 |
+
(2): TransformerEncoderLayer(
|
648 |
+
(norm1): LayerNorm((512,), eps=1e-06, elementwise_affine=True)
|
649 |
+
(attn): EfficientMultiheadAttention(
|
650 |
+
(attn): MultiheadAttention(
|
651 |
+
(out_proj): NonDynamicallyQuantizableLinear(in_features=512, out_features=512, bias=True)
|
652 |
+
)
|
653 |
+
(proj_drop): Dropout(p=0.0, inplace=False)
|
654 |
+
(dropout_layer): DropPath()
|
655 |
+
)
|
656 |
+
(norm2): LayerNorm((512,), eps=1e-06, elementwise_affine=True)
|
657 |
+
(ffn): MixFFN(
|
658 |
+
(activate): GELU(approximate='none')
|
659 |
+
(layers): Sequential(
|
660 |
+
(0): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1))
|
661 |
+
(1): Conv2d(2048, 2048, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=2048)
|
662 |
+
(2): GELU(approximate='none')
|
663 |
+
(3): Dropout(p=0.0, inplace=False)
|
664 |
+
(4): Conv2d(2048, 512, kernel_size=(1, 1), stride=(1, 1))
|
665 |
+
(5): Dropout(p=0.0, inplace=False)
|
666 |
+
)
|
667 |
+
(dropout_layer): DropPath()
|
668 |
+
)
|
669 |
+
)
|
670 |
+
)
|
671 |
+
(2): LayerNorm((512,), eps=1e-06, elementwise_affine=True)
|
672 |
+
)
|
673 |
+
)
|
674 |
+
)
|
675 |
+
init_cfg={'type': 'Pretrained', 'checkpoint': 'pretrained/segformer_mit-b2_512x512_160k_ade20k_20220620_114047-64e4feca.pth'}
|
676 |
+
(decode_head): SegformerHeadUnetFCHeadSingleStepLogits(
|
677 |
+
input_transform=multiple_select, ignore_index=0, align_corners=False
|
678 |
+
(loss_decode): CrossEntropyLoss(avg_non_ignore=False)
|
679 |
+
(conv_seg): Conv2d(256, 150, kernel_size=(1, 1), stride=(1, 1))
|
680 |
+
(dropout): Dropout2d(p=0.1, inplace=False)
|
681 |
+
(convs): ModuleList(
|
682 |
+
(0): ConvModule(
|
683 |
+
(conv): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
684 |
+
(bn): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
685 |
+
(activate): ReLU(inplace=True)
|
686 |
+
)
|
687 |
+
(1): ConvModule(
|
688 |
+
(conv): Conv2d(128, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
689 |
+
(bn): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
690 |
+
(activate): ReLU(inplace=True)
|
691 |
+
)
|
692 |
+
(2): ConvModule(
|
693 |
+
(conv): Conv2d(320, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
694 |
+
(bn): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
695 |
+
(activate): ReLU(inplace=True)
|
696 |
+
)
|
697 |
+
(3): ConvModule(
|
698 |
+
(conv): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
699 |
+
(bn): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
700 |
+
(activate): ReLU(inplace=True)
|
701 |
+
)
|
702 |
+
)
|
703 |
+
(fusion_conv): ConvModule(
|
704 |
+
(conv): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
705 |
+
(bn): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
706 |
+
(activate): ReLU(inplace=True)
|
707 |
+
)
|
708 |
+
(unet): Unet(
|
709 |
+
(init_conv): Conv2d(166, 128, kernel_size=(7, 7), stride=(1, 1), padding=(3, 3))
|
710 |
+
(time_mlp): Sequential(
|
711 |
+
(0): SinusoidalPosEmb()
|
712 |
+
(1): Linear(in_features=128, out_features=512, bias=True)
|
713 |
+
(2): GELU(approximate='none')
|
714 |
+
(3): Linear(in_features=512, out_features=512, bias=True)
|
715 |
+
)
|
716 |
+
(downs): ModuleList(
|
717 |
+
(0): ModuleList(
|
718 |
+
(0): ResnetBlock(
|
719 |
+
(mlp): Sequential(
|
720 |
+
(0): SiLU()
|
721 |
+
(1): Linear(in_features=512, out_features=256, bias=True)
|
722 |
+
)
|
723 |
+
(block1): Block(
|
724 |
+
(proj): WeightStandardizedConv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
725 |
+
(norm): GroupNorm(8, 128, eps=1e-05, affine=True)
|
726 |
+
(act): SiLU()
|
727 |
+
)
|
728 |
+
(block2): Block(
|
729 |
+
(proj): WeightStandardizedConv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
730 |
+
(norm): GroupNorm(8, 128, eps=1e-05, affine=True)
|
731 |
+
(act): SiLU()
|
732 |
+
)
|
733 |
+
(res_conv): Identity()
|
734 |
+
)
|
735 |
+
(1): ResnetBlock(
|
736 |
+
(mlp): Sequential(
|
737 |
+
(0): SiLU()
|
738 |
+
(1): Linear(in_features=512, out_features=256, bias=True)
|
739 |
+
)
|
740 |
+
(block1): Block(
|
741 |
+
(proj): WeightStandardizedConv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
742 |
+
(norm): GroupNorm(8, 128, eps=1e-05, affine=True)
|
743 |
+
(act): SiLU()
|
744 |
+
)
|
745 |
+
(block2): Block(
|
746 |
+
(proj): WeightStandardizedConv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
747 |
+
(norm): GroupNorm(8, 128, eps=1e-05, affine=True)
|
748 |
+
(act): SiLU()
|
749 |
+
)
|
750 |
+
(res_conv): Identity()
|
751 |
+
)
|
752 |
+
(2): Residual(
|
753 |
+
(fn): PreNorm(
|
754 |
+
(fn): LinearAttention(
|
755 |
+
(to_qkv): Conv2d(128, 384, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
756 |
+
(to_out): Sequential(
|
757 |
+
(0): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1))
|
758 |
+
(1): LayerNorm()
|
759 |
+
)
|
760 |
+
)
|
761 |
+
(norm): LayerNorm()
|
762 |
+
)
|
763 |
+
)
|
764 |
+
(3): Conv2d(128, 128, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
|
765 |
+
)
|
766 |
+
(1): ModuleList(
|
767 |
+
(0): ResnetBlock(
|
768 |
+
(mlp): Sequential(
|
769 |
+
(0): SiLU()
|
770 |
+
(1): Linear(in_features=512, out_features=256, bias=True)
|
771 |
+
)
|
772 |
+
(block1): Block(
|
773 |
+
(proj): WeightStandardizedConv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
774 |
+
(norm): GroupNorm(8, 128, eps=1e-05, affine=True)
|
775 |
+
(act): SiLU()
|
776 |
+
)
|
777 |
+
(block2): Block(
|
778 |
+
(proj): WeightStandardizedConv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
779 |
+
(norm): GroupNorm(8, 128, eps=1e-05, affine=True)
|
780 |
+
(act): SiLU()
|
781 |
+
)
|
782 |
+
(res_conv): Identity()
|
783 |
+
)
|
784 |
+
(1): ResnetBlock(
|
785 |
+
(mlp): Sequential(
|
786 |
+
(0): SiLU()
|
787 |
+
(1): Linear(in_features=512, out_features=256, bias=True)
|
788 |
+
)
|
789 |
+
(block1): Block(
|
790 |
+
(proj): WeightStandardizedConv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
791 |
+
(norm): GroupNorm(8, 128, eps=1e-05, affine=True)
|
792 |
+
(act): SiLU()
|
793 |
+
)
|
794 |
+
(block2): Block(
|
795 |
+
(proj): WeightStandardizedConv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
796 |
+
(norm): GroupNorm(8, 128, eps=1e-05, affine=True)
|
797 |
+
(act): SiLU()
|
798 |
+
)
|
799 |
+
(res_conv): Identity()
|
800 |
+
)
|
801 |
+
(2): Residual(
|
802 |
+
(fn): PreNorm(
|
803 |
+
(fn): LinearAttention(
|
804 |
+
(to_qkv): Conv2d(128, 384, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
805 |
+
(to_out): Sequential(
|
806 |
+
(0): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1))
|
807 |
+
(1): LayerNorm()
|
808 |
+
)
|
809 |
+
)
|
810 |
+
(norm): LayerNorm()
|
811 |
+
)
|
812 |
+
)
|
813 |
+
(3): Conv2d(128, 128, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
|
814 |
+
)
|
815 |
+
(2): ModuleList(
|
816 |
+
(0): ResnetBlock(
|
817 |
+
(mlp): Sequential(
|
818 |
+
(0): SiLU()
|
819 |
+
(1): Linear(in_features=512, out_features=256, bias=True)
|
820 |
+
)
|
821 |
+
(block1): Block(
|
822 |
+
(proj): WeightStandardizedConv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
823 |
+
(norm): GroupNorm(8, 128, eps=1e-05, affine=True)
|
824 |
+
(act): SiLU()
|
825 |
+
)
|
826 |
+
(block2): Block(
|
827 |
+
(proj): WeightStandardizedConv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
828 |
+
(norm): GroupNorm(8, 128, eps=1e-05, affine=True)
|
829 |
+
(act): SiLU()
|
830 |
+
)
|
831 |
+
(res_conv): Identity()
|
832 |
+
)
|
833 |
+
(1): ResnetBlock(
|
834 |
+
(mlp): Sequential(
|
835 |
+
(0): SiLU()
|
836 |
+
(1): Linear(in_features=512, out_features=256, bias=True)
|
837 |
+
)
|
838 |
+
(block1): Block(
|
839 |
+
(proj): WeightStandardizedConv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
840 |
+
(norm): GroupNorm(8, 128, eps=1e-05, affine=True)
|
841 |
+
(act): SiLU()
|
842 |
+
)
|
843 |
+
(block2): Block(
|
844 |
+
(proj): WeightStandardizedConv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
845 |
+
(norm): GroupNorm(8, 128, eps=1e-05, affine=True)
|
846 |
+
(act): SiLU()
|
847 |
+
)
|
848 |
+
(res_conv): Identity()
|
849 |
+
)
|
850 |
+
(2): Residual(
|
851 |
+
(fn): PreNorm(
|
852 |
+
(fn): LinearAttention(
|
853 |
+
(to_qkv): Conv2d(128, 384, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
854 |
+
(to_out): Sequential(
|
855 |
+
(0): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1))
|
856 |
+
(1): LayerNorm()
|
857 |
+
)
|
858 |
+
)
|
859 |
+
(norm): LayerNorm()
|
860 |
+
)
|
861 |
+
)
|
862 |
+
(3): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
863 |
+
)
|
864 |
+
)
|
865 |
+
(ups): ModuleList(
|
866 |
+
(0): ModuleList(
|
867 |
+
(0): ResnetBlock(
|
868 |
+
(mlp): Sequential(
|
869 |
+
(0): SiLU()
|
870 |
+
(1): Linear(in_features=512, out_features=256, bias=True)
|
871 |
+
)
|
872 |
+
(block1): Block(
|
873 |
+
(proj): WeightStandardizedConv2d(256, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
874 |
+
(norm): GroupNorm(8, 128, eps=1e-05, affine=True)
|
875 |
+
(act): SiLU()
|
876 |
+
)
|
877 |
+
(block2): Block(
|
878 |
+
(proj): WeightStandardizedConv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
879 |
+
(norm): GroupNorm(8, 128, eps=1e-05, affine=True)
|
880 |
+
(act): SiLU()
|
881 |
+
)
|
882 |
+
(res_conv): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1))
|
883 |
+
)
|
884 |
+
(1): ResnetBlock(
|
885 |
+
(mlp): Sequential(
|
886 |
+
(0): SiLU()
|
887 |
+
(1): Linear(in_features=512, out_features=256, bias=True)
|
888 |
+
)
|
889 |
+
(block1): Block(
|
890 |
+
(proj): WeightStandardizedConv2d(256, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
891 |
+
(norm): GroupNorm(8, 128, eps=1e-05, affine=True)
|
892 |
+
(act): SiLU()
|
893 |
+
)
|
894 |
+
(block2): Block(
|
895 |
+
(proj): WeightStandardizedConv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
896 |
+
(norm): GroupNorm(8, 128, eps=1e-05, affine=True)
|
897 |
+
(act): SiLU()
|
898 |
+
)
|
899 |
+
(res_conv): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1))
|
900 |
+
)
|
901 |
+
(2): Residual(
|
902 |
+
(fn): PreNorm(
|
903 |
+
(fn): LinearAttention(
|
904 |
+
(to_qkv): Conv2d(128, 384, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
905 |
+
(to_out): Sequential(
|
906 |
+
(0): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1))
|
907 |
+
(1): LayerNorm()
|
908 |
+
)
|
909 |
+
)
|
910 |
+
(norm): LayerNorm()
|
911 |
+
)
|
912 |
+
)
|
913 |
+
(3): Sequential(
|
914 |
+
(0): Upsample(scale_factor=2.0, mode=nearest)
|
915 |
+
(1): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
916 |
+
)
|
917 |
+
)
|
918 |
+
(1): ModuleList(
|
919 |
+
(0): ResnetBlock(
|
920 |
+
(mlp): Sequential(
|
921 |
+
(0): SiLU()
|
922 |
+
(1): Linear(in_features=512, out_features=256, bias=True)
|
923 |
+
)
|
924 |
+
(block1): Block(
|
925 |
+
(proj): WeightStandardizedConv2d(256, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
926 |
+
(norm): GroupNorm(8, 128, eps=1e-05, affine=True)
|
927 |
+
(act): SiLU()
|
928 |
+
)
|
929 |
+
(block2): Block(
|
930 |
+
(proj): WeightStandardizedConv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
931 |
+
(norm): GroupNorm(8, 128, eps=1e-05, affine=True)
|
932 |
+
(act): SiLU()
|
933 |
+
)
|
934 |
+
(res_conv): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1))
|
935 |
+
)
|
936 |
+
(1): ResnetBlock(
|
937 |
+
(mlp): Sequential(
|
938 |
+
(0): SiLU()
|
939 |
+
(1): Linear(in_features=512, out_features=256, bias=True)
|
940 |
+
)
|
941 |
+
(block1): Block(
|
942 |
+
(proj): WeightStandardizedConv2d(256, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
943 |
+
(norm): GroupNorm(8, 128, eps=1e-05, affine=True)
|
944 |
+
(act): SiLU()
|
945 |
+
)
|
946 |
+
(block2): Block(
|
947 |
+
(proj): WeightStandardizedConv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
948 |
+
(norm): GroupNorm(8, 128, eps=1e-05, affine=True)
|
949 |
+
(act): SiLU()
|
950 |
+
)
|
951 |
+
(res_conv): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1))
|
952 |
+
)
|
953 |
+
(2): Residual(
|
954 |
+
(fn): PreNorm(
|
955 |
+
(fn): LinearAttention(
|
956 |
+
(to_qkv): Conv2d(128, 384, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
957 |
+
(to_out): Sequential(
|
958 |
+
(0): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1))
|
959 |
+
(1): LayerNorm()
|
960 |
+
)
|
961 |
+
)
|
962 |
+
(norm): LayerNorm()
|
963 |
+
)
|
964 |
+
)
|
965 |
+
(3): Sequential(
|
966 |
+
(0): Upsample(scale_factor=2.0, mode=nearest)
|
967 |
+
(1): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
968 |
+
)
|
969 |
+
)
|
970 |
+
(2): ModuleList(
|
971 |
+
(0): ResnetBlock(
|
972 |
+
(mlp): Sequential(
|
973 |
+
(0): SiLU()
|
974 |
+
(1): Linear(in_features=512, out_features=256, bias=True)
|
975 |
+
)
|
976 |
+
(block1): Block(
|
977 |
+
(proj): WeightStandardizedConv2d(256, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
978 |
+
(norm): GroupNorm(8, 128, eps=1e-05, affine=True)
|
979 |
+
(act): SiLU()
|
980 |
+
)
|
981 |
+
(block2): Block(
|
982 |
+
(proj): WeightStandardizedConv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
983 |
+
(norm): GroupNorm(8, 128, eps=1e-05, affine=True)
|
984 |
+
(act): SiLU()
|
985 |
+
)
|
986 |
+
(res_conv): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1))
|
987 |
+
)
|
988 |
+
(1): ResnetBlock(
|
989 |
+
(mlp): Sequential(
|
990 |
+
(0): SiLU()
|
991 |
+
(1): Linear(in_features=512, out_features=256, bias=True)
|
992 |
+
)
|
993 |
+
(block1): Block(
|
994 |
+
(proj): WeightStandardizedConv2d(256, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
995 |
+
(norm): GroupNorm(8, 128, eps=1e-05, affine=True)
|
996 |
+
(act): SiLU()
|
997 |
+
)
|
998 |
+
(block2): Block(
|
999 |
+
(proj): WeightStandardizedConv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
1000 |
+
(norm): GroupNorm(8, 128, eps=1e-05, affine=True)
|
1001 |
+
(act): SiLU()
|
1002 |
+
)
|
1003 |
+
(res_conv): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1))
|
1004 |
+
)
|
1005 |
+
(2): Residual(
|
1006 |
+
(fn): PreNorm(
|
1007 |
+
(fn): LinearAttention(
|
1008 |
+
(to_qkv): Conv2d(128, 384, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
1009 |
+
(to_out): Sequential(
|
1010 |
+
(0): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1))
|
1011 |
+
(1): LayerNorm()
|
1012 |
+
)
|
1013 |
+
)
|
1014 |
+
(norm): LayerNorm()
|
1015 |
+
)
|
1016 |
+
)
|
1017 |
+
(3): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
1018 |
+
)
|
1019 |
+
)
|
1020 |
+
(mid_block1): ResnetBlock(
|
1021 |
+
(mlp): Sequential(
|
1022 |
+
(0): SiLU()
|
1023 |
+
(1): Linear(in_features=512, out_features=256, bias=True)
|
1024 |
+
)
|
1025 |
+
(block1): Block(
|
1026 |
+
(proj): WeightStandardizedConv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
1027 |
+
(norm): GroupNorm(8, 128, eps=1e-05, affine=True)
|
1028 |
+
(act): SiLU()
|
1029 |
+
)
|
1030 |
+
(block2): Block(
|
1031 |
+
(proj): WeightStandardizedConv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
1032 |
+
(norm): GroupNorm(8, 128, eps=1e-05, affine=True)
|
1033 |
+
(act): SiLU()
|
1034 |
+
)
|
1035 |
+
(res_conv): Identity()
|
1036 |
+
)
|
1037 |
+
(mid_attn): Residual(
|
1038 |
+
(fn): PreNorm(
|
1039 |
+
(fn): Attention(
|
1040 |
+
(to_qkv): Conv2d(128, 384, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
1041 |
+
(to_out): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1))
|
1042 |
+
)
|
1043 |
+
(norm): LayerNorm()
|
1044 |
+
)
|
1045 |
+
)
|
1046 |
+
(mid_block2): ResnetBlock(
|
1047 |
+
(mlp): Sequential(
|
1048 |
+
(0): SiLU()
|
1049 |
+
(1): Linear(in_features=512, out_features=256, bias=True)
|
1050 |
+
)
|
1051 |
+
(block1): Block(
|
1052 |
+
(proj): WeightStandardizedConv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
1053 |
+
(norm): GroupNorm(8, 128, eps=1e-05, affine=True)
|
1054 |
+
(act): SiLU()
|
1055 |
+
)
|
1056 |
+
(block2): Block(
|
1057 |
+
(proj): WeightStandardizedConv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
1058 |
+
(norm): GroupNorm(8, 128, eps=1e-05, affine=True)
|
1059 |
+
(act): SiLU()
|
1060 |
+
)
|
1061 |
+
(res_conv): Identity()
|
1062 |
+
)
|
1063 |
+
(final_res_block): ResnetBlock(
|
1064 |
+
(mlp): Sequential(
|
1065 |
+
(0): SiLU()
|
1066 |
+
(1): Linear(in_features=512, out_features=256, bias=True)
|
1067 |
+
)
|
1068 |
+
(block1): Block(
|
1069 |
+
(proj): WeightStandardizedConv2d(256, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
1070 |
+
(norm): GroupNorm(8, 128, eps=1e-05, affine=True)
|
1071 |
+
(act): SiLU()
|
1072 |
+
)
|
1073 |
+
(block2): Block(
|
1074 |
+
(proj): WeightStandardizedConv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
1075 |
+
(norm): GroupNorm(8, 128, eps=1e-05, affine=True)
|
1076 |
+
(act): SiLU()
|
1077 |
+
)
|
1078 |
+
(res_conv): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1))
|
1079 |
+
)
|
1080 |
+
(final_conv): Conv2d(128, 256, kernel_size=(1, 1), stride=(1, 1))
|
1081 |
+
)
|
1082 |
+
(conv_seg_new): Conv2d(256, 151, kernel_size=(1, 1), stride=(1, 1))
|
1083 |
+
(embed): Embedding(151, 16)
|
1084 |
+
)
|
1085 |
+
init_cfg={'type': 'Pretrained', 'checkpoint': 'pretrained/segformer_mit-b2_512x512_160k_ade20k_20220620_114047-64e4feca.pth'}
|
1086 |
+
)
|
1087 |
+
2023-03-04 18:46:40,019 - mmseg - INFO - Loaded 20210 images
|
1088 |
+
2023-03-04 18:46:41,028 - mmseg - INFO - Loaded 2000 images
|
1089 |
+
2023-03-04 18:46:41,033 - mmseg - INFO - load checkpoint from local path: ./work_dirs2/ablation_segformer_mit_b2_segformer_head_unet_fc_single_step_ade_pretrained_freeze_embed_80k_ade20k151_logits/latest.pth
|
1090 |
+
2023-03-04 18:46:41,696 - mmseg - INFO - resumed from epoch: 13, iter 7999
|
1091 |
+
2023-03-04 18:46:41,697 - mmseg - INFO - Start running, host: laizeqiang@SH-IDC1-10-140-37-114, work_dir: /mnt/petrelfs/laizeqiang/mmseg-baseline/work_dirs2/ablation_segformer_mit_b2_segformer_head_unet_fc_single_step_ade_pretrained_freeze_embed_80k_ade20k151_logits
|
1092 |
+
2023-03-04 18:46:41,697 - mmseg - INFO - Hooks will be executed in the following order:
|
1093 |
+
before_run:
|
1094 |
+
(VERY_HIGH ) StepLrUpdaterHook
|
1095 |
+
(NORMAL ) CheckpointHook
|
1096 |
+
(LOW ) DistEvalHook
|
1097 |
+
(VERY_LOW ) TextLoggerHook
|
1098 |
+
--------------------
|
1099 |
+
before_train_epoch:
|
1100 |
+
(VERY_HIGH ) StepLrUpdaterHook
|
1101 |
+
(LOW ) IterTimerHook
|
1102 |
+
(LOW ) DistEvalHook
|
1103 |
+
(VERY_LOW ) TextLoggerHook
|
1104 |
+
--------------------
|
1105 |
+
before_train_iter:
|
1106 |
+
(VERY_HIGH ) StepLrUpdaterHook
|
1107 |
+
(LOW ) IterTimerHook
|
1108 |
+
(LOW ) DistEvalHook
|
1109 |
+
--------------------
|
1110 |
+
after_train_iter:
|
1111 |
+
(ABOVE_NORMAL) OptimizerHook
|
1112 |
+
(NORMAL ) CheckpointHook
|
1113 |
+
(LOW ) IterTimerHook
|
1114 |
+
(LOW ) DistEvalHook
|
1115 |
+
(VERY_LOW ) TextLoggerHook
|
1116 |
+
--------------------
|
1117 |
+
after_train_epoch:
|
1118 |
+
(NORMAL ) CheckpointHook
|
1119 |
+
(LOW ) DistEvalHook
|
1120 |
+
(VERY_LOW ) TextLoggerHook
|
1121 |
+
--------------------
|
1122 |
+
before_val_epoch:
|
1123 |
+
(LOW ) IterTimerHook
|
1124 |
+
(VERY_LOW ) TextLoggerHook
|
1125 |
+
--------------------
|
1126 |
+
before_val_iter:
|
1127 |
+
(LOW ) IterTimerHook
|
1128 |
+
--------------------
|
1129 |
+
after_val_iter:
|
1130 |
+
(LOW ) IterTimerHook
|
1131 |
+
--------------------
|
1132 |
+
after_val_epoch:
|
1133 |
+
(VERY_LOW ) TextLoggerHook
|
1134 |
+
--------------------
|
1135 |
+
after_run:
|
1136 |
+
(VERY_LOW ) TextLoggerHook
|
1137 |
+
--------------------
|
1138 |
+
2023-03-04 18:46:41,698 - mmseg - INFO - workflow: [('train', 1)], max: 80000 iters
|
1139 |
+
2023-03-04 18:46:41,698 - mmseg - INFO - Checkpoints will be saved to /mnt/petrelfs/laizeqiang/mmseg-baseline/work_dirs2/ablation_segformer_mit_b2_segformer_head_unet_fc_single_step_ade_pretrained_freeze_embed_80k_ade20k151_logits by HardDiskBackend.
|
ablation/ablation_segformer_mit_b2_segformer_head_unet_fc_single_step_ade_pretrained_freeze_embed_80k_ade20k151_logits/20230304_184631.log.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"env_info": "sys.platform: linux\nPython: 3.7.16 (default, Jan 17 2023, 22:20:44) [GCC 11.2.0]\nCUDA available: True\nGPU 0,1,2,3,4,5,6,7: NVIDIA A100-SXM4-80GB\nCUDA_HOME: /mnt/petrelfs/laizeqiang/miniconda3/envs/torch\nNVCC: Cuda compilation tools, release 11.6, V11.6.124\nGCC: gcc (GCC) 4.8.5 20150623 (Red Hat 4.8.5-44)\nPyTorch: 1.13.1\nPyTorch compiling details: PyTorch built with:\n - GCC 9.3\n - C++ Version: 201402\n - Intel(R) oneAPI Math Kernel Library Version 2021.4-Product Build 20210904 for Intel(R) 64 architecture applications\n - Intel(R) MKL-DNN v2.6.0 (Git Hash 52b5f107dd9cf10910aaa19cb47f3abf9b349815)\n - OpenMP 201511 (a.k.a. OpenMP 4.5)\n - LAPACK is enabled (usually provided by MKL)\n - NNPACK is enabled\n - CPU capability usage: AVX2\n - CUDA Runtime 11.6\n - NVCC architecture flags: -gencode;arch=compute_37,code=sm_37;-gencode;arch=compute_50,code=sm_50;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_61,code=sm_61;-gencode;arch=compute_70,code=sm_70;-gencode;arch=compute_75,code=sm_75;-gencode;arch=compute_80,code=sm_80;-gencode;arch=compute_86,code=sm_86;-gencode;arch=compute_37,code=compute_37\n - CuDNN 8.3.2 (built against CUDA 11.5)\n - Magma 2.6.1\n - Build settings: BLAS_INFO=mkl, BUILD_TYPE=Release, CUDA_VERSION=11.6, CUDNN_VERSION=8.3.2, CXX_COMPILER=/opt/rh/devtoolset-9/root/usr/bin/c++, CXX_FLAGS= -fabi-version=11 -Wno-deprecated -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -fopenmp -DNDEBUG -DUSE_KINETO -DUSE_FBGEMM -DUSE_QNNPACK -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE -DEDGE_PROFILER_USE_KINETO -O2 -fPIC -Wno-narrowing -Wall -Wextra -Werror=return-type -Werror=non-virtual-dtor -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wunused-local-typedefs -Wno-unused-parameter -Wno-unused-function -Wno-unused-result -Wno-strict-overflow -Wno-strict-aliasing -Wno-error=deprecated-declarations -Wno-stringop-overflow -Wno-psabi -Wno-error=pedantic -Wno-error=redundant-decls -Wno-error=old-style-cast -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Werror=cast-function-type -Wno-stringop-overflow, LAPACK_INFO=mkl, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, PERF_WITH_AVX512=1, TORCH_VERSION=1.13.1, USE_CUDA=ON, USE_CUDNN=ON, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_MKL=ON, USE_MKLDNN=ON, USE_MPI=OFF, USE_NCCL=ON, USE_NNPACK=ON, USE_OPENMP=ON, USE_ROCM=OFF, \n\nTorchVision: 0.14.1\nOpenCV: 4.7.0\nMMCV: 1.7.1\nMMCV Compiler: GCC 9.3\nMMCV CUDA Compiler: 11.6\nMMSegmentation: 0.30.0+6749699", "seed": 1082958590, "exp_name": "ablation_segformer_mit_b2_segformer_head_unet_fc_single_step_ade_pretrained_freeze_embed_80k_ade20k151_logits.py", "mmseg_version": "0.30.0+6749699", "config": "norm_cfg = dict(type='SyncBN', requires_grad=True)\ncheckpoint = 'pretrained/segformer_mit-b2_512x512_160k_ade20k_20220620_114047-64e4feca.pth'\nmodel = dict(\n type='EncoderDecoderFreeze',\n freeze_parameters=['backbone', 'decode_head'],\n pretrained=\n 'pretrained/segformer_mit-b2_512x512_160k_ade20k_20220620_114047-64e4feca.pth',\n backbone=dict(\n type='MixVisionTransformerCustomInitWeights',\n in_channels=3,\n embed_dims=64,\n num_stages=4,\n num_layers=[3, 4, 6, 3],\n num_heads=[1, 2, 5, 8],\n patch_sizes=[7, 3, 3, 3],\n sr_ratios=[8, 4, 2, 1],\n out_indices=(0, 1, 2, 3),\n mlp_ratio=4,\n qkv_bias=True,\n drop_rate=0.0,\n attn_drop_rate=0.0,\n drop_path_rate=0.1,\n pretrained=\n 'pretrained/segformer_mit-b2_512x512_160k_ade20k_20220620_114047-64e4feca.pth'\n ),\n decode_head=dict(\n type='SegformerHeadUnetFCHeadSingleStepLogits',\n pretrained=\n 'pretrained/segformer_mit-b2_512x512_160k_ade20k_20220620_114047-64e4feca.pth',\n dim=128,\n out_dim=256,\n unet_channels=166,\n dim_mults=[1, 1, 1],\n cat_embedding_dim=16,\n in_channels=[64, 128, 320, 512],\n in_index=[0, 1, 2, 3],\n channels=256,\n dropout_ratio=0.1,\n num_classes=151,\n norm_cfg=dict(type='SyncBN', requires_grad=True),\n align_corners=False,\n ignore_index=0,\n loss_decode=dict(\n type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)),\n train_cfg=dict(),\n test_cfg=dict(mode='whole'))\ndataset_type = 'ADE20K151Dataset'\ndata_root = 'data/ade/ADEChallengeData2016'\nimg_norm_cfg = dict(\n mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)\ncrop_size = (512, 512)\ntrain_pipeline = [\n dict(type='LoadImageFromFile'),\n dict(type='LoadAnnotations', reduce_zero_label=False),\n dict(type='Resize', img_scale=(2048, 512), ratio_range=(0.5, 2.0)),\n dict(type='RandomCrop', crop_size=(512, 512), cat_max_ratio=0.75),\n dict(type='RandomFlip', prob=0.5),\n dict(type='PhotoMetricDistortion'),\n dict(\n type='Normalize',\n mean=[123.675, 116.28, 103.53],\n std=[58.395, 57.12, 57.375],\n to_rgb=True),\n dict(type='Pad', size=(512, 512), pad_val=0, seg_pad_val=0),\n dict(type='DefaultFormatBundle'),\n dict(type='Collect', keys=['img', 'gt_semantic_seg'])\n]\ntest_pipeline = [\n dict(type='LoadImageFromFile'),\n dict(\n type='MultiScaleFlipAug',\n img_scale=(2048, 512),\n flip=False,\n transforms=[\n dict(type='Resize', keep_ratio=True),\n dict(type='RandomFlip'),\n dict(\n type='Normalize',\n mean=[123.675, 116.28, 103.53],\n std=[58.395, 57.12, 57.375],\n to_rgb=True),\n dict(type='Pad', size_divisor=16, pad_val=0, seg_pad_val=0),\n dict(type='ImageToTensor', keys=['img']),\n dict(type='Collect', keys=['img'])\n ])\n]\ndata = dict(\n samples_per_gpu=4,\n workers_per_gpu=4,\n train=dict(\n type='ADE20K151Dataset',\n data_root='data/ade/ADEChallengeData2016',\n img_dir='images/training',\n ann_dir='annotations/training',\n pipeline=[\n dict(type='LoadImageFromFile'),\n dict(type='LoadAnnotations', reduce_zero_label=False),\n dict(type='Resize', img_scale=(2048, 512), ratio_range=(0.5, 2.0)),\n dict(type='RandomCrop', crop_size=(512, 512), cat_max_ratio=0.75),\n dict(type='RandomFlip', prob=0.5),\n dict(type='PhotoMetricDistortion'),\n dict(\n type='Normalize',\n mean=[123.675, 116.28, 103.53],\n std=[58.395, 57.12, 57.375],\n to_rgb=True),\n dict(type='Pad', size=(512, 512), pad_val=0, seg_pad_val=0),\n dict(type='DefaultFormatBundle'),\n dict(type='Collect', keys=['img', 'gt_semantic_seg'])\n ]),\n val=dict(\n type='ADE20K151Dataset',\n data_root='data/ade/ADEChallengeData2016',\n img_dir='images/validation',\n ann_dir='annotations/validation',\n pipeline=[\n dict(type='LoadImageFromFile'),\n dict(\n type='MultiScaleFlipAug',\n img_scale=(2048, 512),\n flip=False,\n transforms=[\n dict(type='Resize', keep_ratio=True),\n dict(type='RandomFlip'),\n dict(\n type='Normalize',\n mean=[123.675, 116.28, 103.53],\n std=[58.395, 57.12, 57.375],\n to_rgb=True),\n dict(\n type='Pad', size_divisor=16, pad_val=0, seg_pad_val=0),\n dict(type='ImageToTensor', keys=['img']),\n dict(type='Collect', keys=['img'])\n ])\n ]),\n test=dict(\n type='ADE20K151Dataset',\n data_root='data/ade/ADEChallengeData2016',\n img_dir='images/validation',\n ann_dir='annotations/validation',\n pipeline=[\n dict(type='LoadImageFromFile'),\n dict(\n type='MultiScaleFlipAug',\n img_scale=(2048, 512),\n flip=False,\n transforms=[\n dict(type='Resize', keep_ratio=True),\n dict(type='RandomFlip'),\n dict(\n type='Normalize',\n mean=[123.675, 116.28, 103.53],\n std=[58.395, 57.12, 57.375],\n to_rgb=True),\n dict(\n type='Pad', size_divisor=16, pad_val=0, seg_pad_val=0),\n dict(type='ImageToTensor', keys=['img']),\n dict(type='Collect', keys=['img'])\n ])\n ]))\nlog_config = dict(\n interval=50, hooks=[dict(type='TextLoggerHook', by_epoch=False)])\ndist_params = dict(backend='nccl')\nlog_level = 'INFO'\nload_from = None\nresume_from = None\nworkflow = [('train', 1)]\ncudnn_benchmark = True\noptimizer = dict(\n type='AdamW', lr=0.00015, betas=[0.9, 0.96], weight_decay=0.045)\noptimizer_config = dict()\nlr_config = dict(\n policy='step',\n warmup='linear',\n warmup_iters=1000,\n warmup_ratio=1e-06,\n step=10000,\n gamma=0.5,\n min_lr=1e-06,\n by_epoch=False)\nrunner = dict(type='IterBasedRunner', max_iters=80000)\ncheckpoint_config = dict(by_epoch=False, interval=8000)\nevaluation = dict(\n interval=8000, metric='mIoU', pre_eval=True, save_best='mIoU')\nwork_dir = './work_dirs2/ablation_segformer_mit_b2_segformer_head_unet_fc_single_step_ade_pretrained_freeze_embed_80k_ade20k151_logits'\ngpu_ids = range(0, 8)\nauto_resume = True\ndevice = 'cuda'\nseed = 1082958590\n", "CLASSES": ["background", "wall", "building", "sky", "floor", "tree", "ceiling", "road", "bed ", "windowpane", "grass", "cabinet", "sidewalk", "person", "earth", "door", "table", "mountain", "plant", "curtain", "chair", "car", "water", "painting", "sofa", "shelf", "house", "sea", "mirror", "rug", "field", "armchair", "seat", "fence", "desk", "rock", "wardrobe", "lamp", "bathtub", "railing", "cushion", "base", "box", "column", "signboard", "chest of drawers", "counter", "sand", "sink", "skyscraper", "fireplace", "refrigerator", "grandstand", "path", "stairs", "runway", "case", "pool table", "pillow", "screen door", "stairway", "river", "bridge", "bookcase", "blind", "coffee table", "toilet", "flower", "book", "hill", "bench", "countertop", "stove", "palm", "kitchen island", "computer", "swivel chair", "boat", "bar", "arcade machine", "hovel", "bus", "towel", "light", "truck", "tower", "chandelier", "awning", "streetlight", "booth", "television receiver", "airplane", "dirt track", "apparel", "pole", "land", "bannister", "escalator", "ottoman", "bottle", "buffet", "poster", "stage", "van", "ship", "fountain", "conveyer belt", "canopy", "washer", "plaything", "swimming pool", "stool", "barrel", "basket", "waterfall", "tent", "bag", "minibike", "cradle", "oven", "ball", "food", "step", "tank", "trade name", "microwave", "pot", "animal", "bicycle", "lake", "dishwasher", "screen", "blanket", "sculpture", "hood", "sconce", "vase", "traffic light", "tray", "ashcan", "fan", "pier", "crt screen", "plate", "monitor", "bulletin board", "shower", "radiator", "glass", "clock", "flag"], "PALETTE": [[0, 0, 0], [120, 120, 120], [180, 120, 120], [6, 230, 230], [80, 50, 50], [4, 200, 3], [120, 120, 80], [140, 140, 140], [204, 5, 255], [230, 230, 230], [4, 250, 7], [224, 5, 255], [235, 255, 7], [150, 5, 61], [120, 120, 70], [8, 255, 51], [255, 6, 82], [143, 255, 140], [204, 255, 4], [255, 51, 7], [204, 70, 3], [0, 102, 200], [61, 230, 250], [255, 6, 51], [11, 102, 255], [255, 7, 71], [255, 9, 224], [9, 7, 230], [220, 220, 220], [255, 9, 92], [112, 9, 255], [8, 255, 214], [7, 255, 224], [255, 184, 6], [10, 255, 71], [255, 41, 10], [7, 255, 255], [224, 255, 8], [102, 8, 255], [255, 61, 6], [255, 194, 7], [255, 122, 8], [0, 255, 20], [255, 8, 41], [255, 5, 153], [6, 51, 255], [235, 12, 255], [160, 150, 20], [0, 163, 255], [140, 140, 140], [250, 10, 15], [20, 255, 0], [31, 255, 0], [255, 31, 0], [255, 224, 0], [153, 255, 0], [0, 0, 255], [255, 71, 0], [0, 235, 255], [0, 173, 255], [31, 0, 255], [11, 200, 200], [255, 82, 0], [0, 255, 245], [0, 61, 255], [0, 255, 112], [0, 255, 133], [255, 0, 0], [255, 163, 0], [255, 102, 0], [194, 255, 0], [0, 143, 255], [51, 255, 0], [0, 82, 255], [0, 255, 41], [0, 255, 173], [10, 0, 255], [173, 255, 0], [0, 255, 153], [255, 92, 0], [255, 0, 255], [255, 0, 245], [255, 0, 102], [255, 173, 0], [255, 0, 20], [255, 184, 184], [0, 31, 255], [0, 255, 61], [0, 71, 255], [255, 0, 204], [0, 255, 194], [0, 255, 82], [0, 10, 255], [0, 112, 255], [51, 0, 255], [0, 194, 255], [0, 122, 255], [0, 255, 163], [255, 153, 0], [0, 255, 10], [255, 112, 0], [143, 255, 0], [82, 0, 255], [163, 255, 0], [255, 235, 0], [8, 184, 170], [133, 0, 255], [0, 255, 92], [184, 0, 255], [255, 0, 31], [0, 184, 255], [0, 214, 255], [255, 0, 112], [92, 255, 0], [0, 224, 255], [112, 224, 255], [70, 184, 160], [163, 0, 255], [153, 0, 255], [71, 255, 0], [255, 0, 163], [255, 204, 0], [255, 0, 143], [0, 255, 235], [133, 255, 0], [255, 0, 235], [245, 0, 255], [255, 0, 122], [255, 245, 0], [10, 190, 212], [214, 255, 0], [0, 204, 255], [20, 0, 255], [255, 255, 0], [0, 153, 255], [0, 41, 255], [0, 255, 204], [41, 0, 255], [41, 255, 0], [173, 0, 255], [0, 245, 255], [71, 0, 255], [122, 0, 255], [0, 255, 184], [0, 92, 255], [184, 255, 0], [0, 133, 255], [255, 214, 0], [25, 194, 194], [102, 255, 0], [92, 0, 255]], "hook_msgs": {}}
|
ablation/ablation_segformer_mit_b2_segformer_head_unet_fc_single_step_ade_pretrained_freeze_embed_80k_ade20k151_logits/20230304_190322.log
ADDED
@@ -0,0 +1,1139 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2023-03-04 19:03:22,024 - mmseg - INFO - Multi-processing start method is `None`
|
2 |
+
2023-03-04 19:03:22,039 - mmseg - INFO - OpenCV num_threads is `128
|
3 |
+
2023-03-04 19:03:22,039 - mmseg - INFO - OMP num threads is 1
|
4 |
+
2023-03-04 19:03:22,100 - mmseg - INFO - Environment info:
|
5 |
+
------------------------------------------------------------
|
6 |
+
sys.platform: linux
|
7 |
+
Python: 3.7.16 (default, Jan 17 2023, 22:20:44) [GCC 11.2.0]
|
8 |
+
CUDA available: True
|
9 |
+
GPU 0,1,2,3,4,5,6,7: NVIDIA A100-SXM4-80GB
|
10 |
+
CUDA_HOME: /mnt/petrelfs/laizeqiang/miniconda3/envs/torch
|
11 |
+
NVCC: Cuda compilation tools, release 11.6, V11.6.124
|
12 |
+
GCC: gcc (GCC) 4.8.5 20150623 (Red Hat 4.8.5-44)
|
13 |
+
PyTorch: 1.13.1
|
14 |
+
PyTorch compiling details: PyTorch built with:
|
15 |
+
- GCC 9.3
|
16 |
+
- C++ Version: 201402
|
17 |
+
- Intel(R) oneAPI Math Kernel Library Version 2021.4-Product Build 20210904 for Intel(R) 64 architecture applications
|
18 |
+
- Intel(R) MKL-DNN v2.6.0 (Git Hash 52b5f107dd9cf10910aaa19cb47f3abf9b349815)
|
19 |
+
- OpenMP 201511 (a.k.a. OpenMP 4.5)
|
20 |
+
- LAPACK is enabled (usually provided by MKL)
|
21 |
+
- NNPACK is enabled
|
22 |
+
- CPU capability usage: AVX2
|
23 |
+
- CUDA Runtime 11.6
|
24 |
+
- NVCC architecture flags: -gencode;arch=compute_37,code=sm_37;-gencode;arch=compute_50,code=sm_50;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_61,code=sm_61;-gencode;arch=compute_70,code=sm_70;-gencode;arch=compute_75,code=sm_75;-gencode;arch=compute_80,code=sm_80;-gencode;arch=compute_86,code=sm_86;-gencode;arch=compute_37,code=compute_37
|
25 |
+
- CuDNN 8.3.2 (built against CUDA 11.5)
|
26 |
+
- Magma 2.6.1
|
27 |
+
- Build settings: BLAS_INFO=mkl, BUILD_TYPE=Release, CUDA_VERSION=11.6, CUDNN_VERSION=8.3.2, CXX_COMPILER=/opt/rh/devtoolset-9/root/usr/bin/c++, CXX_FLAGS= -fabi-version=11 -Wno-deprecated -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -fopenmp -DNDEBUG -DUSE_KINETO -DUSE_FBGEMM -DUSE_QNNPACK -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE -DEDGE_PROFILER_USE_KINETO -O2 -fPIC -Wno-narrowing -Wall -Wextra -Werror=return-type -Werror=non-virtual-dtor -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wunused-local-typedefs -Wno-unused-parameter -Wno-unused-function -Wno-unused-result -Wno-strict-overflow -Wno-strict-aliasing -Wno-error=deprecated-declarations -Wno-stringop-overflow -Wno-psabi -Wno-error=pedantic -Wno-error=redundant-decls -Wno-error=old-style-cast -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Werror=cast-function-type -Wno-stringop-overflow, LAPACK_INFO=mkl, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, PERF_WITH_AVX512=1, TORCH_VERSION=1.13.1, USE_CUDA=ON, USE_CUDNN=ON, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_MKL=ON, USE_MKLDNN=ON, USE_MPI=OFF, USE_NCCL=ON, USE_NNPACK=ON, USE_OPENMP=ON, USE_ROCM=OFF,
|
28 |
+
|
29 |
+
TorchVision: 0.14.1
|
30 |
+
OpenCV: 4.7.0
|
31 |
+
MMCV: 1.7.1
|
32 |
+
MMCV Compiler: GCC 9.3
|
33 |
+
MMCV CUDA Compiler: 11.6
|
34 |
+
MMSegmentation: 0.30.0+6749699
|
35 |
+
------------------------------------------------------------
|
36 |
+
|
37 |
+
2023-03-04 19:03:22,100 - mmseg - INFO - Distributed training: True
|
38 |
+
2023-03-04 19:03:22,820 - mmseg - INFO - Config:
|
39 |
+
norm_cfg = dict(type='SyncBN', requires_grad=True)
|
40 |
+
checkpoint = 'pretrained/segformer_mit-b2_512x512_160k_ade20k_20220620_114047-64e4feca.pth'
|
41 |
+
model = dict(
|
42 |
+
type='EncoderDecoderFreeze',
|
43 |
+
freeze_parameters=['backbone', 'decode_head'],
|
44 |
+
pretrained=
|
45 |
+
'pretrained/segformer_mit-b2_512x512_160k_ade20k_20220620_114047-64e4feca.pth',
|
46 |
+
backbone=dict(
|
47 |
+
type='MixVisionTransformerCustomInitWeights',
|
48 |
+
in_channels=3,
|
49 |
+
embed_dims=64,
|
50 |
+
num_stages=4,
|
51 |
+
num_layers=[3, 4, 6, 3],
|
52 |
+
num_heads=[1, 2, 5, 8],
|
53 |
+
patch_sizes=[7, 3, 3, 3],
|
54 |
+
sr_ratios=[8, 4, 2, 1],
|
55 |
+
out_indices=(0, 1, 2, 3),
|
56 |
+
mlp_ratio=4,
|
57 |
+
qkv_bias=True,
|
58 |
+
drop_rate=0.0,
|
59 |
+
attn_drop_rate=0.0,
|
60 |
+
drop_path_rate=0.1),
|
61 |
+
decode_head=dict(
|
62 |
+
type='SegformerHeadUnetFCHeadSingleStepLogits',
|
63 |
+
pretrained=
|
64 |
+
'pretrained/segformer_mit-b2_512x512_160k_ade20k_20220620_114047-64e4feca.pth',
|
65 |
+
dim=128,
|
66 |
+
out_dim=256,
|
67 |
+
unet_channels=166,
|
68 |
+
dim_mults=[1, 1, 1],
|
69 |
+
cat_embedding_dim=16,
|
70 |
+
in_channels=[64, 128, 320, 512],
|
71 |
+
in_index=[0, 1, 2, 3],
|
72 |
+
channels=256,
|
73 |
+
dropout_ratio=0.1,
|
74 |
+
num_classes=151,
|
75 |
+
norm_cfg=dict(type='SyncBN', requires_grad=True),
|
76 |
+
align_corners=False,
|
77 |
+
ignore_index=0,
|
78 |
+
loss_decode=dict(
|
79 |
+
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)),
|
80 |
+
train_cfg=dict(),
|
81 |
+
test_cfg=dict(mode='whole'))
|
82 |
+
dataset_type = 'ADE20K151Dataset'
|
83 |
+
data_root = 'data/ade/ADEChallengeData2016'
|
84 |
+
img_norm_cfg = dict(
|
85 |
+
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
|
86 |
+
crop_size = (512, 512)
|
87 |
+
train_pipeline = [
|
88 |
+
dict(type='LoadImageFromFile'),
|
89 |
+
dict(type='LoadAnnotations', reduce_zero_label=False),
|
90 |
+
dict(type='Resize', img_scale=(2048, 512), ratio_range=(0.5, 2.0)),
|
91 |
+
dict(type='RandomCrop', crop_size=(512, 512), cat_max_ratio=0.75),
|
92 |
+
dict(type='RandomFlip', prob=0.5),
|
93 |
+
dict(type='PhotoMetricDistortion'),
|
94 |
+
dict(
|
95 |
+
type='Normalize',
|
96 |
+
mean=[123.675, 116.28, 103.53],
|
97 |
+
std=[58.395, 57.12, 57.375],
|
98 |
+
to_rgb=True),
|
99 |
+
dict(type='Pad', size=(512, 512), pad_val=0, seg_pad_val=0),
|
100 |
+
dict(type='DefaultFormatBundle'),
|
101 |
+
dict(type='Collect', keys=['img', 'gt_semantic_seg'])
|
102 |
+
]
|
103 |
+
test_pipeline = [
|
104 |
+
dict(type='LoadImageFromFile'),
|
105 |
+
dict(
|
106 |
+
type='MultiScaleFlipAug',
|
107 |
+
img_scale=(2048, 512),
|
108 |
+
flip=False,
|
109 |
+
transforms=[
|
110 |
+
dict(type='Resize', keep_ratio=True),
|
111 |
+
dict(type='RandomFlip'),
|
112 |
+
dict(
|
113 |
+
type='Normalize',
|
114 |
+
mean=[123.675, 116.28, 103.53],
|
115 |
+
std=[58.395, 57.12, 57.375],
|
116 |
+
to_rgb=True),
|
117 |
+
dict(type='Pad', size_divisor=16, pad_val=0, seg_pad_val=0),
|
118 |
+
dict(type='ImageToTensor', keys=['img']),
|
119 |
+
dict(type='Collect', keys=['img'])
|
120 |
+
])
|
121 |
+
]
|
122 |
+
data = dict(
|
123 |
+
samples_per_gpu=4,
|
124 |
+
workers_per_gpu=4,
|
125 |
+
train=dict(
|
126 |
+
type='ADE20K151Dataset',
|
127 |
+
data_root='data/ade/ADEChallengeData2016',
|
128 |
+
img_dir='images/training',
|
129 |
+
ann_dir='annotations/training',
|
130 |
+
pipeline=[
|
131 |
+
dict(type='LoadImageFromFile'),
|
132 |
+
dict(type='LoadAnnotations', reduce_zero_label=False),
|
133 |
+
dict(type='Resize', img_scale=(2048, 512), ratio_range=(0.5, 2.0)),
|
134 |
+
dict(type='RandomCrop', crop_size=(512, 512), cat_max_ratio=0.75),
|
135 |
+
dict(type='RandomFlip', prob=0.5),
|
136 |
+
dict(type='PhotoMetricDistortion'),
|
137 |
+
dict(
|
138 |
+
type='Normalize',
|
139 |
+
mean=[123.675, 116.28, 103.53],
|
140 |
+
std=[58.395, 57.12, 57.375],
|
141 |
+
to_rgb=True),
|
142 |
+
dict(type='Pad', size=(512, 512), pad_val=0, seg_pad_val=0),
|
143 |
+
dict(type='DefaultFormatBundle'),
|
144 |
+
dict(type='Collect', keys=['img', 'gt_semantic_seg'])
|
145 |
+
]),
|
146 |
+
val=dict(
|
147 |
+
type='ADE20K151Dataset',
|
148 |
+
data_root='data/ade/ADEChallengeData2016',
|
149 |
+
img_dir='images/validation',
|
150 |
+
ann_dir='annotations/validation',
|
151 |
+
pipeline=[
|
152 |
+
dict(type='LoadImageFromFile'),
|
153 |
+
dict(
|
154 |
+
type='MultiScaleFlipAug',
|
155 |
+
img_scale=(2048, 512),
|
156 |
+
flip=False,
|
157 |
+
transforms=[
|
158 |
+
dict(type='Resize', keep_ratio=True),
|
159 |
+
dict(type='RandomFlip'),
|
160 |
+
dict(
|
161 |
+
type='Normalize',
|
162 |
+
mean=[123.675, 116.28, 103.53],
|
163 |
+
std=[58.395, 57.12, 57.375],
|
164 |
+
to_rgb=True),
|
165 |
+
dict(
|
166 |
+
type='Pad', size_divisor=16, pad_val=0, seg_pad_val=0),
|
167 |
+
dict(type='ImageToTensor', keys=['img']),
|
168 |
+
dict(type='Collect', keys=['img'])
|
169 |
+
])
|
170 |
+
]),
|
171 |
+
test=dict(
|
172 |
+
type='ADE20K151Dataset',
|
173 |
+
data_root='data/ade/ADEChallengeData2016',
|
174 |
+
img_dir='images/validation',
|
175 |
+
ann_dir='annotations/validation',
|
176 |
+
pipeline=[
|
177 |
+
dict(type='LoadImageFromFile'),
|
178 |
+
dict(
|
179 |
+
type='MultiScaleFlipAug',
|
180 |
+
img_scale=(2048, 512),
|
181 |
+
flip=False,
|
182 |
+
transforms=[
|
183 |
+
dict(type='Resize', keep_ratio=True),
|
184 |
+
dict(type='RandomFlip'),
|
185 |
+
dict(
|
186 |
+
type='Normalize',
|
187 |
+
mean=[123.675, 116.28, 103.53],
|
188 |
+
std=[58.395, 57.12, 57.375],
|
189 |
+
to_rgb=True),
|
190 |
+
dict(
|
191 |
+
type='Pad', size_divisor=16, pad_val=0, seg_pad_val=0),
|
192 |
+
dict(type='ImageToTensor', keys=['img']),
|
193 |
+
dict(type='Collect', keys=['img'])
|
194 |
+
])
|
195 |
+
]))
|
196 |
+
log_config = dict(
|
197 |
+
interval=50, hooks=[dict(type='TextLoggerHook', by_epoch=False)])
|
198 |
+
dist_params = dict(backend='nccl')
|
199 |
+
log_level = 'INFO'
|
200 |
+
load_from = None
|
201 |
+
resume_from = None
|
202 |
+
workflow = [('train', 1)]
|
203 |
+
cudnn_benchmark = True
|
204 |
+
optimizer = dict(
|
205 |
+
type='AdamW', lr=0.00015, betas=[0.9, 0.96], weight_decay=0.045)
|
206 |
+
optimizer_config = dict()
|
207 |
+
lr_config = dict(
|
208 |
+
policy='step',
|
209 |
+
warmup='linear',
|
210 |
+
warmup_iters=1000,
|
211 |
+
warmup_ratio=1e-06,
|
212 |
+
step=10000,
|
213 |
+
gamma=0.5,
|
214 |
+
min_lr=1e-06,
|
215 |
+
by_epoch=False)
|
216 |
+
runner = dict(type='IterBasedRunner', max_iters=80000)
|
217 |
+
checkpoint_config = dict(by_epoch=False, interval=8000)
|
218 |
+
evaluation = dict(
|
219 |
+
interval=8000, metric='mIoU', pre_eval=True, save_best='mIoU')
|
220 |
+
work_dir = './work_dirs2/ablation_segformer_mit_b2_segformer_head_unet_fc_single_step_ade_pretrained_freeze_embed_80k_ade20k151_logits'
|
221 |
+
gpu_ids = range(0, 8)
|
222 |
+
auto_resume = True
|
223 |
+
|
224 |
+
2023-03-04 19:03:27,162 - mmseg - INFO - Set random seed to 1480177113, deterministic: False
|
225 |
+
2023-03-04 19:03:27,413 - mmseg - INFO - Parameters in backbone freezed!
|
226 |
+
2023-03-04 19:03:27,414 - mmseg - INFO - Trainable parameters in SegformerHeadUnetFCHeadSingleStep: ['unet.init_conv.weight', 'unet.init_conv.bias', 'unet.time_mlp.1.weight', 'unet.time_mlp.1.bias', 'unet.time_mlp.3.weight', 'unet.time_mlp.3.bias', 'unet.downs.0.0.mlp.1.weight', 'unet.downs.0.0.mlp.1.bias', 'unet.downs.0.0.block1.proj.weight', 'unet.downs.0.0.block1.proj.bias', 'unet.downs.0.0.block1.norm.weight', 'unet.downs.0.0.block1.norm.bias', 'unet.downs.0.0.block2.proj.weight', 'unet.downs.0.0.block2.proj.bias', 'unet.downs.0.0.block2.norm.weight', 'unet.downs.0.0.block2.norm.bias', 'unet.downs.0.1.mlp.1.weight', 'unet.downs.0.1.mlp.1.bias', 'unet.downs.0.1.block1.proj.weight', 'unet.downs.0.1.block1.proj.bias', 'unet.downs.0.1.block1.norm.weight', 'unet.downs.0.1.block1.norm.bias', 'unet.downs.0.1.block2.proj.weight', 'unet.downs.0.1.block2.proj.bias', 'unet.downs.0.1.block2.norm.weight', 'unet.downs.0.1.block2.norm.bias', 'unet.downs.0.2.fn.fn.to_qkv.weight', 'unet.downs.0.2.fn.fn.to_out.0.weight', 'unet.downs.0.2.fn.fn.to_out.0.bias', 'unet.downs.0.2.fn.fn.to_out.1.g', 'unet.downs.0.2.fn.norm.g', 'unet.downs.0.3.weight', 'unet.downs.0.3.bias', 'unet.downs.1.0.mlp.1.weight', 'unet.downs.1.0.mlp.1.bias', 'unet.downs.1.0.block1.proj.weight', 'unet.downs.1.0.block1.proj.bias', 'unet.downs.1.0.block1.norm.weight', 'unet.downs.1.0.block1.norm.bias', 'unet.downs.1.0.block2.proj.weight', 'unet.downs.1.0.block2.proj.bias', 'unet.downs.1.0.block2.norm.weight', 'unet.downs.1.0.block2.norm.bias', 'unet.downs.1.1.mlp.1.weight', 'unet.downs.1.1.mlp.1.bias', 'unet.downs.1.1.block1.proj.weight', 'unet.downs.1.1.block1.proj.bias', 'unet.downs.1.1.block1.norm.weight', 'unet.downs.1.1.block1.norm.bias', 'unet.downs.1.1.block2.proj.weight', 'unet.downs.1.1.block2.proj.bias', 'unet.downs.1.1.block2.norm.weight', 'unet.downs.1.1.block2.norm.bias', 'unet.downs.1.2.fn.fn.to_qkv.weight', 'unet.downs.1.2.fn.fn.to_out.0.weight', 'unet.downs.1.2.fn.fn.to_out.0.bias', 'unet.downs.1.2.fn.fn.to_out.1.g', 'unet.downs.1.2.fn.norm.g', 'unet.downs.1.3.weight', 'unet.downs.1.3.bias', 'unet.downs.2.0.mlp.1.weight', 'unet.downs.2.0.mlp.1.bias', 'unet.downs.2.0.block1.proj.weight', 'unet.downs.2.0.block1.proj.bias', 'unet.downs.2.0.block1.norm.weight', 'unet.downs.2.0.block1.norm.bias', 'unet.downs.2.0.block2.proj.weight', 'unet.downs.2.0.block2.proj.bias', 'unet.downs.2.0.block2.norm.weight', 'unet.downs.2.0.block2.norm.bias', 'unet.downs.2.1.mlp.1.weight', 'unet.downs.2.1.mlp.1.bias', 'unet.downs.2.1.block1.proj.weight', 'unet.downs.2.1.block1.proj.bias', 'unet.downs.2.1.block1.norm.weight', 'unet.downs.2.1.block1.norm.bias', 'unet.downs.2.1.block2.proj.weight', 'unet.downs.2.1.block2.proj.bias', 'unet.downs.2.1.block2.norm.weight', 'unet.downs.2.1.block2.norm.bias', 'unet.downs.2.2.fn.fn.to_qkv.weight', 'unet.downs.2.2.fn.fn.to_out.0.weight', 'unet.downs.2.2.fn.fn.to_out.0.bias', 'unet.downs.2.2.fn.fn.to_out.1.g', 'unet.downs.2.2.fn.norm.g', 'unet.downs.2.3.weight', 'unet.downs.2.3.bias', 'unet.ups.0.0.mlp.1.weight', 'unet.ups.0.0.mlp.1.bias', 'unet.ups.0.0.block1.proj.weight', 'unet.ups.0.0.block1.proj.bias', 'unet.ups.0.0.block1.norm.weight', 'unet.ups.0.0.block1.norm.bias', 'unet.ups.0.0.block2.proj.weight', 'unet.ups.0.0.block2.proj.bias', 'unet.ups.0.0.block2.norm.weight', 'unet.ups.0.0.block2.norm.bias', 'unet.ups.0.0.res_conv.weight', 'unet.ups.0.0.res_conv.bias', 'unet.ups.0.1.mlp.1.weight', 'unet.ups.0.1.mlp.1.bias', 'unet.ups.0.1.block1.proj.weight', 'unet.ups.0.1.block1.proj.bias', 'unet.ups.0.1.block1.norm.weight', 'unet.ups.0.1.block1.norm.bias', 'unet.ups.0.1.block2.proj.weight', 'unet.ups.0.1.block2.proj.bias', 'unet.ups.0.1.block2.norm.weight', 'unet.ups.0.1.block2.norm.bias', 'unet.ups.0.1.res_conv.weight', 'unet.ups.0.1.res_conv.bias', 'unet.ups.0.2.fn.fn.to_qkv.weight', 'unet.ups.0.2.fn.fn.to_out.0.weight', 'unet.ups.0.2.fn.fn.to_out.0.bias', 'unet.ups.0.2.fn.fn.to_out.1.g', 'unet.ups.0.2.fn.norm.g', 'unet.ups.0.3.1.weight', 'unet.ups.0.3.1.bias', 'unet.ups.1.0.mlp.1.weight', 'unet.ups.1.0.mlp.1.bias', 'unet.ups.1.0.block1.proj.weight', 'unet.ups.1.0.block1.proj.bias', 'unet.ups.1.0.block1.norm.weight', 'unet.ups.1.0.block1.norm.bias', 'unet.ups.1.0.block2.proj.weight', 'unet.ups.1.0.block2.proj.bias', 'unet.ups.1.0.block2.norm.weight', 'unet.ups.1.0.block2.norm.bias', 'unet.ups.1.0.res_conv.weight', 'unet.ups.1.0.res_conv.bias', 'unet.ups.1.1.mlp.1.weight', 'unet.ups.1.1.mlp.1.bias', 'unet.ups.1.1.block1.proj.weight', 'unet.ups.1.1.block1.proj.bias', 'unet.ups.1.1.block1.norm.weight', 'unet.ups.1.1.block1.norm.bias', 'unet.ups.1.1.block2.proj.weight', 'unet.ups.1.1.block2.proj.bias', 'unet.ups.1.1.block2.norm.weight', 'unet.ups.1.1.block2.norm.bias', 'unet.ups.1.1.res_conv.weight', 'unet.ups.1.1.res_conv.bias', 'unet.ups.1.2.fn.fn.to_qkv.weight', 'unet.ups.1.2.fn.fn.to_out.0.weight', 'unet.ups.1.2.fn.fn.to_out.0.bias', 'unet.ups.1.2.fn.fn.to_out.1.g', 'unet.ups.1.2.fn.norm.g', 'unet.ups.1.3.1.weight', 'unet.ups.1.3.1.bias', 'unet.ups.2.0.mlp.1.weight', 'unet.ups.2.0.mlp.1.bias', 'unet.ups.2.0.block1.proj.weight', 'unet.ups.2.0.block1.proj.bias', 'unet.ups.2.0.block1.norm.weight', 'unet.ups.2.0.block1.norm.bias', 'unet.ups.2.0.block2.proj.weight', 'unet.ups.2.0.block2.proj.bias', 'unet.ups.2.0.block2.norm.weight', 'unet.ups.2.0.block2.norm.bias', 'unet.ups.2.0.res_conv.weight', 'unet.ups.2.0.res_conv.bias', 'unet.ups.2.1.mlp.1.weight', 'unet.ups.2.1.mlp.1.bias', 'unet.ups.2.1.block1.proj.weight', 'unet.ups.2.1.block1.proj.bias', 'unet.ups.2.1.block1.norm.weight', 'unet.ups.2.1.block1.norm.bias', 'unet.ups.2.1.block2.proj.weight', 'unet.ups.2.1.block2.proj.bias', 'unet.ups.2.1.block2.norm.weight', 'unet.ups.2.1.block2.norm.bias', 'unet.ups.2.1.res_conv.weight', 'unet.ups.2.1.res_conv.bias', 'unet.ups.2.2.fn.fn.to_qkv.weight', 'unet.ups.2.2.fn.fn.to_out.0.weight', 'unet.ups.2.2.fn.fn.to_out.0.bias', 'unet.ups.2.2.fn.fn.to_out.1.g', 'unet.ups.2.2.fn.norm.g', 'unet.ups.2.3.weight', 'unet.ups.2.3.bias', 'unet.mid_block1.mlp.1.weight', 'unet.mid_block1.mlp.1.bias', 'unet.mid_block1.block1.proj.weight', 'unet.mid_block1.block1.proj.bias', 'unet.mid_block1.block1.norm.weight', 'unet.mid_block1.block1.norm.bias', 'unet.mid_block1.block2.proj.weight', 'unet.mid_block1.block2.proj.bias', 'unet.mid_block1.block2.norm.weight', 'unet.mid_block1.block2.norm.bias', 'unet.mid_attn.fn.fn.to_qkv.weight', 'unet.mid_attn.fn.fn.to_out.weight', 'unet.mid_attn.fn.fn.to_out.bias', 'unet.mid_attn.fn.norm.g', 'unet.mid_block2.mlp.1.weight', 'unet.mid_block2.mlp.1.bias', 'unet.mid_block2.block1.proj.weight', 'unet.mid_block2.block1.proj.bias', 'unet.mid_block2.block1.norm.weight', 'unet.mid_block2.block1.norm.bias', 'unet.mid_block2.block2.proj.weight', 'unet.mid_block2.block2.proj.bias', 'unet.mid_block2.block2.norm.weight', 'unet.mid_block2.block2.norm.bias', 'unet.final_res_block.mlp.1.weight', 'unet.final_res_block.mlp.1.bias', 'unet.final_res_block.block1.proj.weight', 'unet.final_res_block.block1.proj.bias', 'unet.final_res_block.block1.norm.weight', 'unet.final_res_block.block1.norm.bias', 'unet.final_res_block.block2.proj.weight', 'unet.final_res_block.block2.proj.bias', 'unet.final_res_block.block2.norm.weight', 'unet.final_res_block.block2.norm.bias', 'unet.final_res_block.res_conv.weight', 'unet.final_res_block.res_conv.bias', 'unet.final_conv.weight', 'unet.final_conv.bias', 'conv_seg_new.weight', 'conv_seg_new.bias']
|
227 |
+
2023-03-04 19:03:27,414 - mmseg - INFO - Parameters in decode_head freezed!
|
228 |
+
2023-03-04 19:03:27,436 - mmseg - INFO - load checkpoint from local path: pretrained/segformer_mit-b2_512x512_160k_ade20k_20220620_114047-64e4feca.pth
|
229 |
+
2023-03-04 19:03:27,682 - mmseg - WARNING - The model and loaded state dict do not match exactly
|
230 |
+
|
231 |
+
unexpected key in source state_dict: decode_head.conv_seg.weight, decode_head.conv_seg.bias, decode_head.convs.0.conv.weight, decode_head.convs.0.bn.weight, decode_head.convs.0.bn.bias, decode_head.convs.0.bn.running_mean, decode_head.convs.0.bn.running_var, decode_head.convs.0.bn.num_batches_tracked, decode_head.convs.1.conv.weight, decode_head.convs.1.bn.weight, decode_head.convs.1.bn.bias, decode_head.convs.1.bn.running_mean, decode_head.convs.1.bn.running_var, decode_head.convs.1.bn.num_batches_tracked, decode_head.convs.2.conv.weight, decode_head.convs.2.bn.weight, decode_head.convs.2.bn.bias, decode_head.convs.2.bn.running_mean, decode_head.convs.2.bn.running_var, decode_head.convs.2.bn.num_batches_tracked, decode_head.convs.3.conv.weight, decode_head.convs.3.bn.weight, decode_head.convs.3.bn.bias, decode_head.convs.3.bn.running_mean, decode_head.convs.3.bn.running_var, decode_head.convs.3.bn.num_batches_tracked, decode_head.fusion_conv.conv.weight, decode_head.fusion_conv.bn.weight, decode_head.fusion_conv.bn.bias, decode_head.fusion_conv.bn.running_mean, decode_head.fusion_conv.bn.running_var, decode_head.fusion_conv.bn.num_batches_tracked
|
232 |
+
|
233 |
+
2023-03-04 19:03:27,695 - mmseg - INFO - load checkpoint from local path: pretrained/segformer_mit-b2_512x512_160k_ade20k_20220620_114047-64e4feca.pth
|
234 |
+
2023-03-04 19:03:27,908 - mmseg - WARNING - The model and loaded state dict do not match exactly
|
235 |
+
|
236 |
+
unexpected key in source state_dict: backbone.layers.0.0.projection.weight, backbone.layers.0.0.projection.bias, backbone.layers.0.0.norm.weight, backbone.layers.0.0.norm.bias, backbone.layers.0.1.0.norm1.weight, backbone.layers.0.1.0.norm1.bias, backbone.layers.0.1.0.attn.attn.in_proj_weight, backbone.layers.0.1.0.attn.attn.in_proj_bias, backbone.layers.0.1.0.attn.attn.out_proj.weight, backbone.layers.0.1.0.attn.attn.out_proj.bias, backbone.layers.0.1.0.attn.sr.weight, backbone.layers.0.1.0.attn.sr.bias, backbone.layers.0.1.0.attn.norm.weight, backbone.layers.0.1.0.attn.norm.bias, backbone.layers.0.1.0.norm2.weight, backbone.layers.0.1.0.norm2.bias, backbone.layers.0.1.0.ffn.layers.0.weight, backbone.layers.0.1.0.ffn.layers.0.bias, backbone.layers.0.1.0.ffn.layers.1.weight, backbone.layers.0.1.0.ffn.layers.1.bias, backbone.layers.0.1.0.ffn.layers.4.weight, backbone.layers.0.1.0.ffn.layers.4.bias, backbone.layers.0.1.1.norm1.weight, backbone.layers.0.1.1.norm1.bias, backbone.layers.0.1.1.attn.attn.in_proj_weight, backbone.layers.0.1.1.attn.attn.in_proj_bias, backbone.layers.0.1.1.attn.attn.out_proj.weight, backbone.layers.0.1.1.attn.attn.out_proj.bias, backbone.layers.0.1.1.attn.sr.weight, backbone.layers.0.1.1.attn.sr.bias, backbone.layers.0.1.1.attn.norm.weight, backbone.layers.0.1.1.attn.norm.bias, backbone.layers.0.1.1.norm2.weight, backbone.layers.0.1.1.norm2.bias, backbone.layers.0.1.1.ffn.layers.0.weight, backbone.layers.0.1.1.ffn.layers.0.bias, backbone.layers.0.1.1.ffn.layers.1.weight, backbone.layers.0.1.1.ffn.layers.1.bias, backbone.layers.0.1.1.ffn.layers.4.weight, backbone.layers.0.1.1.ffn.layers.4.bias, backbone.layers.0.1.2.norm1.weight, backbone.layers.0.1.2.norm1.bias, backbone.layers.0.1.2.attn.attn.in_proj_weight, backbone.layers.0.1.2.attn.attn.in_proj_bias, backbone.layers.0.1.2.attn.attn.out_proj.weight, backbone.layers.0.1.2.attn.attn.out_proj.bias, backbone.layers.0.1.2.attn.sr.weight, backbone.layers.0.1.2.attn.sr.bias, backbone.layers.0.1.2.attn.norm.weight, backbone.layers.0.1.2.attn.norm.bias, backbone.layers.0.1.2.norm2.weight, backbone.layers.0.1.2.norm2.bias, backbone.layers.0.1.2.ffn.layers.0.weight, backbone.layers.0.1.2.ffn.layers.0.bias, backbone.layers.0.1.2.ffn.layers.1.weight, backbone.layers.0.1.2.ffn.layers.1.bias, backbone.layers.0.1.2.ffn.layers.4.weight, backbone.layers.0.1.2.ffn.layers.4.bias, backbone.layers.0.2.weight, backbone.layers.0.2.bias, backbone.layers.1.0.projection.weight, backbone.layers.1.0.projection.bias, backbone.layers.1.0.norm.weight, backbone.layers.1.0.norm.bias, backbone.layers.1.1.0.norm1.weight, backbone.layers.1.1.0.norm1.bias, backbone.layers.1.1.0.attn.attn.in_proj_weight, backbone.layers.1.1.0.attn.attn.in_proj_bias, backbone.layers.1.1.0.attn.attn.out_proj.weight, backbone.layers.1.1.0.attn.attn.out_proj.bias, backbone.layers.1.1.0.attn.sr.weight, backbone.layers.1.1.0.attn.sr.bias, backbone.layers.1.1.0.attn.norm.weight, backbone.layers.1.1.0.attn.norm.bias, backbone.layers.1.1.0.norm2.weight, backbone.layers.1.1.0.norm2.bias, backbone.layers.1.1.0.ffn.layers.0.weight, backbone.layers.1.1.0.ffn.layers.0.bias, backbone.layers.1.1.0.ffn.layers.1.weight, backbone.layers.1.1.0.ffn.layers.1.bias, backbone.layers.1.1.0.ffn.layers.4.weight, backbone.layers.1.1.0.ffn.layers.4.bias, backbone.layers.1.1.1.norm1.weight, backbone.layers.1.1.1.norm1.bias, backbone.layers.1.1.1.attn.attn.in_proj_weight, backbone.layers.1.1.1.attn.attn.in_proj_bias, backbone.layers.1.1.1.attn.attn.out_proj.weight, backbone.layers.1.1.1.attn.attn.out_proj.bias, backbone.layers.1.1.1.attn.sr.weight, backbone.layers.1.1.1.attn.sr.bias, backbone.layers.1.1.1.attn.norm.weight, backbone.layers.1.1.1.attn.norm.bias, backbone.layers.1.1.1.norm2.weight, backbone.layers.1.1.1.norm2.bias, backbone.layers.1.1.1.ffn.layers.0.weight, backbone.layers.1.1.1.ffn.layers.0.bias, backbone.layers.1.1.1.ffn.layers.1.weight, backbone.layers.1.1.1.ffn.layers.1.bias, backbone.layers.1.1.1.ffn.layers.4.weight, backbone.layers.1.1.1.ffn.layers.4.bias, backbone.layers.1.1.2.norm1.weight, backbone.layers.1.1.2.norm1.bias, backbone.layers.1.1.2.attn.attn.in_proj_weight, backbone.layers.1.1.2.attn.attn.in_proj_bias, backbone.layers.1.1.2.attn.attn.out_proj.weight, backbone.layers.1.1.2.attn.attn.out_proj.bias, backbone.layers.1.1.2.attn.sr.weight, backbone.layers.1.1.2.attn.sr.bias, backbone.layers.1.1.2.attn.norm.weight, backbone.layers.1.1.2.attn.norm.bias, backbone.layers.1.1.2.norm2.weight, backbone.layers.1.1.2.norm2.bias, backbone.layers.1.1.2.ffn.layers.0.weight, backbone.layers.1.1.2.ffn.layers.0.bias, backbone.layers.1.1.2.ffn.layers.1.weight, backbone.layers.1.1.2.ffn.layers.1.bias, backbone.layers.1.1.2.ffn.layers.4.weight, backbone.layers.1.1.2.ffn.layers.4.bias, backbone.layers.1.1.3.norm1.weight, backbone.layers.1.1.3.norm1.bias, backbone.layers.1.1.3.attn.attn.in_proj_weight, backbone.layers.1.1.3.attn.attn.in_proj_bias, backbone.layers.1.1.3.attn.attn.out_proj.weight, backbone.layers.1.1.3.attn.attn.out_proj.bias, backbone.layers.1.1.3.attn.sr.weight, backbone.layers.1.1.3.attn.sr.bias, backbone.layers.1.1.3.attn.norm.weight, backbone.layers.1.1.3.attn.norm.bias, backbone.layers.1.1.3.norm2.weight, backbone.layers.1.1.3.norm2.bias, backbone.layers.1.1.3.ffn.layers.0.weight, backbone.layers.1.1.3.ffn.layers.0.bias, backbone.layers.1.1.3.ffn.layers.1.weight, backbone.layers.1.1.3.ffn.layers.1.bias, backbone.layers.1.1.3.ffn.layers.4.weight, backbone.layers.1.1.3.ffn.layers.4.bias, backbone.layers.1.2.weight, backbone.layers.1.2.bias, backbone.layers.2.0.projection.weight, backbone.layers.2.0.projection.bias, backbone.layers.2.0.norm.weight, backbone.layers.2.0.norm.bias, backbone.layers.2.1.0.norm1.weight, backbone.layers.2.1.0.norm1.bias, backbone.layers.2.1.0.attn.attn.in_proj_weight, backbone.layers.2.1.0.attn.attn.in_proj_bias, backbone.layers.2.1.0.attn.attn.out_proj.weight, backbone.layers.2.1.0.attn.attn.out_proj.bias, backbone.layers.2.1.0.attn.sr.weight, backbone.layers.2.1.0.attn.sr.bias, backbone.layers.2.1.0.attn.norm.weight, backbone.layers.2.1.0.attn.norm.bias, backbone.layers.2.1.0.norm2.weight, backbone.layers.2.1.0.norm2.bias, backbone.layers.2.1.0.ffn.layers.0.weight, backbone.layers.2.1.0.ffn.layers.0.bias, backbone.layers.2.1.0.ffn.layers.1.weight, backbone.layers.2.1.0.ffn.layers.1.bias, backbone.layers.2.1.0.ffn.layers.4.weight, backbone.layers.2.1.0.ffn.layers.4.bias, backbone.layers.2.1.1.norm1.weight, backbone.layers.2.1.1.norm1.bias, backbone.layers.2.1.1.attn.attn.in_proj_weight, backbone.layers.2.1.1.attn.attn.in_proj_bias, backbone.layers.2.1.1.attn.attn.out_proj.weight, backbone.layers.2.1.1.attn.attn.out_proj.bias, backbone.layers.2.1.1.attn.sr.weight, backbone.layers.2.1.1.attn.sr.bias, backbone.layers.2.1.1.attn.norm.weight, backbone.layers.2.1.1.attn.norm.bias, backbone.layers.2.1.1.norm2.weight, backbone.layers.2.1.1.norm2.bias, backbone.layers.2.1.1.ffn.layers.0.weight, backbone.layers.2.1.1.ffn.layers.0.bias, backbone.layers.2.1.1.ffn.layers.1.weight, backbone.layers.2.1.1.ffn.layers.1.bias, backbone.layers.2.1.1.ffn.layers.4.weight, backbone.layers.2.1.1.ffn.layers.4.bias, backbone.layers.2.1.2.norm1.weight, backbone.layers.2.1.2.norm1.bias, backbone.layers.2.1.2.attn.attn.in_proj_weight, backbone.layers.2.1.2.attn.attn.in_proj_bias, backbone.layers.2.1.2.attn.attn.out_proj.weight, backbone.layers.2.1.2.attn.attn.out_proj.bias, backbone.layers.2.1.2.attn.sr.weight, backbone.layers.2.1.2.attn.sr.bias, backbone.layers.2.1.2.attn.norm.weight, backbone.layers.2.1.2.attn.norm.bias, backbone.layers.2.1.2.norm2.weight, backbone.layers.2.1.2.norm2.bias, backbone.layers.2.1.2.ffn.layers.0.weight, backbone.layers.2.1.2.ffn.layers.0.bias, backbone.layers.2.1.2.ffn.layers.1.weight, backbone.layers.2.1.2.ffn.layers.1.bias, backbone.layers.2.1.2.ffn.layers.4.weight, backbone.layers.2.1.2.ffn.layers.4.bias, backbone.layers.2.1.3.norm1.weight, backbone.layers.2.1.3.norm1.bias, backbone.layers.2.1.3.attn.attn.in_proj_weight, backbone.layers.2.1.3.attn.attn.in_proj_bias, backbone.layers.2.1.3.attn.attn.out_proj.weight, backbone.layers.2.1.3.attn.attn.out_proj.bias, backbone.layers.2.1.3.attn.sr.weight, backbone.layers.2.1.3.attn.sr.bias, backbone.layers.2.1.3.attn.norm.weight, backbone.layers.2.1.3.attn.norm.bias, backbone.layers.2.1.3.norm2.weight, backbone.layers.2.1.3.norm2.bias, backbone.layers.2.1.3.ffn.layers.0.weight, backbone.layers.2.1.3.ffn.layers.0.bias, backbone.layers.2.1.3.ffn.layers.1.weight, backbone.layers.2.1.3.ffn.layers.1.bias, backbone.layers.2.1.3.ffn.layers.4.weight, backbone.layers.2.1.3.ffn.layers.4.bias, backbone.layers.2.1.4.norm1.weight, backbone.layers.2.1.4.norm1.bias, backbone.layers.2.1.4.attn.attn.in_proj_weight, backbone.layers.2.1.4.attn.attn.in_proj_bias, backbone.layers.2.1.4.attn.attn.out_proj.weight, backbone.layers.2.1.4.attn.attn.out_proj.bias, backbone.layers.2.1.4.attn.sr.weight, backbone.layers.2.1.4.attn.sr.bias, backbone.layers.2.1.4.attn.norm.weight, backbone.layers.2.1.4.attn.norm.bias, backbone.layers.2.1.4.norm2.weight, backbone.layers.2.1.4.norm2.bias, backbone.layers.2.1.4.ffn.layers.0.weight, backbone.layers.2.1.4.ffn.layers.0.bias, backbone.layers.2.1.4.ffn.layers.1.weight, backbone.layers.2.1.4.ffn.layers.1.bias, backbone.layers.2.1.4.ffn.layers.4.weight, backbone.layers.2.1.4.ffn.layers.4.bias, backbone.layers.2.1.5.norm1.weight, backbone.layers.2.1.5.norm1.bias, backbone.layers.2.1.5.attn.attn.in_proj_weight, backbone.layers.2.1.5.attn.attn.in_proj_bias, backbone.layers.2.1.5.attn.attn.out_proj.weight, backbone.layers.2.1.5.attn.attn.out_proj.bias, backbone.layers.2.1.5.attn.sr.weight, backbone.layers.2.1.5.attn.sr.bias, backbone.layers.2.1.5.attn.norm.weight, backbone.layers.2.1.5.attn.norm.bias, backbone.layers.2.1.5.norm2.weight, backbone.layers.2.1.5.norm2.bias, backbone.layers.2.1.5.ffn.layers.0.weight, backbone.layers.2.1.5.ffn.layers.0.bias, backbone.layers.2.1.5.ffn.layers.1.weight, backbone.layers.2.1.5.ffn.layers.1.bias, backbone.layers.2.1.5.ffn.layers.4.weight, backbone.layers.2.1.5.ffn.layers.4.bias, backbone.layers.2.2.weight, backbone.layers.2.2.bias, backbone.layers.3.0.projection.weight, backbone.layers.3.0.projection.bias, backbone.layers.3.0.norm.weight, backbone.layers.3.0.norm.bias, backbone.layers.3.1.0.norm1.weight, backbone.layers.3.1.0.norm1.bias, backbone.layers.3.1.0.attn.attn.in_proj_weight, backbone.layers.3.1.0.attn.attn.in_proj_bias, backbone.layers.3.1.0.attn.attn.out_proj.weight, backbone.layers.3.1.0.attn.attn.out_proj.bias, backbone.layers.3.1.0.norm2.weight, backbone.layers.3.1.0.norm2.bias, backbone.layers.3.1.0.ffn.layers.0.weight, backbone.layers.3.1.0.ffn.layers.0.bias, backbone.layers.3.1.0.ffn.layers.1.weight, backbone.layers.3.1.0.ffn.layers.1.bias, backbone.layers.3.1.0.ffn.layers.4.weight, backbone.layers.3.1.0.ffn.layers.4.bias, backbone.layers.3.1.1.norm1.weight, backbone.layers.3.1.1.norm1.bias, backbone.layers.3.1.1.attn.attn.in_proj_weight, backbone.layers.3.1.1.attn.attn.in_proj_bias, backbone.layers.3.1.1.attn.attn.out_proj.weight, backbone.layers.3.1.1.attn.attn.out_proj.bias, backbone.layers.3.1.1.norm2.weight, backbone.layers.3.1.1.norm2.bias, backbone.layers.3.1.1.ffn.layers.0.weight, backbone.layers.3.1.1.ffn.layers.0.bias, backbone.layers.3.1.1.ffn.layers.1.weight, backbone.layers.3.1.1.ffn.layers.1.bias, backbone.layers.3.1.1.ffn.layers.4.weight, backbone.layers.3.1.1.ffn.layers.4.bias, backbone.layers.3.1.2.norm1.weight, backbone.layers.3.1.2.norm1.bias, backbone.layers.3.1.2.attn.attn.in_proj_weight, backbone.layers.3.1.2.attn.attn.in_proj_bias, backbone.layers.3.1.2.attn.attn.out_proj.weight, backbone.layers.3.1.2.attn.attn.out_proj.bias, backbone.layers.3.1.2.norm2.weight, backbone.layers.3.1.2.norm2.bias, backbone.layers.3.1.2.ffn.layers.0.weight, backbone.layers.3.1.2.ffn.layers.0.bias, backbone.layers.3.1.2.ffn.layers.1.weight, backbone.layers.3.1.2.ffn.layers.1.bias, backbone.layers.3.1.2.ffn.layers.4.weight, backbone.layers.3.1.2.ffn.layers.4.bias, backbone.layers.3.2.weight, backbone.layers.3.2.bias
|
237 |
+
|
238 |
+
missing keys in source state_dict: unet.init_conv.weight, unet.init_conv.bias, unet.time_mlp.1.weight, unet.time_mlp.1.bias, unet.time_mlp.3.weight, unet.time_mlp.3.bias, unet.downs.0.0.mlp.1.weight, unet.downs.0.0.mlp.1.bias, unet.downs.0.0.block1.proj.weight, unet.downs.0.0.block1.proj.bias, unet.downs.0.0.block1.norm.weight, unet.downs.0.0.block1.norm.bias, unet.downs.0.0.block2.proj.weight, unet.downs.0.0.block2.proj.bias, unet.downs.0.0.block2.norm.weight, unet.downs.0.0.block2.norm.bias, unet.downs.0.1.mlp.1.weight, unet.downs.0.1.mlp.1.bias, unet.downs.0.1.block1.proj.weight, unet.downs.0.1.block1.proj.bias, unet.downs.0.1.block1.norm.weight, unet.downs.0.1.block1.norm.bias, unet.downs.0.1.block2.proj.weight, unet.downs.0.1.block2.proj.bias, unet.downs.0.1.block2.norm.weight, unet.downs.0.1.block2.norm.bias, unet.downs.0.2.fn.fn.to_qkv.weight, unet.downs.0.2.fn.fn.to_out.0.weight, unet.downs.0.2.fn.fn.to_out.0.bias, unet.downs.0.2.fn.fn.to_out.1.g, unet.downs.0.2.fn.norm.g, unet.downs.0.3.weight, unet.downs.0.3.bias, unet.downs.1.0.mlp.1.weight, unet.downs.1.0.mlp.1.bias, unet.downs.1.0.block1.proj.weight, unet.downs.1.0.block1.proj.bias, unet.downs.1.0.block1.norm.weight, unet.downs.1.0.block1.norm.bias, unet.downs.1.0.block2.proj.weight, unet.downs.1.0.block2.proj.bias, unet.downs.1.0.block2.norm.weight, unet.downs.1.0.block2.norm.bias, unet.downs.1.1.mlp.1.weight, unet.downs.1.1.mlp.1.bias, unet.downs.1.1.block1.proj.weight, unet.downs.1.1.block1.proj.bias, unet.downs.1.1.block1.norm.weight, unet.downs.1.1.block1.norm.bias, unet.downs.1.1.block2.proj.weight, unet.downs.1.1.block2.proj.bias, unet.downs.1.1.block2.norm.weight, unet.downs.1.1.block2.norm.bias, unet.downs.1.2.fn.fn.to_qkv.weight, unet.downs.1.2.fn.fn.to_out.0.weight, unet.downs.1.2.fn.fn.to_out.0.bias, unet.downs.1.2.fn.fn.to_out.1.g, unet.downs.1.2.fn.norm.g, unet.downs.1.3.weight, unet.downs.1.3.bias, unet.downs.2.0.mlp.1.weight, unet.downs.2.0.mlp.1.bias, unet.downs.2.0.block1.proj.weight, unet.downs.2.0.block1.proj.bias, unet.downs.2.0.block1.norm.weight, unet.downs.2.0.block1.norm.bias, unet.downs.2.0.block2.proj.weight, unet.downs.2.0.block2.proj.bias, unet.downs.2.0.block2.norm.weight, unet.downs.2.0.block2.norm.bias, unet.downs.2.1.mlp.1.weight, unet.downs.2.1.mlp.1.bias, unet.downs.2.1.block1.proj.weight, unet.downs.2.1.block1.proj.bias, unet.downs.2.1.block1.norm.weight, unet.downs.2.1.block1.norm.bias, unet.downs.2.1.block2.proj.weight, unet.downs.2.1.block2.proj.bias, unet.downs.2.1.block2.norm.weight, unet.downs.2.1.block2.norm.bias, unet.downs.2.2.fn.fn.to_qkv.weight, unet.downs.2.2.fn.fn.to_out.0.weight, unet.downs.2.2.fn.fn.to_out.0.bias, unet.downs.2.2.fn.fn.to_out.1.g, unet.downs.2.2.fn.norm.g, unet.downs.2.3.weight, unet.downs.2.3.bias, unet.ups.0.0.mlp.1.weight, unet.ups.0.0.mlp.1.bias, unet.ups.0.0.block1.proj.weight, unet.ups.0.0.block1.proj.bias, unet.ups.0.0.block1.norm.weight, unet.ups.0.0.block1.norm.bias, unet.ups.0.0.block2.proj.weight, unet.ups.0.0.block2.proj.bias, unet.ups.0.0.block2.norm.weight, unet.ups.0.0.block2.norm.bias, unet.ups.0.0.res_conv.weight, unet.ups.0.0.res_conv.bias, unet.ups.0.1.mlp.1.weight, unet.ups.0.1.mlp.1.bias, unet.ups.0.1.block1.proj.weight, unet.ups.0.1.block1.proj.bias, unet.ups.0.1.block1.norm.weight, unet.ups.0.1.block1.norm.bias, unet.ups.0.1.block2.proj.weight, unet.ups.0.1.block2.proj.bias, unet.ups.0.1.block2.norm.weight, unet.ups.0.1.block2.norm.bias, unet.ups.0.1.res_conv.weight, unet.ups.0.1.res_conv.bias, unet.ups.0.2.fn.fn.to_qkv.weight, unet.ups.0.2.fn.fn.to_out.0.weight, unet.ups.0.2.fn.fn.to_out.0.bias, unet.ups.0.2.fn.fn.to_out.1.g, unet.ups.0.2.fn.norm.g, unet.ups.0.3.1.weight, unet.ups.0.3.1.bias, unet.ups.1.0.mlp.1.weight, unet.ups.1.0.mlp.1.bias, unet.ups.1.0.block1.proj.weight, unet.ups.1.0.block1.proj.bias, unet.ups.1.0.block1.norm.weight, unet.ups.1.0.block1.norm.bias, unet.ups.1.0.block2.proj.weight, unet.ups.1.0.block2.proj.bias, unet.ups.1.0.block2.norm.weight, unet.ups.1.0.block2.norm.bias, unet.ups.1.0.res_conv.weight, unet.ups.1.0.res_conv.bias, unet.ups.1.1.mlp.1.weight, unet.ups.1.1.mlp.1.bias, unet.ups.1.1.block1.proj.weight, unet.ups.1.1.block1.proj.bias, unet.ups.1.1.block1.norm.weight, unet.ups.1.1.block1.norm.bias, unet.ups.1.1.block2.proj.weight, unet.ups.1.1.block2.proj.bias, unet.ups.1.1.block2.norm.weight, unet.ups.1.1.block2.norm.bias, unet.ups.1.1.res_conv.weight, unet.ups.1.1.res_conv.bias, unet.ups.1.2.fn.fn.to_qkv.weight, unet.ups.1.2.fn.fn.to_out.0.weight, unet.ups.1.2.fn.fn.to_out.0.bias, unet.ups.1.2.fn.fn.to_out.1.g, unet.ups.1.2.fn.norm.g, unet.ups.1.3.1.weight, unet.ups.1.3.1.bias, unet.ups.2.0.mlp.1.weight, unet.ups.2.0.mlp.1.bias, unet.ups.2.0.block1.proj.weight, unet.ups.2.0.block1.proj.bias, unet.ups.2.0.block1.norm.weight, unet.ups.2.0.block1.norm.bias, unet.ups.2.0.block2.proj.weight, unet.ups.2.0.block2.proj.bias, unet.ups.2.0.block2.norm.weight, unet.ups.2.0.block2.norm.bias, unet.ups.2.0.res_conv.weight, unet.ups.2.0.res_conv.bias, unet.ups.2.1.mlp.1.weight, unet.ups.2.1.mlp.1.bias, unet.ups.2.1.block1.proj.weight, unet.ups.2.1.block1.proj.bias, unet.ups.2.1.block1.norm.weight, unet.ups.2.1.block1.norm.bias, unet.ups.2.1.block2.proj.weight, unet.ups.2.1.block2.proj.bias, unet.ups.2.1.block2.norm.weight, unet.ups.2.1.block2.norm.bias, unet.ups.2.1.res_conv.weight, unet.ups.2.1.res_conv.bias, unet.ups.2.2.fn.fn.to_qkv.weight, unet.ups.2.2.fn.fn.to_out.0.weight, unet.ups.2.2.fn.fn.to_out.0.bias, unet.ups.2.2.fn.fn.to_out.1.g, unet.ups.2.2.fn.norm.g, unet.ups.2.3.weight, unet.ups.2.3.bias, unet.mid_block1.mlp.1.weight, unet.mid_block1.mlp.1.bias, unet.mid_block1.block1.proj.weight, unet.mid_block1.block1.proj.bias, unet.mid_block1.block1.norm.weight, unet.mid_block1.block1.norm.bias, unet.mid_block1.block2.proj.weight, unet.mid_block1.block2.proj.bias, unet.mid_block1.block2.norm.weight, unet.mid_block1.block2.norm.bias, unet.mid_attn.fn.fn.to_qkv.weight, unet.mid_attn.fn.fn.to_out.weight, unet.mid_attn.fn.fn.to_out.bias, unet.mid_attn.fn.norm.g, unet.mid_block2.mlp.1.weight, unet.mid_block2.mlp.1.bias, unet.mid_block2.block1.proj.weight, unet.mid_block2.block1.proj.bias, unet.mid_block2.block1.norm.weight, unet.mid_block2.block1.norm.bias, unet.mid_block2.block2.proj.weight, unet.mid_block2.block2.proj.bias, unet.mid_block2.block2.norm.weight, unet.mid_block2.block2.norm.bias, unet.final_res_block.mlp.1.weight, unet.final_res_block.mlp.1.bias, unet.final_res_block.block1.proj.weight, unet.final_res_block.block1.proj.bias, unet.final_res_block.block1.norm.weight, unet.final_res_block.block1.norm.bias, unet.final_res_block.block2.proj.weight, unet.final_res_block.block2.proj.bias, unet.final_res_block.block2.norm.weight, unet.final_res_block.block2.norm.bias, unet.final_res_block.res_conv.weight, unet.final_res_block.res_conv.bias, unet.final_conv.weight, unet.final_conv.bias, conv_seg_new.weight, conv_seg_new.bias, embed.weight
|
239 |
+
|
240 |
+
2023-03-04 19:03:27,934 - mmseg - INFO - EncoderDecoderFreeze(
|
241 |
+
(backbone): MixVisionTransformerCustomInitWeights(
|
242 |
+
(layers): ModuleList(
|
243 |
+
(0): ModuleList(
|
244 |
+
(0): PatchEmbed(
|
245 |
+
(projection): Conv2d(3, 64, kernel_size=(7, 7), stride=(4, 4), padding=(3, 3))
|
246 |
+
(norm): LayerNorm((64,), eps=1e-06, elementwise_affine=True)
|
247 |
+
)
|
248 |
+
(1): ModuleList(
|
249 |
+
(0): TransformerEncoderLayer(
|
250 |
+
(norm1): LayerNorm((64,), eps=1e-06, elementwise_affine=True)
|
251 |
+
(attn): EfficientMultiheadAttention(
|
252 |
+
(attn): MultiheadAttention(
|
253 |
+
(out_proj): NonDynamicallyQuantizableLinear(in_features=64, out_features=64, bias=True)
|
254 |
+
)
|
255 |
+
(proj_drop): Dropout(p=0.0, inplace=False)
|
256 |
+
(dropout_layer): DropPath()
|
257 |
+
(sr): Conv2d(64, 64, kernel_size=(8, 8), stride=(8, 8))
|
258 |
+
(norm): LayerNorm((64,), eps=1e-06, elementwise_affine=True)
|
259 |
+
)
|
260 |
+
(norm2): LayerNorm((64,), eps=1e-06, elementwise_affine=True)
|
261 |
+
(ffn): MixFFN(
|
262 |
+
(activate): GELU(approximate='none')
|
263 |
+
(layers): Sequential(
|
264 |
+
(0): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1))
|
265 |
+
(1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=256)
|
266 |
+
(2): GELU(approximate='none')
|
267 |
+
(3): Dropout(p=0.0, inplace=False)
|
268 |
+
(4): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1))
|
269 |
+
(5): Dropout(p=0.0, inplace=False)
|
270 |
+
)
|
271 |
+
(dropout_layer): DropPath()
|
272 |
+
)
|
273 |
+
)
|
274 |
+
(1): TransformerEncoderLayer(
|
275 |
+
(norm1): LayerNorm((64,), eps=1e-06, elementwise_affine=True)
|
276 |
+
(attn): EfficientMultiheadAttention(
|
277 |
+
(attn): MultiheadAttention(
|
278 |
+
(out_proj): NonDynamicallyQuantizableLinear(in_features=64, out_features=64, bias=True)
|
279 |
+
)
|
280 |
+
(proj_drop): Dropout(p=0.0, inplace=False)
|
281 |
+
(dropout_layer): DropPath()
|
282 |
+
(sr): Conv2d(64, 64, kernel_size=(8, 8), stride=(8, 8))
|
283 |
+
(norm): LayerNorm((64,), eps=1e-06, elementwise_affine=True)
|
284 |
+
)
|
285 |
+
(norm2): LayerNorm((64,), eps=1e-06, elementwise_affine=True)
|
286 |
+
(ffn): MixFFN(
|
287 |
+
(activate): GELU(approximate='none')
|
288 |
+
(layers): Sequential(
|
289 |
+
(0): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1))
|
290 |
+
(1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=256)
|
291 |
+
(2): GELU(approximate='none')
|
292 |
+
(3): Dropout(p=0.0, inplace=False)
|
293 |
+
(4): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1))
|
294 |
+
(5): Dropout(p=0.0, inplace=False)
|
295 |
+
)
|
296 |
+
(dropout_layer): DropPath()
|
297 |
+
)
|
298 |
+
)
|
299 |
+
(2): TransformerEncoderLayer(
|
300 |
+
(norm1): LayerNorm((64,), eps=1e-06, elementwise_affine=True)
|
301 |
+
(attn): EfficientMultiheadAttention(
|
302 |
+
(attn): MultiheadAttention(
|
303 |
+
(out_proj): NonDynamicallyQuantizableLinear(in_features=64, out_features=64, bias=True)
|
304 |
+
)
|
305 |
+
(proj_drop): Dropout(p=0.0, inplace=False)
|
306 |
+
(dropout_layer): DropPath()
|
307 |
+
(sr): Conv2d(64, 64, kernel_size=(8, 8), stride=(8, 8))
|
308 |
+
(norm): LayerNorm((64,), eps=1e-06, elementwise_affine=True)
|
309 |
+
)
|
310 |
+
(norm2): LayerNorm((64,), eps=1e-06, elementwise_affine=True)
|
311 |
+
(ffn): MixFFN(
|
312 |
+
(activate): GELU(approximate='none')
|
313 |
+
(layers): Sequential(
|
314 |
+
(0): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1))
|
315 |
+
(1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=256)
|
316 |
+
(2): GELU(approximate='none')
|
317 |
+
(3): Dropout(p=0.0, inplace=False)
|
318 |
+
(4): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1))
|
319 |
+
(5): Dropout(p=0.0, inplace=False)
|
320 |
+
)
|
321 |
+
(dropout_layer): DropPath()
|
322 |
+
)
|
323 |
+
)
|
324 |
+
)
|
325 |
+
(2): LayerNorm((64,), eps=1e-06, elementwise_affine=True)
|
326 |
+
)
|
327 |
+
(1): ModuleList(
|
328 |
+
(0): PatchEmbed(
|
329 |
+
(projection): Conv2d(64, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
|
330 |
+
(norm): LayerNorm((128,), eps=1e-06, elementwise_affine=True)
|
331 |
+
)
|
332 |
+
(1): ModuleList(
|
333 |
+
(0): TransformerEncoderLayer(
|
334 |
+
(norm1): LayerNorm((128,), eps=1e-06, elementwise_affine=True)
|
335 |
+
(attn): EfficientMultiheadAttention(
|
336 |
+
(attn): MultiheadAttention(
|
337 |
+
(out_proj): NonDynamicallyQuantizableLinear(in_features=128, out_features=128, bias=True)
|
338 |
+
)
|
339 |
+
(proj_drop): Dropout(p=0.0, inplace=False)
|
340 |
+
(dropout_layer): DropPath()
|
341 |
+
(sr): Conv2d(128, 128, kernel_size=(4, 4), stride=(4, 4))
|
342 |
+
(norm): LayerNorm((128,), eps=1e-06, elementwise_affine=True)
|
343 |
+
)
|
344 |
+
(norm2): LayerNorm((128,), eps=1e-06, elementwise_affine=True)
|
345 |
+
(ffn): MixFFN(
|
346 |
+
(activate): GELU(approximate='none')
|
347 |
+
(layers): Sequential(
|
348 |
+
(0): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1))
|
349 |
+
(1): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=512)
|
350 |
+
(2): GELU(approximate='none')
|
351 |
+
(3): Dropout(p=0.0, inplace=False)
|
352 |
+
(4): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1))
|
353 |
+
(5): Dropout(p=0.0, inplace=False)
|
354 |
+
)
|
355 |
+
(dropout_layer): DropPath()
|
356 |
+
)
|
357 |
+
)
|
358 |
+
(1): TransformerEncoderLayer(
|
359 |
+
(norm1): LayerNorm((128,), eps=1e-06, elementwise_affine=True)
|
360 |
+
(attn): EfficientMultiheadAttention(
|
361 |
+
(attn): MultiheadAttention(
|
362 |
+
(out_proj): NonDynamicallyQuantizableLinear(in_features=128, out_features=128, bias=True)
|
363 |
+
)
|
364 |
+
(proj_drop): Dropout(p=0.0, inplace=False)
|
365 |
+
(dropout_layer): DropPath()
|
366 |
+
(sr): Conv2d(128, 128, kernel_size=(4, 4), stride=(4, 4))
|
367 |
+
(norm): LayerNorm((128,), eps=1e-06, elementwise_affine=True)
|
368 |
+
)
|
369 |
+
(norm2): LayerNorm((128,), eps=1e-06, elementwise_affine=True)
|
370 |
+
(ffn): MixFFN(
|
371 |
+
(activate): GELU(approximate='none')
|
372 |
+
(layers): Sequential(
|
373 |
+
(0): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1))
|
374 |
+
(1): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=512)
|
375 |
+
(2): GELU(approximate='none')
|
376 |
+
(3): Dropout(p=0.0, inplace=False)
|
377 |
+
(4): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1))
|
378 |
+
(5): Dropout(p=0.0, inplace=False)
|
379 |
+
)
|
380 |
+
(dropout_layer): DropPath()
|
381 |
+
)
|
382 |
+
)
|
383 |
+
(2): TransformerEncoderLayer(
|
384 |
+
(norm1): LayerNorm((128,), eps=1e-06, elementwise_affine=True)
|
385 |
+
(attn): EfficientMultiheadAttention(
|
386 |
+
(attn): MultiheadAttention(
|
387 |
+
(out_proj): NonDynamicallyQuantizableLinear(in_features=128, out_features=128, bias=True)
|
388 |
+
)
|
389 |
+
(proj_drop): Dropout(p=0.0, inplace=False)
|
390 |
+
(dropout_layer): DropPath()
|
391 |
+
(sr): Conv2d(128, 128, kernel_size=(4, 4), stride=(4, 4))
|
392 |
+
(norm): LayerNorm((128,), eps=1e-06, elementwise_affine=True)
|
393 |
+
)
|
394 |
+
(norm2): LayerNorm((128,), eps=1e-06, elementwise_affine=True)
|
395 |
+
(ffn): MixFFN(
|
396 |
+
(activate): GELU(approximate='none')
|
397 |
+
(layers): Sequential(
|
398 |
+
(0): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1))
|
399 |
+
(1): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=512)
|
400 |
+
(2): GELU(approximate='none')
|
401 |
+
(3): Dropout(p=0.0, inplace=False)
|
402 |
+
(4): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1))
|
403 |
+
(5): Dropout(p=0.0, inplace=False)
|
404 |
+
)
|
405 |
+
(dropout_layer): DropPath()
|
406 |
+
)
|
407 |
+
)
|
408 |
+
(3): TransformerEncoderLayer(
|
409 |
+
(norm1): LayerNorm((128,), eps=1e-06, elementwise_affine=True)
|
410 |
+
(attn): EfficientMultiheadAttention(
|
411 |
+
(attn): MultiheadAttention(
|
412 |
+
(out_proj): NonDynamicallyQuantizableLinear(in_features=128, out_features=128, bias=True)
|
413 |
+
)
|
414 |
+
(proj_drop): Dropout(p=0.0, inplace=False)
|
415 |
+
(dropout_layer): DropPath()
|
416 |
+
(sr): Conv2d(128, 128, kernel_size=(4, 4), stride=(4, 4))
|
417 |
+
(norm): LayerNorm((128,), eps=1e-06, elementwise_affine=True)
|
418 |
+
)
|
419 |
+
(norm2): LayerNorm((128,), eps=1e-06, elementwise_affine=True)
|
420 |
+
(ffn): MixFFN(
|
421 |
+
(activate): GELU(approximate='none')
|
422 |
+
(layers): Sequential(
|
423 |
+
(0): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1))
|
424 |
+
(1): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=512)
|
425 |
+
(2): GELU(approximate='none')
|
426 |
+
(3): Dropout(p=0.0, inplace=False)
|
427 |
+
(4): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1))
|
428 |
+
(5): Dropout(p=0.0, inplace=False)
|
429 |
+
)
|
430 |
+
(dropout_layer): DropPath()
|
431 |
+
)
|
432 |
+
)
|
433 |
+
)
|
434 |
+
(2): LayerNorm((128,), eps=1e-06, elementwise_affine=True)
|
435 |
+
)
|
436 |
+
(2): ModuleList(
|
437 |
+
(0): PatchEmbed(
|
438 |
+
(projection): Conv2d(128, 320, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
|
439 |
+
(norm): LayerNorm((320,), eps=1e-06, elementwise_affine=True)
|
440 |
+
)
|
441 |
+
(1): ModuleList(
|
442 |
+
(0): TransformerEncoderLayer(
|
443 |
+
(norm1): LayerNorm((320,), eps=1e-06, elementwise_affine=True)
|
444 |
+
(attn): EfficientMultiheadAttention(
|
445 |
+
(attn): MultiheadAttention(
|
446 |
+
(out_proj): NonDynamicallyQuantizableLinear(in_features=320, out_features=320, bias=True)
|
447 |
+
)
|
448 |
+
(proj_drop): Dropout(p=0.0, inplace=False)
|
449 |
+
(dropout_layer): DropPath()
|
450 |
+
(sr): Conv2d(320, 320, kernel_size=(2, 2), stride=(2, 2))
|
451 |
+
(norm): LayerNorm((320,), eps=1e-06, elementwise_affine=True)
|
452 |
+
)
|
453 |
+
(norm2): LayerNorm((320,), eps=1e-06, elementwise_affine=True)
|
454 |
+
(ffn): MixFFN(
|
455 |
+
(activate): GELU(approximate='none')
|
456 |
+
(layers): Sequential(
|
457 |
+
(0): Conv2d(320, 1280, kernel_size=(1, 1), stride=(1, 1))
|
458 |
+
(1): Conv2d(1280, 1280, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=1280)
|
459 |
+
(2): GELU(approximate='none')
|
460 |
+
(3): Dropout(p=0.0, inplace=False)
|
461 |
+
(4): Conv2d(1280, 320, kernel_size=(1, 1), stride=(1, 1))
|
462 |
+
(5): Dropout(p=0.0, inplace=False)
|
463 |
+
)
|
464 |
+
(dropout_layer): DropPath()
|
465 |
+
)
|
466 |
+
)
|
467 |
+
(1): TransformerEncoderLayer(
|
468 |
+
(norm1): LayerNorm((320,), eps=1e-06, elementwise_affine=True)
|
469 |
+
(attn): EfficientMultiheadAttention(
|
470 |
+
(attn): MultiheadAttention(
|
471 |
+
(out_proj): NonDynamicallyQuantizableLinear(in_features=320, out_features=320, bias=True)
|
472 |
+
)
|
473 |
+
(proj_drop): Dropout(p=0.0, inplace=False)
|
474 |
+
(dropout_layer): DropPath()
|
475 |
+
(sr): Conv2d(320, 320, kernel_size=(2, 2), stride=(2, 2))
|
476 |
+
(norm): LayerNorm((320,), eps=1e-06, elementwise_affine=True)
|
477 |
+
)
|
478 |
+
(norm2): LayerNorm((320,), eps=1e-06, elementwise_affine=True)
|
479 |
+
(ffn): MixFFN(
|
480 |
+
(activate): GELU(approximate='none')
|
481 |
+
(layers): Sequential(
|
482 |
+
(0): Conv2d(320, 1280, kernel_size=(1, 1), stride=(1, 1))
|
483 |
+
(1): Conv2d(1280, 1280, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=1280)
|
484 |
+
(2): GELU(approximate='none')
|
485 |
+
(3): Dropout(p=0.0, inplace=False)
|
486 |
+
(4): Conv2d(1280, 320, kernel_size=(1, 1), stride=(1, 1))
|
487 |
+
(5): Dropout(p=0.0, inplace=False)
|
488 |
+
)
|
489 |
+
(dropout_layer): DropPath()
|
490 |
+
)
|
491 |
+
)
|
492 |
+
(2): TransformerEncoderLayer(
|
493 |
+
(norm1): LayerNorm((320,), eps=1e-06, elementwise_affine=True)
|
494 |
+
(attn): EfficientMultiheadAttention(
|
495 |
+
(attn): MultiheadAttention(
|
496 |
+
(out_proj): NonDynamicallyQuantizableLinear(in_features=320, out_features=320, bias=True)
|
497 |
+
)
|
498 |
+
(proj_drop): Dropout(p=0.0, inplace=False)
|
499 |
+
(dropout_layer): DropPath()
|
500 |
+
(sr): Conv2d(320, 320, kernel_size=(2, 2), stride=(2, 2))
|
501 |
+
(norm): LayerNorm((320,), eps=1e-06, elementwise_affine=True)
|
502 |
+
)
|
503 |
+
(norm2): LayerNorm((320,), eps=1e-06, elementwise_affine=True)
|
504 |
+
(ffn): MixFFN(
|
505 |
+
(activate): GELU(approximate='none')
|
506 |
+
(layers): Sequential(
|
507 |
+
(0): Conv2d(320, 1280, kernel_size=(1, 1), stride=(1, 1))
|
508 |
+
(1): Conv2d(1280, 1280, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=1280)
|
509 |
+
(2): GELU(approximate='none')
|
510 |
+
(3): Dropout(p=0.0, inplace=False)
|
511 |
+
(4): Conv2d(1280, 320, kernel_size=(1, 1), stride=(1, 1))
|
512 |
+
(5): Dropout(p=0.0, inplace=False)
|
513 |
+
)
|
514 |
+
(dropout_layer): DropPath()
|
515 |
+
)
|
516 |
+
)
|
517 |
+
(3): TransformerEncoderLayer(
|
518 |
+
(norm1): LayerNorm((320,), eps=1e-06, elementwise_affine=True)
|
519 |
+
(attn): EfficientMultiheadAttention(
|
520 |
+
(attn): MultiheadAttention(
|
521 |
+
(out_proj): NonDynamicallyQuantizableLinear(in_features=320, out_features=320, bias=True)
|
522 |
+
)
|
523 |
+
(proj_drop): Dropout(p=0.0, inplace=False)
|
524 |
+
(dropout_layer): DropPath()
|
525 |
+
(sr): Conv2d(320, 320, kernel_size=(2, 2), stride=(2, 2))
|
526 |
+
(norm): LayerNorm((320,), eps=1e-06, elementwise_affine=True)
|
527 |
+
)
|
528 |
+
(norm2): LayerNorm((320,), eps=1e-06, elementwise_affine=True)
|
529 |
+
(ffn): MixFFN(
|
530 |
+
(activate): GELU(approximate='none')
|
531 |
+
(layers): Sequential(
|
532 |
+
(0): Conv2d(320, 1280, kernel_size=(1, 1), stride=(1, 1))
|
533 |
+
(1): Conv2d(1280, 1280, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=1280)
|
534 |
+
(2): GELU(approximate='none')
|
535 |
+
(3): Dropout(p=0.0, inplace=False)
|
536 |
+
(4): Conv2d(1280, 320, kernel_size=(1, 1), stride=(1, 1))
|
537 |
+
(5): Dropout(p=0.0, inplace=False)
|
538 |
+
)
|
539 |
+
(dropout_layer): DropPath()
|
540 |
+
)
|
541 |
+
)
|
542 |
+
(4): TransformerEncoderLayer(
|
543 |
+
(norm1): LayerNorm((320,), eps=1e-06, elementwise_affine=True)
|
544 |
+
(attn): EfficientMultiheadAttention(
|
545 |
+
(attn): MultiheadAttention(
|
546 |
+
(out_proj): NonDynamicallyQuantizableLinear(in_features=320, out_features=320, bias=True)
|
547 |
+
)
|
548 |
+
(proj_drop): Dropout(p=0.0, inplace=False)
|
549 |
+
(dropout_layer): DropPath()
|
550 |
+
(sr): Conv2d(320, 320, kernel_size=(2, 2), stride=(2, 2))
|
551 |
+
(norm): LayerNorm((320,), eps=1e-06, elementwise_affine=True)
|
552 |
+
)
|
553 |
+
(norm2): LayerNorm((320,), eps=1e-06, elementwise_affine=True)
|
554 |
+
(ffn): MixFFN(
|
555 |
+
(activate): GELU(approximate='none')
|
556 |
+
(layers): Sequential(
|
557 |
+
(0): Conv2d(320, 1280, kernel_size=(1, 1), stride=(1, 1))
|
558 |
+
(1): Conv2d(1280, 1280, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=1280)
|
559 |
+
(2): GELU(approximate='none')
|
560 |
+
(3): Dropout(p=0.0, inplace=False)
|
561 |
+
(4): Conv2d(1280, 320, kernel_size=(1, 1), stride=(1, 1))
|
562 |
+
(5): Dropout(p=0.0, inplace=False)
|
563 |
+
)
|
564 |
+
(dropout_layer): DropPath()
|
565 |
+
)
|
566 |
+
)
|
567 |
+
(5): TransformerEncoderLayer(
|
568 |
+
(norm1): LayerNorm((320,), eps=1e-06, elementwise_affine=True)
|
569 |
+
(attn): EfficientMultiheadAttention(
|
570 |
+
(attn): MultiheadAttention(
|
571 |
+
(out_proj): NonDynamicallyQuantizableLinear(in_features=320, out_features=320, bias=True)
|
572 |
+
)
|
573 |
+
(proj_drop): Dropout(p=0.0, inplace=False)
|
574 |
+
(dropout_layer): DropPath()
|
575 |
+
(sr): Conv2d(320, 320, kernel_size=(2, 2), stride=(2, 2))
|
576 |
+
(norm): LayerNorm((320,), eps=1e-06, elementwise_affine=True)
|
577 |
+
)
|
578 |
+
(norm2): LayerNorm((320,), eps=1e-06, elementwise_affine=True)
|
579 |
+
(ffn): MixFFN(
|
580 |
+
(activate): GELU(approximate='none')
|
581 |
+
(layers): Sequential(
|
582 |
+
(0): Conv2d(320, 1280, kernel_size=(1, 1), stride=(1, 1))
|
583 |
+
(1): Conv2d(1280, 1280, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=1280)
|
584 |
+
(2): GELU(approximate='none')
|
585 |
+
(3): Dropout(p=0.0, inplace=False)
|
586 |
+
(4): Conv2d(1280, 320, kernel_size=(1, 1), stride=(1, 1))
|
587 |
+
(5): Dropout(p=0.0, inplace=False)
|
588 |
+
)
|
589 |
+
(dropout_layer): DropPath()
|
590 |
+
)
|
591 |
+
)
|
592 |
+
)
|
593 |
+
(2): LayerNorm((320,), eps=1e-06, elementwise_affine=True)
|
594 |
+
)
|
595 |
+
(3): ModuleList(
|
596 |
+
(0): PatchEmbed(
|
597 |
+
(projection): Conv2d(320, 512, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
|
598 |
+
(norm): LayerNorm((512,), eps=1e-06, elementwise_affine=True)
|
599 |
+
)
|
600 |
+
(1): ModuleList(
|
601 |
+
(0): TransformerEncoderLayer(
|
602 |
+
(norm1): LayerNorm((512,), eps=1e-06, elementwise_affine=True)
|
603 |
+
(attn): EfficientMultiheadAttention(
|
604 |
+
(attn): MultiheadAttention(
|
605 |
+
(out_proj): NonDynamicallyQuantizableLinear(in_features=512, out_features=512, bias=True)
|
606 |
+
)
|
607 |
+
(proj_drop): Dropout(p=0.0, inplace=False)
|
608 |
+
(dropout_layer): DropPath()
|
609 |
+
)
|
610 |
+
(norm2): LayerNorm((512,), eps=1e-06, elementwise_affine=True)
|
611 |
+
(ffn): MixFFN(
|
612 |
+
(activate): GELU(approximate='none')
|
613 |
+
(layers): Sequential(
|
614 |
+
(0): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1))
|
615 |
+
(1): Conv2d(2048, 2048, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=2048)
|
616 |
+
(2): GELU(approximate='none')
|
617 |
+
(3): Dropout(p=0.0, inplace=False)
|
618 |
+
(4): Conv2d(2048, 512, kernel_size=(1, 1), stride=(1, 1))
|
619 |
+
(5): Dropout(p=0.0, inplace=False)
|
620 |
+
)
|
621 |
+
(dropout_layer): DropPath()
|
622 |
+
)
|
623 |
+
)
|
624 |
+
(1): TransformerEncoderLayer(
|
625 |
+
(norm1): LayerNorm((512,), eps=1e-06, elementwise_affine=True)
|
626 |
+
(attn): EfficientMultiheadAttention(
|
627 |
+
(attn): MultiheadAttention(
|
628 |
+
(out_proj): NonDynamicallyQuantizableLinear(in_features=512, out_features=512, bias=True)
|
629 |
+
)
|
630 |
+
(proj_drop): Dropout(p=0.0, inplace=False)
|
631 |
+
(dropout_layer): DropPath()
|
632 |
+
)
|
633 |
+
(norm2): LayerNorm((512,), eps=1e-06, elementwise_affine=True)
|
634 |
+
(ffn): MixFFN(
|
635 |
+
(activate): GELU(approximate='none')
|
636 |
+
(layers): Sequential(
|
637 |
+
(0): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1))
|
638 |
+
(1): Conv2d(2048, 2048, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=2048)
|
639 |
+
(2): GELU(approximate='none')
|
640 |
+
(3): Dropout(p=0.0, inplace=False)
|
641 |
+
(4): Conv2d(2048, 512, kernel_size=(1, 1), stride=(1, 1))
|
642 |
+
(5): Dropout(p=0.0, inplace=False)
|
643 |
+
)
|
644 |
+
(dropout_layer): DropPath()
|
645 |
+
)
|
646 |
+
)
|
647 |
+
(2): TransformerEncoderLayer(
|
648 |
+
(norm1): LayerNorm((512,), eps=1e-06, elementwise_affine=True)
|
649 |
+
(attn): EfficientMultiheadAttention(
|
650 |
+
(attn): MultiheadAttention(
|
651 |
+
(out_proj): NonDynamicallyQuantizableLinear(in_features=512, out_features=512, bias=True)
|
652 |
+
)
|
653 |
+
(proj_drop): Dropout(p=0.0, inplace=False)
|
654 |
+
(dropout_layer): DropPath()
|
655 |
+
)
|
656 |
+
(norm2): LayerNorm((512,), eps=1e-06, elementwise_affine=True)
|
657 |
+
(ffn): MixFFN(
|
658 |
+
(activate): GELU(approximate='none')
|
659 |
+
(layers): Sequential(
|
660 |
+
(0): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1))
|
661 |
+
(1): Conv2d(2048, 2048, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=2048)
|
662 |
+
(2): GELU(approximate='none')
|
663 |
+
(3): Dropout(p=0.0, inplace=False)
|
664 |
+
(4): Conv2d(2048, 512, kernel_size=(1, 1), stride=(1, 1))
|
665 |
+
(5): Dropout(p=0.0, inplace=False)
|
666 |
+
)
|
667 |
+
(dropout_layer): DropPath()
|
668 |
+
)
|
669 |
+
)
|
670 |
+
)
|
671 |
+
(2): LayerNorm((512,), eps=1e-06, elementwise_affine=True)
|
672 |
+
)
|
673 |
+
)
|
674 |
+
)
|
675 |
+
init_cfg={'type': 'Pretrained', 'checkpoint': 'pretrained/segformer_mit-b2_512x512_160k_ade20k_20220620_114047-64e4feca.pth'}
|
676 |
+
(decode_head): SegformerHeadUnetFCHeadSingleStepLogits(
|
677 |
+
input_transform=multiple_select, ignore_index=0, align_corners=False
|
678 |
+
(loss_decode): CrossEntropyLoss(avg_non_ignore=False)
|
679 |
+
(conv_seg): Conv2d(256, 150, kernel_size=(1, 1), stride=(1, 1))
|
680 |
+
(dropout): Dropout2d(p=0.1, inplace=False)
|
681 |
+
(convs): ModuleList(
|
682 |
+
(0): ConvModule(
|
683 |
+
(conv): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
684 |
+
(bn): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
685 |
+
(activate): ReLU(inplace=True)
|
686 |
+
)
|
687 |
+
(1): ConvModule(
|
688 |
+
(conv): Conv2d(128, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
689 |
+
(bn): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
690 |
+
(activate): ReLU(inplace=True)
|
691 |
+
)
|
692 |
+
(2): ConvModule(
|
693 |
+
(conv): Conv2d(320, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
694 |
+
(bn): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
695 |
+
(activate): ReLU(inplace=True)
|
696 |
+
)
|
697 |
+
(3): ConvModule(
|
698 |
+
(conv): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
699 |
+
(bn): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
700 |
+
(activate): ReLU(inplace=True)
|
701 |
+
)
|
702 |
+
)
|
703 |
+
(fusion_conv): ConvModule(
|
704 |
+
(conv): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
705 |
+
(bn): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
706 |
+
(activate): ReLU(inplace=True)
|
707 |
+
)
|
708 |
+
(unet): Unet(
|
709 |
+
(init_conv): Conv2d(166, 128, kernel_size=(7, 7), stride=(1, 1), padding=(3, 3))
|
710 |
+
(time_mlp): Sequential(
|
711 |
+
(0): SinusoidalPosEmb()
|
712 |
+
(1): Linear(in_features=128, out_features=512, bias=True)
|
713 |
+
(2): GELU(approximate='none')
|
714 |
+
(3): Linear(in_features=512, out_features=512, bias=True)
|
715 |
+
)
|
716 |
+
(downs): ModuleList(
|
717 |
+
(0): ModuleList(
|
718 |
+
(0): ResnetBlock(
|
719 |
+
(mlp): Sequential(
|
720 |
+
(0): SiLU()
|
721 |
+
(1): Linear(in_features=512, out_features=256, bias=True)
|
722 |
+
)
|
723 |
+
(block1): Block(
|
724 |
+
(proj): WeightStandardizedConv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
725 |
+
(norm): GroupNorm(8, 128, eps=1e-05, affine=True)
|
726 |
+
(act): SiLU()
|
727 |
+
)
|
728 |
+
(block2): Block(
|
729 |
+
(proj): WeightStandardizedConv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
730 |
+
(norm): GroupNorm(8, 128, eps=1e-05, affine=True)
|
731 |
+
(act): SiLU()
|
732 |
+
)
|
733 |
+
(res_conv): Identity()
|
734 |
+
)
|
735 |
+
(1): ResnetBlock(
|
736 |
+
(mlp): Sequential(
|
737 |
+
(0): SiLU()
|
738 |
+
(1): Linear(in_features=512, out_features=256, bias=True)
|
739 |
+
)
|
740 |
+
(block1): Block(
|
741 |
+
(proj): WeightStandardizedConv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
742 |
+
(norm): GroupNorm(8, 128, eps=1e-05, affine=True)
|
743 |
+
(act): SiLU()
|
744 |
+
)
|
745 |
+
(block2): Block(
|
746 |
+
(proj): WeightStandardizedConv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
747 |
+
(norm): GroupNorm(8, 128, eps=1e-05, affine=True)
|
748 |
+
(act): SiLU()
|
749 |
+
)
|
750 |
+
(res_conv): Identity()
|
751 |
+
)
|
752 |
+
(2): Residual(
|
753 |
+
(fn): PreNorm(
|
754 |
+
(fn): LinearAttention(
|
755 |
+
(to_qkv): Conv2d(128, 384, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
756 |
+
(to_out): Sequential(
|
757 |
+
(0): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1))
|
758 |
+
(1): LayerNorm()
|
759 |
+
)
|
760 |
+
)
|
761 |
+
(norm): LayerNorm()
|
762 |
+
)
|
763 |
+
)
|
764 |
+
(3): Conv2d(128, 128, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
|
765 |
+
)
|
766 |
+
(1): ModuleList(
|
767 |
+
(0): ResnetBlock(
|
768 |
+
(mlp): Sequential(
|
769 |
+
(0): SiLU()
|
770 |
+
(1): Linear(in_features=512, out_features=256, bias=True)
|
771 |
+
)
|
772 |
+
(block1): Block(
|
773 |
+
(proj): WeightStandardizedConv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
774 |
+
(norm): GroupNorm(8, 128, eps=1e-05, affine=True)
|
775 |
+
(act): SiLU()
|
776 |
+
)
|
777 |
+
(block2): Block(
|
778 |
+
(proj): WeightStandardizedConv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
779 |
+
(norm): GroupNorm(8, 128, eps=1e-05, affine=True)
|
780 |
+
(act): SiLU()
|
781 |
+
)
|
782 |
+
(res_conv): Identity()
|
783 |
+
)
|
784 |
+
(1): ResnetBlock(
|
785 |
+
(mlp): Sequential(
|
786 |
+
(0): SiLU()
|
787 |
+
(1): Linear(in_features=512, out_features=256, bias=True)
|
788 |
+
)
|
789 |
+
(block1): Block(
|
790 |
+
(proj): WeightStandardizedConv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
791 |
+
(norm): GroupNorm(8, 128, eps=1e-05, affine=True)
|
792 |
+
(act): SiLU()
|
793 |
+
)
|
794 |
+
(block2): Block(
|
795 |
+
(proj): WeightStandardizedConv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
796 |
+
(norm): GroupNorm(8, 128, eps=1e-05, affine=True)
|
797 |
+
(act): SiLU()
|
798 |
+
)
|
799 |
+
(res_conv): Identity()
|
800 |
+
)
|
801 |
+
(2): Residual(
|
802 |
+
(fn): PreNorm(
|
803 |
+
(fn): LinearAttention(
|
804 |
+
(to_qkv): Conv2d(128, 384, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
805 |
+
(to_out): Sequential(
|
806 |
+
(0): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1))
|
807 |
+
(1): LayerNorm()
|
808 |
+
)
|
809 |
+
)
|
810 |
+
(norm): LayerNorm()
|
811 |
+
)
|
812 |
+
)
|
813 |
+
(3): Conv2d(128, 128, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
|
814 |
+
)
|
815 |
+
(2): ModuleList(
|
816 |
+
(0): ResnetBlock(
|
817 |
+
(mlp): Sequential(
|
818 |
+
(0): SiLU()
|
819 |
+
(1): Linear(in_features=512, out_features=256, bias=True)
|
820 |
+
)
|
821 |
+
(block1): Block(
|
822 |
+
(proj): WeightStandardizedConv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
823 |
+
(norm): GroupNorm(8, 128, eps=1e-05, affine=True)
|
824 |
+
(act): SiLU()
|
825 |
+
)
|
826 |
+
(block2): Block(
|
827 |
+
(proj): WeightStandardizedConv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
828 |
+
(norm): GroupNorm(8, 128, eps=1e-05, affine=True)
|
829 |
+
(act): SiLU()
|
830 |
+
)
|
831 |
+
(res_conv): Identity()
|
832 |
+
)
|
833 |
+
(1): ResnetBlock(
|
834 |
+
(mlp): Sequential(
|
835 |
+
(0): SiLU()
|
836 |
+
(1): Linear(in_features=512, out_features=256, bias=True)
|
837 |
+
)
|
838 |
+
(block1): Block(
|
839 |
+
(proj): WeightStandardizedConv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
840 |
+
(norm): GroupNorm(8, 128, eps=1e-05, affine=True)
|
841 |
+
(act): SiLU()
|
842 |
+
)
|
843 |
+
(block2): Block(
|
844 |
+
(proj): WeightStandardizedConv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
845 |
+
(norm): GroupNorm(8, 128, eps=1e-05, affine=True)
|
846 |
+
(act): SiLU()
|
847 |
+
)
|
848 |
+
(res_conv): Identity()
|
849 |
+
)
|
850 |
+
(2): Residual(
|
851 |
+
(fn): PreNorm(
|
852 |
+
(fn): LinearAttention(
|
853 |
+
(to_qkv): Conv2d(128, 384, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
854 |
+
(to_out): Sequential(
|
855 |
+
(0): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1))
|
856 |
+
(1): LayerNorm()
|
857 |
+
)
|
858 |
+
)
|
859 |
+
(norm): LayerNorm()
|
860 |
+
)
|
861 |
+
)
|
862 |
+
(3): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
863 |
+
)
|
864 |
+
)
|
865 |
+
(ups): ModuleList(
|
866 |
+
(0): ModuleList(
|
867 |
+
(0): ResnetBlock(
|
868 |
+
(mlp): Sequential(
|
869 |
+
(0): SiLU()
|
870 |
+
(1): Linear(in_features=512, out_features=256, bias=True)
|
871 |
+
)
|
872 |
+
(block1): Block(
|
873 |
+
(proj): WeightStandardizedConv2d(256, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
874 |
+
(norm): GroupNorm(8, 128, eps=1e-05, affine=True)
|
875 |
+
(act): SiLU()
|
876 |
+
)
|
877 |
+
(block2): Block(
|
878 |
+
(proj): WeightStandardizedConv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
879 |
+
(norm): GroupNorm(8, 128, eps=1e-05, affine=True)
|
880 |
+
(act): SiLU()
|
881 |
+
)
|
882 |
+
(res_conv): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1))
|
883 |
+
)
|
884 |
+
(1): ResnetBlock(
|
885 |
+
(mlp): Sequential(
|
886 |
+
(0): SiLU()
|
887 |
+
(1): Linear(in_features=512, out_features=256, bias=True)
|
888 |
+
)
|
889 |
+
(block1): Block(
|
890 |
+
(proj): WeightStandardizedConv2d(256, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
891 |
+
(norm): GroupNorm(8, 128, eps=1e-05, affine=True)
|
892 |
+
(act): SiLU()
|
893 |
+
)
|
894 |
+
(block2): Block(
|
895 |
+
(proj): WeightStandardizedConv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
896 |
+
(norm): GroupNorm(8, 128, eps=1e-05, affine=True)
|
897 |
+
(act): SiLU()
|
898 |
+
)
|
899 |
+
(res_conv): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1))
|
900 |
+
)
|
901 |
+
(2): Residual(
|
902 |
+
(fn): PreNorm(
|
903 |
+
(fn): LinearAttention(
|
904 |
+
(to_qkv): Conv2d(128, 384, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
905 |
+
(to_out): Sequential(
|
906 |
+
(0): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1))
|
907 |
+
(1): LayerNorm()
|
908 |
+
)
|
909 |
+
)
|
910 |
+
(norm): LayerNorm()
|
911 |
+
)
|
912 |
+
)
|
913 |
+
(3): Sequential(
|
914 |
+
(0): Upsample(scale_factor=2.0, mode=nearest)
|
915 |
+
(1): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
916 |
+
)
|
917 |
+
)
|
918 |
+
(1): ModuleList(
|
919 |
+
(0): ResnetBlock(
|
920 |
+
(mlp): Sequential(
|
921 |
+
(0): SiLU()
|
922 |
+
(1): Linear(in_features=512, out_features=256, bias=True)
|
923 |
+
)
|
924 |
+
(block1): Block(
|
925 |
+
(proj): WeightStandardizedConv2d(256, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
926 |
+
(norm): GroupNorm(8, 128, eps=1e-05, affine=True)
|
927 |
+
(act): SiLU()
|
928 |
+
)
|
929 |
+
(block2): Block(
|
930 |
+
(proj): WeightStandardizedConv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
931 |
+
(norm): GroupNorm(8, 128, eps=1e-05, affine=True)
|
932 |
+
(act): SiLU()
|
933 |
+
)
|
934 |
+
(res_conv): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1))
|
935 |
+
)
|
936 |
+
(1): ResnetBlock(
|
937 |
+
(mlp): Sequential(
|
938 |
+
(0): SiLU()
|
939 |
+
(1): Linear(in_features=512, out_features=256, bias=True)
|
940 |
+
)
|
941 |
+
(block1): Block(
|
942 |
+
(proj): WeightStandardizedConv2d(256, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
943 |
+
(norm): GroupNorm(8, 128, eps=1e-05, affine=True)
|
944 |
+
(act): SiLU()
|
945 |
+
)
|
946 |
+
(block2): Block(
|
947 |
+
(proj): WeightStandardizedConv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
948 |
+
(norm): GroupNorm(8, 128, eps=1e-05, affine=True)
|
949 |
+
(act): SiLU()
|
950 |
+
)
|
951 |
+
(res_conv): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1))
|
952 |
+
)
|
953 |
+
(2): Residual(
|
954 |
+
(fn): PreNorm(
|
955 |
+
(fn): LinearAttention(
|
956 |
+
(to_qkv): Conv2d(128, 384, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
957 |
+
(to_out): Sequential(
|
958 |
+
(0): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1))
|
959 |
+
(1): LayerNorm()
|
960 |
+
)
|
961 |
+
)
|
962 |
+
(norm): LayerNorm()
|
963 |
+
)
|
964 |
+
)
|
965 |
+
(3): Sequential(
|
966 |
+
(0): Upsample(scale_factor=2.0, mode=nearest)
|
967 |
+
(1): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
968 |
+
)
|
969 |
+
)
|
970 |
+
(2): ModuleList(
|
971 |
+
(0): ResnetBlock(
|
972 |
+
(mlp): Sequential(
|
973 |
+
(0): SiLU()
|
974 |
+
(1): Linear(in_features=512, out_features=256, bias=True)
|
975 |
+
)
|
976 |
+
(block1): Block(
|
977 |
+
(proj): WeightStandardizedConv2d(256, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
978 |
+
(norm): GroupNorm(8, 128, eps=1e-05, affine=True)
|
979 |
+
(act): SiLU()
|
980 |
+
)
|
981 |
+
(block2): Block(
|
982 |
+
(proj): WeightStandardizedConv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
983 |
+
(norm): GroupNorm(8, 128, eps=1e-05, affine=True)
|
984 |
+
(act): SiLU()
|
985 |
+
)
|
986 |
+
(res_conv): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1))
|
987 |
+
)
|
988 |
+
(1): ResnetBlock(
|
989 |
+
(mlp): Sequential(
|
990 |
+
(0): SiLU()
|
991 |
+
(1): Linear(in_features=512, out_features=256, bias=True)
|
992 |
+
)
|
993 |
+
(block1): Block(
|
994 |
+
(proj): WeightStandardizedConv2d(256, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
995 |
+
(norm): GroupNorm(8, 128, eps=1e-05, affine=True)
|
996 |
+
(act): SiLU()
|
997 |
+
)
|
998 |
+
(block2): Block(
|
999 |
+
(proj): WeightStandardizedConv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
1000 |
+
(norm): GroupNorm(8, 128, eps=1e-05, affine=True)
|
1001 |
+
(act): SiLU()
|
1002 |
+
)
|
1003 |
+
(res_conv): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1))
|
1004 |
+
)
|
1005 |
+
(2): Residual(
|
1006 |
+
(fn): PreNorm(
|
1007 |
+
(fn): LinearAttention(
|
1008 |
+
(to_qkv): Conv2d(128, 384, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
1009 |
+
(to_out): Sequential(
|
1010 |
+
(0): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1))
|
1011 |
+
(1): LayerNorm()
|
1012 |
+
)
|
1013 |
+
)
|
1014 |
+
(norm): LayerNorm()
|
1015 |
+
)
|
1016 |
+
)
|
1017 |
+
(3): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
1018 |
+
)
|
1019 |
+
)
|
1020 |
+
(mid_block1): ResnetBlock(
|
1021 |
+
(mlp): Sequential(
|
1022 |
+
(0): SiLU()
|
1023 |
+
(1): Linear(in_features=512, out_features=256, bias=True)
|
1024 |
+
)
|
1025 |
+
(block1): Block(
|
1026 |
+
(proj): WeightStandardizedConv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
1027 |
+
(norm): GroupNorm(8, 128, eps=1e-05, affine=True)
|
1028 |
+
(act): SiLU()
|
1029 |
+
)
|
1030 |
+
(block2): Block(
|
1031 |
+
(proj): WeightStandardizedConv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
1032 |
+
(norm): GroupNorm(8, 128, eps=1e-05, affine=True)
|
1033 |
+
(act): SiLU()
|
1034 |
+
)
|
1035 |
+
(res_conv): Identity()
|
1036 |
+
)
|
1037 |
+
(mid_attn): Residual(
|
1038 |
+
(fn): PreNorm(
|
1039 |
+
(fn): Attention(
|
1040 |
+
(to_qkv): Conv2d(128, 384, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
1041 |
+
(to_out): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1))
|
1042 |
+
)
|
1043 |
+
(norm): LayerNorm()
|
1044 |
+
)
|
1045 |
+
)
|
1046 |
+
(mid_block2): ResnetBlock(
|
1047 |
+
(mlp): Sequential(
|
1048 |
+
(0): SiLU()
|
1049 |
+
(1): Linear(in_features=512, out_features=256, bias=True)
|
1050 |
+
)
|
1051 |
+
(block1): Block(
|
1052 |
+
(proj): WeightStandardizedConv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
1053 |
+
(norm): GroupNorm(8, 128, eps=1e-05, affine=True)
|
1054 |
+
(act): SiLU()
|
1055 |
+
)
|
1056 |
+
(block2): Block(
|
1057 |
+
(proj): WeightStandardizedConv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
1058 |
+
(norm): GroupNorm(8, 128, eps=1e-05, affine=True)
|
1059 |
+
(act): SiLU()
|
1060 |
+
)
|
1061 |
+
(res_conv): Identity()
|
1062 |
+
)
|
1063 |
+
(final_res_block): ResnetBlock(
|
1064 |
+
(mlp): Sequential(
|
1065 |
+
(0): SiLU()
|
1066 |
+
(1): Linear(in_features=512, out_features=256, bias=True)
|
1067 |
+
)
|
1068 |
+
(block1): Block(
|
1069 |
+
(proj): WeightStandardizedConv2d(256, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
1070 |
+
(norm): GroupNorm(8, 128, eps=1e-05, affine=True)
|
1071 |
+
(act): SiLU()
|
1072 |
+
)
|
1073 |
+
(block2): Block(
|
1074 |
+
(proj): WeightStandardizedConv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
1075 |
+
(norm): GroupNorm(8, 128, eps=1e-05, affine=True)
|
1076 |
+
(act): SiLU()
|
1077 |
+
)
|
1078 |
+
(res_conv): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1))
|
1079 |
+
)
|
1080 |
+
(final_conv): Conv2d(128, 256, kernel_size=(1, 1), stride=(1, 1))
|
1081 |
+
)
|
1082 |
+
(conv_seg_new): Conv2d(256, 151, kernel_size=(1, 1), stride=(1, 1))
|
1083 |
+
(embed): Embedding(151, 16)
|
1084 |
+
)
|
1085 |
+
init_cfg={'type': 'Pretrained', 'checkpoint': 'pretrained/segformer_mit-b2_512x512_160k_ade20k_20220620_114047-64e4feca.pth'}
|
1086 |
+
)
|
1087 |
+
2023-03-04 19:03:28,858 - mmseg - INFO - Loaded 20210 images
|
1088 |
+
2023-03-04 19:03:29,858 - mmseg - INFO - Loaded 2000 images
|
1089 |
+
2023-03-04 19:03:29,859 - mmseg - INFO - load checkpoint from local path: ./work_dirs2/ablation_segformer_mit_b2_segformer_head_unet_fc_single_step_ade_pretrained_freeze_embed_80k_ade20k151_logits/latest.pth
|
1090 |
+
2023-03-04 19:03:30,494 - mmseg - INFO - resumed from epoch: 13, iter 7999
|
1091 |
+
2023-03-04 19:03:30,496 - mmseg - INFO - Start running, host: laizeqiang@SH-IDC1-10-140-37-114, work_dir: /mnt/petrelfs/laizeqiang/mmseg-baseline/work_dirs2/ablation_segformer_mit_b2_segformer_head_unet_fc_single_step_ade_pretrained_freeze_embed_80k_ade20k151_logits
|
1092 |
+
2023-03-04 19:03:30,496 - mmseg - INFO - Hooks will be executed in the following order:
|
1093 |
+
before_run:
|
1094 |
+
(VERY_HIGH ) StepLrUpdaterHook
|
1095 |
+
(NORMAL ) CheckpointHook
|
1096 |
+
(LOW ) DistEvalHook
|
1097 |
+
(VERY_LOW ) TextLoggerHook
|
1098 |
+
--------------------
|
1099 |
+
before_train_epoch:
|
1100 |
+
(VERY_HIGH ) StepLrUpdaterHook
|
1101 |
+
(LOW ) IterTimerHook
|
1102 |
+
(LOW ) DistEvalHook
|
1103 |
+
(VERY_LOW ) TextLoggerHook
|
1104 |
+
--------------------
|
1105 |
+
before_train_iter:
|
1106 |
+
(VERY_HIGH ) StepLrUpdaterHook
|
1107 |
+
(LOW ) IterTimerHook
|
1108 |
+
(LOW ) DistEvalHook
|
1109 |
+
--------------------
|
1110 |
+
after_train_iter:
|
1111 |
+
(ABOVE_NORMAL) OptimizerHook
|
1112 |
+
(NORMAL ) CheckpointHook
|
1113 |
+
(LOW ) IterTimerHook
|
1114 |
+
(LOW ) DistEvalHook
|
1115 |
+
(VERY_LOW ) TextLoggerHook
|
1116 |
+
--------------------
|
1117 |
+
after_train_epoch:
|
1118 |
+
(NORMAL ) CheckpointHook
|
1119 |
+
(LOW ) DistEvalHook
|
1120 |
+
(VERY_LOW ) TextLoggerHook
|
1121 |
+
--------------------
|
1122 |
+
before_val_epoch:
|
1123 |
+
(LOW ) IterTimerHook
|
1124 |
+
(VERY_LOW ) TextLoggerHook
|
1125 |
+
--------------------
|
1126 |
+
before_val_iter:
|
1127 |
+
(LOW ) IterTimerHook
|
1128 |
+
--------------------
|
1129 |
+
after_val_iter:
|
1130 |
+
(LOW ) IterTimerHook
|
1131 |
+
--------------------
|
1132 |
+
after_val_epoch:
|
1133 |
+
(VERY_LOW ) TextLoggerHook
|
1134 |
+
--------------------
|
1135 |
+
after_run:
|
1136 |
+
(VERY_LOW ) TextLoggerHook
|
1137 |
+
--------------------
|
1138 |
+
2023-03-04 19:03:30,496 - mmseg - INFO - workflow: [('train', 1)], max: 80000 iters
|
1139 |
+
2023-03-04 19:03:30,496 - mmseg - INFO - Checkpoints will be saved to /mnt/petrelfs/laizeqiang/mmseg-baseline/work_dirs2/ablation_segformer_mit_b2_segformer_head_unet_fc_single_step_ade_pretrained_freeze_embed_80k_ade20k151_logits by HardDiskBackend.
|
ablation/ablation_segformer_mit_b2_segformer_head_unet_fc_single_step_ade_pretrained_freeze_embed_80k_ade20k151_logits/20230304_190322.log.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"env_info": "sys.platform: linux\nPython: 3.7.16 (default, Jan 17 2023, 22:20:44) [GCC 11.2.0]\nCUDA available: True\nGPU 0,1,2,3,4,5,6,7: NVIDIA A100-SXM4-80GB\nCUDA_HOME: /mnt/petrelfs/laizeqiang/miniconda3/envs/torch\nNVCC: Cuda compilation tools, release 11.6, V11.6.124\nGCC: gcc (GCC) 4.8.5 20150623 (Red Hat 4.8.5-44)\nPyTorch: 1.13.1\nPyTorch compiling details: PyTorch built with:\n - GCC 9.3\n - C++ Version: 201402\n - Intel(R) oneAPI Math Kernel Library Version 2021.4-Product Build 20210904 for Intel(R) 64 architecture applications\n - Intel(R) MKL-DNN v2.6.0 (Git Hash 52b5f107dd9cf10910aaa19cb47f3abf9b349815)\n - OpenMP 201511 (a.k.a. OpenMP 4.5)\n - LAPACK is enabled (usually provided by MKL)\n - NNPACK is enabled\n - CPU capability usage: AVX2\n - CUDA Runtime 11.6\n - NVCC architecture flags: -gencode;arch=compute_37,code=sm_37;-gencode;arch=compute_50,code=sm_50;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_61,code=sm_61;-gencode;arch=compute_70,code=sm_70;-gencode;arch=compute_75,code=sm_75;-gencode;arch=compute_80,code=sm_80;-gencode;arch=compute_86,code=sm_86;-gencode;arch=compute_37,code=compute_37\n - CuDNN 8.3.2 (built against CUDA 11.5)\n - Magma 2.6.1\n - Build settings: BLAS_INFO=mkl, BUILD_TYPE=Release, CUDA_VERSION=11.6, CUDNN_VERSION=8.3.2, CXX_COMPILER=/opt/rh/devtoolset-9/root/usr/bin/c++, CXX_FLAGS= -fabi-version=11 -Wno-deprecated -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -fopenmp -DNDEBUG -DUSE_KINETO -DUSE_FBGEMM -DUSE_QNNPACK -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE -DEDGE_PROFILER_USE_KINETO -O2 -fPIC -Wno-narrowing -Wall -Wextra -Werror=return-type -Werror=non-virtual-dtor -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wunused-local-typedefs -Wno-unused-parameter -Wno-unused-function -Wno-unused-result -Wno-strict-overflow -Wno-strict-aliasing -Wno-error=deprecated-declarations -Wno-stringop-overflow -Wno-psabi -Wno-error=pedantic -Wno-error=redundant-decls -Wno-error=old-style-cast -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Werror=cast-function-type -Wno-stringop-overflow, LAPACK_INFO=mkl, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, PERF_WITH_AVX512=1, TORCH_VERSION=1.13.1, USE_CUDA=ON, USE_CUDNN=ON, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_MKL=ON, USE_MKLDNN=ON, USE_MPI=OFF, USE_NCCL=ON, USE_NNPACK=ON, USE_OPENMP=ON, USE_ROCM=OFF, \n\nTorchVision: 0.14.1\nOpenCV: 4.7.0\nMMCV: 1.7.1\nMMCV Compiler: GCC 9.3\nMMCV CUDA Compiler: 11.6\nMMSegmentation: 0.30.0+6749699", "seed": 1480177113, "exp_name": "ablation_segformer_mit_b2_segformer_head_unet_fc_single_step_ade_pretrained_freeze_embed_80k_ade20k151_logits.py", "mmseg_version": "0.30.0+6749699", "config": "norm_cfg = dict(type='SyncBN', requires_grad=True)\ncheckpoint = 'pretrained/segformer_mit-b2_512x512_160k_ade20k_20220620_114047-64e4feca.pth'\nmodel = dict(\n type='EncoderDecoderFreeze',\n freeze_parameters=['backbone', 'decode_head'],\n pretrained=\n 'pretrained/segformer_mit-b2_512x512_160k_ade20k_20220620_114047-64e4feca.pth',\n backbone=dict(\n type='MixVisionTransformerCustomInitWeights',\n in_channels=3,\n embed_dims=64,\n num_stages=4,\n num_layers=[3, 4, 6, 3],\n num_heads=[1, 2, 5, 8],\n patch_sizes=[7, 3, 3, 3],\n sr_ratios=[8, 4, 2, 1],\n out_indices=(0, 1, 2, 3),\n mlp_ratio=4,\n qkv_bias=True,\n drop_rate=0.0,\n attn_drop_rate=0.0,\n drop_path_rate=0.1,\n pretrained=\n 'pretrained/segformer_mit-b2_512x512_160k_ade20k_20220620_114047-64e4feca.pth'\n ),\n decode_head=dict(\n type='SegformerHeadUnetFCHeadSingleStepLogits',\n pretrained=\n 'pretrained/segformer_mit-b2_512x512_160k_ade20k_20220620_114047-64e4feca.pth',\n dim=128,\n out_dim=256,\n unet_channels=166,\n dim_mults=[1, 1, 1],\n cat_embedding_dim=16,\n in_channels=[64, 128, 320, 512],\n in_index=[0, 1, 2, 3],\n channels=256,\n dropout_ratio=0.1,\n num_classes=151,\n norm_cfg=dict(type='SyncBN', requires_grad=True),\n align_corners=False,\n ignore_index=0,\n loss_decode=dict(\n type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)),\n train_cfg=dict(),\n test_cfg=dict(mode='whole'))\ndataset_type = 'ADE20K151Dataset'\ndata_root = 'data/ade/ADEChallengeData2016'\nimg_norm_cfg = dict(\n mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)\ncrop_size = (512, 512)\ntrain_pipeline = [\n dict(type='LoadImageFromFile'),\n dict(type='LoadAnnotations', reduce_zero_label=False),\n dict(type='Resize', img_scale=(2048, 512), ratio_range=(0.5, 2.0)),\n dict(type='RandomCrop', crop_size=(512, 512), cat_max_ratio=0.75),\n dict(type='RandomFlip', prob=0.5),\n dict(type='PhotoMetricDistortion'),\n dict(\n type='Normalize',\n mean=[123.675, 116.28, 103.53],\n std=[58.395, 57.12, 57.375],\n to_rgb=True),\n dict(type='Pad', size=(512, 512), pad_val=0, seg_pad_val=0),\n dict(type='DefaultFormatBundle'),\n dict(type='Collect', keys=['img', 'gt_semantic_seg'])\n]\ntest_pipeline = [\n dict(type='LoadImageFromFile'),\n dict(\n type='MultiScaleFlipAug',\n img_scale=(2048, 512),\n flip=False,\n transforms=[\n dict(type='Resize', keep_ratio=True),\n dict(type='RandomFlip'),\n dict(\n type='Normalize',\n mean=[123.675, 116.28, 103.53],\n std=[58.395, 57.12, 57.375],\n to_rgb=True),\n dict(type='Pad', size_divisor=16, pad_val=0, seg_pad_val=0),\n dict(type='ImageToTensor', keys=['img']),\n dict(type='Collect', keys=['img'])\n ])\n]\ndata = dict(\n samples_per_gpu=4,\n workers_per_gpu=4,\n train=dict(\n type='ADE20K151Dataset',\n data_root='data/ade/ADEChallengeData2016',\n img_dir='images/training',\n ann_dir='annotations/training',\n pipeline=[\n dict(type='LoadImageFromFile'),\n dict(type='LoadAnnotations', reduce_zero_label=False),\n dict(type='Resize', img_scale=(2048, 512), ratio_range=(0.5, 2.0)),\n dict(type='RandomCrop', crop_size=(512, 512), cat_max_ratio=0.75),\n dict(type='RandomFlip', prob=0.5),\n dict(type='PhotoMetricDistortion'),\n dict(\n type='Normalize',\n mean=[123.675, 116.28, 103.53],\n std=[58.395, 57.12, 57.375],\n to_rgb=True),\n dict(type='Pad', size=(512, 512), pad_val=0, seg_pad_val=0),\n dict(type='DefaultFormatBundle'),\n dict(type='Collect', keys=['img', 'gt_semantic_seg'])\n ]),\n val=dict(\n type='ADE20K151Dataset',\n data_root='data/ade/ADEChallengeData2016',\n img_dir='images/validation',\n ann_dir='annotations/validation',\n pipeline=[\n dict(type='LoadImageFromFile'),\n dict(\n type='MultiScaleFlipAug',\n img_scale=(2048, 512),\n flip=False,\n transforms=[\n dict(type='Resize', keep_ratio=True),\n dict(type='RandomFlip'),\n dict(\n type='Normalize',\n mean=[123.675, 116.28, 103.53],\n std=[58.395, 57.12, 57.375],\n to_rgb=True),\n dict(\n type='Pad', size_divisor=16, pad_val=0, seg_pad_val=0),\n dict(type='ImageToTensor', keys=['img']),\n dict(type='Collect', keys=['img'])\n ])\n ]),\n test=dict(\n type='ADE20K151Dataset',\n data_root='data/ade/ADEChallengeData2016',\n img_dir='images/validation',\n ann_dir='annotations/validation',\n pipeline=[\n dict(type='LoadImageFromFile'),\n dict(\n type='MultiScaleFlipAug',\n img_scale=(2048, 512),\n flip=False,\n transforms=[\n dict(type='Resize', keep_ratio=True),\n dict(type='RandomFlip'),\n dict(\n type='Normalize',\n mean=[123.675, 116.28, 103.53],\n std=[58.395, 57.12, 57.375],\n to_rgb=True),\n dict(\n type='Pad', size_divisor=16, pad_val=0, seg_pad_val=0),\n dict(type='ImageToTensor', keys=['img']),\n dict(type='Collect', keys=['img'])\n ])\n ]))\nlog_config = dict(\n interval=50, hooks=[dict(type='TextLoggerHook', by_epoch=False)])\ndist_params = dict(backend='nccl')\nlog_level = 'INFO'\nload_from = None\nresume_from = None\nworkflow = [('train', 1)]\ncudnn_benchmark = True\noptimizer = dict(\n type='AdamW', lr=0.00015, betas=[0.9, 0.96], weight_decay=0.045)\noptimizer_config = dict()\nlr_config = dict(\n policy='step',\n warmup='linear',\n warmup_iters=1000,\n warmup_ratio=1e-06,\n step=10000,\n gamma=0.5,\n min_lr=1e-06,\n by_epoch=False)\nrunner = dict(type='IterBasedRunner', max_iters=80000)\ncheckpoint_config = dict(by_epoch=False, interval=8000)\nevaluation = dict(\n interval=8000, metric='mIoU', pre_eval=True, save_best='mIoU')\nwork_dir = './work_dirs2/ablation_segformer_mit_b2_segformer_head_unet_fc_single_step_ade_pretrained_freeze_embed_80k_ade20k151_logits'\ngpu_ids = range(0, 8)\nauto_resume = True\ndevice = 'cuda'\nseed = 1480177113\n", "CLASSES": ["background", "wall", "building", "sky", "floor", "tree", "ceiling", "road", "bed ", "windowpane", "grass", "cabinet", "sidewalk", "person", "earth", "door", "table", "mountain", "plant", "curtain", "chair", "car", "water", "painting", "sofa", "shelf", "house", "sea", "mirror", "rug", "field", "armchair", "seat", "fence", "desk", "rock", "wardrobe", "lamp", "bathtub", "railing", "cushion", "base", "box", "column", "signboard", "chest of drawers", "counter", "sand", "sink", "skyscraper", "fireplace", "refrigerator", "grandstand", "path", "stairs", "runway", "case", "pool table", "pillow", "screen door", "stairway", "river", "bridge", "bookcase", "blind", "coffee table", "toilet", "flower", "book", "hill", "bench", "countertop", "stove", "palm", "kitchen island", "computer", "swivel chair", "boat", "bar", "arcade machine", "hovel", "bus", "towel", "light", "truck", "tower", "chandelier", "awning", "streetlight", "booth", "television receiver", "airplane", "dirt track", "apparel", "pole", "land", "bannister", "escalator", "ottoman", "bottle", "buffet", "poster", "stage", "van", "ship", "fountain", "conveyer belt", "canopy", "washer", "plaything", "swimming pool", "stool", "barrel", "basket", "waterfall", "tent", "bag", "minibike", "cradle", "oven", "ball", "food", "step", "tank", "trade name", "microwave", "pot", "animal", "bicycle", "lake", "dishwasher", "screen", "blanket", "sculpture", "hood", "sconce", "vase", "traffic light", "tray", "ashcan", "fan", "pier", "crt screen", "plate", "monitor", "bulletin board", "shower", "radiator", "glass", "clock", "flag"], "PALETTE": [[0, 0, 0], [120, 120, 120], [180, 120, 120], [6, 230, 230], [80, 50, 50], [4, 200, 3], [120, 120, 80], [140, 140, 140], [204, 5, 255], [230, 230, 230], [4, 250, 7], [224, 5, 255], [235, 255, 7], [150, 5, 61], [120, 120, 70], [8, 255, 51], [255, 6, 82], [143, 255, 140], [204, 255, 4], [255, 51, 7], [204, 70, 3], [0, 102, 200], [61, 230, 250], [255, 6, 51], [11, 102, 255], [255, 7, 71], [255, 9, 224], [9, 7, 230], [220, 220, 220], [255, 9, 92], [112, 9, 255], [8, 255, 214], [7, 255, 224], [255, 184, 6], [10, 255, 71], [255, 41, 10], [7, 255, 255], [224, 255, 8], [102, 8, 255], [255, 61, 6], [255, 194, 7], [255, 122, 8], [0, 255, 20], [255, 8, 41], [255, 5, 153], [6, 51, 255], [235, 12, 255], [160, 150, 20], [0, 163, 255], [140, 140, 140], [250, 10, 15], [20, 255, 0], [31, 255, 0], [255, 31, 0], [255, 224, 0], [153, 255, 0], [0, 0, 255], [255, 71, 0], [0, 235, 255], [0, 173, 255], [31, 0, 255], [11, 200, 200], [255, 82, 0], [0, 255, 245], [0, 61, 255], [0, 255, 112], [0, 255, 133], [255, 0, 0], [255, 163, 0], [255, 102, 0], [194, 255, 0], [0, 143, 255], [51, 255, 0], [0, 82, 255], [0, 255, 41], [0, 255, 173], [10, 0, 255], [173, 255, 0], [0, 255, 153], [255, 92, 0], [255, 0, 255], [255, 0, 245], [255, 0, 102], [255, 173, 0], [255, 0, 20], [255, 184, 184], [0, 31, 255], [0, 255, 61], [0, 71, 255], [255, 0, 204], [0, 255, 194], [0, 255, 82], [0, 10, 255], [0, 112, 255], [51, 0, 255], [0, 194, 255], [0, 122, 255], [0, 255, 163], [255, 153, 0], [0, 255, 10], [255, 112, 0], [143, 255, 0], [82, 0, 255], [163, 255, 0], [255, 235, 0], [8, 184, 170], [133, 0, 255], [0, 255, 92], [184, 0, 255], [255, 0, 31], [0, 184, 255], [0, 214, 255], [255, 0, 112], [92, 255, 0], [0, 224, 255], [112, 224, 255], [70, 184, 160], [163, 0, 255], [153, 0, 255], [71, 255, 0], [255, 0, 163], [255, 204, 0], [255, 0, 143], [0, 255, 235], [133, 255, 0], [255, 0, 235], [245, 0, 255], [255, 0, 122], [255, 245, 0], [10, 190, 212], [214, 255, 0], [0, 204, 255], [20, 0, 255], [255, 255, 0], [0, 153, 255], [0, 41, 255], [0, 255, 204], [41, 0, 255], [41, 255, 0], [173, 0, 255], [0, 245, 255], [71, 0, 255], [122, 0, 255], [0, 255, 184], [0, 92, 255], [184, 255, 0], [0, 133, 255], [255, 214, 0], [25, 194, 194], [102, 255, 0], [92, 0, 255]], "hook_msgs": {}}
|
ablation/ablation_segformer_mit_b2_segformer_head_unet_fc_single_step_ade_pretrained_freeze_embed_80k_ade20k151_logits/20230304_211228.log
ADDED
The diff for this file is too large to render.
See raw diff
|
|
ablation/ablation_segformer_mit_b2_segformer_head_unet_fc_single_step_ade_pretrained_freeze_embed_80k_ade20k151_logits/20230304_211228.log.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
ablation/ablation_segformer_mit_b2_segformer_head_unet_fc_single_step_ade_pretrained_freeze_embed_80k_ade20k151_logits/ablation_segformer_mit_b2_segformer_head_unet_fc_single_step_ade_pretrained_freeze_embed_80k_ade20k151_logits.py
ADDED
@@ -0,0 +1,184 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
norm_cfg = dict(type='SyncBN', requires_grad=True)
|
2 |
+
checkpoint = 'pretrained/segformer_mit-b2_512x512_160k_ade20k_20220620_114047-64e4feca.pth'
|
3 |
+
model = dict(
|
4 |
+
type='EncoderDecoderFreeze',
|
5 |
+
freeze_parameters=['backbone', 'decode_head'],
|
6 |
+
pretrained=
|
7 |
+
'pretrained/segformer_mit-b2_512x512_160k_ade20k_20220620_114047-64e4feca.pth',
|
8 |
+
backbone=dict(
|
9 |
+
type='MixVisionTransformerCustomInitWeights',
|
10 |
+
in_channels=3,
|
11 |
+
embed_dims=64,
|
12 |
+
num_stages=4,
|
13 |
+
num_layers=[3, 4, 6, 3],
|
14 |
+
num_heads=[1, 2, 5, 8],
|
15 |
+
patch_sizes=[7, 3, 3, 3],
|
16 |
+
sr_ratios=[8, 4, 2, 1],
|
17 |
+
out_indices=(0, 1, 2, 3),
|
18 |
+
mlp_ratio=4,
|
19 |
+
qkv_bias=True,
|
20 |
+
drop_rate=0.0,
|
21 |
+
attn_drop_rate=0.0,
|
22 |
+
drop_path_rate=0.1),
|
23 |
+
decode_head=dict(
|
24 |
+
type='SegformerHeadUnetFCHeadSingleStepLogits',
|
25 |
+
pretrained=
|
26 |
+
'pretrained/segformer_mit-b2_512x512_160k_ade20k_20220620_114047-64e4feca.pth',
|
27 |
+
dim=128,
|
28 |
+
out_dim=256,
|
29 |
+
unet_channels=166,
|
30 |
+
dim_mults=[1, 1, 1],
|
31 |
+
cat_embedding_dim=16,
|
32 |
+
in_channels=[64, 128, 320, 512],
|
33 |
+
in_index=[0, 1, 2, 3],
|
34 |
+
channels=256,
|
35 |
+
dropout_ratio=0.1,
|
36 |
+
num_classes=151,
|
37 |
+
norm_cfg=dict(type='SyncBN', requires_grad=True),
|
38 |
+
align_corners=False,
|
39 |
+
ignore_index=0,
|
40 |
+
loss_decode=dict(
|
41 |
+
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)),
|
42 |
+
train_cfg=dict(),
|
43 |
+
test_cfg=dict(mode='whole'))
|
44 |
+
dataset_type = 'ADE20K151Dataset'
|
45 |
+
data_root = 'data/ade/ADEChallengeData2016'
|
46 |
+
img_norm_cfg = dict(
|
47 |
+
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
|
48 |
+
crop_size = (512, 512)
|
49 |
+
train_pipeline = [
|
50 |
+
dict(type='LoadImageFromFile'),
|
51 |
+
dict(type='LoadAnnotations', reduce_zero_label=False),
|
52 |
+
dict(type='Resize', img_scale=(2048, 512), ratio_range=(0.5, 2.0)),
|
53 |
+
dict(type='RandomCrop', crop_size=(512, 512), cat_max_ratio=0.75),
|
54 |
+
dict(type='RandomFlip', prob=0.5),
|
55 |
+
dict(type='PhotoMetricDistortion'),
|
56 |
+
dict(
|
57 |
+
type='Normalize',
|
58 |
+
mean=[123.675, 116.28, 103.53],
|
59 |
+
std=[58.395, 57.12, 57.375],
|
60 |
+
to_rgb=True),
|
61 |
+
dict(type='Pad', size=(512, 512), pad_val=0, seg_pad_val=0),
|
62 |
+
dict(type='DefaultFormatBundle'),
|
63 |
+
dict(type='Collect', keys=['img', 'gt_semantic_seg'])
|
64 |
+
]
|
65 |
+
test_pipeline = [
|
66 |
+
dict(type='LoadImageFromFile'),
|
67 |
+
dict(
|
68 |
+
type='MultiScaleFlipAug',
|
69 |
+
img_scale=(2048, 512),
|
70 |
+
flip=False,
|
71 |
+
transforms=[
|
72 |
+
dict(type='Resize', keep_ratio=True),
|
73 |
+
dict(type='RandomFlip'),
|
74 |
+
dict(
|
75 |
+
type='Normalize',
|
76 |
+
mean=[123.675, 116.28, 103.53],
|
77 |
+
std=[58.395, 57.12, 57.375],
|
78 |
+
to_rgb=True),
|
79 |
+
dict(type='Pad', size_divisor=16, pad_val=0, seg_pad_val=0),
|
80 |
+
dict(type='ImageToTensor', keys=['img']),
|
81 |
+
dict(type='Collect', keys=['img'])
|
82 |
+
])
|
83 |
+
]
|
84 |
+
data = dict(
|
85 |
+
samples_per_gpu=4,
|
86 |
+
workers_per_gpu=4,
|
87 |
+
train=dict(
|
88 |
+
type='ADE20K151Dataset',
|
89 |
+
data_root='data/ade/ADEChallengeData2016',
|
90 |
+
img_dir='images/training',
|
91 |
+
ann_dir='annotations/training',
|
92 |
+
pipeline=[
|
93 |
+
dict(type='LoadImageFromFile'),
|
94 |
+
dict(type='LoadAnnotations', reduce_zero_label=False),
|
95 |
+
dict(type='Resize', img_scale=(2048, 512), ratio_range=(0.5, 2.0)),
|
96 |
+
dict(type='RandomCrop', crop_size=(512, 512), cat_max_ratio=0.75),
|
97 |
+
dict(type='RandomFlip', prob=0.5),
|
98 |
+
dict(type='PhotoMetricDistortion'),
|
99 |
+
dict(
|
100 |
+
type='Normalize',
|
101 |
+
mean=[123.675, 116.28, 103.53],
|
102 |
+
std=[58.395, 57.12, 57.375],
|
103 |
+
to_rgb=True),
|
104 |
+
dict(type='Pad', size=(512, 512), pad_val=0, seg_pad_val=0),
|
105 |
+
dict(type='DefaultFormatBundle'),
|
106 |
+
dict(type='Collect', keys=['img', 'gt_semantic_seg'])
|
107 |
+
]),
|
108 |
+
val=dict(
|
109 |
+
type='ADE20K151Dataset',
|
110 |
+
data_root='data/ade/ADEChallengeData2016',
|
111 |
+
img_dir='images/validation',
|
112 |
+
ann_dir='annotations/validation',
|
113 |
+
pipeline=[
|
114 |
+
dict(type='LoadImageFromFile'),
|
115 |
+
dict(
|
116 |
+
type='MultiScaleFlipAug',
|
117 |
+
img_scale=(2048, 512),
|
118 |
+
flip=False,
|
119 |
+
transforms=[
|
120 |
+
dict(type='Resize', keep_ratio=True),
|
121 |
+
dict(type='RandomFlip'),
|
122 |
+
dict(
|
123 |
+
type='Normalize',
|
124 |
+
mean=[123.675, 116.28, 103.53],
|
125 |
+
std=[58.395, 57.12, 57.375],
|
126 |
+
to_rgb=True),
|
127 |
+
dict(
|
128 |
+
type='Pad', size_divisor=16, pad_val=0, seg_pad_val=0),
|
129 |
+
dict(type='ImageToTensor', keys=['img']),
|
130 |
+
dict(type='Collect', keys=['img'])
|
131 |
+
])
|
132 |
+
]),
|
133 |
+
test=dict(
|
134 |
+
type='ADE20K151Dataset',
|
135 |
+
data_root='data/ade/ADEChallengeData2016',
|
136 |
+
img_dir='images/validation',
|
137 |
+
ann_dir='annotations/validation',
|
138 |
+
pipeline=[
|
139 |
+
dict(type='LoadImageFromFile'),
|
140 |
+
dict(
|
141 |
+
type='MultiScaleFlipAug',
|
142 |
+
img_scale=(2048, 512),
|
143 |
+
flip=False,
|
144 |
+
transforms=[
|
145 |
+
dict(type='Resize', keep_ratio=True),
|
146 |
+
dict(type='RandomFlip'),
|
147 |
+
dict(
|
148 |
+
type='Normalize',
|
149 |
+
mean=[123.675, 116.28, 103.53],
|
150 |
+
std=[58.395, 57.12, 57.375],
|
151 |
+
to_rgb=True),
|
152 |
+
dict(
|
153 |
+
type='Pad', size_divisor=16, pad_val=0, seg_pad_val=0),
|
154 |
+
dict(type='ImageToTensor', keys=['img']),
|
155 |
+
dict(type='Collect', keys=['img'])
|
156 |
+
])
|
157 |
+
]))
|
158 |
+
log_config = dict(
|
159 |
+
interval=50, hooks=[dict(type='TextLoggerHook', by_epoch=False)])
|
160 |
+
dist_params = dict(backend='nccl')
|
161 |
+
log_level = 'INFO'
|
162 |
+
load_from = None
|
163 |
+
resume_from = None
|
164 |
+
workflow = [('train', 1)]
|
165 |
+
cudnn_benchmark = True
|
166 |
+
optimizer = dict(
|
167 |
+
type='AdamW', lr=0.00015, betas=[0.9, 0.96], weight_decay=0.045)
|
168 |
+
optimizer_config = dict()
|
169 |
+
lr_config = dict(
|
170 |
+
policy='step',
|
171 |
+
warmup='linear',
|
172 |
+
warmup_iters=1000,
|
173 |
+
warmup_ratio=1e-06,
|
174 |
+
step=10000,
|
175 |
+
gamma=0.5,
|
176 |
+
min_lr=1e-06,
|
177 |
+
by_epoch=False)
|
178 |
+
runner = dict(type='IterBasedRunner', max_iters=80000)
|
179 |
+
checkpoint_config = dict(by_epoch=False, interval=8000)
|
180 |
+
evaluation = dict(
|
181 |
+
interval=8000, metric='mIoU', pre_eval=True, save_best='mIoU')
|
182 |
+
work_dir = './work_dirs2/ablation_segformer_mit_b2_segformer_head_unet_fc_single_step_ade_pretrained_freeze_embed_80k_ade20k151_logits'
|
183 |
+
gpu_ids = range(0, 8)
|
184 |
+
auto_resume = True
|
ablation/ablation_segformer_mit_b2_segformer_head_unet_fc_single_step_ade_pretrained_freeze_embed_80k_ade20k151_logits/best_mIoU_iter_72000.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dd124854833d3fc6ae7e9bebd9cd5f44f52b356d910c3636420abfb59c287ac2
|
3 |
+
size 227725084
|
ablation/ablation_segformer_mit_b2_segformer_head_unet_fc_single_step_ade_pretrained_freeze_embed_80k_ade20k151_logits/iter_16000.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2f049b01364b5f98b74b11cdd8da2a822c43f907429f22e65833516119b27227
|
3 |
+
size 227725084
|
ablation/ablation_segformer_mit_b2_segformer_head_unet_fc_single_step_ade_pretrained_freeze_embed_80k_ade20k151_logits/iter_24000.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9bc558779cba0cb559853e558a4e3807455668b4a4b75cae67985c5090052e19
|
3 |
+
size 227725084
|
ablation/ablation_segformer_mit_b2_segformer_head_unet_fc_single_step_ade_pretrained_freeze_embed_80k_ade20k151_logits/iter_32000.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:126f85ffef4d1ca315447b2f44f3b2392a6957a63c6d8c7c44f537fe558085c1
|
3 |
+
size 227725084
|
ablation/ablation_segformer_mit_b2_segformer_head_unet_fc_single_step_ade_pretrained_freeze_embed_80k_ade20k151_logits/iter_40000.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d2a1744562fc230053f45aa4f72a8c66bc1ecfa943ea5c7e3ad0275b6019ca55
|
3 |
+
size 227725084
|
ablation/ablation_segformer_mit_b2_segformer_head_unet_fc_single_step_ade_pretrained_freeze_embed_80k_ade20k151_logits/iter_48000.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:513e0b4afde17af815906fb34ba17e59e0b0c5806b3a7afb0a470406f5ea7cb4
|
3 |
+
size 227725084
|
ablation/ablation_segformer_mit_b2_segformer_head_unet_fc_single_step_ade_pretrained_freeze_embed_80k_ade20k151_logits/iter_56000.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:798e0514054aac62f2a077252794ccb936572c2017ed5cd1ec98ff4576acecee
|
3 |
+
size 227725084
|
ablation/ablation_segformer_mit_b2_segformer_head_unet_fc_single_step_ade_pretrained_freeze_embed_80k_ade20k151_logits/iter_64000.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f1a02a98200eaa06575a1502e5da9c2523750268d07cb712a8bf14305e0c20c6
|
3 |
+
size 227725084
|
ablation/ablation_segformer_mit_b2_segformer_head_unet_fc_single_step_ade_pretrained_freeze_embed_80k_ade20k151_logits/iter_72000.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:72cdcc0410e7f0e9eadb7a993d874da8207eb8df86a67afca7bc34a37523c3c7
|
3 |
+
size 227725084
|
ablation/ablation_segformer_mit_b2_segformer_head_unet_fc_single_step_ade_pretrained_freeze_embed_80k_ade20k151_logits/iter_8000.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:276c86afdb00e16ac411fb2392aaa4c1ae96a0723072f21bec023394f86f4415
|
3 |
+
size 227724444
|
ablation/ablation_segformer_mit_b2_segformer_head_unet_fc_single_step_ade_pretrained_freeze_embed_80k_ade20k151_logits/iter_80000.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8ffe6453b32f3af928bbda5aed4bb23c23a6368d6e82f5e8ab5bb3fb7f185bf4
|
3 |
+
size 227725084
|
ablation/ablation_segformer_mit_b2_segformer_head_unet_fc_single_step_ade_pretrained_freeze_embed_80k_ade20k151_logits/latest.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8ffe6453b32f3af928bbda5aed4bb23c23a6368d6e82f5e8ab5bb3fb7f185bf4
|
3 |
+
size 227725084
|
ablation/ablation_segformer_mit_b2_segformer_head_unet_fc_single_step_ade_pretrained_freeze_embed_80k_ade20k151_mask/20230304_103602.log
ADDED
@@ -0,0 +1,1151 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2023-03-04 10:36:02,337 - mmseg - INFO - Multi-processing start method is `None`
|
2 |
+
2023-03-04 10:36:02,353 - mmseg - INFO - OpenCV num_threads is `128
|
3 |
+
2023-03-04 10:36:02,353 - mmseg - INFO - OMP num threads is 1
|
4 |
+
2023-03-04 10:36:02,407 - mmseg - INFO - Environment info:
|
5 |
+
------------------------------------------------------------
|
6 |
+
sys.platform: linux
|
7 |
+
Python: 3.7.16 (default, Jan 17 2023, 22:20:44) [GCC 11.2.0]
|
8 |
+
CUDA available: True
|
9 |
+
GPU 0,1,2,3,4,5,6,7: NVIDIA A100-SXM4-80GB
|
10 |
+
CUDA_HOME: /mnt/petrelfs/laizeqiang/miniconda3/envs/torch
|
11 |
+
NVCC: Cuda compilation tools, release 11.6, V11.6.124
|
12 |
+
GCC: gcc (GCC) 4.8.5 20150623 (Red Hat 4.8.5-44)
|
13 |
+
PyTorch: 1.13.1
|
14 |
+
PyTorch compiling details: PyTorch built with:
|
15 |
+
- GCC 9.3
|
16 |
+
- C++ Version: 201402
|
17 |
+
- Intel(R) oneAPI Math Kernel Library Version 2021.4-Product Build 20210904 for Intel(R) 64 architecture applications
|
18 |
+
- Intel(R) MKL-DNN v2.6.0 (Git Hash 52b5f107dd9cf10910aaa19cb47f3abf9b349815)
|
19 |
+
- OpenMP 201511 (a.k.a. OpenMP 4.5)
|
20 |
+
- LAPACK is enabled (usually provided by MKL)
|
21 |
+
- NNPACK is enabled
|
22 |
+
- CPU capability usage: AVX2
|
23 |
+
- CUDA Runtime 11.6
|
24 |
+
- NVCC architecture flags: -gencode;arch=compute_37,code=sm_37;-gencode;arch=compute_50,code=sm_50;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_61,code=sm_61;-gencode;arch=compute_70,code=sm_70;-gencode;arch=compute_75,code=sm_75;-gencode;arch=compute_80,code=sm_80;-gencode;arch=compute_86,code=sm_86;-gencode;arch=compute_37,code=compute_37
|
25 |
+
- CuDNN 8.3.2 (built against CUDA 11.5)
|
26 |
+
- Magma 2.6.1
|
27 |
+
- Build settings: BLAS_INFO=mkl, BUILD_TYPE=Release, CUDA_VERSION=11.6, CUDNN_VERSION=8.3.2, CXX_COMPILER=/opt/rh/devtoolset-9/root/usr/bin/c++, CXX_FLAGS= -fabi-version=11 -Wno-deprecated -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -fopenmp -DNDEBUG -DUSE_KINETO -DUSE_FBGEMM -DUSE_QNNPACK -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE -DEDGE_PROFILER_USE_KINETO -O2 -fPIC -Wno-narrowing -Wall -Wextra -Werror=return-type -Werror=non-virtual-dtor -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wunused-local-typedefs -Wno-unused-parameter -Wno-unused-function -Wno-unused-result -Wno-strict-overflow -Wno-strict-aliasing -Wno-error=deprecated-declarations -Wno-stringop-overflow -Wno-psabi -Wno-error=pedantic -Wno-error=redundant-decls -Wno-error=old-style-cast -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Werror=cast-function-type -Wno-stringop-overflow, LAPACK_INFO=mkl, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, PERF_WITH_AVX512=1, TORCH_VERSION=1.13.1, USE_CUDA=ON, USE_CUDNN=ON, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_MKL=ON, USE_MKLDNN=ON, USE_MPI=OFF, USE_NCCL=ON, USE_NNPACK=ON, USE_OPENMP=ON, USE_ROCM=OFF,
|
28 |
+
|
29 |
+
TorchVision: 0.14.1
|
30 |
+
OpenCV: 4.7.0
|
31 |
+
MMCV: 1.7.1
|
32 |
+
MMCV Compiler: GCC 9.3
|
33 |
+
MMCV CUDA Compiler: 11.6
|
34 |
+
MMSegmentation: 0.30.0+d4f0cb3
|
35 |
+
------------------------------------------------------------
|
36 |
+
|
37 |
+
2023-03-04 10:36:02,407 - mmseg - INFO - Distributed training: True
|
38 |
+
2023-03-04 10:36:03,072 - mmseg - INFO - Config:
|
39 |
+
norm_cfg = dict(type='SyncBN', requires_grad=True)
|
40 |
+
checkpoint = 'pretrained/segformer_mit-b2_512x512_160k_ade20k_20220620_114047-64e4feca.pth'
|
41 |
+
model = dict(
|
42 |
+
type='EncoderDecoderFreeze',
|
43 |
+
freeze_parameters=['backbone', 'decode_head'],
|
44 |
+
pretrained=
|
45 |
+
'pretrained/segformer_mit-b2_512x512_160k_ade20k_20220620_114047-64e4feca.pth',
|
46 |
+
backbone=dict(
|
47 |
+
type='MixVisionTransformerCustomInitWeights',
|
48 |
+
in_channels=3,
|
49 |
+
embed_dims=64,
|
50 |
+
num_stages=4,
|
51 |
+
num_layers=[3, 4, 6, 3],
|
52 |
+
num_heads=[1, 2, 5, 8],
|
53 |
+
patch_sizes=[7, 3, 3, 3],
|
54 |
+
sr_ratios=[8, 4, 2, 1],
|
55 |
+
out_indices=(0, 1, 2, 3),
|
56 |
+
mlp_ratio=4,
|
57 |
+
qkv_bias=True,
|
58 |
+
drop_rate=0.0,
|
59 |
+
attn_drop_rate=0.0,
|
60 |
+
drop_path_rate=0.1),
|
61 |
+
decode_head=dict(
|
62 |
+
type='SegformerHeadUnetFCHeadSingleStepMask',
|
63 |
+
pretrained=
|
64 |
+
'pretrained/segformer_mit-b2_512x512_160k_ade20k_20220620_114047-64e4feca.pth',
|
65 |
+
dim=128,
|
66 |
+
out_dim=256,
|
67 |
+
unet_channels=272,
|
68 |
+
dim_mults=[1, 1, 1],
|
69 |
+
cat_embedding_dim=16,
|
70 |
+
in_channels=[64, 128, 320, 512],
|
71 |
+
in_index=[0, 1, 2, 3],
|
72 |
+
channels=256,
|
73 |
+
dropout_ratio=0.1,
|
74 |
+
num_classes=151,
|
75 |
+
norm_cfg=dict(type='SyncBN', requires_grad=True),
|
76 |
+
align_corners=False,
|
77 |
+
ignore_index=0,
|
78 |
+
loss_decode=dict(
|
79 |
+
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)),
|
80 |
+
train_cfg=dict(),
|
81 |
+
test_cfg=dict(mode='whole'))
|
82 |
+
dataset_type = 'ADE20K151Dataset'
|
83 |
+
data_root = 'data/ade/ADEChallengeData2016'
|
84 |
+
img_norm_cfg = dict(
|
85 |
+
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
|
86 |
+
crop_size = (512, 512)
|
87 |
+
train_pipeline = [
|
88 |
+
dict(type='LoadImageFromFile'),
|
89 |
+
dict(type='LoadAnnotations', reduce_zero_label=False),
|
90 |
+
dict(type='Resize', img_scale=(2048, 512), ratio_range=(0.5, 2.0)),
|
91 |
+
dict(type='RandomCrop', crop_size=(512, 512), cat_max_ratio=0.75),
|
92 |
+
dict(type='RandomFlip', prob=0.5),
|
93 |
+
dict(type='PhotoMetricDistortion'),
|
94 |
+
dict(
|
95 |
+
type='Normalize',
|
96 |
+
mean=[123.675, 116.28, 103.53],
|
97 |
+
std=[58.395, 57.12, 57.375],
|
98 |
+
to_rgb=True),
|
99 |
+
dict(type='Pad', size=(512, 512), pad_val=0, seg_pad_val=0),
|
100 |
+
dict(type='DefaultFormatBundle'),
|
101 |
+
dict(type='Collect', keys=['img', 'gt_semantic_seg'])
|
102 |
+
]
|
103 |
+
test_pipeline = [
|
104 |
+
dict(type='LoadImageFromFile'),
|
105 |
+
dict(
|
106 |
+
type='MultiScaleFlipAug',
|
107 |
+
img_scale=(2048, 512),
|
108 |
+
flip=False,
|
109 |
+
transforms=[
|
110 |
+
dict(type='Resize', keep_ratio=True),
|
111 |
+
dict(type='RandomFlip'),
|
112 |
+
dict(
|
113 |
+
type='Normalize',
|
114 |
+
mean=[123.675, 116.28, 103.53],
|
115 |
+
std=[58.395, 57.12, 57.375],
|
116 |
+
to_rgb=True),
|
117 |
+
dict(type='Pad', size_divisor=16, pad_val=0, seg_pad_val=0),
|
118 |
+
dict(type='ImageToTensor', keys=['img']),
|
119 |
+
dict(type='Collect', keys=['img'])
|
120 |
+
])
|
121 |
+
]
|
122 |
+
data = dict(
|
123 |
+
samples_per_gpu=4,
|
124 |
+
workers_per_gpu=4,
|
125 |
+
train=dict(
|
126 |
+
type='ADE20K151Dataset',
|
127 |
+
data_root='data/ade/ADEChallengeData2016',
|
128 |
+
img_dir='images/training',
|
129 |
+
ann_dir='annotations/training',
|
130 |
+
pipeline=[
|
131 |
+
dict(type='LoadImageFromFile'),
|
132 |
+
dict(type='LoadAnnotations', reduce_zero_label=False),
|
133 |
+
dict(type='Resize', img_scale=(2048, 512), ratio_range=(0.5, 2.0)),
|
134 |
+
dict(type='RandomCrop', crop_size=(512, 512), cat_max_ratio=0.75),
|
135 |
+
dict(type='RandomFlip', prob=0.5),
|
136 |
+
dict(type='PhotoMetricDistortion'),
|
137 |
+
dict(
|
138 |
+
type='Normalize',
|
139 |
+
mean=[123.675, 116.28, 103.53],
|
140 |
+
std=[58.395, 57.12, 57.375],
|
141 |
+
to_rgb=True),
|
142 |
+
dict(type='Pad', size=(512, 512), pad_val=0, seg_pad_val=0),
|
143 |
+
dict(type='DefaultFormatBundle'),
|
144 |
+
dict(type='Collect', keys=['img', 'gt_semantic_seg'])
|
145 |
+
]),
|
146 |
+
val=dict(
|
147 |
+
type='ADE20K151Dataset',
|
148 |
+
data_root='data/ade/ADEChallengeData2016',
|
149 |
+
img_dir='images/validation',
|
150 |
+
ann_dir='annotations/validation',
|
151 |
+
pipeline=[
|
152 |
+
dict(type='LoadImageFromFile'),
|
153 |
+
dict(
|
154 |
+
type='MultiScaleFlipAug',
|
155 |
+
img_scale=(2048, 512),
|
156 |
+
flip=False,
|
157 |
+
transforms=[
|
158 |
+
dict(type='Resize', keep_ratio=True),
|
159 |
+
dict(type='RandomFlip'),
|
160 |
+
dict(
|
161 |
+
type='Normalize',
|
162 |
+
mean=[123.675, 116.28, 103.53],
|
163 |
+
std=[58.395, 57.12, 57.375],
|
164 |
+
to_rgb=True),
|
165 |
+
dict(
|
166 |
+
type='Pad', size_divisor=16, pad_val=0, seg_pad_val=0),
|
167 |
+
dict(type='ImageToTensor', keys=['img']),
|
168 |
+
dict(type='Collect', keys=['img'])
|
169 |
+
])
|
170 |
+
]),
|
171 |
+
test=dict(
|
172 |
+
type='ADE20K151Dataset',
|
173 |
+
data_root='data/ade/ADEChallengeData2016',
|
174 |
+
img_dir='images/validation',
|
175 |
+
ann_dir='annotations/validation',
|
176 |
+
pipeline=[
|
177 |
+
dict(type='LoadImageFromFile'),
|
178 |
+
dict(
|
179 |
+
type='MultiScaleFlipAug',
|
180 |
+
img_scale=(2048, 512),
|
181 |
+
flip=False,
|
182 |
+
transforms=[
|
183 |
+
dict(type='Resize', keep_ratio=True),
|
184 |
+
dict(type='RandomFlip'),
|
185 |
+
dict(
|
186 |
+
type='Normalize',
|
187 |
+
mean=[123.675, 116.28, 103.53],
|
188 |
+
std=[58.395, 57.12, 57.375],
|
189 |
+
to_rgb=True),
|
190 |
+
dict(
|
191 |
+
type='Pad', size_divisor=16, pad_val=0, seg_pad_val=0),
|
192 |
+
dict(type='ImageToTensor', keys=['img']),
|
193 |
+
dict(type='Collect', keys=['img'])
|
194 |
+
])
|
195 |
+
]))
|
196 |
+
log_config = dict(
|
197 |
+
interval=50, hooks=[dict(type='TextLoggerHook', by_epoch=False)])
|
198 |
+
dist_params = dict(backend='nccl')
|
199 |
+
log_level = 'INFO'
|
200 |
+
load_from = None
|
201 |
+
resume_from = None
|
202 |
+
workflow = [('train', 1)]
|
203 |
+
cudnn_benchmark = True
|
204 |
+
optimizer = dict(
|
205 |
+
type='AdamW', lr=0.00015, betas=[0.9, 0.96], weight_decay=0.045)
|
206 |
+
optimizer_config = dict()
|
207 |
+
lr_config = dict(
|
208 |
+
policy='step',
|
209 |
+
warmup='linear',
|
210 |
+
warmup_iters=1000,
|
211 |
+
warmup_ratio=1e-06,
|
212 |
+
step=10000,
|
213 |
+
gamma=0.5,
|
214 |
+
min_lr=1e-06,
|
215 |
+
by_epoch=False)
|
216 |
+
runner = dict(type='IterBasedRunner', max_iters=80000)
|
217 |
+
checkpoint_config = dict(by_epoch=False, interval=8000)
|
218 |
+
evaluation = dict(
|
219 |
+
interval=8000, metric='mIoU', pre_eval=True, save_best='mIoU')
|
220 |
+
work_dir = './work_dirs2/ablation_segformer_mit_b2_segformer_head_unet_fc_single_step_ade_pretrained_freeze_embed_80k_ade20k151_mask'
|
221 |
+
gpu_ids = range(0, 8)
|
222 |
+
auto_resume = True
|
223 |
+
|
224 |
+
2023-03-04 10:36:07,359 - mmseg - INFO - Set random seed to 1470787464, deterministic: False
|
225 |
+
2023-03-04 10:36:07,710 - mmseg - INFO - Parameters in backbone freezed!
|
226 |
+
2023-03-04 10:36:07,712 - mmseg - INFO - Trainable parameters in SegformerHeadUnetFCHeadSingleStep: ['unet.init_conv.weight', 'unet.init_conv.bias', 'unet.time_mlp.1.weight', 'unet.time_mlp.1.bias', 'unet.time_mlp.3.weight', 'unet.time_mlp.3.bias', 'unet.downs.0.0.mlp.1.weight', 'unet.downs.0.0.mlp.1.bias', 'unet.downs.0.0.block1.proj.weight', 'unet.downs.0.0.block1.proj.bias', 'unet.downs.0.0.block1.norm.weight', 'unet.downs.0.0.block1.norm.bias', 'unet.downs.0.0.block2.proj.weight', 'unet.downs.0.0.block2.proj.bias', 'unet.downs.0.0.block2.norm.weight', 'unet.downs.0.0.block2.norm.bias', 'unet.downs.0.1.mlp.1.weight', 'unet.downs.0.1.mlp.1.bias', 'unet.downs.0.1.block1.proj.weight', 'unet.downs.0.1.block1.proj.bias', 'unet.downs.0.1.block1.norm.weight', 'unet.downs.0.1.block1.norm.bias', 'unet.downs.0.1.block2.proj.weight', 'unet.downs.0.1.block2.proj.bias', 'unet.downs.0.1.block2.norm.weight', 'unet.downs.0.1.block2.norm.bias', 'unet.downs.0.2.fn.fn.to_qkv.weight', 'unet.downs.0.2.fn.fn.to_out.0.weight', 'unet.downs.0.2.fn.fn.to_out.0.bias', 'unet.downs.0.2.fn.fn.to_out.1.g', 'unet.downs.0.2.fn.norm.g', 'unet.downs.0.3.weight', 'unet.downs.0.3.bias', 'unet.downs.1.0.mlp.1.weight', 'unet.downs.1.0.mlp.1.bias', 'unet.downs.1.0.block1.proj.weight', 'unet.downs.1.0.block1.proj.bias', 'unet.downs.1.0.block1.norm.weight', 'unet.downs.1.0.block1.norm.bias', 'unet.downs.1.0.block2.proj.weight', 'unet.downs.1.0.block2.proj.bias', 'unet.downs.1.0.block2.norm.weight', 'unet.downs.1.0.block2.norm.bias', 'unet.downs.1.1.mlp.1.weight', 'unet.downs.1.1.mlp.1.bias', 'unet.downs.1.1.block1.proj.weight', 'unet.downs.1.1.block1.proj.bias', 'unet.downs.1.1.block1.norm.weight', 'unet.downs.1.1.block1.norm.bias', 'unet.downs.1.1.block2.proj.weight', 'unet.downs.1.1.block2.proj.bias', 'unet.downs.1.1.block2.norm.weight', 'unet.downs.1.1.block2.norm.bias', 'unet.downs.1.2.fn.fn.to_qkv.weight', 'unet.downs.1.2.fn.fn.to_out.0.weight', 'unet.downs.1.2.fn.fn.to_out.0.bias', 'unet.downs.1.2.fn.fn.to_out.1.g', 'unet.downs.1.2.fn.norm.g', 'unet.downs.1.3.weight', 'unet.downs.1.3.bias', 'unet.downs.2.0.mlp.1.weight', 'unet.downs.2.0.mlp.1.bias', 'unet.downs.2.0.block1.proj.weight', 'unet.downs.2.0.block1.proj.bias', 'unet.downs.2.0.block1.norm.weight', 'unet.downs.2.0.block1.norm.bias', 'unet.downs.2.0.block2.proj.weight', 'unet.downs.2.0.block2.proj.bias', 'unet.downs.2.0.block2.norm.weight', 'unet.downs.2.0.block2.norm.bias', 'unet.downs.2.1.mlp.1.weight', 'unet.downs.2.1.mlp.1.bias', 'unet.downs.2.1.block1.proj.weight', 'unet.downs.2.1.block1.proj.bias', 'unet.downs.2.1.block1.norm.weight', 'unet.downs.2.1.block1.norm.bias', 'unet.downs.2.1.block2.proj.weight', 'unet.downs.2.1.block2.proj.bias', 'unet.downs.2.1.block2.norm.weight', 'unet.downs.2.1.block2.norm.bias', 'unet.downs.2.2.fn.fn.to_qkv.weight', 'unet.downs.2.2.fn.fn.to_out.0.weight', 'unet.downs.2.2.fn.fn.to_out.0.bias', 'unet.downs.2.2.fn.fn.to_out.1.g', 'unet.downs.2.2.fn.norm.g', 'unet.downs.2.3.weight', 'unet.downs.2.3.bias', 'unet.ups.0.0.mlp.1.weight', 'unet.ups.0.0.mlp.1.bias', 'unet.ups.0.0.block1.proj.weight', 'unet.ups.0.0.block1.proj.bias', 'unet.ups.0.0.block1.norm.weight', 'unet.ups.0.0.block1.norm.bias', 'unet.ups.0.0.block2.proj.weight', 'unet.ups.0.0.block2.proj.bias', 'unet.ups.0.0.block2.norm.weight', 'unet.ups.0.0.block2.norm.bias', 'unet.ups.0.0.res_conv.weight', 'unet.ups.0.0.res_conv.bias', 'unet.ups.0.1.mlp.1.weight', 'unet.ups.0.1.mlp.1.bias', 'unet.ups.0.1.block1.proj.weight', 'unet.ups.0.1.block1.proj.bias', 'unet.ups.0.1.block1.norm.weight', 'unet.ups.0.1.block1.norm.bias', 'unet.ups.0.1.block2.proj.weight', 'unet.ups.0.1.block2.proj.bias', 'unet.ups.0.1.block2.norm.weight', 'unet.ups.0.1.block2.norm.bias', 'unet.ups.0.1.res_conv.weight', 'unet.ups.0.1.res_conv.bias', 'unet.ups.0.2.fn.fn.to_qkv.weight', 'unet.ups.0.2.fn.fn.to_out.0.weight', 'unet.ups.0.2.fn.fn.to_out.0.bias', 'unet.ups.0.2.fn.fn.to_out.1.g', 'unet.ups.0.2.fn.norm.g', 'unet.ups.0.3.1.weight', 'unet.ups.0.3.1.bias', 'unet.ups.1.0.mlp.1.weight', 'unet.ups.1.0.mlp.1.bias', 'unet.ups.1.0.block1.proj.weight', 'unet.ups.1.0.block1.proj.bias', 'unet.ups.1.0.block1.norm.weight', 'unet.ups.1.0.block1.norm.bias', 'unet.ups.1.0.block2.proj.weight', 'unet.ups.1.0.block2.proj.bias', 'unet.ups.1.0.block2.norm.weight', 'unet.ups.1.0.block2.norm.bias', 'unet.ups.1.0.res_conv.weight', 'unet.ups.1.0.res_conv.bias', 'unet.ups.1.1.mlp.1.weight', 'unet.ups.1.1.mlp.1.bias', 'unet.ups.1.1.block1.proj.weight', 'unet.ups.1.1.block1.proj.bias', 'unet.ups.1.1.block1.norm.weight', 'unet.ups.1.1.block1.norm.bias', 'unet.ups.1.1.block2.proj.weight', 'unet.ups.1.1.block2.proj.bias', 'unet.ups.1.1.block2.norm.weight', 'unet.ups.1.1.block2.norm.bias', 'unet.ups.1.1.res_conv.weight', 'unet.ups.1.1.res_conv.bias', 'unet.ups.1.2.fn.fn.to_qkv.weight', 'unet.ups.1.2.fn.fn.to_out.0.weight', 'unet.ups.1.2.fn.fn.to_out.0.bias', 'unet.ups.1.2.fn.fn.to_out.1.g', 'unet.ups.1.2.fn.norm.g', 'unet.ups.1.3.1.weight', 'unet.ups.1.3.1.bias', 'unet.ups.2.0.mlp.1.weight', 'unet.ups.2.0.mlp.1.bias', 'unet.ups.2.0.block1.proj.weight', 'unet.ups.2.0.block1.proj.bias', 'unet.ups.2.0.block1.norm.weight', 'unet.ups.2.0.block1.norm.bias', 'unet.ups.2.0.block2.proj.weight', 'unet.ups.2.0.block2.proj.bias', 'unet.ups.2.0.block2.norm.weight', 'unet.ups.2.0.block2.norm.bias', 'unet.ups.2.0.res_conv.weight', 'unet.ups.2.0.res_conv.bias', 'unet.ups.2.1.mlp.1.weight', 'unet.ups.2.1.mlp.1.bias', 'unet.ups.2.1.block1.proj.weight', 'unet.ups.2.1.block1.proj.bias', 'unet.ups.2.1.block1.norm.weight', 'unet.ups.2.1.block1.norm.bias', 'unet.ups.2.1.block2.proj.weight', 'unet.ups.2.1.block2.proj.bias', 'unet.ups.2.1.block2.norm.weight', 'unet.ups.2.1.block2.norm.bias', 'unet.ups.2.1.res_conv.weight', 'unet.ups.2.1.res_conv.bias', 'unet.ups.2.2.fn.fn.to_qkv.weight', 'unet.ups.2.2.fn.fn.to_out.0.weight', 'unet.ups.2.2.fn.fn.to_out.0.bias', 'unet.ups.2.2.fn.fn.to_out.1.g', 'unet.ups.2.2.fn.norm.g', 'unet.ups.2.3.weight', 'unet.ups.2.3.bias', 'unet.mid_block1.mlp.1.weight', 'unet.mid_block1.mlp.1.bias', 'unet.mid_block1.block1.proj.weight', 'unet.mid_block1.block1.proj.bias', 'unet.mid_block1.block1.norm.weight', 'unet.mid_block1.block1.norm.bias', 'unet.mid_block1.block2.proj.weight', 'unet.mid_block1.block2.proj.bias', 'unet.mid_block1.block2.norm.weight', 'unet.mid_block1.block2.norm.bias', 'unet.mid_attn.fn.fn.to_qkv.weight', 'unet.mid_attn.fn.fn.to_out.weight', 'unet.mid_attn.fn.fn.to_out.bias', 'unet.mid_attn.fn.norm.g', 'unet.mid_block2.mlp.1.weight', 'unet.mid_block2.mlp.1.bias', 'unet.mid_block2.block1.proj.weight', 'unet.mid_block2.block1.proj.bias', 'unet.mid_block2.block1.norm.weight', 'unet.mid_block2.block1.norm.bias', 'unet.mid_block2.block2.proj.weight', 'unet.mid_block2.block2.proj.bias', 'unet.mid_block2.block2.norm.weight', 'unet.mid_block2.block2.norm.bias', 'unet.final_res_block.mlp.1.weight', 'unet.final_res_block.mlp.1.bias', 'unet.final_res_block.block1.proj.weight', 'unet.final_res_block.block1.proj.bias', 'unet.final_res_block.block1.norm.weight', 'unet.final_res_block.block1.norm.bias', 'unet.final_res_block.block2.proj.weight', 'unet.final_res_block.block2.proj.bias', 'unet.final_res_block.block2.norm.weight', 'unet.final_res_block.block2.norm.bias', 'unet.final_res_block.res_conv.weight', 'unet.final_res_block.res_conv.bias', 'unet.final_conv.weight', 'unet.final_conv.bias', 'conv_seg_new.weight', 'conv_seg_new.bias']
|
227 |
+
2023-03-04 10:36:07,712 - mmseg - INFO - Parameters in decode_head freezed!
|
228 |
+
2023-03-04 10:36:07,736 - mmseg - INFO - load checkpoint from local path: pretrained/segformer_mit-b2_512x512_160k_ade20k_20220620_114047-64e4feca.pth
|
229 |
+
2023-03-04 10:36:07,975 - mmseg - WARNING - The model and loaded state dict do not match exactly
|
230 |
+
|
231 |
+
unexpected key in source state_dict: decode_head.conv_seg.weight, decode_head.conv_seg.bias, decode_head.convs.0.conv.weight, decode_head.convs.0.bn.weight, decode_head.convs.0.bn.bias, decode_head.convs.0.bn.running_mean, decode_head.convs.0.bn.running_var, decode_head.convs.0.bn.num_batches_tracked, decode_head.convs.1.conv.weight, decode_head.convs.1.bn.weight, decode_head.convs.1.bn.bias, decode_head.convs.1.bn.running_mean, decode_head.convs.1.bn.running_var, decode_head.convs.1.bn.num_batches_tracked, decode_head.convs.2.conv.weight, decode_head.convs.2.bn.weight, decode_head.convs.2.bn.bias, decode_head.convs.2.bn.running_mean, decode_head.convs.2.bn.running_var, decode_head.convs.2.bn.num_batches_tracked, decode_head.convs.3.conv.weight, decode_head.convs.3.bn.weight, decode_head.convs.3.bn.bias, decode_head.convs.3.bn.running_mean, decode_head.convs.3.bn.running_var, decode_head.convs.3.bn.num_batches_tracked, decode_head.fusion_conv.conv.weight, decode_head.fusion_conv.bn.weight, decode_head.fusion_conv.bn.bias, decode_head.fusion_conv.bn.running_mean, decode_head.fusion_conv.bn.running_var, decode_head.fusion_conv.bn.num_batches_tracked
|
232 |
+
|
233 |
+
2023-03-04 10:36:07,990 - mmseg - INFO - load checkpoint from local path: pretrained/segformer_mit-b2_512x512_160k_ade20k_20220620_114047-64e4feca.pth
|
234 |
+
2023-03-04 10:36:08,180 - mmseg - WARNING - The model and loaded state dict do not match exactly
|
235 |
+
|
236 |
+
unexpected key in source state_dict: backbone.layers.0.0.projection.weight, backbone.layers.0.0.projection.bias, backbone.layers.0.0.norm.weight, backbone.layers.0.0.norm.bias, backbone.layers.0.1.0.norm1.weight, backbone.layers.0.1.0.norm1.bias, backbone.layers.0.1.0.attn.attn.in_proj_weight, backbone.layers.0.1.0.attn.attn.in_proj_bias, backbone.layers.0.1.0.attn.attn.out_proj.weight, backbone.layers.0.1.0.attn.attn.out_proj.bias, backbone.layers.0.1.0.attn.sr.weight, backbone.layers.0.1.0.attn.sr.bias, backbone.layers.0.1.0.attn.norm.weight, backbone.layers.0.1.0.attn.norm.bias, backbone.layers.0.1.0.norm2.weight, backbone.layers.0.1.0.norm2.bias, backbone.layers.0.1.0.ffn.layers.0.weight, backbone.layers.0.1.0.ffn.layers.0.bias, backbone.layers.0.1.0.ffn.layers.1.weight, backbone.layers.0.1.0.ffn.layers.1.bias, backbone.layers.0.1.0.ffn.layers.4.weight, backbone.layers.0.1.0.ffn.layers.4.bias, backbone.layers.0.1.1.norm1.weight, backbone.layers.0.1.1.norm1.bias, backbone.layers.0.1.1.attn.attn.in_proj_weight, backbone.layers.0.1.1.attn.attn.in_proj_bias, backbone.layers.0.1.1.attn.attn.out_proj.weight, backbone.layers.0.1.1.attn.attn.out_proj.bias, backbone.layers.0.1.1.attn.sr.weight, backbone.layers.0.1.1.attn.sr.bias, backbone.layers.0.1.1.attn.norm.weight, backbone.layers.0.1.1.attn.norm.bias, backbone.layers.0.1.1.norm2.weight, backbone.layers.0.1.1.norm2.bias, backbone.layers.0.1.1.ffn.layers.0.weight, backbone.layers.0.1.1.ffn.layers.0.bias, backbone.layers.0.1.1.ffn.layers.1.weight, backbone.layers.0.1.1.ffn.layers.1.bias, backbone.layers.0.1.1.ffn.layers.4.weight, backbone.layers.0.1.1.ffn.layers.4.bias, backbone.layers.0.1.2.norm1.weight, backbone.layers.0.1.2.norm1.bias, backbone.layers.0.1.2.attn.attn.in_proj_weight, backbone.layers.0.1.2.attn.attn.in_proj_bias, backbone.layers.0.1.2.attn.attn.out_proj.weight, backbone.layers.0.1.2.attn.attn.out_proj.bias, backbone.layers.0.1.2.attn.sr.weight, backbone.layers.0.1.2.attn.sr.bias, backbone.layers.0.1.2.attn.norm.weight, backbone.layers.0.1.2.attn.norm.bias, backbone.layers.0.1.2.norm2.weight, backbone.layers.0.1.2.norm2.bias, backbone.layers.0.1.2.ffn.layers.0.weight, backbone.layers.0.1.2.ffn.layers.0.bias, backbone.layers.0.1.2.ffn.layers.1.weight, backbone.layers.0.1.2.ffn.layers.1.bias, backbone.layers.0.1.2.ffn.layers.4.weight, backbone.layers.0.1.2.ffn.layers.4.bias, backbone.layers.0.2.weight, backbone.layers.0.2.bias, backbone.layers.1.0.projection.weight, backbone.layers.1.0.projection.bias, backbone.layers.1.0.norm.weight, backbone.layers.1.0.norm.bias, backbone.layers.1.1.0.norm1.weight, backbone.layers.1.1.0.norm1.bias, backbone.layers.1.1.0.attn.attn.in_proj_weight, backbone.layers.1.1.0.attn.attn.in_proj_bias, backbone.layers.1.1.0.attn.attn.out_proj.weight, backbone.layers.1.1.0.attn.attn.out_proj.bias, backbone.layers.1.1.0.attn.sr.weight, backbone.layers.1.1.0.attn.sr.bias, backbone.layers.1.1.0.attn.norm.weight, backbone.layers.1.1.0.attn.norm.bias, backbone.layers.1.1.0.norm2.weight, backbone.layers.1.1.0.norm2.bias, backbone.layers.1.1.0.ffn.layers.0.weight, backbone.layers.1.1.0.ffn.layers.0.bias, backbone.layers.1.1.0.ffn.layers.1.weight, backbone.layers.1.1.0.ffn.layers.1.bias, backbone.layers.1.1.0.ffn.layers.4.weight, backbone.layers.1.1.0.ffn.layers.4.bias, backbone.layers.1.1.1.norm1.weight, backbone.layers.1.1.1.norm1.bias, backbone.layers.1.1.1.attn.attn.in_proj_weight, backbone.layers.1.1.1.attn.attn.in_proj_bias, backbone.layers.1.1.1.attn.attn.out_proj.weight, backbone.layers.1.1.1.attn.attn.out_proj.bias, backbone.layers.1.1.1.attn.sr.weight, backbone.layers.1.1.1.attn.sr.bias, backbone.layers.1.1.1.attn.norm.weight, backbone.layers.1.1.1.attn.norm.bias, backbone.layers.1.1.1.norm2.weight, backbone.layers.1.1.1.norm2.bias, backbone.layers.1.1.1.ffn.layers.0.weight, backbone.layers.1.1.1.ffn.layers.0.bias, backbone.layers.1.1.1.ffn.layers.1.weight, backbone.layers.1.1.1.ffn.layers.1.bias, backbone.layers.1.1.1.ffn.layers.4.weight, backbone.layers.1.1.1.ffn.layers.4.bias, backbone.layers.1.1.2.norm1.weight, backbone.layers.1.1.2.norm1.bias, backbone.layers.1.1.2.attn.attn.in_proj_weight, backbone.layers.1.1.2.attn.attn.in_proj_bias, backbone.layers.1.1.2.attn.attn.out_proj.weight, backbone.layers.1.1.2.attn.attn.out_proj.bias, backbone.layers.1.1.2.attn.sr.weight, backbone.layers.1.1.2.attn.sr.bias, backbone.layers.1.1.2.attn.norm.weight, backbone.layers.1.1.2.attn.norm.bias, backbone.layers.1.1.2.norm2.weight, backbone.layers.1.1.2.norm2.bias, backbone.layers.1.1.2.ffn.layers.0.weight, backbone.layers.1.1.2.ffn.layers.0.bias, backbone.layers.1.1.2.ffn.layers.1.weight, backbone.layers.1.1.2.ffn.layers.1.bias, backbone.layers.1.1.2.ffn.layers.4.weight, backbone.layers.1.1.2.ffn.layers.4.bias, backbone.layers.1.1.3.norm1.weight, backbone.layers.1.1.3.norm1.bias, backbone.layers.1.1.3.attn.attn.in_proj_weight, backbone.layers.1.1.3.attn.attn.in_proj_bias, backbone.layers.1.1.3.attn.attn.out_proj.weight, backbone.layers.1.1.3.attn.attn.out_proj.bias, backbone.layers.1.1.3.attn.sr.weight, backbone.layers.1.1.3.attn.sr.bias, backbone.layers.1.1.3.attn.norm.weight, backbone.layers.1.1.3.attn.norm.bias, backbone.layers.1.1.3.norm2.weight, backbone.layers.1.1.3.norm2.bias, backbone.layers.1.1.3.ffn.layers.0.weight, backbone.layers.1.1.3.ffn.layers.0.bias, backbone.layers.1.1.3.ffn.layers.1.weight, backbone.layers.1.1.3.ffn.layers.1.bias, backbone.layers.1.1.3.ffn.layers.4.weight, backbone.layers.1.1.3.ffn.layers.4.bias, backbone.layers.1.2.weight, backbone.layers.1.2.bias, backbone.layers.2.0.projection.weight, backbone.layers.2.0.projection.bias, backbone.layers.2.0.norm.weight, backbone.layers.2.0.norm.bias, backbone.layers.2.1.0.norm1.weight, backbone.layers.2.1.0.norm1.bias, backbone.layers.2.1.0.attn.attn.in_proj_weight, backbone.layers.2.1.0.attn.attn.in_proj_bias, backbone.layers.2.1.0.attn.attn.out_proj.weight, backbone.layers.2.1.0.attn.attn.out_proj.bias, backbone.layers.2.1.0.attn.sr.weight, backbone.layers.2.1.0.attn.sr.bias, backbone.layers.2.1.0.attn.norm.weight, backbone.layers.2.1.0.attn.norm.bias, backbone.layers.2.1.0.norm2.weight, backbone.layers.2.1.0.norm2.bias, backbone.layers.2.1.0.ffn.layers.0.weight, backbone.layers.2.1.0.ffn.layers.0.bias, backbone.layers.2.1.0.ffn.layers.1.weight, backbone.layers.2.1.0.ffn.layers.1.bias, backbone.layers.2.1.0.ffn.layers.4.weight, backbone.layers.2.1.0.ffn.layers.4.bias, backbone.layers.2.1.1.norm1.weight, backbone.layers.2.1.1.norm1.bias, backbone.layers.2.1.1.attn.attn.in_proj_weight, backbone.layers.2.1.1.attn.attn.in_proj_bias, backbone.layers.2.1.1.attn.attn.out_proj.weight, backbone.layers.2.1.1.attn.attn.out_proj.bias, backbone.layers.2.1.1.attn.sr.weight, backbone.layers.2.1.1.attn.sr.bias, backbone.layers.2.1.1.attn.norm.weight, backbone.layers.2.1.1.attn.norm.bias, backbone.layers.2.1.1.norm2.weight, backbone.layers.2.1.1.norm2.bias, backbone.layers.2.1.1.ffn.layers.0.weight, backbone.layers.2.1.1.ffn.layers.0.bias, backbone.layers.2.1.1.ffn.layers.1.weight, backbone.layers.2.1.1.ffn.layers.1.bias, backbone.layers.2.1.1.ffn.layers.4.weight, backbone.layers.2.1.1.ffn.layers.4.bias, backbone.layers.2.1.2.norm1.weight, backbone.layers.2.1.2.norm1.bias, backbone.layers.2.1.2.attn.attn.in_proj_weight, backbone.layers.2.1.2.attn.attn.in_proj_bias, backbone.layers.2.1.2.attn.attn.out_proj.weight, backbone.layers.2.1.2.attn.attn.out_proj.bias, backbone.layers.2.1.2.attn.sr.weight, backbone.layers.2.1.2.attn.sr.bias, backbone.layers.2.1.2.attn.norm.weight, backbone.layers.2.1.2.attn.norm.bias, backbone.layers.2.1.2.norm2.weight, backbone.layers.2.1.2.norm2.bias, backbone.layers.2.1.2.ffn.layers.0.weight, backbone.layers.2.1.2.ffn.layers.0.bias, backbone.layers.2.1.2.ffn.layers.1.weight, backbone.layers.2.1.2.ffn.layers.1.bias, backbone.layers.2.1.2.ffn.layers.4.weight, backbone.layers.2.1.2.ffn.layers.4.bias, backbone.layers.2.1.3.norm1.weight, backbone.layers.2.1.3.norm1.bias, backbone.layers.2.1.3.attn.attn.in_proj_weight, backbone.layers.2.1.3.attn.attn.in_proj_bias, backbone.layers.2.1.3.attn.attn.out_proj.weight, backbone.layers.2.1.3.attn.attn.out_proj.bias, backbone.layers.2.1.3.attn.sr.weight, backbone.layers.2.1.3.attn.sr.bias, backbone.layers.2.1.3.attn.norm.weight, backbone.layers.2.1.3.attn.norm.bias, backbone.layers.2.1.3.norm2.weight, backbone.layers.2.1.3.norm2.bias, backbone.layers.2.1.3.ffn.layers.0.weight, backbone.layers.2.1.3.ffn.layers.0.bias, backbone.layers.2.1.3.ffn.layers.1.weight, backbone.layers.2.1.3.ffn.layers.1.bias, backbone.layers.2.1.3.ffn.layers.4.weight, backbone.layers.2.1.3.ffn.layers.4.bias, backbone.layers.2.1.4.norm1.weight, backbone.layers.2.1.4.norm1.bias, backbone.layers.2.1.4.attn.attn.in_proj_weight, backbone.layers.2.1.4.attn.attn.in_proj_bias, backbone.layers.2.1.4.attn.attn.out_proj.weight, backbone.layers.2.1.4.attn.attn.out_proj.bias, backbone.layers.2.1.4.attn.sr.weight, backbone.layers.2.1.4.attn.sr.bias, backbone.layers.2.1.4.attn.norm.weight, backbone.layers.2.1.4.attn.norm.bias, backbone.layers.2.1.4.norm2.weight, backbone.layers.2.1.4.norm2.bias, backbone.layers.2.1.4.ffn.layers.0.weight, backbone.layers.2.1.4.ffn.layers.0.bias, backbone.layers.2.1.4.ffn.layers.1.weight, backbone.layers.2.1.4.ffn.layers.1.bias, backbone.layers.2.1.4.ffn.layers.4.weight, backbone.layers.2.1.4.ffn.layers.4.bias, backbone.layers.2.1.5.norm1.weight, backbone.layers.2.1.5.norm1.bias, backbone.layers.2.1.5.attn.attn.in_proj_weight, backbone.layers.2.1.5.attn.attn.in_proj_bias, backbone.layers.2.1.5.attn.attn.out_proj.weight, backbone.layers.2.1.5.attn.attn.out_proj.bias, backbone.layers.2.1.5.attn.sr.weight, backbone.layers.2.1.5.attn.sr.bias, backbone.layers.2.1.5.attn.norm.weight, backbone.layers.2.1.5.attn.norm.bias, backbone.layers.2.1.5.norm2.weight, backbone.layers.2.1.5.norm2.bias, backbone.layers.2.1.5.ffn.layers.0.weight, backbone.layers.2.1.5.ffn.layers.0.bias, backbone.layers.2.1.5.ffn.layers.1.weight, backbone.layers.2.1.5.ffn.layers.1.bias, backbone.layers.2.1.5.ffn.layers.4.weight, backbone.layers.2.1.5.ffn.layers.4.bias, backbone.layers.2.2.weight, backbone.layers.2.2.bias, backbone.layers.3.0.projection.weight, backbone.layers.3.0.projection.bias, backbone.layers.3.0.norm.weight, backbone.layers.3.0.norm.bias, backbone.layers.3.1.0.norm1.weight, backbone.layers.3.1.0.norm1.bias, backbone.layers.3.1.0.attn.attn.in_proj_weight, backbone.layers.3.1.0.attn.attn.in_proj_bias, backbone.layers.3.1.0.attn.attn.out_proj.weight, backbone.layers.3.1.0.attn.attn.out_proj.bias, backbone.layers.3.1.0.norm2.weight, backbone.layers.3.1.0.norm2.bias, backbone.layers.3.1.0.ffn.layers.0.weight, backbone.layers.3.1.0.ffn.layers.0.bias, backbone.layers.3.1.0.ffn.layers.1.weight, backbone.layers.3.1.0.ffn.layers.1.bias, backbone.layers.3.1.0.ffn.layers.4.weight, backbone.layers.3.1.0.ffn.layers.4.bias, backbone.layers.3.1.1.norm1.weight, backbone.layers.3.1.1.norm1.bias, backbone.layers.3.1.1.attn.attn.in_proj_weight, backbone.layers.3.1.1.attn.attn.in_proj_bias, backbone.layers.3.1.1.attn.attn.out_proj.weight, backbone.layers.3.1.1.attn.attn.out_proj.bias, backbone.layers.3.1.1.norm2.weight, backbone.layers.3.1.1.norm2.bias, backbone.layers.3.1.1.ffn.layers.0.weight, backbone.layers.3.1.1.ffn.layers.0.bias, backbone.layers.3.1.1.ffn.layers.1.weight, backbone.layers.3.1.1.ffn.layers.1.bias, backbone.layers.3.1.1.ffn.layers.4.weight, backbone.layers.3.1.1.ffn.layers.4.bias, backbone.layers.3.1.2.norm1.weight, backbone.layers.3.1.2.norm1.bias, backbone.layers.3.1.2.attn.attn.in_proj_weight, backbone.layers.3.1.2.attn.attn.in_proj_bias, backbone.layers.3.1.2.attn.attn.out_proj.weight, backbone.layers.3.1.2.attn.attn.out_proj.bias, backbone.layers.3.1.2.norm2.weight, backbone.layers.3.1.2.norm2.bias, backbone.layers.3.1.2.ffn.layers.0.weight, backbone.layers.3.1.2.ffn.layers.0.bias, backbone.layers.3.1.2.ffn.layers.1.weight, backbone.layers.3.1.2.ffn.layers.1.bias, backbone.layers.3.1.2.ffn.layers.4.weight, backbone.layers.3.1.2.ffn.layers.4.bias, backbone.layers.3.2.weight, backbone.layers.3.2.bias
|
237 |
+
|
238 |
+
missing keys in source state_dict: unet.init_conv.weight, unet.init_conv.bias, unet.time_mlp.1.weight, unet.time_mlp.1.bias, unet.time_mlp.3.weight, unet.time_mlp.3.bias, unet.downs.0.0.mlp.1.weight, unet.downs.0.0.mlp.1.bias, unet.downs.0.0.block1.proj.weight, unet.downs.0.0.block1.proj.bias, unet.downs.0.0.block1.norm.weight, unet.downs.0.0.block1.norm.bias, unet.downs.0.0.block2.proj.weight, unet.downs.0.0.block2.proj.bias, unet.downs.0.0.block2.norm.weight, unet.downs.0.0.block2.norm.bias, unet.downs.0.1.mlp.1.weight, unet.downs.0.1.mlp.1.bias, unet.downs.0.1.block1.proj.weight, unet.downs.0.1.block1.proj.bias, unet.downs.0.1.block1.norm.weight, unet.downs.0.1.block1.norm.bias, unet.downs.0.1.block2.proj.weight, unet.downs.0.1.block2.proj.bias, unet.downs.0.1.block2.norm.weight, unet.downs.0.1.block2.norm.bias, unet.downs.0.2.fn.fn.to_qkv.weight, unet.downs.0.2.fn.fn.to_out.0.weight, unet.downs.0.2.fn.fn.to_out.0.bias, unet.downs.0.2.fn.fn.to_out.1.g, unet.downs.0.2.fn.norm.g, unet.downs.0.3.weight, unet.downs.0.3.bias, unet.downs.1.0.mlp.1.weight, unet.downs.1.0.mlp.1.bias, unet.downs.1.0.block1.proj.weight, unet.downs.1.0.block1.proj.bias, unet.downs.1.0.block1.norm.weight, unet.downs.1.0.block1.norm.bias, unet.downs.1.0.block2.proj.weight, unet.downs.1.0.block2.proj.bias, unet.downs.1.0.block2.norm.weight, unet.downs.1.0.block2.norm.bias, unet.downs.1.1.mlp.1.weight, unet.downs.1.1.mlp.1.bias, unet.downs.1.1.block1.proj.weight, unet.downs.1.1.block1.proj.bias, unet.downs.1.1.block1.norm.weight, unet.downs.1.1.block1.norm.bias, unet.downs.1.1.block2.proj.weight, unet.downs.1.1.block2.proj.bias, unet.downs.1.1.block2.norm.weight, unet.downs.1.1.block2.norm.bias, unet.downs.1.2.fn.fn.to_qkv.weight, unet.downs.1.2.fn.fn.to_out.0.weight, unet.downs.1.2.fn.fn.to_out.0.bias, unet.downs.1.2.fn.fn.to_out.1.g, unet.downs.1.2.fn.norm.g, unet.downs.1.3.weight, unet.downs.1.3.bias, unet.downs.2.0.mlp.1.weight, unet.downs.2.0.mlp.1.bias, unet.downs.2.0.block1.proj.weight, unet.downs.2.0.block1.proj.bias, unet.downs.2.0.block1.norm.weight, unet.downs.2.0.block1.norm.bias, unet.downs.2.0.block2.proj.weight, unet.downs.2.0.block2.proj.bias, unet.downs.2.0.block2.norm.weight, unet.downs.2.0.block2.norm.bias, unet.downs.2.1.mlp.1.weight, unet.downs.2.1.mlp.1.bias, unet.downs.2.1.block1.proj.weight, unet.downs.2.1.block1.proj.bias, unet.downs.2.1.block1.norm.weight, unet.downs.2.1.block1.norm.bias, unet.downs.2.1.block2.proj.weight, unet.downs.2.1.block2.proj.bias, unet.downs.2.1.block2.norm.weight, unet.downs.2.1.block2.norm.bias, unet.downs.2.2.fn.fn.to_qkv.weight, unet.downs.2.2.fn.fn.to_out.0.weight, unet.downs.2.2.fn.fn.to_out.0.bias, unet.downs.2.2.fn.fn.to_out.1.g, unet.downs.2.2.fn.norm.g, unet.downs.2.3.weight, unet.downs.2.3.bias, unet.ups.0.0.mlp.1.weight, unet.ups.0.0.mlp.1.bias, unet.ups.0.0.block1.proj.weight, unet.ups.0.0.block1.proj.bias, unet.ups.0.0.block1.norm.weight, unet.ups.0.0.block1.norm.bias, unet.ups.0.0.block2.proj.weight, unet.ups.0.0.block2.proj.bias, unet.ups.0.0.block2.norm.weight, unet.ups.0.0.block2.norm.bias, unet.ups.0.0.res_conv.weight, unet.ups.0.0.res_conv.bias, unet.ups.0.1.mlp.1.weight, unet.ups.0.1.mlp.1.bias, unet.ups.0.1.block1.proj.weight, unet.ups.0.1.block1.proj.bias, unet.ups.0.1.block1.norm.weight, unet.ups.0.1.block1.norm.bias, unet.ups.0.1.block2.proj.weight, unet.ups.0.1.block2.proj.bias, unet.ups.0.1.block2.norm.weight, unet.ups.0.1.block2.norm.bias, unet.ups.0.1.res_conv.weight, unet.ups.0.1.res_conv.bias, unet.ups.0.2.fn.fn.to_qkv.weight, unet.ups.0.2.fn.fn.to_out.0.weight, unet.ups.0.2.fn.fn.to_out.0.bias, unet.ups.0.2.fn.fn.to_out.1.g, unet.ups.0.2.fn.norm.g, unet.ups.0.3.1.weight, unet.ups.0.3.1.bias, unet.ups.1.0.mlp.1.weight, unet.ups.1.0.mlp.1.bias, unet.ups.1.0.block1.proj.weight, unet.ups.1.0.block1.proj.bias, unet.ups.1.0.block1.norm.weight, unet.ups.1.0.block1.norm.bias, unet.ups.1.0.block2.proj.weight, unet.ups.1.0.block2.proj.bias, unet.ups.1.0.block2.norm.weight, unet.ups.1.0.block2.norm.bias, unet.ups.1.0.res_conv.weight, unet.ups.1.0.res_conv.bias, unet.ups.1.1.mlp.1.weight, unet.ups.1.1.mlp.1.bias, unet.ups.1.1.block1.proj.weight, unet.ups.1.1.block1.proj.bias, unet.ups.1.1.block1.norm.weight, unet.ups.1.1.block1.norm.bias, unet.ups.1.1.block2.proj.weight, unet.ups.1.1.block2.proj.bias, unet.ups.1.1.block2.norm.weight, unet.ups.1.1.block2.norm.bias, unet.ups.1.1.res_conv.weight, unet.ups.1.1.res_conv.bias, unet.ups.1.2.fn.fn.to_qkv.weight, unet.ups.1.2.fn.fn.to_out.0.weight, unet.ups.1.2.fn.fn.to_out.0.bias, unet.ups.1.2.fn.fn.to_out.1.g, unet.ups.1.2.fn.norm.g, unet.ups.1.3.1.weight, unet.ups.1.3.1.bias, unet.ups.2.0.mlp.1.weight, unet.ups.2.0.mlp.1.bias, unet.ups.2.0.block1.proj.weight, unet.ups.2.0.block1.proj.bias, unet.ups.2.0.block1.norm.weight, unet.ups.2.0.block1.norm.bias, unet.ups.2.0.block2.proj.weight, unet.ups.2.0.block2.proj.bias, unet.ups.2.0.block2.norm.weight, unet.ups.2.0.block2.norm.bias, unet.ups.2.0.res_conv.weight, unet.ups.2.0.res_conv.bias, unet.ups.2.1.mlp.1.weight, unet.ups.2.1.mlp.1.bias, unet.ups.2.1.block1.proj.weight, unet.ups.2.1.block1.proj.bias, unet.ups.2.1.block1.norm.weight, unet.ups.2.1.block1.norm.bias, unet.ups.2.1.block2.proj.weight, unet.ups.2.1.block2.proj.bias, unet.ups.2.1.block2.norm.weight, unet.ups.2.1.block2.norm.bias, unet.ups.2.1.res_conv.weight, unet.ups.2.1.res_conv.bias, unet.ups.2.2.fn.fn.to_qkv.weight, unet.ups.2.2.fn.fn.to_out.0.weight, unet.ups.2.2.fn.fn.to_out.0.bias, unet.ups.2.2.fn.fn.to_out.1.g, unet.ups.2.2.fn.norm.g, unet.ups.2.3.weight, unet.ups.2.3.bias, unet.mid_block1.mlp.1.weight, unet.mid_block1.mlp.1.bias, unet.mid_block1.block1.proj.weight, unet.mid_block1.block1.proj.bias, unet.mid_block1.block1.norm.weight, unet.mid_block1.block1.norm.bias, unet.mid_block1.block2.proj.weight, unet.mid_block1.block2.proj.bias, unet.mid_block1.block2.norm.weight, unet.mid_block1.block2.norm.bias, unet.mid_attn.fn.fn.to_qkv.weight, unet.mid_attn.fn.fn.to_out.weight, unet.mid_attn.fn.fn.to_out.bias, unet.mid_attn.fn.norm.g, unet.mid_block2.mlp.1.weight, unet.mid_block2.mlp.1.bias, unet.mid_block2.block1.proj.weight, unet.mid_block2.block1.proj.bias, unet.mid_block2.block1.norm.weight, unet.mid_block2.block1.norm.bias, unet.mid_block2.block2.proj.weight, unet.mid_block2.block2.proj.bias, unet.mid_block2.block2.norm.weight, unet.mid_block2.block2.norm.bias, unet.final_res_block.mlp.1.weight, unet.final_res_block.mlp.1.bias, unet.final_res_block.block1.proj.weight, unet.final_res_block.block1.proj.bias, unet.final_res_block.block1.norm.weight, unet.final_res_block.block1.norm.bias, unet.final_res_block.block2.proj.weight, unet.final_res_block.block2.proj.bias, unet.final_res_block.block2.norm.weight, unet.final_res_block.block2.norm.bias, unet.final_res_block.res_conv.weight, unet.final_res_block.res_conv.bias, unet.final_conv.weight, unet.final_conv.bias, conv_seg_new.weight, conv_seg_new.bias, embed.weight
|
239 |
+
|
240 |
+
2023-03-04 10:36:08,206 - mmseg - INFO - EncoderDecoderFreeze(
|
241 |
+
(backbone): MixVisionTransformerCustomInitWeights(
|
242 |
+
(layers): ModuleList(
|
243 |
+
(0): ModuleList(
|
244 |
+
(0): PatchEmbed(
|
245 |
+
(projection): Conv2d(3, 64, kernel_size=(7, 7), stride=(4, 4), padding=(3, 3))
|
246 |
+
(norm): LayerNorm((64,), eps=1e-06, elementwise_affine=True)
|
247 |
+
)
|
248 |
+
(1): ModuleList(
|
249 |
+
(0): TransformerEncoderLayer(
|
250 |
+
(norm1): LayerNorm((64,), eps=1e-06, elementwise_affine=True)
|
251 |
+
(attn): EfficientMultiheadAttention(
|
252 |
+
(attn): MultiheadAttention(
|
253 |
+
(out_proj): NonDynamicallyQuantizableLinear(in_features=64, out_features=64, bias=True)
|
254 |
+
)
|
255 |
+
(proj_drop): Dropout(p=0.0, inplace=False)
|
256 |
+
(dropout_layer): DropPath()
|
257 |
+
(sr): Conv2d(64, 64, kernel_size=(8, 8), stride=(8, 8))
|
258 |
+
(norm): LayerNorm((64,), eps=1e-06, elementwise_affine=True)
|
259 |
+
)
|
260 |
+
(norm2): LayerNorm((64,), eps=1e-06, elementwise_affine=True)
|
261 |
+
(ffn): MixFFN(
|
262 |
+
(activate): GELU(approximate='none')
|
263 |
+
(layers): Sequential(
|
264 |
+
(0): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1))
|
265 |
+
(1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=256)
|
266 |
+
(2): GELU(approximate='none')
|
267 |
+
(3): Dropout(p=0.0, inplace=False)
|
268 |
+
(4): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1))
|
269 |
+
(5): Dropout(p=0.0, inplace=False)
|
270 |
+
)
|
271 |
+
(dropout_layer): DropPath()
|
272 |
+
)
|
273 |
+
)
|
274 |
+
(1): TransformerEncoderLayer(
|
275 |
+
(norm1): LayerNorm((64,), eps=1e-06, elementwise_affine=True)
|
276 |
+
(attn): EfficientMultiheadAttention(
|
277 |
+
(attn): MultiheadAttention(
|
278 |
+
(out_proj): NonDynamicallyQuantizableLinear(in_features=64, out_features=64, bias=True)
|
279 |
+
)
|
280 |
+
(proj_drop): Dropout(p=0.0, inplace=False)
|
281 |
+
(dropout_layer): DropPath()
|
282 |
+
(sr): Conv2d(64, 64, kernel_size=(8, 8), stride=(8, 8))
|
283 |
+
(norm): LayerNorm((64,), eps=1e-06, elementwise_affine=True)
|
284 |
+
)
|
285 |
+
(norm2): LayerNorm((64,), eps=1e-06, elementwise_affine=True)
|
286 |
+
(ffn): MixFFN(
|
287 |
+
(activate): GELU(approximate='none')
|
288 |
+
(layers): Sequential(
|
289 |
+
(0): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1))
|
290 |
+
(1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=256)
|
291 |
+
(2): GELU(approximate='none')
|
292 |
+
(3): Dropout(p=0.0, inplace=False)
|
293 |
+
(4): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1))
|
294 |
+
(5): Dropout(p=0.0, inplace=False)
|
295 |
+
)
|
296 |
+
(dropout_layer): DropPath()
|
297 |
+
)
|
298 |
+
)
|
299 |
+
(2): TransformerEncoderLayer(
|
300 |
+
(norm1): LayerNorm((64,), eps=1e-06, elementwise_affine=True)
|
301 |
+
(attn): EfficientMultiheadAttention(
|
302 |
+
(attn): MultiheadAttention(
|
303 |
+
(out_proj): NonDynamicallyQuantizableLinear(in_features=64, out_features=64, bias=True)
|
304 |
+
)
|
305 |
+
(proj_drop): Dropout(p=0.0, inplace=False)
|
306 |
+
(dropout_layer): DropPath()
|
307 |
+
(sr): Conv2d(64, 64, kernel_size=(8, 8), stride=(8, 8))
|
308 |
+
(norm): LayerNorm((64,), eps=1e-06, elementwise_affine=True)
|
309 |
+
)
|
310 |
+
(norm2): LayerNorm((64,), eps=1e-06, elementwise_affine=True)
|
311 |
+
(ffn): MixFFN(
|
312 |
+
(activate): GELU(approximate='none')
|
313 |
+
(layers): Sequential(
|
314 |
+
(0): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1))
|
315 |
+
(1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=256)
|
316 |
+
(2): GELU(approximate='none')
|
317 |
+
(3): Dropout(p=0.0, inplace=False)
|
318 |
+
(4): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1))
|
319 |
+
(5): Dropout(p=0.0, inplace=False)
|
320 |
+
)
|
321 |
+
(dropout_layer): DropPath()
|
322 |
+
)
|
323 |
+
)
|
324 |
+
)
|
325 |
+
(2): LayerNorm((64,), eps=1e-06, elementwise_affine=True)
|
326 |
+
)
|
327 |
+
(1): ModuleList(
|
328 |
+
(0): PatchEmbed(
|
329 |
+
(projection): Conv2d(64, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
|
330 |
+
(norm): LayerNorm((128,), eps=1e-06, elementwise_affine=True)
|
331 |
+
)
|
332 |
+
(1): ModuleList(
|
333 |
+
(0): TransformerEncoderLayer(
|
334 |
+
(norm1): LayerNorm((128,), eps=1e-06, elementwise_affine=True)
|
335 |
+
(attn): EfficientMultiheadAttention(
|
336 |
+
(attn): MultiheadAttention(
|
337 |
+
(out_proj): NonDynamicallyQuantizableLinear(in_features=128, out_features=128, bias=True)
|
338 |
+
)
|
339 |
+
(proj_drop): Dropout(p=0.0, inplace=False)
|
340 |
+
(dropout_layer): DropPath()
|
341 |
+
(sr): Conv2d(128, 128, kernel_size=(4, 4), stride=(4, 4))
|
342 |
+
(norm): LayerNorm((128,), eps=1e-06, elementwise_affine=True)
|
343 |
+
)
|
344 |
+
(norm2): LayerNorm((128,), eps=1e-06, elementwise_affine=True)
|
345 |
+
(ffn): MixFFN(
|
346 |
+
(activate): GELU(approximate='none')
|
347 |
+
(layers): Sequential(
|
348 |
+
(0): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1))
|
349 |
+
(1): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=512)
|
350 |
+
(2): GELU(approximate='none')
|
351 |
+
(3): Dropout(p=0.0, inplace=False)
|
352 |
+
(4): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1))
|
353 |
+
(5): Dropout(p=0.0, inplace=False)
|
354 |
+
)
|
355 |
+
(dropout_layer): DropPath()
|
356 |
+
)
|
357 |
+
)
|
358 |
+
(1): TransformerEncoderLayer(
|
359 |
+
(norm1): LayerNorm((128,), eps=1e-06, elementwise_affine=True)
|
360 |
+
(attn): EfficientMultiheadAttention(
|
361 |
+
(attn): MultiheadAttention(
|
362 |
+
(out_proj): NonDynamicallyQuantizableLinear(in_features=128, out_features=128, bias=True)
|
363 |
+
)
|
364 |
+
(proj_drop): Dropout(p=0.0, inplace=False)
|
365 |
+
(dropout_layer): DropPath()
|
366 |
+
(sr): Conv2d(128, 128, kernel_size=(4, 4), stride=(4, 4))
|
367 |
+
(norm): LayerNorm((128,), eps=1e-06, elementwise_affine=True)
|
368 |
+
)
|
369 |
+
(norm2): LayerNorm((128,), eps=1e-06, elementwise_affine=True)
|
370 |
+
(ffn): MixFFN(
|
371 |
+
(activate): GELU(approximate='none')
|
372 |
+
(layers): Sequential(
|
373 |
+
(0): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1))
|
374 |
+
(1): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=512)
|
375 |
+
(2): GELU(approximate='none')
|
376 |
+
(3): Dropout(p=0.0, inplace=False)
|
377 |
+
(4): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1))
|
378 |
+
(5): Dropout(p=0.0, inplace=False)
|
379 |
+
)
|
380 |
+
(dropout_layer): DropPath()
|
381 |
+
)
|
382 |
+
)
|
383 |
+
(2): TransformerEncoderLayer(
|
384 |
+
(norm1): LayerNorm((128,), eps=1e-06, elementwise_affine=True)
|
385 |
+
(attn): EfficientMultiheadAttention(
|
386 |
+
(attn): MultiheadAttention(
|
387 |
+
(out_proj): NonDynamicallyQuantizableLinear(in_features=128, out_features=128, bias=True)
|
388 |
+
)
|
389 |
+
(proj_drop): Dropout(p=0.0, inplace=False)
|
390 |
+
(dropout_layer): DropPath()
|
391 |
+
(sr): Conv2d(128, 128, kernel_size=(4, 4), stride=(4, 4))
|
392 |
+
(norm): LayerNorm((128,), eps=1e-06, elementwise_affine=True)
|
393 |
+
)
|
394 |
+
(norm2): LayerNorm((128,), eps=1e-06, elementwise_affine=True)
|
395 |
+
(ffn): MixFFN(
|
396 |
+
(activate): GELU(approximate='none')
|
397 |
+
(layers): Sequential(
|
398 |
+
(0): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1))
|
399 |
+
(1): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=512)
|
400 |
+
(2): GELU(approximate='none')
|
401 |
+
(3): Dropout(p=0.0, inplace=False)
|
402 |
+
(4): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1))
|
403 |
+
(5): Dropout(p=0.0, inplace=False)
|
404 |
+
)
|
405 |
+
(dropout_layer): DropPath()
|
406 |
+
)
|
407 |
+
)
|
408 |
+
(3): TransformerEncoderLayer(
|
409 |
+
(norm1): LayerNorm((128,), eps=1e-06, elementwise_affine=True)
|
410 |
+
(attn): EfficientMultiheadAttention(
|
411 |
+
(attn): MultiheadAttention(
|
412 |
+
(out_proj): NonDynamicallyQuantizableLinear(in_features=128, out_features=128, bias=True)
|
413 |
+
)
|
414 |
+
(proj_drop): Dropout(p=0.0, inplace=False)
|
415 |
+
(dropout_layer): DropPath()
|
416 |
+
(sr): Conv2d(128, 128, kernel_size=(4, 4), stride=(4, 4))
|
417 |
+
(norm): LayerNorm((128,), eps=1e-06, elementwise_affine=True)
|
418 |
+
)
|
419 |
+
(norm2): LayerNorm((128,), eps=1e-06, elementwise_affine=True)
|
420 |
+
(ffn): MixFFN(
|
421 |
+
(activate): GELU(approximate='none')
|
422 |
+
(layers): Sequential(
|
423 |
+
(0): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1))
|
424 |
+
(1): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=512)
|
425 |
+
(2): GELU(approximate='none')
|
426 |
+
(3): Dropout(p=0.0, inplace=False)
|
427 |
+
(4): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1))
|
428 |
+
(5): Dropout(p=0.0, inplace=False)
|
429 |
+
)
|
430 |
+
(dropout_layer): DropPath()
|
431 |
+
)
|
432 |
+
)
|
433 |
+
)
|
434 |
+
(2): LayerNorm((128,), eps=1e-06, elementwise_affine=True)
|
435 |
+
)
|
436 |
+
(2): ModuleList(
|
437 |
+
(0): PatchEmbed(
|
438 |
+
(projection): Conv2d(128, 320, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
|
439 |
+
(norm): LayerNorm((320,), eps=1e-06, elementwise_affine=True)
|
440 |
+
)
|
441 |
+
(1): ModuleList(
|
442 |
+
(0): TransformerEncoderLayer(
|
443 |
+
(norm1): LayerNorm((320,), eps=1e-06, elementwise_affine=True)
|
444 |
+
(attn): EfficientMultiheadAttention(
|
445 |
+
(attn): MultiheadAttention(
|
446 |
+
(out_proj): NonDynamicallyQuantizableLinear(in_features=320, out_features=320, bias=True)
|
447 |
+
)
|
448 |
+
(proj_drop): Dropout(p=0.0, inplace=False)
|
449 |
+
(dropout_layer): DropPath()
|
450 |
+
(sr): Conv2d(320, 320, kernel_size=(2, 2), stride=(2, 2))
|
451 |
+
(norm): LayerNorm((320,), eps=1e-06, elementwise_affine=True)
|
452 |
+
)
|
453 |
+
(norm2): LayerNorm((320,), eps=1e-06, elementwise_affine=True)
|
454 |
+
(ffn): MixFFN(
|
455 |
+
(activate): GELU(approximate='none')
|
456 |
+
(layers): Sequential(
|
457 |
+
(0): Conv2d(320, 1280, kernel_size=(1, 1), stride=(1, 1))
|
458 |
+
(1): Conv2d(1280, 1280, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=1280)
|
459 |
+
(2): GELU(approximate='none')
|
460 |
+
(3): Dropout(p=0.0, inplace=False)
|
461 |
+
(4): Conv2d(1280, 320, kernel_size=(1, 1), stride=(1, 1))
|
462 |
+
(5): Dropout(p=0.0, inplace=False)
|
463 |
+
)
|
464 |
+
(dropout_layer): DropPath()
|
465 |
+
)
|
466 |
+
)
|
467 |
+
(1): TransformerEncoderLayer(
|
468 |
+
(norm1): LayerNorm((320,), eps=1e-06, elementwise_affine=True)
|
469 |
+
(attn): EfficientMultiheadAttention(
|
470 |
+
(attn): MultiheadAttention(
|
471 |
+
(out_proj): NonDynamicallyQuantizableLinear(in_features=320, out_features=320, bias=True)
|
472 |
+
)
|
473 |
+
(proj_drop): Dropout(p=0.0, inplace=False)
|
474 |
+
(dropout_layer): DropPath()
|
475 |
+
(sr): Conv2d(320, 320, kernel_size=(2, 2), stride=(2, 2))
|
476 |
+
(norm): LayerNorm((320,), eps=1e-06, elementwise_affine=True)
|
477 |
+
)
|
478 |
+
(norm2): LayerNorm((320,), eps=1e-06, elementwise_affine=True)
|
479 |
+
(ffn): MixFFN(
|
480 |
+
(activate): GELU(approximate='none')
|
481 |
+
(layers): Sequential(
|
482 |
+
(0): Conv2d(320, 1280, kernel_size=(1, 1), stride=(1, 1))
|
483 |
+
(1): Conv2d(1280, 1280, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=1280)
|
484 |
+
(2): GELU(approximate='none')
|
485 |
+
(3): Dropout(p=0.0, inplace=False)
|
486 |
+
(4): Conv2d(1280, 320, kernel_size=(1, 1), stride=(1, 1))
|
487 |
+
(5): Dropout(p=0.0, inplace=False)
|
488 |
+
)
|
489 |
+
(dropout_layer): DropPath()
|
490 |
+
)
|
491 |
+
)
|
492 |
+
(2): TransformerEncoderLayer(
|
493 |
+
(norm1): LayerNorm((320,), eps=1e-06, elementwise_affine=True)
|
494 |
+
(attn): EfficientMultiheadAttention(
|
495 |
+
(attn): MultiheadAttention(
|
496 |
+
(out_proj): NonDynamicallyQuantizableLinear(in_features=320, out_features=320, bias=True)
|
497 |
+
)
|
498 |
+
(proj_drop): Dropout(p=0.0, inplace=False)
|
499 |
+
(dropout_layer): DropPath()
|
500 |
+
(sr): Conv2d(320, 320, kernel_size=(2, 2), stride=(2, 2))
|
501 |
+
(norm): LayerNorm((320,), eps=1e-06, elementwise_affine=True)
|
502 |
+
)
|
503 |
+
(norm2): LayerNorm((320,), eps=1e-06, elementwise_affine=True)
|
504 |
+
(ffn): MixFFN(
|
505 |
+
(activate): GELU(approximate='none')
|
506 |
+
(layers): Sequential(
|
507 |
+
(0): Conv2d(320, 1280, kernel_size=(1, 1), stride=(1, 1))
|
508 |
+
(1): Conv2d(1280, 1280, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=1280)
|
509 |
+
(2): GELU(approximate='none')
|
510 |
+
(3): Dropout(p=0.0, inplace=False)
|
511 |
+
(4): Conv2d(1280, 320, kernel_size=(1, 1), stride=(1, 1))
|
512 |
+
(5): Dropout(p=0.0, inplace=False)
|
513 |
+
)
|
514 |
+
(dropout_layer): DropPath()
|
515 |
+
)
|
516 |
+
)
|
517 |
+
(3): TransformerEncoderLayer(
|
518 |
+
(norm1): LayerNorm((320,), eps=1e-06, elementwise_affine=True)
|
519 |
+
(attn): EfficientMultiheadAttention(
|
520 |
+
(attn): MultiheadAttention(
|
521 |
+
(out_proj): NonDynamicallyQuantizableLinear(in_features=320, out_features=320, bias=True)
|
522 |
+
)
|
523 |
+
(proj_drop): Dropout(p=0.0, inplace=False)
|
524 |
+
(dropout_layer): DropPath()
|
525 |
+
(sr): Conv2d(320, 320, kernel_size=(2, 2), stride=(2, 2))
|
526 |
+
(norm): LayerNorm((320,), eps=1e-06, elementwise_affine=True)
|
527 |
+
)
|
528 |
+
(norm2): LayerNorm((320,), eps=1e-06, elementwise_affine=True)
|
529 |
+
(ffn): MixFFN(
|
530 |
+
(activate): GELU(approximate='none')
|
531 |
+
(layers): Sequential(
|
532 |
+
(0): Conv2d(320, 1280, kernel_size=(1, 1), stride=(1, 1))
|
533 |
+
(1): Conv2d(1280, 1280, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=1280)
|
534 |
+
(2): GELU(approximate='none')
|
535 |
+
(3): Dropout(p=0.0, inplace=False)
|
536 |
+
(4): Conv2d(1280, 320, kernel_size=(1, 1), stride=(1, 1))
|
537 |
+
(5): Dropout(p=0.0, inplace=False)
|
538 |
+
)
|
539 |
+
(dropout_layer): DropPath()
|
540 |
+
)
|
541 |
+
)
|
542 |
+
(4): TransformerEncoderLayer(
|
543 |
+
(norm1): LayerNorm((320,), eps=1e-06, elementwise_affine=True)
|
544 |
+
(attn): EfficientMultiheadAttention(
|
545 |
+
(attn): MultiheadAttention(
|
546 |
+
(out_proj): NonDynamicallyQuantizableLinear(in_features=320, out_features=320, bias=True)
|
547 |
+
)
|
548 |
+
(proj_drop): Dropout(p=0.0, inplace=False)
|
549 |
+
(dropout_layer): DropPath()
|
550 |
+
(sr): Conv2d(320, 320, kernel_size=(2, 2), stride=(2, 2))
|
551 |
+
(norm): LayerNorm((320,), eps=1e-06, elementwise_affine=True)
|
552 |
+
)
|
553 |
+
(norm2): LayerNorm((320,), eps=1e-06, elementwise_affine=True)
|
554 |
+
(ffn): MixFFN(
|
555 |
+
(activate): GELU(approximate='none')
|
556 |
+
(layers): Sequential(
|
557 |
+
(0): Conv2d(320, 1280, kernel_size=(1, 1), stride=(1, 1))
|
558 |
+
(1): Conv2d(1280, 1280, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=1280)
|
559 |
+
(2): GELU(approximate='none')
|
560 |
+
(3): Dropout(p=0.0, inplace=False)
|
561 |
+
(4): Conv2d(1280, 320, kernel_size=(1, 1), stride=(1, 1))
|
562 |
+
(5): Dropout(p=0.0, inplace=False)
|
563 |
+
)
|
564 |
+
(dropout_layer): DropPath()
|
565 |
+
)
|
566 |
+
)
|
567 |
+
(5): TransformerEncoderLayer(
|
568 |
+
(norm1): LayerNorm((320,), eps=1e-06, elementwise_affine=True)
|
569 |
+
(attn): EfficientMultiheadAttention(
|
570 |
+
(attn): MultiheadAttention(
|
571 |
+
(out_proj): NonDynamicallyQuantizableLinear(in_features=320, out_features=320, bias=True)
|
572 |
+
)
|
573 |
+
(proj_drop): Dropout(p=0.0, inplace=False)
|
574 |
+
(dropout_layer): DropPath()
|
575 |
+
(sr): Conv2d(320, 320, kernel_size=(2, 2), stride=(2, 2))
|
576 |
+
(norm): LayerNorm((320,), eps=1e-06, elementwise_affine=True)
|
577 |
+
)
|
578 |
+
(norm2): LayerNorm((320,), eps=1e-06, elementwise_affine=True)
|
579 |
+
(ffn): MixFFN(
|
580 |
+
(activate): GELU(approximate='none')
|
581 |
+
(layers): Sequential(
|
582 |
+
(0): Conv2d(320, 1280, kernel_size=(1, 1), stride=(1, 1))
|
583 |
+
(1): Conv2d(1280, 1280, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=1280)
|
584 |
+
(2): GELU(approximate='none')
|
585 |
+
(3): Dropout(p=0.0, inplace=False)
|
586 |
+
(4): Conv2d(1280, 320, kernel_size=(1, 1), stride=(1, 1))
|
587 |
+
(5): Dropout(p=0.0, inplace=False)
|
588 |
+
)
|
589 |
+
(dropout_layer): DropPath()
|
590 |
+
)
|
591 |
+
)
|
592 |
+
)
|
593 |
+
(2): LayerNorm((320,), eps=1e-06, elementwise_affine=True)
|
594 |
+
)
|
595 |
+
(3): ModuleList(
|
596 |
+
(0): PatchEmbed(
|
597 |
+
(projection): Conv2d(320, 512, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
|
598 |
+
(norm): LayerNorm((512,), eps=1e-06, elementwise_affine=True)
|
599 |
+
)
|
600 |
+
(1): ModuleList(
|
601 |
+
(0): TransformerEncoderLayer(
|
602 |
+
(norm1): LayerNorm((512,), eps=1e-06, elementwise_affine=True)
|
603 |
+
(attn): EfficientMultiheadAttention(
|
604 |
+
(attn): MultiheadAttention(
|
605 |
+
(out_proj): NonDynamicallyQuantizableLinear(in_features=512, out_features=512, bias=True)
|
606 |
+
)
|
607 |
+
(proj_drop): Dropout(p=0.0, inplace=False)
|
608 |
+
(dropout_layer): DropPath()
|
609 |
+
)
|
610 |
+
(norm2): LayerNorm((512,), eps=1e-06, elementwise_affine=True)
|
611 |
+
(ffn): MixFFN(
|
612 |
+
(activate): GELU(approximate='none')
|
613 |
+
(layers): Sequential(
|
614 |
+
(0): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1))
|
615 |
+
(1): Conv2d(2048, 2048, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=2048)
|
616 |
+
(2): GELU(approximate='none')
|
617 |
+
(3): Dropout(p=0.0, inplace=False)
|
618 |
+
(4): Conv2d(2048, 512, kernel_size=(1, 1), stride=(1, 1))
|
619 |
+
(5): Dropout(p=0.0, inplace=False)
|
620 |
+
)
|
621 |
+
(dropout_layer): DropPath()
|
622 |
+
)
|
623 |
+
)
|
624 |
+
(1): TransformerEncoderLayer(
|
625 |
+
(norm1): LayerNorm((512,), eps=1e-06, elementwise_affine=True)
|
626 |
+
(attn): EfficientMultiheadAttention(
|
627 |
+
(attn): MultiheadAttention(
|
628 |
+
(out_proj): NonDynamicallyQuantizableLinear(in_features=512, out_features=512, bias=True)
|
629 |
+
)
|
630 |
+
(proj_drop): Dropout(p=0.0, inplace=False)
|
631 |
+
(dropout_layer): DropPath()
|
632 |
+
)
|
633 |
+
(norm2): LayerNorm((512,), eps=1e-06, elementwise_affine=True)
|
634 |
+
(ffn): MixFFN(
|
635 |
+
(activate): GELU(approximate='none')
|
636 |
+
(layers): Sequential(
|
637 |
+
(0): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1))
|
638 |
+
(1): Conv2d(2048, 2048, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=2048)
|
639 |
+
(2): GELU(approximate='none')
|
640 |
+
(3): Dropout(p=0.0, inplace=False)
|
641 |
+
(4): Conv2d(2048, 512, kernel_size=(1, 1), stride=(1, 1))
|
642 |
+
(5): Dropout(p=0.0, inplace=False)
|
643 |
+
)
|
644 |
+
(dropout_layer): DropPath()
|
645 |
+
)
|
646 |
+
)
|
647 |
+
(2): TransformerEncoderLayer(
|
648 |
+
(norm1): LayerNorm((512,), eps=1e-06, elementwise_affine=True)
|
649 |
+
(attn): EfficientMultiheadAttention(
|
650 |
+
(attn): MultiheadAttention(
|
651 |
+
(out_proj): NonDynamicallyQuantizableLinear(in_features=512, out_features=512, bias=True)
|
652 |
+
)
|
653 |
+
(proj_drop): Dropout(p=0.0, inplace=False)
|
654 |
+
(dropout_layer): DropPath()
|
655 |
+
)
|
656 |
+
(norm2): LayerNorm((512,), eps=1e-06, elementwise_affine=True)
|
657 |
+
(ffn): MixFFN(
|
658 |
+
(activate): GELU(approximate='none')
|
659 |
+
(layers): Sequential(
|
660 |
+
(0): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1))
|
661 |
+
(1): Conv2d(2048, 2048, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=2048)
|
662 |
+
(2): GELU(approximate='none')
|
663 |
+
(3): Dropout(p=0.0, inplace=False)
|
664 |
+
(4): Conv2d(2048, 512, kernel_size=(1, 1), stride=(1, 1))
|
665 |
+
(5): Dropout(p=0.0, inplace=False)
|
666 |
+
)
|
667 |
+
(dropout_layer): DropPath()
|
668 |
+
)
|
669 |
+
)
|
670 |
+
)
|
671 |
+
(2): LayerNorm((512,), eps=1e-06, elementwise_affine=True)
|
672 |
+
)
|
673 |
+
)
|
674 |
+
)
|
675 |
+
init_cfg={'type': 'Pretrained', 'checkpoint': 'pretrained/segformer_mit-b2_512x512_160k_ade20k_20220620_114047-64e4feca.pth'}
|
676 |
+
(decode_head): SegformerHeadUnetFCHeadSingleStepMask(
|
677 |
+
input_transform=multiple_select, ignore_index=0, align_corners=False
|
678 |
+
(loss_decode): CrossEntropyLoss(avg_non_ignore=False)
|
679 |
+
(conv_seg): None
|
680 |
+
(dropout): Dropout2d(p=0.1, inplace=False)
|
681 |
+
(convs): ModuleList(
|
682 |
+
(0): ConvModule(
|
683 |
+
(conv): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
684 |
+
(bn): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
685 |
+
(activate): ReLU(inplace=True)
|
686 |
+
)
|
687 |
+
(1): ConvModule(
|
688 |
+
(conv): Conv2d(128, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
689 |
+
(bn): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
690 |
+
(activate): ReLU(inplace=True)
|
691 |
+
)
|
692 |
+
(2): ConvModule(
|
693 |
+
(conv): Conv2d(320, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
694 |
+
(bn): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
695 |
+
(activate): ReLU(inplace=True)
|
696 |
+
)
|
697 |
+
(3): ConvModule(
|
698 |
+
(conv): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
699 |
+
(bn): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
700 |
+
(activate): ReLU(inplace=True)
|
701 |
+
)
|
702 |
+
)
|
703 |
+
(fusion_conv): ConvModule(
|
704 |
+
(conv): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
705 |
+
(bn): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
706 |
+
(activate): ReLU(inplace=True)
|
707 |
+
)
|
708 |
+
(unet): Unet(
|
709 |
+
(init_conv): Conv2d(272, 128, kernel_size=(7, 7), stride=(1, 1), padding=(3, 3))
|
710 |
+
(time_mlp): Sequential(
|
711 |
+
(0): SinusoidalPosEmb()
|
712 |
+
(1): Linear(in_features=128, out_features=512, bias=True)
|
713 |
+
(2): GELU(approximate='none')
|
714 |
+
(3): Linear(in_features=512, out_features=512, bias=True)
|
715 |
+
)
|
716 |
+
(downs): ModuleList(
|
717 |
+
(0): ModuleList(
|
718 |
+
(0): ResnetBlock(
|
719 |
+
(mlp): Sequential(
|
720 |
+
(0): SiLU()
|
721 |
+
(1): Linear(in_features=512, out_features=256, bias=True)
|
722 |
+
)
|
723 |
+
(block1): Block(
|
724 |
+
(proj): WeightStandardizedConv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
725 |
+
(norm): GroupNorm(8, 128, eps=1e-05, affine=True)
|
726 |
+
(act): SiLU()
|
727 |
+
)
|
728 |
+
(block2): Block(
|
729 |
+
(proj): WeightStandardizedConv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
730 |
+
(norm): GroupNorm(8, 128, eps=1e-05, affine=True)
|
731 |
+
(act): SiLU()
|
732 |
+
)
|
733 |
+
(res_conv): Identity()
|
734 |
+
)
|
735 |
+
(1): ResnetBlock(
|
736 |
+
(mlp): Sequential(
|
737 |
+
(0): SiLU()
|
738 |
+
(1): Linear(in_features=512, out_features=256, bias=True)
|
739 |
+
)
|
740 |
+
(block1): Block(
|
741 |
+
(proj): WeightStandardizedConv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
742 |
+
(norm): GroupNorm(8, 128, eps=1e-05, affine=True)
|
743 |
+
(act): SiLU()
|
744 |
+
)
|
745 |
+
(block2): Block(
|
746 |
+
(proj): WeightStandardizedConv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
747 |
+
(norm): GroupNorm(8, 128, eps=1e-05, affine=True)
|
748 |
+
(act): SiLU()
|
749 |
+
)
|
750 |
+
(res_conv): Identity()
|
751 |
+
)
|
752 |
+
(2): Residual(
|
753 |
+
(fn): PreNorm(
|
754 |
+
(fn): LinearAttention(
|
755 |
+
(to_qkv): Conv2d(128, 384, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
756 |
+
(to_out): Sequential(
|
757 |
+
(0): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1))
|
758 |
+
(1): LayerNorm()
|
759 |
+
)
|
760 |
+
)
|
761 |
+
(norm): LayerNorm()
|
762 |
+
)
|
763 |
+
)
|
764 |
+
(3): Conv2d(128, 128, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
|
765 |
+
)
|
766 |
+
(1): ModuleList(
|
767 |
+
(0): ResnetBlock(
|
768 |
+
(mlp): Sequential(
|
769 |
+
(0): SiLU()
|
770 |
+
(1): Linear(in_features=512, out_features=256, bias=True)
|
771 |
+
)
|
772 |
+
(block1): Block(
|
773 |
+
(proj): WeightStandardizedConv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
774 |
+
(norm): GroupNorm(8, 128, eps=1e-05, affine=True)
|
775 |
+
(act): SiLU()
|
776 |
+
)
|
777 |
+
(block2): Block(
|
778 |
+
(proj): WeightStandardizedConv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
779 |
+
(norm): GroupNorm(8, 128, eps=1e-05, affine=True)
|
780 |
+
(act): SiLU()
|
781 |
+
)
|
782 |
+
(res_conv): Identity()
|
783 |
+
)
|
784 |
+
(1): ResnetBlock(
|
785 |
+
(mlp): Sequential(
|
786 |
+
(0): SiLU()
|
787 |
+
(1): Linear(in_features=512, out_features=256, bias=True)
|
788 |
+
)
|
789 |
+
(block1): Block(
|
790 |
+
(proj): WeightStandardizedConv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
791 |
+
(norm): GroupNorm(8, 128, eps=1e-05, affine=True)
|
792 |
+
(act): SiLU()
|
793 |
+
)
|
794 |
+
(block2): Block(
|
795 |
+
(proj): WeightStandardizedConv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
796 |
+
(norm): GroupNorm(8, 128, eps=1e-05, affine=True)
|
797 |
+
(act): SiLU()
|
798 |
+
)
|
799 |
+
(res_conv): Identity()
|
800 |
+
)
|
801 |
+
(2): Residual(
|
802 |
+
(fn): PreNorm(
|
803 |
+
(fn): LinearAttention(
|
804 |
+
(to_qkv): Conv2d(128, 384, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
805 |
+
(to_out): Sequential(
|
806 |
+
(0): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1))
|
807 |
+
(1): LayerNorm()
|
808 |
+
)
|
809 |
+
)
|
810 |
+
(norm): LayerNorm()
|
811 |
+
)
|
812 |
+
)
|
813 |
+
(3): Conv2d(128, 128, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
|
814 |
+
)
|
815 |
+
(2): ModuleList(
|
816 |
+
(0): ResnetBlock(
|
817 |
+
(mlp): Sequential(
|
818 |
+
(0): SiLU()
|
819 |
+
(1): Linear(in_features=512, out_features=256, bias=True)
|
820 |
+
)
|
821 |
+
(block1): Block(
|
822 |
+
(proj): WeightStandardizedConv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
823 |
+
(norm): GroupNorm(8, 128, eps=1e-05, affine=True)
|
824 |
+
(act): SiLU()
|
825 |
+
)
|
826 |
+
(block2): Block(
|
827 |
+
(proj): WeightStandardizedConv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
828 |
+
(norm): GroupNorm(8, 128, eps=1e-05, affine=True)
|
829 |
+
(act): SiLU()
|
830 |
+
)
|
831 |
+
(res_conv): Identity()
|
832 |
+
)
|
833 |
+
(1): ResnetBlock(
|
834 |
+
(mlp): Sequential(
|
835 |
+
(0): SiLU()
|
836 |
+
(1): Linear(in_features=512, out_features=256, bias=True)
|
837 |
+
)
|
838 |
+
(block1): Block(
|
839 |
+
(proj): WeightStandardizedConv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
840 |
+
(norm): GroupNorm(8, 128, eps=1e-05, affine=True)
|
841 |
+
(act): SiLU()
|
842 |
+
)
|
843 |
+
(block2): Block(
|
844 |
+
(proj): WeightStandardizedConv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
845 |
+
(norm): GroupNorm(8, 128, eps=1e-05, affine=True)
|
846 |
+
(act): SiLU()
|
847 |
+
)
|
848 |
+
(res_conv): Identity()
|
849 |
+
)
|
850 |
+
(2): Residual(
|
851 |
+
(fn): PreNorm(
|
852 |
+
(fn): LinearAttention(
|
853 |
+
(to_qkv): Conv2d(128, 384, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
854 |
+
(to_out): Sequential(
|
855 |
+
(0): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1))
|
856 |
+
(1): LayerNorm()
|
857 |
+
)
|
858 |
+
)
|
859 |
+
(norm): LayerNorm()
|
860 |
+
)
|
861 |
+
)
|
862 |
+
(3): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
863 |
+
)
|
864 |
+
)
|
865 |
+
(ups): ModuleList(
|
866 |
+
(0): ModuleList(
|
867 |
+
(0): ResnetBlock(
|
868 |
+
(mlp): Sequential(
|
869 |
+
(0): SiLU()
|
870 |
+
(1): Linear(in_features=512, out_features=256, bias=True)
|
871 |
+
)
|
872 |
+
(block1): Block(
|
873 |
+
(proj): WeightStandardizedConv2d(256, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
874 |
+
(norm): GroupNorm(8, 128, eps=1e-05, affine=True)
|
875 |
+
(act): SiLU()
|
876 |
+
)
|
877 |
+
(block2): Block(
|
878 |
+
(proj): WeightStandardizedConv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
879 |
+
(norm): GroupNorm(8, 128, eps=1e-05, affine=True)
|
880 |
+
(act): SiLU()
|
881 |
+
)
|
882 |
+
(res_conv): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1))
|
883 |
+
)
|
884 |
+
(1): ResnetBlock(
|
885 |
+
(mlp): Sequential(
|
886 |
+
(0): SiLU()
|
887 |
+
(1): Linear(in_features=512, out_features=256, bias=True)
|
888 |
+
)
|
889 |
+
(block1): Block(
|
890 |
+
(proj): WeightStandardizedConv2d(256, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
891 |
+
(norm): GroupNorm(8, 128, eps=1e-05, affine=True)
|
892 |
+
(act): SiLU()
|
893 |
+
)
|
894 |
+
(block2): Block(
|
895 |
+
(proj): WeightStandardizedConv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
896 |
+
(norm): GroupNorm(8, 128, eps=1e-05, affine=True)
|
897 |
+
(act): SiLU()
|
898 |
+
)
|
899 |
+
(res_conv): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1))
|
900 |
+
)
|
901 |
+
(2): Residual(
|
902 |
+
(fn): PreNorm(
|
903 |
+
(fn): LinearAttention(
|
904 |
+
(to_qkv): Conv2d(128, 384, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
905 |
+
(to_out): Sequential(
|
906 |
+
(0): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1))
|
907 |
+
(1): LayerNorm()
|
908 |
+
)
|
909 |
+
)
|
910 |
+
(norm): LayerNorm()
|
911 |
+
)
|
912 |
+
)
|
913 |
+
(3): Sequential(
|
914 |
+
(0): Upsample(scale_factor=2.0, mode=nearest)
|
915 |
+
(1): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
916 |
+
)
|
917 |
+
)
|
918 |
+
(1): ModuleList(
|
919 |
+
(0): ResnetBlock(
|
920 |
+
(mlp): Sequential(
|
921 |
+
(0): SiLU()
|
922 |
+
(1): Linear(in_features=512, out_features=256, bias=True)
|
923 |
+
)
|
924 |
+
(block1): Block(
|
925 |
+
(proj): WeightStandardizedConv2d(256, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
926 |
+
(norm): GroupNorm(8, 128, eps=1e-05, affine=True)
|
927 |
+
(act): SiLU()
|
928 |
+
)
|
929 |
+
(block2): Block(
|
930 |
+
(proj): WeightStandardizedConv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
931 |
+
(norm): GroupNorm(8, 128, eps=1e-05, affine=True)
|
932 |
+
(act): SiLU()
|
933 |
+
)
|
934 |
+
(res_conv): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1))
|
935 |
+
)
|
936 |
+
(1): ResnetBlock(
|
937 |
+
(mlp): Sequential(
|
938 |
+
(0): SiLU()
|
939 |
+
(1): Linear(in_features=512, out_features=256, bias=True)
|
940 |
+
)
|
941 |
+
(block1): Block(
|
942 |
+
(proj): WeightStandardizedConv2d(256, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
943 |
+
(norm): GroupNorm(8, 128, eps=1e-05, affine=True)
|
944 |
+
(act): SiLU()
|
945 |
+
)
|
946 |
+
(block2): Block(
|
947 |
+
(proj): WeightStandardizedConv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
948 |
+
(norm): GroupNorm(8, 128, eps=1e-05, affine=True)
|
949 |
+
(act): SiLU()
|
950 |
+
)
|
951 |
+
(res_conv): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1))
|
952 |
+
)
|
953 |
+
(2): Residual(
|
954 |
+
(fn): PreNorm(
|
955 |
+
(fn): LinearAttention(
|
956 |
+
(to_qkv): Conv2d(128, 384, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
957 |
+
(to_out): Sequential(
|
958 |
+
(0): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1))
|
959 |
+
(1): LayerNorm()
|
960 |
+
)
|
961 |
+
)
|
962 |
+
(norm): LayerNorm()
|
963 |
+
)
|
964 |
+
)
|
965 |
+
(3): Sequential(
|
966 |
+
(0): Upsample(scale_factor=2.0, mode=nearest)
|
967 |
+
(1): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
968 |
+
)
|
969 |
+
)
|
970 |
+
(2): ModuleList(
|
971 |
+
(0): ResnetBlock(
|
972 |
+
(mlp): Sequential(
|
973 |
+
(0): SiLU()
|
974 |
+
(1): Linear(in_features=512, out_features=256, bias=True)
|
975 |
+
)
|
976 |
+
(block1): Block(
|
977 |
+
(proj): WeightStandardizedConv2d(256, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
978 |
+
(norm): GroupNorm(8, 128, eps=1e-05, affine=True)
|
979 |
+
(act): SiLU()
|
980 |
+
)
|
981 |
+
(block2): Block(
|
982 |
+
(proj): WeightStandardizedConv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
983 |
+
(norm): GroupNorm(8, 128, eps=1e-05, affine=True)
|
984 |
+
(act): SiLU()
|
985 |
+
)
|
986 |
+
(res_conv): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1))
|
987 |
+
)
|
988 |
+
(1): ResnetBlock(
|
989 |
+
(mlp): Sequential(
|
990 |
+
(0): SiLU()
|
991 |
+
(1): Linear(in_features=512, out_features=256, bias=True)
|
992 |
+
)
|
993 |
+
(block1): Block(
|
994 |
+
(proj): WeightStandardizedConv2d(256, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
995 |
+
(norm): GroupNorm(8, 128, eps=1e-05, affine=True)
|
996 |
+
(act): SiLU()
|
997 |
+
)
|
998 |
+
(block2): Block(
|
999 |
+
(proj): WeightStandardizedConv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
1000 |
+
(norm): GroupNorm(8, 128, eps=1e-05, affine=True)
|
1001 |
+
(act): SiLU()
|
1002 |
+
)
|
1003 |
+
(res_conv): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1))
|
1004 |
+
)
|
1005 |
+
(2): Residual(
|
1006 |
+
(fn): PreNorm(
|
1007 |
+
(fn): LinearAttention(
|
1008 |
+
(to_qkv): Conv2d(128, 384, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
1009 |
+
(to_out): Sequential(
|
1010 |
+
(0): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1))
|
1011 |
+
(1): LayerNorm()
|
1012 |
+
)
|
1013 |
+
)
|
1014 |
+
(norm): LayerNorm()
|
1015 |
+
)
|
1016 |
+
)
|
1017 |
+
(3): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
1018 |
+
)
|
1019 |
+
)
|
1020 |
+
(mid_block1): ResnetBlock(
|
1021 |
+
(mlp): Sequential(
|
1022 |
+
(0): SiLU()
|
1023 |
+
(1): Linear(in_features=512, out_features=256, bias=True)
|
1024 |
+
)
|
1025 |
+
(block1): Block(
|
1026 |
+
(proj): WeightStandardizedConv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
1027 |
+
(norm): GroupNorm(8, 128, eps=1e-05, affine=True)
|
1028 |
+
(act): SiLU()
|
1029 |
+
)
|
1030 |
+
(block2): Block(
|
1031 |
+
(proj): WeightStandardizedConv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
1032 |
+
(norm): GroupNorm(8, 128, eps=1e-05, affine=True)
|
1033 |
+
(act): SiLU()
|
1034 |
+
)
|
1035 |
+
(res_conv): Identity()
|
1036 |
+
)
|
1037 |
+
(mid_attn): Residual(
|
1038 |
+
(fn): PreNorm(
|
1039 |
+
(fn): Attention(
|
1040 |
+
(to_qkv): Conv2d(128, 384, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
1041 |
+
(to_out): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1))
|
1042 |
+
)
|
1043 |
+
(norm): LayerNorm()
|
1044 |
+
)
|
1045 |
+
)
|
1046 |
+
(mid_block2): ResnetBlock(
|
1047 |
+
(mlp): Sequential(
|
1048 |
+
(0): SiLU()
|
1049 |
+
(1): Linear(in_features=512, out_features=256, bias=True)
|
1050 |
+
)
|
1051 |
+
(block1): Block(
|
1052 |
+
(proj): WeightStandardizedConv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
1053 |
+
(norm): GroupNorm(8, 128, eps=1e-05, affine=True)
|
1054 |
+
(act): SiLU()
|
1055 |
+
)
|
1056 |
+
(block2): Block(
|
1057 |
+
(proj): WeightStandardizedConv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
1058 |
+
(norm): GroupNorm(8, 128, eps=1e-05, affine=True)
|
1059 |
+
(act): SiLU()
|
1060 |
+
)
|
1061 |
+
(res_conv): Identity()
|
1062 |
+
)
|
1063 |
+
(final_res_block): ResnetBlock(
|
1064 |
+
(mlp): Sequential(
|
1065 |
+
(0): SiLU()
|
1066 |
+
(1): Linear(in_features=512, out_features=256, bias=True)
|
1067 |
+
)
|
1068 |
+
(block1): Block(
|
1069 |
+
(proj): WeightStandardizedConv2d(256, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
1070 |
+
(norm): GroupNorm(8, 128, eps=1e-05, affine=True)
|
1071 |
+
(act): SiLU()
|
1072 |
+
)
|
1073 |
+
(block2): Block(
|
1074 |
+
(proj): WeightStandardizedConv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
1075 |
+
(norm): GroupNorm(8, 128, eps=1e-05, affine=True)
|
1076 |
+
(act): SiLU()
|
1077 |
+
)
|
1078 |
+
(res_conv): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1))
|
1079 |
+
)
|
1080 |
+
(final_conv): Conv2d(128, 256, kernel_size=(1, 1), stride=(1, 1))
|
1081 |
+
)
|
1082 |
+
(conv_seg_new): Conv2d(256, 151, kernel_size=(1, 1), stride=(1, 1))
|
1083 |
+
(embed): Embedding(152, 16)
|
1084 |
+
)
|
1085 |
+
init_cfg={'type': 'Pretrained', 'checkpoint': 'pretrained/segformer_mit-b2_512x512_160k_ade20k_20220620_114047-64e4feca.pth'}
|
1086 |
+
)
|
1087 |
+
2023-03-04 10:36:09,087 - mmseg - INFO - Loaded 20210 images
|
1088 |
+
2023-03-04 10:36:10,053 - mmseg - INFO - Loaded 2000 images
|
1089 |
+
2023-03-04 10:36:10,056 - mmseg - INFO - Start running, host: laizeqiang@SH-IDC1-10-140-37-113, work_dir: /mnt/petrelfs/laizeqiang/mmseg-baseline/work_dirs2/ablation_segformer_mit_b2_segformer_head_unet_fc_single_step_ade_pretrained_freeze_embed_80k_ade20k151_mask
|
1090 |
+
2023-03-04 10:36:10,056 - mmseg - INFO - Hooks will be executed in the following order:
|
1091 |
+
before_run:
|
1092 |
+
(VERY_HIGH ) StepLrUpdaterHook
|
1093 |
+
(NORMAL ) CheckpointHook
|
1094 |
+
(LOW ) DistEvalHookMultiSteps
|
1095 |
+
(VERY_LOW ) TextLoggerHook
|
1096 |
+
--------------------
|
1097 |
+
before_train_epoch:
|
1098 |
+
(VERY_HIGH ) StepLrUpdaterHook
|
1099 |
+
(LOW ) IterTimerHook
|
1100 |
+
(LOW ) DistEvalHookMultiSteps
|
1101 |
+
(VERY_LOW ) TextLoggerHook
|
1102 |
+
--------------------
|
1103 |
+
before_train_iter:
|
1104 |
+
(VERY_HIGH ) StepLrUpdaterHook
|
1105 |
+
(LOW ) IterTimerHook
|
1106 |
+
(LOW ) DistEvalHookMultiSteps
|
1107 |
+
--------------------
|
1108 |
+
after_train_iter:
|
1109 |
+
(ABOVE_NORMAL) OptimizerHook
|
1110 |
+
(NORMAL ) CheckpointHook
|
1111 |
+
(LOW ) IterTimerHook
|
1112 |
+
(LOW ) DistEvalHookMultiSteps
|
1113 |
+
(VERY_LOW ) TextLoggerHook
|
1114 |
+
--------------------
|
1115 |
+
after_train_epoch:
|
1116 |
+
(NORMAL ) CheckpointHook
|
1117 |
+
(LOW ) DistEvalHookMultiSteps
|
1118 |
+
(VERY_LOW ) TextLoggerHook
|
1119 |
+
--------------------
|
1120 |
+
before_val_epoch:
|
1121 |
+
(LOW ) IterTimerHook
|
1122 |
+
(VERY_LOW ) TextLoggerHook
|
1123 |
+
--------------------
|
1124 |
+
before_val_iter:
|
1125 |
+
(LOW ) IterTimerHook
|
1126 |
+
--------------------
|
1127 |
+
after_val_iter:
|
1128 |
+
(LOW ) IterTimerHook
|
1129 |
+
--------------------
|
1130 |
+
after_val_epoch:
|
1131 |
+
(VERY_LOW ) TextLoggerHook
|
1132 |
+
--------------------
|
1133 |
+
after_run:
|
1134 |
+
(VERY_LOW ) TextLoggerHook
|
1135 |
+
--------------------
|
1136 |
+
2023-03-04 10:36:10,056 - mmseg - INFO - workflow: [('train', 1)], max: 80000 iters
|
1137 |
+
2023-03-04 10:36:10,056 - mmseg - INFO - Checkpoints will be saved to /mnt/petrelfs/laizeqiang/mmseg-baseline/work_dirs2/ablation_segformer_mit_b2_segformer_head_unet_fc_single_step_ade_pretrained_freeze_embed_80k_ade20k151_mask by HardDiskBackend.
|
1138 |
+
2023-03-04 10:36:47,431 - mmseg - INFO - Iter [50/80000] lr: 7.350e-06, eta: 6:21:07, time: 0.286, data_time: 0.014, memory: 19783, decode.loss_ce: 3.8243, decode.acc_seg: 14.2062, loss: 3.8243
|
1139 |
+
2023-03-04 10:36:55,947 - mmseg - INFO - Iter [100/80000] lr: 1.485e-05, eta: 5:03:50, time: 0.170, data_time: 0.007, memory: 19783, decode.loss_ce: 2.9748, decode.acc_seg: 42.5617, loss: 2.9748
|
1140 |
+
2023-03-04 10:37:04,369 - mmseg - INFO - Iter [150/80000] lr: 2.235e-05, eta: 4:37:05, time: 0.168, data_time: 0.008, memory: 19783, decode.loss_ce: 2.2347, decode.acc_seg: 49.3174, loss: 2.2347
|
1141 |
+
2023-03-04 10:37:12,840 - mmseg - INFO - Iter [200/80000] lr: 2.985e-05, eta: 4:24:00, time: 0.169, data_time: 0.007, memory: 19783, decode.loss_ce: 1.6971, decode.acc_seg: 60.8327, loss: 1.6971
|
1142 |
+
2023-03-04 10:37:21,248 - mmseg - INFO - Iter [250/80000] lr: 3.735e-05, eta: 4:15:49, time: 0.168, data_time: 0.007, memory: 19783, decode.loss_ce: 1.3266, decode.acc_seg: 69.1492, loss: 1.3266
|
1143 |
+
2023-03-04 10:37:29,768 - mmseg - INFO - Iter [300/80000] lr: 4.485e-05, eta: 4:10:46, time: 0.170, data_time: 0.007, memory: 19783, decode.loss_ce: 1.1094, decode.acc_seg: 74.3359, loss: 1.1094
|
1144 |
+
2023-03-04 10:37:38,291 - mmseg - INFO - Iter [350/80000] lr: 5.235e-05, eta: 4:07:08, time: 0.170, data_time: 0.007, memory: 19783, decode.loss_ce: 0.8799, decode.acc_seg: 78.0994, loss: 0.8799
|
1145 |
+
2023-03-04 10:37:46,865 - mmseg - INFO - Iter [400/80000] lr: 5.985e-05, eta: 4:04:32, time: 0.171, data_time: 0.007, memory: 19783, decode.loss_ce: 0.7519, decode.acc_seg: 80.2631, loss: 0.7519
|
1146 |
+
2023-03-04 10:37:55,418 - mmseg - INFO - Iter [450/80000] lr: 6.735e-05, eta: 4:02:26, time: 0.171, data_time: 0.007, memory: 19783, decode.loss_ce: 0.6707, decode.acc_seg: 81.7875, loss: 0.6707
|
1147 |
+
2023-03-04 10:38:03,650 - mmseg - INFO - Iter [500/80000] lr: 7.485e-05, eta: 3:59:52, time: 0.165, data_time: 0.007, memory: 19783, decode.loss_ce: 0.5952, decode.acc_seg: 82.6875, loss: 0.5952
|
1148 |
+
2023-03-04 10:38:12,334 - mmseg - INFO - Iter [550/80000] lr: 8.235e-05, eta: 3:58:49, time: 0.174, data_time: 0.008, memory: 19783, decode.loss_ce: 0.5100, decode.acc_seg: 84.7401, loss: 0.5100
|
1149 |
+
2023-03-04 10:38:20,396 - mmseg - INFO - Iter [600/80000] lr: 8.985e-05, eta: 3:56:34, time: 0.161, data_time: 0.008, memory: 19783, decode.loss_ce: 0.4445, decode.acc_seg: 85.9801, loss: 0.4445
|
1150 |
+
2023-03-04 10:38:31,315 - mmseg - INFO - Iter [650/80000] lr: 9.735e-05, eta: 4:00:27, time: 0.218, data_time: 0.054, memory: 19783, decode.loss_ce: 0.4351, decode.acc_seg: 86.1025, loss: 0.4351
|
1151 |
+
2023-03-04 10:38:39,745 - mmseg - INFO - Iter [700/80000] lr: 1.049e-04, eta: 3:59:03, time: 0.169, data_time: 0.007, memory: 19783, decode.loss_ce: 0.4012, decode.acc_seg: 86.6512, loss: 0.4012
|
ablation/ablation_segformer_mit_b2_segformer_head_unet_fc_single_step_ade_pretrained_freeze_embed_80k_ade20k151_mask/20230304_103602.log.json
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{"env_info": "sys.platform: linux\nPython: 3.7.16 (default, Jan 17 2023, 22:20:44) [GCC 11.2.0]\nCUDA available: True\nGPU 0,1,2,3,4,5,6,7: NVIDIA A100-SXM4-80GB\nCUDA_HOME: /mnt/petrelfs/laizeqiang/miniconda3/envs/torch\nNVCC: Cuda compilation tools, release 11.6, V11.6.124\nGCC: gcc (GCC) 4.8.5 20150623 (Red Hat 4.8.5-44)\nPyTorch: 1.13.1\nPyTorch compiling details: PyTorch built with:\n - GCC 9.3\n - C++ Version: 201402\n - Intel(R) oneAPI Math Kernel Library Version 2021.4-Product Build 20210904 for Intel(R) 64 architecture applications\n - Intel(R) MKL-DNN v2.6.0 (Git Hash 52b5f107dd9cf10910aaa19cb47f3abf9b349815)\n - OpenMP 201511 (a.k.a. OpenMP 4.5)\n - LAPACK is enabled (usually provided by MKL)\n - NNPACK is enabled\n - CPU capability usage: AVX2\n - CUDA Runtime 11.6\n - NVCC architecture flags: -gencode;arch=compute_37,code=sm_37;-gencode;arch=compute_50,code=sm_50;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_61,code=sm_61;-gencode;arch=compute_70,code=sm_70;-gencode;arch=compute_75,code=sm_75;-gencode;arch=compute_80,code=sm_80;-gencode;arch=compute_86,code=sm_86;-gencode;arch=compute_37,code=compute_37\n - CuDNN 8.3.2 (built against CUDA 11.5)\n - Magma 2.6.1\n - Build settings: BLAS_INFO=mkl, BUILD_TYPE=Release, CUDA_VERSION=11.6, CUDNN_VERSION=8.3.2, CXX_COMPILER=/opt/rh/devtoolset-9/root/usr/bin/c++, CXX_FLAGS= -fabi-version=11 -Wno-deprecated -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -fopenmp -DNDEBUG -DUSE_KINETO -DUSE_FBGEMM -DUSE_QNNPACK -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE -DEDGE_PROFILER_USE_KINETO -O2 -fPIC -Wno-narrowing -Wall -Wextra -Werror=return-type -Werror=non-virtual-dtor -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wunused-local-typedefs -Wno-unused-parameter -Wno-unused-function -Wno-unused-result -Wno-strict-overflow -Wno-strict-aliasing -Wno-error=deprecated-declarations -Wno-stringop-overflow -Wno-psabi -Wno-error=pedantic -Wno-error=redundant-decls -Wno-error=old-style-cast -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Werror=cast-function-type -Wno-stringop-overflow, LAPACK_INFO=mkl, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, PERF_WITH_AVX512=1, TORCH_VERSION=1.13.1, USE_CUDA=ON, USE_CUDNN=ON, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_MKL=ON, USE_MKLDNN=ON, USE_MPI=OFF, USE_NCCL=ON, USE_NNPACK=ON, USE_OPENMP=ON, USE_ROCM=OFF, \n\nTorchVision: 0.14.1\nOpenCV: 4.7.0\nMMCV: 1.7.1\nMMCV Compiler: GCC 9.3\nMMCV CUDA Compiler: 11.6\nMMSegmentation: 0.30.0+d4f0cb3", "seed": 1470787464, "exp_name": "ablation_segformer_mit_b2_segformer_head_unet_fc_single_step_ade_pretrained_freeze_embed_80k_ade20k151_mask.py", "mmseg_version": "0.30.0+d4f0cb3", "config": "norm_cfg = dict(type='SyncBN', requires_grad=True)\ncheckpoint = 'pretrained/segformer_mit-b2_512x512_160k_ade20k_20220620_114047-64e4feca.pth'\nmodel = dict(\n type='EncoderDecoderFreeze',\n freeze_parameters=['backbone', 'decode_head'],\n pretrained=\n 'pretrained/segformer_mit-b2_512x512_160k_ade20k_20220620_114047-64e4feca.pth',\n backbone=dict(\n type='MixVisionTransformerCustomInitWeights',\n in_channels=3,\n embed_dims=64,\n num_stages=4,\n num_layers=[3, 4, 6, 3],\n num_heads=[1, 2, 5, 8],\n patch_sizes=[7, 3, 3, 3],\n sr_ratios=[8, 4, 2, 1],\n out_indices=(0, 1, 2, 3),\n mlp_ratio=4,\n qkv_bias=True,\n drop_rate=0.0,\n attn_drop_rate=0.0,\n drop_path_rate=0.1,\n pretrained=\n 'pretrained/segformer_mit-b2_512x512_160k_ade20k_20220620_114047-64e4feca.pth'\n ),\n decode_head=dict(\n type='SegformerHeadUnetFCHeadSingleStepMask',\n pretrained=\n 'pretrained/segformer_mit-b2_512x512_160k_ade20k_20220620_114047-64e4feca.pth',\n dim=128,\n out_dim=256,\n unet_channels=272,\n dim_mults=[1, 1, 1],\n cat_embedding_dim=16,\n in_channels=[64, 128, 320, 512],\n in_index=[0, 1, 2, 3],\n channels=256,\n dropout_ratio=0.1,\n num_classes=151,\n norm_cfg=dict(type='SyncBN', requires_grad=True),\n align_corners=False,\n ignore_index=0,\n loss_decode=dict(\n type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)),\n train_cfg=dict(),\n test_cfg=dict(mode='whole'))\ndataset_type = 'ADE20K151Dataset'\ndata_root = 'data/ade/ADEChallengeData2016'\nimg_norm_cfg = dict(\n mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)\ncrop_size = (512, 512)\ntrain_pipeline = [\n dict(type='LoadImageFromFile'),\n dict(type='LoadAnnotations', reduce_zero_label=False),\n dict(type='Resize', img_scale=(2048, 512), ratio_range=(0.5, 2.0)),\n dict(type='RandomCrop', crop_size=(512, 512), cat_max_ratio=0.75),\n dict(type='RandomFlip', prob=0.5),\n dict(type='PhotoMetricDistortion'),\n dict(\n type='Normalize',\n mean=[123.675, 116.28, 103.53],\n std=[58.395, 57.12, 57.375],\n to_rgb=True),\n dict(type='Pad', size=(512, 512), pad_val=0, seg_pad_val=0),\n dict(type='DefaultFormatBundle'),\n dict(type='Collect', keys=['img', 'gt_semantic_seg'])\n]\ntest_pipeline = [\n dict(type='LoadImageFromFile'),\n dict(\n type='MultiScaleFlipAug',\n img_scale=(2048, 512),\n flip=False,\n transforms=[\n dict(type='Resize', keep_ratio=True),\n dict(type='RandomFlip'),\n dict(\n type='Normalize',\n mean=[123.675, 116.28, 103.53],\n std=[58.395, 57.12, 57.375],\n to_rgb=True),\n dict(type='Pad', size_divisor=16, pad_val=0, seg_pad_val=0),\n dict(type='ImageToTensor', keys=['img']),\n dict(type='Collect', keys=['img'])\n ])\n]\ndata = dict(\n samples_per_gpu=4,\n workers_per_gpu=4,\n train=dict(\n type='ADE20K151Dataset',\n data_root='data/ade/ADEChallengeData2016',\n img_dir='images/training',\n ann_dir='annotations/training',\n pipeline=[\n dict(type='LoadImageFromFile'),\n dict(type='LoadAnnotations', reduce_zero_label=False),\n dict(type='Resize', img_scale=(2048, 512), ratio_range=(0.5, 2.0)),\n dict(type='RandomCrop', crop_size=(512, 512), cat_max_ratio=0.75),\n dict(type='RandomFlip', prob=0.5),\n dict(type='PhotoMetricDistortion'),\n dict(\n type='Normalize',\n mean=[123.675, 116.28, 103.53],\n std=[58.395, 57.12, 57.375],\n to_rgb=True),\n dict(type='Pad', size=(512, 512), pad_val=0, seg_pad_val=0),\n dict(type='DefaultFormatBundle'),\n dict(type='Collect', keys=['img', 'gt_semantic_seg'])\n ]),\n val=dict(\n type='ADE20K151Dataset',\n data_root='data/ade/ADEChallengeData2016',\n img_dir='images/validation',\n ann_dir='annotations/validation',\n pipeline=[\n dict(type='LoadImageFromFile'),\n dict(\n type='MultiScaleFlipAug',\n img_scale=(2048, 512),\n flip=False,\n transforms=[\n dict(type='Resize', keep_ratio=True),\n dict(type='RandomFlip'),\n dict(\n type='Normalize',\n mean=[123.675, 116.28, 103.53],\n std=[58.395, 57.12, 57.375],\n to_rgb=True),\n dict(\n type='Pad', size_divisor=16, pad_val=0, seg_pad_val=0),\n dict(type='ImageToTensor', keys=['img']),\n dict(type='Collect', keys=['img'])\n ])\n ]),\n test=dict(\n type='ADE20K151Dataset',\n data_root='data/ade/ADEChallengeData2016',\n img_dir='images/validation',\n ann_dir='annotations/validation',\n pipeline=[\n dict(type='LoadImageFromFile'),\n dict(\n type='MultiScaleFlipAug',\n img_scale=(2048, 512),\n flip=False,\n transforms=[\n dict(type='Resize', keep_ratio=True),\n dict(type='RandomFlip'),\n dict(\n type='Normalize',\n mean=[123.675, 116.28, 103.53],\n std=[58.395, 57.12, 57.375],\n to_rgb=True),\n dict(\n type='Pad', size_divisor=16, pad_val=0, seg_pad_val=0),\n dict(type='ImageToTensor', keys=['img']),\n dict(type='Collect', keys=['img'])\n ])\n ]))\nlog_config = dict(\n interval=50, hooks=[dict(type='TextLoggerHook', by_epoch=False)])\ndist_params = dict(backend='nccl')\nlog_level = 'INFO'\nload_from = None\nresume_from = None\nworkflow = [('train', 1)]\ncudnn_benchmark = True\noptimizer = dict(\n type='AdamW', lr=0.00015, betas=[0.9, 0.96], weight_decay=0.045)\noptimizer_config = dict()\nlr_config = dict(\n policy='step',\n warmup='linear',\n warmup_iters=1000,\n warmup_ratio=1e-06,\n step=10000,\n gamma=0.5,\n min_lr=1e-06,\n by_epoch=False)\nrunner = dict(type='IterBasedRunner', max_iters=80000)\ncheckpoint_config = dict(by_epoch=False, interval=8000)\nevaluation = dict(\n interval=8000, metric='mIoU', pre_eval=True, save_best='mIoU')\nwork_dir = './work_dirs2/ablation_segformer_mit_b2_segformer_head_unet_fc_single_step_ade_pretrained_freeze_embed_80k_ade20k151_mask'\ngpu_ids = range(0, 8)\nauto_resume = True\ndevice = 'cuda'\nseed = 1470787464\n", "CLASSES": ["background", "wall", "building", "sky", "floor", "tree", "ceiling", "road", "bed ", "windowpane", "grass", "cabinet", "sidewalk", "person", "earth", "door", "table", "mountain", "plant", "curtain", "chair", "car", "water", "painting", "sofa", "shelf", "house", "sea", "mirror", "rug", "field", "armchair", "seat", "fence", "desk", "rock", "wardrobe", "lamp", "bathtub", "railing", "cushion", "base", "box", "column", "signboard", "chest of drawers", "counter", "sand", "sink", "skyscraper", "fireplace", "refrigerator", "grandstand", "path", "stairs", "runway", "case", "pool table", "pillow", "screen door", "stairway", "river", "bridge", "bookcase", "blind", "coffee table", "toilet", "flower", "book", "hill", "bench", "countertop", "stove", "palm", "kitchen island", "computer", "swivel chair", "boat", "bar", "arcade machine", "hovel", "bus", "towel", "light", "truck", "tower", "chandelier", "awning", "streetlight", "booth", "television receiver", "airplane", "dirt track", "apparel", "pole", "land", "bannister", "escalator", "ottoman", "bottle", "buffet", "poster", "stage", "van", "ship", "fountain", "conveyer belt", "canopy", "washer", "plaything", "swimming pool", "stool", "barrel", "basket", "waterfall", "tent", "bag", "minibike", "cradle", "oven", "ball", "food", "step", "tank", "trade name", "microwave", "pot", "animal", "bicycle", "lake", "dishwasher", "screen", "blanket", "sculpture", "hood", "sconce", "vase", "traffic light", "tray", "ashcan", "fan", "pier", "crt screen", "plate", "monitor", "bulletin board", "shower", "radiator", "glass", "clock", "flag"], "PALETTE": [[0, 0, 0], [120, 120, 120], [180, 120, 120], [6, 230, 230], [80, 50, 50], [4, 200, 3], [120, 120, 80], [140, 140, 140], [204, 5, 255], [230, 230, 230], [4, 250, 7], [224, 5, 255], [235, 255, 7], [150, 5, 61], [120, 120, 70], [8, 255, 51], [255, 6, 82], [143, 255, 140], [204, 255, 4], [255, 51, 7], [204, 70, 3], [0, 102, 200], [61, 230, 250], [255, 6, 51], [11, 102, 255], [255, 7, 71], [255, 9, 224], [9, 7, 230], [220, 220, 220], [255, 9, 92], [112, 9, 255], [8, 255, 214], [7, 255, 224], [255, 184, 6], [10, 255, 71], [255, 41, 10], [7, 255, 255], [224, 255, 8], [102, 8, 255], [255, 61, 6], [255, 194, 7], [255, 122, 8], [0, 255, 20], [255, 8, 41], [255, 5, 153], [6, 51, 255], [235, 12, 255], [160, 150, 20], [0, 163, 255], [140, 140, 140], [250, 10, 15], [20, 255, 0], [31, 255, 0], [255, 31, 0], [255, 224, 0], [153, 255, 0], [0, 0, 255], [255, 71, 0], [0, 235, 255], [0, 173, 255], [31, 0, 255], [11, 200, 200], [255, 82, 0], [0, 255, 245], [0, 61, 255], [0, 255, 112], [0, 255, 133], [255, 0, 0], [255, 163, 0], [255, 102, 0], [194, 255, 0], [0, 143, 255], [51, 255, 0], [0, 82, 255], [0, 255, 41], [0, 255, 173], [10, 0, 255], [173, 255, 0], [0, 255, 153], [255, 92, 0], [255, 0, 255], [255, 0, 245], [255, 0, 102], [255, 173, 0], [255, 0, 20], [255, 184, 184], [0, 31, 255], [0, 255, 61], [0, 71, 255], [255, 0, 204], [0, 255, 194], [0, 255, 82], [0, 10, 255], [0, 112, 255], [51, 0, 255], [0, 194, 255], [0, 122, 255], [0, 255, 163], [255, 153, 0], [0, 255, 10], [255, 112, 0], [143, 255, 0], [82, 0, 255], [163, 255, 0], [255, 235, 0], [8, 184, 170], [133, 0, 255], [0, 255, 92], [184, 0, 255], [255, 0, 31], [0, 184, 255], [0, 214, 255], [255, 0, 112], [92, 255, 0], [0, 224, 255], [112, 224, 255], [70, 184, 160], [163, 0, 255], [153, 0, 255], [71, 255, 0], [255, 0, 163], [255, 204, 0], [255, 0, 143], [0, 255, 235], [133, 255, 0], [255, 0, 235], [245, 0, 255], [255, 0, 122], [255, 245, 0], [10, 190, 212], [214, 255, 0], [0, 204, 255], [20, 0, 255], [255, 255, 0], [0, 153, 255], [0, 41, 255], [0, 255, 204], [41, 0, 255], [41, 255, 0], [173, 0, 255], [0, 245, 255], [71, 0, 255], [122, 0, 255], [0, 255, 184], [0, 92, 255], [184, 255, 0], [0, 133, 255], [255, 214, 0], [25, 194, 194], [102, 255, 0], [92, 0, 255]], "hook_msgs": {}}
|
2 |
+
{"mode": "train", "epoch": 1, "iter": 50, "lr": 1e-05, "memory": 19783, "data_time": 0.01408, "decode.loss_ce": 3.82431, "decode.acc_seg": 14.20625, "loss": 3.82431, "time": 0.28603}
|
3 |
+
{"mode": "train", "epoch": 1, "iter": 100, "lr": 1e-05, "memory": 19783, "data_time": 0.0072, "decode.loss_ce": 2.9748, "decode.acc_seg": 42.56172, "loss": 2.9748, "time": 0.17031}
|
4 |
+
{"mode": "train", "epoch": 1, "iter": 150, "lr": 2e-05, "memory": 19783, "data_time": 0.00767, "decode.loss_ce": 2.23466, "decode.acc_seg": 49.31739, "loss": 2.23466, "time": 0.16828}
|
5 |
+
{"mode": "train", "epoch": 1, "iter": 200, "lr": 3e-05, "memory": 19783, "data_time": 0.00714, "decode.loss_ce": 1.69707, "decode.acc_seg": 60.8327, "loss": 1.69707, "time": 0.16941}
|
6 |
+
{"mode": "train", "epoch": 1, "iter": 250, "lr": 4e-05, "memory": 19783, "data_time": 0.00685, "decode.loss_ce": 1.32658, "decode.acc_seg": 69.1492, "loss": 1.32658, "time": 0.16832}
|
7 |
+
{"mode": "train", "epoch": 1, "iter": 300, "lr": 4e-05, "memory": 19783, "data_time": 0.00661, "decode.loss_ce": 1.10944, "decode.acc_seg": 74.3359, "loss": 1.10944, "time": 0.17039}
|
8 |
+
{"mode": "train", "epoch": 1, "iter": 350, "lr": 5e-05, "memory": 19783, "data_time": 0.00731, "decode.loss_ce": 0.87994, "decode.acc_seg": 78.09939, "loss": 0.87994, "time": 0.17046}
|
9 |
+
{"mode": "train", "epoch": 1, "iter": 400, "lr": 6e-05, "memory": 19783, "data_time": 0.00667, "decode.loss_ce": 0.75186, "decode.acc_seg": 80.26307, "loss": 0.75186, "time": 0.17146}
|
10 |
+
{"mode": "train", "epoch": 1, "iter": 450, "lr": 7e-05, "memory": 19783, "data_time": 0.00738, "decode.loss_ce": 0.67067, "decode.acc_seg": 81.78752, "loss": 0.67067, "time": 0.17104}
|
11 |
+
{"mode": "train", "epoch": 1, "iter": 500, "lr": 7e-05, "memory": 19783, "data_time": 0.00748, "decode.loss_ce": 0.59517, "decode.acc_seg": 82.68755, "loss": 0.59517, "time": 0.16462}
|
12 |
+
{"mode": "train", "epoch": 1, "iter": 550, "lr": 8e-05, "memory": 19783, "data_time": 0.00755, "decode.loss_ce": 0.51003, "decode.acc_seg": 84.74014, "loss": 0.51003, "time": 0.17368}
|
13 |
+
{"mode": "train", "epoch": 1, "iter": 600, "lr": 9e-05, "memory": 19783, "data_time": 0.00752, "decode.loss_ce": 0.44453, "decode.acc_seg": 85.98014, "loss": 0.44453, "time": 0.16123}
|
14 |
+
{"mode": "train", "epoch": 2, "iter": 650, "lr": 0.0001, "memory": 19783, "data_time": 0.05353, "decode.loss_ce": 0.43514, "decode.acc_seg": 86.10254, "loss": 0.43514, "time": 0.21836}
|
15 |
+
{"mode": "train", "epoch": 2, "iter": 700, "lr": 0.0001, "memory": 19783, "data_time": 0.00717, "decode.loss_ce": 0.40124, "decode.acc_seg": 86.65119, "loss": 0.40124, "time": 0.16862}
|
ablation/ablation_segformer_mit_b2_segformer_head_unet_fc_single_step_ade_pretrained_freeze_embed_80k_ade20k151_mask/20230304_103934.log
ADDED
The diff for this file is too large to render.
See raw diff
|
|
ablation/ablation_segformer_mit_b2_segformer_head_unet_fc_single_step_ade_pretrained_freeze_embed_80k_ade20k151_mask/20230304_103934.log.json
ADDED
@@ -0,0 +1,161 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{"env_info": "sys.platform: linux\nPython: 3.7.16 (default, Jan 17 2023, 22:20:44) [GCC 11.2.0]\nCUDA available: True\nGPU 0,1,2,3,4,5,6,7: NVIDIA A100-SXM4-80GB\nCUDA_HOME: /mnt/petrelfs/laizeqiang/miniconda3/envs/torch\nNVCC: Cuda compilation tools, release 11.6, V11.6.124\nGCC: gcc (GCC) 4.8.5 20150623 (Red Hat 4.8.5-44)\nPyTorch: 1.13.1\nPyTorch compiling details: PyTorch built with:\n - GCC 9.3\n - C++ Version: 201402\n - Intel(R) oneAPI Math Kernel Library Version 2021.4-Product Build 20210904 for Intel(R) 64 architecture applications\n - Intel(R) MKL-DNN v2.6.0 (Git Hash 52b5f107dd9cf10910aaa19cb47f3abf9b349815)\n - OpenMP 201511 (a.k.a. OpenMP 4.5)\n - LAPACK is enabled (usually provided by MKL)\n - NNPACK is enabled\n - CPU capability usage: AVX2\n - CUDA Runtime 11.6\n - NVCC architecture flags: -gencode;arch=compute_37,code=sm_37;-gencode;arch=compute_50,code=sm_50;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_61,code=sm_61;-gencode;arch=compute_70,code=sm_70;-gencode;arch=compute_75,code=sm_75;-gencode;arch=compute_80,code=sm_80;-gencode;arch=compute_86,code=sm_86;-gencode;arch=compute_37,code=compute_37\n - CuDNN 8.3.2 (built against CUDA 11.5)\n - Magma 2.6.1\n - Build settings: BLAS_INFO=mkl, BUILD_TYPE=Release, CUDA_VERSION=11.6, CUDNN_VERSION=8.3.2, CXX_COMPILER=/opt/rh/devtoolset-9/root/usr/bin/c++, CXX_FLAGS= -fabi-version=11 -Wno-deprecated -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -fopenmp -DNDEBUG -DUSE_KINETO -DUSE_FBGEMM -DUSE_QNNPACK -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE -DEDGE_PROFILER_USE_KINETO -O2 -fPIC -Wno-narrowing -Wall -Wextra -Werror=return-type -Werror=non-virtual-dtor -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wunused-local-typedefs -Wno-unused-parameter -Wno-unused-function -Wno-unused-result -Wno-strict-overflow -Wno-strict-aliasing -Wno-error=deprecated-declarations -Wno-stringop-overflow -Wno-psabi -Wno-error=pedantic -Wno-error=redundant-decls -Wno-error=old-style-cast -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Werror=cast-function-type -Wno-stringop-overflow, LAPACK_INFO=mkl, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, PERF_WITH_AVX512=1, TORCH_VERSION=1.13.1, USE_CUDA=ON, USE_CUDNN=ON, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_MKL=ON, USE_MKLDNN=ON, USE_MPI=OFF, USE_NCCL=ON, USE_NNPACK=ON, USE_OPENMP=ON, USE_ROCM=OFF, \n\nTorchVision: 0.14.1\nOpenCV: 4.7.0\nMMCV: 1.7.1\nMMCV Compiler: GCC 9.3\nMMCV CUDA Compiler: 11.6\nMMSegmentation: 0.30.0+d4f0cb3", "seed": 1648012630, "exp_name": "ablation_segformer_mit_b2_segformer_head_unet_fc_single_step_ade_pretrained_freeze_embed_80k_ade20k151_mask.py", "mmseg_version": "0.30.0+d4f0cb3", "config": "norm_cfg = dict(type='SyncBN', requires_grad=True)\ncheckpoint = 'pretrained/segformer_mit-b2_512x512_160k_ade20k_20220620_114047-64e4feca.pth'\nmodel = dict(\n type='EncoderDecoderFreeze',\n freeze_parameters=['backbone', 'decode_head'],\n pretrained=\n 'pretrained/segformer_mit-b2_512x512_160k_ade20k_20220620_114047-64e4feca.pth',\n backbone=dict(\n type='MixVisionTransformerCustomInitWeights',\n in_channels=3,\n embed_dims=64,\n num_stages=4,\n num_layers=[3, 4, 6, 3],\n num_heads=[1, 2, 5, 8],\n patch_sizes=[7, 3, 3, 3],\n sr_ratios=[8, 4, 2, 1],\n out_indices=(0, 1, 2, 3),\n mlp_ratio=4,\n qkv_bias=True,\n drop_rate=0.0,\n attn_drop_rate=0.0,\n drop_path_rate=0.1,\n pretrained=\n 'pretrained/segformer_mit-b2_512x512_160k_ade20k_20220620_114047-64e4feca.pth'\n ),\n decode_head=dict(\n type='SegformerHeadUnetFCHeadSingleStepMask',\n pretrained=\n 'pretrained/segformer_mit-b2_512x512_160k_ade20k_20220620_114047-64e4feca.pth',\n dim=128,\n out_dim=256,\n unet_channels=272,\n dim_mults=[1, 1, 1],\n cat_embedding_dim=16,\n in_channels=[64, 128, 320, 512],\n in_index=[0, 1, 2, 3],\n channels=256,\n dropout_ratio=0.1,\n num_classes=151,\n norm_cfg=dict(type='SyncBN', requires_grad=True),\n align_corners=False,\n ignore_index=0,\n loss_decode=dict(\n type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)),\n train_cfg=dict(),\n test_cfg=dict(mode='whole'))\ndataset_type = 'ADE20K151Dataset'\ndata_root = 'data/ade/ADEChallengeData2016'\nimg_norm_cfg = dict(\n mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)\ncrop_size = (512, 512)\ntrain_pipeline = [\n dict(type='LoadImageFromFile'),\n dict(type='LoadAnnotations', reduce_zero_label=False),\n dict(type='Resize', img_scale=(2048, 512), ratio_range=(0.5, 2.0)),\n dict(type='RandomCrop', crop_size=(512, 512), cat_max_ratio=0.75),\n dict(type='RandomFlip', prob=0.5),\n dict(type='PhotoMetricDistortion'),\n dict(\n type='Normalize',\n mean=[123.675, 116.28, 103.53],\n std=[58.395, 57.12, 57.375],\n to_rgb=True),\n dict(type='Pad', size=(512, 512), pad_val=0, seg_pad_val=0),\n dict(type='DefaultFormatBundle'),\n dict(type='Collect', keys=['img', 'gt_semantic_seg'])\n]\ntest_pipeline = [\n dict(type='LoadImageFromFile'),\n dict(\n type='MultiScaleFlipAug',\n img_scale=(2048, 512),\n flip=False,\n transforms=[\n dict(type='Resize', keep_ratio=True),\n dict(type='RandomFlip'),\n dict(\n type='Normalize',\n mean=[123.675, 116.28, 103.53],\n std=[58.395, 57.12, 57.375],\n to_rgb=True),\n dict(type='Pad', size_divisor=16, pad_val=0, seg_pad_val=0),\n dict(type='ImageToTensor', keys=['img']),\n dict(type='Collect', keys=['img'])\n ])\n]\ndata = dict(\n samples_per_gpu=4,\n workers_per_gpu=4,\n train=dict(\n type='ADE20K151Dataset',\n data_root='data/ade/ADEChallengeData2016',\n img_dir='images/training',\n ann_dir='annotations/training',\n pipeline=[\n dict(type='LoadImageFromFile'),\n dict(type='LoadAnnotations', reduce_zero_label=False),\n dict(type='Resize', img_scale=(2048, 512), ratio_range=(0.5, 2.0)),\n dict(type='RandomCrop', crop_size=(512, 512), cat_max_ratio=0.75),\n dict(type='RandomFlip', prob=0.5),\n dict(type='PhotoMetricDistortion'),\n dict(\n type='Normalize',\n mean=[123.675, 116.28, 103.53],\n std=[58.395, 57.12, 57.375],\n to_rgb=True),\n dict(type='Pad', size=(512, 512), pad_val=0, seg_pad_val=0),\n dict(type='DefaultFormatBundle'),\n dict(type='Collect', keys=['img', 'gt_semantic_seg'])\n ]),\n val=dict(\n type='ADE20K151Dataset',\n data_root='data/ade/ADEChallengeData2016',\n img_dir='images/validation',\n ann_dir='annotations/validation',\n pipeline=[\n dict(type='LoadImageFromFile'),\n dict(\n type='MultiScaleFlipAug',\n img_scale=(2048, 512),\n flip=False,\n transforms=[\n dict(type='Resize', keep_ratio=True),\n dict(type='RandomFlip'),\n dict(\n type='Normalize',\n mean=[123.675, 116.28, 103.53],\n std=[58.395, 57.12, 57.375],\n to_rgb=True),\n dict(\n type='Pad', size_divisor=16, pad_val=0, seg_pad_val=0),\n dict(type='ImageToTensor', keys=['img']),\n dict(type='Collect', keys=['img'])\n ])\n ]),\n test=dict(\n type='ADE20K151Dataset',\n data_root='data/ade/ADEChallengeData2016',\n img_dir='images/validation',\n ann_dir='annotations/validation',\n pipeline=[\n dict(type='LoadImageFromFile'),\n dict(\n type='MultiScaleFlipAug',\n img_scale=(2048, 512),\n flip=False,\n transforms=[\n dict(type='Resize', keep_ratio=True),\n dict(type='RandomFlip'),\n dict(\n type='Normalize',\n mean=[123.675, 116.28, 103.53],\n std=[58.395, 57.12, 57.375],\n to_rgb=True),\n dict(\n type='Pad', size_divisor=16, pad_val=0, seg_pad_val=0),\n dict(type='ImageToTensor', keys=['img']),\n dict(type='Collect', keys=['img'])\n ])\n ]))\nlog_config = dict(\n interval=50, hooks=[dict(type='TextLoggerHook', by_epoch=False)])\ndist_params = dict(backend='nccl')\nlog_level = 'INFO'\nload_from = None\nresume_from = None\nworkflow = [('train', 1)]\ncudnn_benchmark = True\noptimizer = dict(\n type='AdamW', lr=0.00015, betas=[0.9, 0.96], weight_decay=0.045)\noptimizer_config = dict()\nlr_config = dict(\n policy='step',\n warmup='linear',\n warmup_iters=1000,\n warmup_ratio=1e-06,\n step=10000,\n gamma=0.5,\n min_lr=1e-06,\n by_epoch=False)\nrunner = dict(type='IterBasedRunner', max_iters=80000)\ncheckpoint_config = dict(by_epoch=False, interval=8000)\nevaluation = dict(\n interval=8000, metric='mIoU', pre_eval=True, save_best='mIoU')\nwork_dir = './work_dirs2/ablation_segformer_mit_b2_segformer_head_unet_fc_single_step_ade_pretrained_freeze_embed_80k_ade20k151_mask'\ngpu_ids = range(0, 8)\nauto_resume = True\ndevice = 'cuda'\nseed = 1648012630\n", "CLASSES": ["background", "wall", "building", "sky", "floor", "tree", "ceiling", "road", "bed ", "windowpane", "grass", "cabinet", "sidewalk", "person", "earth", "door", "table", "mountain", "plant", "curtain", "chair", "car", "water", "painting", "sofa", "shelf", "house", "sea", "mirror", "rug", "field", "armchair", "seat", "fence", "desk", "rock", "wardrobe", "lamp", "bathtub", "railing", "cushion", "base", "box", "column", "signboard", "chest of drawers", "counter", "sand", "sink", "skyscraper", "fireplace", "refrigerator", "grandstand", "path", "stairs", "runway", "case", "pool table", "pillow", "screen door", "stairway", "river", "bridge", "bookcase", "blind", "coffee table", "toilet", "flower", "book", "hill", "bench", "countertop", "stove", "palm", "kitchen island", "computer", "swivel chair", "boat", "bar", "arcade machine", "hovel", "bus", "towel", "light", "truck", "tower", "chandelier", "awning", "streetlight", "booth", "television receiver", "airplane", "dirt track", "apparel", "pole", "land", "bannister", "escalator", "ottoman", "bottle", "buffet", "poster", "stage", "van", "ship", "fountain", "conveyer belt", "canopy", "washer", "plaything", "swimming pool", "stool", "barrel", "basket", "waterfall", "tent", "bag", "minibike", "cradle", "oven", "ball", "food", "step", "tank", "trade name", "microwave", "pot", "animal", "bicycle", "lake", "dishwasher", "screen", "blanket", "sculpture", "hood", "sconce", "vase", "traffic light", "tray", "ashcan", "fan", "pier", "crt screen", "plate", "monitor", "bulletin board", "shower", "radiator", "glass", "clock", "flag"], "PALETTE": [[0, 0, 0], [120, 120, 120], [180, 120, 120], [6, 230, 230], [80, 50, 50], [4, 200, 3], [120, 120, 80], [140, 140, 140], [204, 5, 255], [230, 230, 230], [4, 250, 7], [224, 5, 255], [235, 255, 7], [150, 5, 61], [120, 120, 70], [8, 255, 51], [255, 6, 82], [143, 255, 140], [204, 255, 4], [255, 51, 7], [204, 70, 3], [0, 102, 200], [61, 230, 250], [255, 6, 51], [11, 102, 255], [255, 7, 71], [255, 9, 224], [9, 7, 230], [220, 220, 220], [255, 9, 92], [112, 9, 255], [8, 255, 214], [7, 255, 224], [255, 184, 6], [10, 255, 71], [255, 41, 10], [7, 255, 255], [224, 255, 8], [102, 8, 255], [255, 61, 6], [255, 194, 7], [255, 122, 8], [0, 255, 20], [255, 8, 41], [255, 5, 153], [6, 51, 255], [235, 12, 255], [160, 150, 20], [0, 163, 255], [140, 140, 140], [250, 10, 15], [20, 255, 0], [31, 255, 0], [255, 31, 0], [255, 224, 0], [153, 255, 0], [0, 0, 255], [255, 71, 0], [0, 235, 255], [0, 173, 255], [31, 0, 255], [11, 200, 200], [255, 82, 0], [0, 255, 245], [0, 61, 255], [0, 255, 112], [0, 255, 133], [255, 0, 0], [255, 163, 0], [255, 102, 0], [194, 255, 0], [0, 143, 255], [51, 255, 0], [0, 82, 255], [0, 255, 41], [0, 255, 173], [10, 0, 255], [173, 255, 0], [0, 255, 153], [255, 92, 0], [255, 0, 255], [255, 0, 245], [255, 0, 102], [255, 173, 0], [255, 0, 20], [255, 184, 184], [0, 31, 255], [0, 255, 61], [0, 71, 255], [255, 0, 204], [0, 255, 194], [0, 255, 82], [0, 10, 255], [0, 112, 255], [51, 0, 255], [0, 194, 255], [0, 122, 255], [0, 255, 163], [255, 153, 0], [0, 255, 10], [255, 112, 0], [143, 255, 0], [82, 0, 255], [163, 255, 0], [255, 235, 0], [8, 184, 170], [133, 0, 255], [0, 255, 92], [184, 0, 255], [255, 0, 31], [0, 184, 255], [0, 214, 255], [255, 0, 112], [92, 255, 0], [0, 224, 255], [112, 224, 255], [70, 184, 160], [163, 0, 255], [153, 0, 255], [71, 255, 0], [255, 0, 163], [255, 204, 0], [255, 0, 143], [0, 255, 235], [133, 255, 0], [255, 0, 235], [245, 0, 255], [255, 0, 122], [255, 245, 0], [10, 190, 212], [214, 255, 0], [0, 204, 255], [20, 0, 255], [255, 255, 0], [0, 153, 255], [0, 41, 255], [0, 255, 204], [41, 0, 255], [41, 255, 0], [173, 0, 255], [0, 245, 255], [71, 0, 255], [122, 0, 255], [0, 255, 184], [0, 92, 255], [184, 255, 0], [0, 133, 255], [255, 214, 0], [25, 194, 194], [102, 255, 0], [92, 0, 255]], "hook_msgs": {}}
|
2 |
+
{"mode": "train", "epoch": 1, "iter": 50, "lr": 1e-05, "memory": 19783, "data_time": 0.01464, "decode.loss_ce": 3.78586, "decode.acc_seg": 13.44899, "loss": 3.78586, "time": 0.28897}
|
3 |
+
{"mode": "train", "epoch": 1, "iter": 100, "lr": 1e-05, "memory": 19783, "data_time": 0.00682, "decode.loss_ce": 2.91953, "decode.acc_seg": 44.1399, "loss": 2.91953, "time": 0.17252}
|
4 |
+
{"mode": "train", "epoch": 1, "iter": 150, "lr": 2e-05, "memory": 19783, "data_time": 0.00701, "decode.loss_ce": 2.10409, "decode.acc_seg": 53.58975, "loss": 2.10409, "time": 0.17548}
|
5 |
+
{"mode": "train", "epoch": 1, "iter": 200, "lr": 3e-05, "memory": 19783, "data_time": 0.0073, "decode.loss_ce": 1.6526, "decode.acc_seg": 62.47836, "loss": 1.6526, "time": 0.16673}
|
6 |
+
{"mode": "train", "epoch": 1, "iter": 250, "lr": 4e-05, "memory": 19783, "data_time": 0.00784, "decode.loss_ce": 1.32199, "decode.acc_seg": 68.99333, "loss": 1.32199, "time": 0.18392}
|
7 |
+
{"mode": "train", "epoch": 1, "iter": 300, "lr": 4e-05, "memory": 19783, "data_time": 0.00685, "decode.loss_ce": 1.07112, "decode.acc_seg": 74.76253, "loss": 1.07112, "time": 0.16585}
|
8 |
+
{"mode": "train", "epoch": 1, "iter": 350, "lr": 5e-05, "memory": 19783, "data_time": 0.00832, "decode.loss_ce": 0.87855, "decode.acc_seg": 77.97355, "loss": 0.87855, "time": 0.17731}
|
9 |
+
{"mode": "train", "epoch": 1, "iter": 400, "lr": 6e-05, "memory": 19783, "data_time": 0.00796, "decode.loss_ce": 0.75946, "decode.acc_seg": 80.1142, "loss": 0.75946, "time": 0.16399}
|
10 |
+
{"mode": "train", "epoch": 1, "iter": 450, "lr": 7e-05, "memory": 19783, "data_time": 0.00752, "decode.loss_ce": 0.70385, "decode.acc_seg": 80.5049, "loss": 0.70385, "time": 0.16518}
|
11 |
+
{"mode": "train", "epoch": 1, "iter": 500, "lr": 7e-05, "memory": 19783, "data_time": 0.00758, "decode.loss_ce": 0.56582, "decode.acc_seg": 84.02578, "loss": 0.56582, "time": 0.16899}
|
12 |
+
{"mode": "train", "epoch": 1, "iter": 550, "lr": 8e-05, "memory": 19783, "data_time": 0.00745, "decode.loss_ce": 0.51044, "decode.acc_seg": 84.65132, "loss": 0.51044, "time": 0.17316}
|
13 |
+
{"mode": "train", "epoch": 1, "iter": 600, "lr": 9e-05, "memory": 19783, "data_time": 0.00692, "decode.loss_ce": 0.46692, "decode.acc_seg": 85.42044, "loss": 0.46692, "time": 0.17047}
|
14 |
+
{"mode": "train", "epoch": 2, "iter": 650, "lr": 0.0001, "memory": 19783, "data_time": 0.05563, "decode.loss_ce": 0.42618, "decode.acc_seg": 86.16397, "loss": 0.42618, "time": 0.22341}
|
15 |
+
{"mode": "train", "epoch": 2, "iter": 700, "lr": 0.0001, "memory": 19783, "data_time": 0.00702, "decode.loss_ce": 0.39092, "decode.acc_seg": 86.64982, "loss": 0.39092, "time": 0.16783}
|
16 |
+
{"mode": "train", "epoch": 2, "iter": 750, "lr": 0.00011, "memory": 19783, "data_time": 0.00746, "decode.loss_ce": 0.35796, "decode.acc_seg": 87.63995, "loss": 0.35796, "time": 0.16982}
|
17 |
+
{"mode": "train", "epoch": 2, "iter": 800, "lr": 0.00012, "memory": 19783, "data_time": 0.00735, "decode.loss_ce": 0.37266, "decode.acc_seg": 87.08973, "loss": 0.37266, "time": 0.16822}
|
18 |
+
{"mode": "train", "epoch": 2, "iter": 850, "lr": 0.00013, "memory": 19783, "data_time": 0.00717, "decode.loss_ce": 0.3519, "decode.acc_seg": 87.47414, "loss": 0.3519, "time": 0.17154}
|
19 |
+
{"mode": "train", "epoch": 2, "iter": 900, "lr": 0.00013, "memory": 19783, "data_time": 0.00814, "decode.loss_ce": 0.33697, "decode.acc_seg": 87.83325, "loss": 0.33697, "time": 0.17741}
|
20 |
+
{"mode": "train", "epoch": 2, "iter": 950, "lr": 0.00014, "memory": 19783, "data_time": 0.007, "decode.loss_ce": 0.33214, "decode.acc_seg": 87.90779, "loss": 0.33214, "time": 0.17481}
|
21 |
+
{"mode": "train", "epoch": 2, "iter": 1000, "lr": 0.00015, "memory": 19783, "data_time": 0.00707, "decode.loss_ce": 0.32533, "decode.acc_seg": 87.80602, "loss": 0.32533, "time": 0.17805}
|
22 |
+
{"mode": "train", "epoch": 2, "iter": 1050, "lr": 0.00015, "memory": 19783, "data_time": 0.00713, "decode.loss_ce": 0.31727, "decode.acc_seg": 88.31456, "loss": 0.31727, "time": 0.16702}
|
23 |
+
{"mode": "train", "epoch": 2, "iter": 1100, "lr": 0.00015, "memory": 19783, "data_time": 0.00683, "decode.loss_ce": 0.31942, "decode.acc_seg": 88.159, "loss": 0.31942, "time": 0.1682}
|
24 |
+
{"mode": "train", "epoch": 2, "iter": 1150, "lr": 0.00015, "memory": 19783, "data_time": 0.0074, "decode.loss_ce": 0.31511, "decode.acc_seg": 88.10372, "loss": 0.31511, "time": 0.16781}
|
25 |
+
{"mode": "train", "epoch": 2, "iter": 1200, "lr": 0.00015, "memory": 19783, "data_time": 0.00735, "decode.loss_ce": 0.29375, "decode.acc_seg": 89.09847, "loss": 0.29375, "time": 0.16453}
|
26 |
+
{"mode": "train", "epoch": 2, "iter": 1250, "lr": 0.00015, "memory": 19783, "data_time": 0.00714, "decode.loss_ce": 0.29113, "decode.acc_seg": 88.97655, "loss": 0.29113, "time": 0.16846}
|
27 |
+
{"mode": "train", "epoch": 3, "iter": 1300, "lr": 0.00015, "memory": 19783, "data_time": 0.05392, "decode.loss_ce": 0.28411, "decode.acc_seg": 89.29744, "loss": 0.28411, "time": 0.21186}
|
28 |
+
{"mode": "train", "epoch": 3, "iter": 1350, "lr": 0.00015, "memory": 19783, "data_time": 0.0071, "decode.loss_ce": 0.28474, "decode.acc_seg": 88.92053, "loss": 0.28474, "time": 0.16269}
|
29 |
+
{"mode": "train", "epoch": 3, "iter": 1400, "lr": 0.00015, "memory": 19783, "data_time": 0.00671, "decode.loss_ce": 0.28921, "decode.acc_seg": 89.11701, "loss": 0.28921, "time": 0.16276}
|
30 |
+
{"mode": "train", "epoch": 3, "iter": 1450, "lr": 0.00015, "memory": 19783, "data_time": 0.00739, "decode.loss_ce": 0.28266, "decode.acc_seg": 89.08791, "loss": 0.28266, "time": 0.16348}
|
31 |
+
{"mode": "train", "epoch": 3, "iter": 1500, "lr": 0.00015, "memory": 19783, "data_time": 0.00699, "decode.loss_ce": 0.28323, "decode.acc_seg": 88.94225, "loss": 0.28323, "time": 0.16677}
|
32 |
+
{"mode": "train", "epoch": 3, "iter": 1550, "lr": 0.00015, "memory": 19783, "data_time": 0.0075, "decode.loss_ce": 0.29209, "decode.acc_seg": 88.851, "loss": 0.29209, "time": 0.16656}
|
33 |
+
{"mode": "train", "epoch": 3, "iter": 1600, "lr": 0.00015, "memory": 19783, "data_time": 0.00727, "decode.loss_ce": 0.28026, "decode.acc_seg": 89.16342, "loss": 0.28026, "time": 0.16899}
|
34 |
+
{"mode": "train", "epoch": 3, "iter": 1650, "lr": 0.00015, "memory": 19783, "data_time": 0.00713, "decode.loss_ce": 0.27397, "decode.acc_seg": 89.47841, "loss": 0.27397, "time": 0.17142}
|
35 |
+
{"mode": "train", "epoch": 3, "iter": 1700, "lr": 0.00015, "memory": 19783, "data_time": 0.00748, "decode.loss_ce": 0.27943, "decode.acc_seg": 89.04867, "loss": 0.27943, "time": 0.17033}
|
36 |
+
{"mode": "train", "epoch": 3, "iter": 1750, "lr": 0.00015, "memory": 19783, "data_time": 0.00739, "decode.loss_ce": 0.27289, "decode.acc_seg": 89.30963, "loss": 0.27289, "time": 0.16775}
|
37 |
+
{"mode": "train", "epoch": 3, "iter": 1800, "lr": 0.00015, "memory": 19783, "data_time": 0.00709, "decode.loss_ce": 0.25431, "decode.acc_seg": 89.92175, "loss": 0.25431, "time": 0.17115}
|
38 |
+
{"mode": "train", "epoch": 3, "iter": 1850, "lr": 0.00015, "memory": 19783, "data_time": 0.00764, "decode.loss_ce": 0.27098, "decode.acc_seg": 89.38316, "loss": 0.27098, "time": 0.16868}
|
39 |
+
{"mode": "train", "epoch": 4, "iter": 1900, "lr": 0.00015, "memory": 19783, "data_time": 0.05451, "decode.loss_ce": 0.26261, "decode.acc_seg": 89.79397, "loss": 0.26261, "time": 0.2239}
|
40 |
+
{"mode": "train", "epoch": 4, "iter": 1950, "lr": 0.00015, "memory": 19783, "data_time": 0.00677, "decode.loss_ce": 0.27538, "decode.acc_seg": 89.28754, "loss": 0.27538, "time": 0.17293}
|
41 |
+
{"mode": "train", "epoch": 4, "iter": 2000, "lr": 0.00015, "memory": 19783, "data_time": 0.00683, "decode.loss_ce": 0.26254, "decode.acc_seg": 89.72531, "loss": 0.26254, "time": 0.16631}
|
42 |
+
{"mode": "train", "epoch": 4, "iter": 2050, "lr": 0.00015, "memory": 19783, "data_time": 0.00672, "decode.loss_ce": 0.26892, "decode.acc_seg": 89.60717, "loss": 0.26892, "time": 0.17634}
|
43 |
+
{"mode": "train", "epoch": 4, "iter": 2100, "lr": 0.00015, "memory": 19783, "data_time": 0.0071, "decode.loss_ce": 0.25522, "decode.acc_seg": 89.88685, "loss": 0.25522, "time": 0.16423}
|
44 |
+
{"mode": "train", "epoch": 4, "iter": 2150, "lr": 0.00015, "memory": 19783, "data_time": 0.00737, "decode.loss_ce": 0.26096, "decode.acc_seg": 89.79101, "loss": 0.26096, "time": 0.16638}
|
45 |
+
{"mode": "train", "epoch": 4, "iter": 2200, "lr": 0.00015, "memory": 19783, "data_time": 0.00718, "decode.loss_ce": 0.26273, "decode.acc_seg": 89.645, "loss": 0.26273, "time": 0.17165}
|
46 |
+
{"mode": "train", "epoch": 4, "iter": 2250, "lr": 0.00015, "memory": 19783, "data_time": 0.00694, "decode.loss_ce": 0.26784, "decode.acc_seg": 89.34889, "loss": 0.26784, "time": 0.16663}
|
47 |
+
{"mode": "train", "epoch": 4, "iter": 2300, "lr": 0.00015, "memory": 19783, "data_time": 0.00715, "decode.loss_ce": 0.26124, "decode.acc_seg": 89.65508, "loss": 0.26124, "time": 0.17081}
|
48 |
+
{"mode": "train", "epoch": 4, "iter": 2350, "lr": 0.00015, "memory": 19783, "data_time": 0.00701, "decode.loss_ce": 0.26513, "decode.acc_seg": 89.44922, "loss": 0.26513, "time": 0.16596}
|
49 |
+
{"mode": "train", "epoch": 4, "iter": 2400, "lr": 0.00015, "memory": 19783, "data_time": 0.00661, "decode.loss_ce": 0.25128, "decode.acc_seg": 89.97749, "loss": 0.25128, "time": 0.17423}
|
50 |
+
{"mode": "train", "epoch": 4, "iter": 2450, "lr": 0.00015, "memory": 19783, "data_time": 0.00745, "decode.loss_ce": 0.26641, "decode.acc_seg": 89.34108, "loss": 0.26641, "time": 0.17297}
|
51 |
+
{"mode": "train", "epoch": 4, "iter": 2500, "lr": 0.00015, "memory": 19783, "data_time": 0.0072, "decode.loss_ce": 0.2621, "decode.acc_seg": 89.7861, "loss": 0.2621, "time": 0.17021}
|
52 |
+
{"mode": "train", "epoch": 5, "iter": 2550, "lr": 0.00015, "memory": 19783, "data_time": 0.0521, "decode.loss_ce": 0.24304, "decode.acc_seg": 90.10812, "loss": 0.24304, "time": 0.21542}
|
53 |
+
{"mode": "train", "epoch": 5, "iter": 2600, "lr": 0.00015, "memory": 19783, "data_time": 0.00686, "decode.loss_ce": 0.25384, "decode.acc_seg": 90.02081, "loss": 0.25384, "time": 0.17489}
|
54 |
+
{"mode": "train", "epoch": 5, "iter": 2650, "lr": 0.00015, "memory": 19783, "data_time": 0.00716, "decode.loss_ce": 0.26031, "decode.acc_seg": 89.77231, "loss": 0.26031, "time": 0.16684}
|
55 |
+
{"mode": "train", "epoch": 5, "iter": 2700, "lr": 0.00015, "memory": 19783, "data_time": 0.0071, "decode.loss_ce": 0.2666, "decode.acc_seg": 89.22362, "loss": 0.2666, "time": 0.16719}
|
56 |
+
{"mode": "train", "epoch": 5, "iter": 2750, "lr": 0.00015, "memory": 19783, "data_time": 0.00801, "decode.loss_ce": 0.26155, "decode.acc_seg": 89.54207, "loss": 0.26155, "time": 0.16738}
|
57 |
+
{"mode": "train", "epoch": 5, "iter": 2800, "lr": 0.00015, "memory": 19783, "data_time": 0.00727, "decode.loss_ce": 0.2504, "decode.acc_seg": 89.91151, "loss": 0.2504, "time": 0.16287}
|
58 |
+
{"mode": "train", "epoch": 5, "iter": 2850, "lr": 0.00015, "memory": 19783, "data_time": 0.00674, "decode.loss_ce": 0.25434, "decode.acc_seg": 89.87366, "loss": 0.25434, "time": 0.17361}
|
59 |
+
{"mode": "train", "epoch": 5, "iter": 2900, "lr": 0.00015, "memory": 19783, "data_time": 0.00791, "decode.loss_ce": 0.2511, "decode.acc_seg": 89.8458, "loss": 0.2511, "time": 0.17571}
|
60 |
+
{"mode": "train", "epoch": 5, "iter": 2950, "lr": 0.00015, "memory": 19783, "data_time": 0.00664, "decode.loss_ce": 0.25013, "decode.acc_seg": 90.12326, "loss": 0.25013, "time": 0.17105}
|
61 |
+
{"mode": "train", "epoch": 5, "iter": 3000, "lr": 0.00015, "memory": 19783, "data_time": 0.00693, "decode.loss_ce": 0.25603, "decode.acc_seg": 89.82247, "loss": 0.25603, "time": 0.1639}
|
62 |
+
{"mode": "train", "epoch": 5, "iter": 3050, "lr": 0.00015, "memory": 19783, "data_time": 0.00718, "decode.loss_ce": 0.25956, "decode.acc_seg": 89.82373, "loss": 0.25956, "time": 0.17946}
|
63 |
+
{"mode": "train", "epoch": 5, "iter": 3100, "lr": 0.00015, "memory": 19783, "data_time": 0.00707, "decode.loss_ce": 0.25529, "decode.acc_seg": 89.77675, "loss": 0.25529, "time": 0.16852}
|
64 |
+
{"mode": "train", "epoch": 5, "iter": 3150, "lr": 0.00015, "memory": 19783, "data_time": 0.00737, "decode.loss_ce": 0.25803, "decode.acc_seg": 89.64798, "loss": 0.25803, "time": 0.17423}
|
65 |
+
{"mode": "train", "epoch": 6, "iter": 3200, "lr": 0.00015, "memory": 19783, "data_time": 0.05491, "decode.loss_ce": 0.24815, "decode.acc_seg": 90.10166, "loss": 0.24815, "time": 0.21712}
|
66 |
+
{"mode": "train", "epoch": 6, "iter": 3250, "lr": 0.00015, "memory": 19783, "data_time": 0.00732, "decode.loss_ce": 0.24073, "decode.acc_seg": 90.3456, "loss": 0.24073, "time": 0.1644}
|
67 |
+
{"mode": "train", "epoch": 6, "iter": 3300, "lr": 0.00015, "memory": 19783, "data_time": 0.00742, "decode.loss_ce": 0.24323, "decode.acc_seg": 90.39054, "loss": 0.24323, "time": 0.16306}
|
68 |
+
{"mode": "train", "epoch": 6, "iter": 3350, "lr": 0.00015, "memory": 19783, "data_time": 0.00727, "decode.loss_ce": 0.24765, "decode.acc_seg": 90.05928, "loss": 0.24765, "time": 0.16683}
|
69 |
+
{"mode": "train", "epoch": 6, "iter": 3400, "lr": 0.00015, "memory": 19783, "data_time": 0.00744, "decode.loss_ce": 0.24116, "decode.acc_seg": 90.39199, "loss": 0.24116, "time": 0.16243}
|
70 |
+
{"mode": "train", "epoch": 6, "iter": 3450, "lr": 0.00015, "memory": 19783, "data_time": 0.00781, "decode.loss_ce": 0.24984, "decode.acc_seg": 89.77229, "loss": 0.24984, "time": 0.16597}
|
71 |
+
{"mode": "train", "epoch": 6, "iter": 3500, "lr": 0.00015, "memory": 19783, "data_time": 0.00758, "decode.loss_ce": 0.2521, "decode.acc_seg": 89.79541, "loss": 0.2521, "time": 0.16949}
|
72 |
+
{"mode": "train", "epoch": 6, "iter": 3550, "lr": 0.00015, "memory": 19783, "data_time": 0.00802, "decode.loss_ce": 0.26202, "decode.acc_seg": 89.40474, "loss": 0.26202, "time": 0.16849}
|
73 |
+
{"mode": "train", "epoch": 6, "iter": 3600, "lr": 0.00015, "memory": 19783, "data_time": 0.00764, "decode.loss_ce": 0.24962, "decode.acc_seg": 89.7942, "loss": 0.24962, "time": 0.16373}
|
74 |
+
{"mode": "train", "epoch": 6, "iter": 3650, "lr": 0.00015, "memory": 19783, "data_time": 0.00706, "decode.loss_ce": 0.23575, "decode.acc_seg": 90.55114, "loss": 0.23575, "time": 0.1724}
|
75 |
+
{"mode": "train", "epoch": 6, "iter": 3700, "lr": 0.00015, "memory": 19783, "data_time": 0.00707, "decode.loss_ce": 0.25319, "decode.acc_seg": 89.95363, "loss": 0.25319, "time": 0.17091}
|
76 |
+
{"mode": "train", "epoch": 6, "iter": 3750, "lr": 0.00015, "memory": 19783, "data_time": 0.00681, "decode.loss_ce": 0.25331, "decode.acc_seg": 89.74242, "loss": 0.25331, "time": 0.1678}
|
77 |
+
{"mode": "train", "epoch": 7, "iter": 3800, "lr": 0.00015, "memory": 19783, "data_time": 0.05404, "decode.loss_ce": 0.24787, "decode.acc_seg": 89.94419, "loss": 0.24787, "time": 0.23071}
|
78 |
+
{"mode": "train", "epoch": 7, "iter": 3850, "lr": 0.00015, "memory": 19783, "data_time": 0.00738, "decode.loss_ce": 0.23945, "decode.acc_seg": 90.18102, "loss": 0.23945, "time": 0.1685}
|
79 |
+
{"mode": "train", "epoch": 7, "iter": 3900, "lr": 0.00015, "memory": 19783, "data_time": 0.0076, "decode.loss_ce": 0.23457, "decode.acc_seg": 90.46158, "loss": 0.23457, "time": 0.17543}
|
80 |
+
{"mode": "train", "epoch": 7, "iter": 3950, "lr": 0.00015, "memory": 19783, "data_time": 0.0076, "decode.loss_ce": 0.24769, "decode.acc_seg": 90.01688, "loss": 0.24769, "time": 0.16782}
|
81 |
+
{"mode": "train", "epoch": 7, "iter": 4000, "lr": 0.00015, "memory": 19783, "data_time": 0.00717, "decode.loss_ce": 0.24628, "decode.acc_seg": 90.21013, "loss": 0.24628, "time": 0.16726}
|
82 |
+
{"mode": "train", "epoch": 7, "iter": 4050, "lr": 0.00015, "memory": 19783, "data_time": 0.00754, "decode.loss_ce": 0.2341, "decode.acc_seg": 90.579, "loss": 0.2341, "time": 0.17162}
|
83 |
+
{"mode": "train", "epoch": 7, "iter": 4100, "lr": 0.00015, "memory": 19783, "data_time": 0.00746, "decode.loss_ce": 0.24573, "decode.acc_seg": 90.16542, "loss": 0.24573, "time": 0.16339}
|
84 |
+
{"mode": "train", "epoch": 7, "iter": 4150, "lr": 0.00015, "memory": 19783, "data_time": 0.00731, "decode.loss_ce": 0.24285, "decode.acc_seg": 90.28304, "loss": 0.24285, "time": 0.16864}
|
85 |
+
{"mode": "train", "epoch": 7, "iter": 4200, "lr": 0.00015, "memory": 19783, "data_time": 0.00756, "decode.loss_ce": 0.23958, "decode.acc_seg": 90.30665, "loss": 0.23958, "time": 0.16759}
|
86 |
+
{"mode": "train", "epoch": 7, "iter": 4250, "lr": 0.00015, "memory": 19783, "data_time": 0.00689, "decode.loss_ce": 0.24788, "decode.acc_seg": 90.00322, "loss": 0.24788, "time": 0.16993}
|
87 |
+
{"mode": "train", "epoch": 7, "iter": 4300, "lr": 0.00015, "memory": 19783, "data_time": 0.00734, "decode.loss_ce": 0.23125, "decode.acc_seg": 90.54874, "loss": 0.23125, "time": 0.16811}
|
88 |
+
{"mode": "train", "epoch": 7, "iter": 4350, "lr": 0.00015, "memory": 19783, "data_time": 0.00728, "decode.loss_ce": 0.24042, "decode.acc_seg": 90.47029, "loss": 0.24042, "time": 0.16826}
|
89 |
+
{"mode": "train", "epoch": 7, "iter": 4400, "lr": 0.00015, "memory": 19783, "data_time": 0.00747, "decode.loss_ce": 0.24551, "decode.acc_seg": 89.95885, "loss": 0.24551, "time": 0.17054}
|
90 |
+
{"mode": "train", "epoch": 8, "iter": 4450, "lr": 0.00015, "memory": 19783, "data_time": 0.05442, "decode.loss_ce": 0.2265, "decode.acc_seg": 90.90395, "loss": 0.2265, "time": 0.21336}
|
91 |
+
{"mode": "train", "epoch": 8, "iter": 4500, "lr": 0.00015, "memory": 19783, "data_time": 0.00733, "decode.loss_ce": 0.247, "decode.acc_seg": 90.04266, "loss": 0.247, "time": 0.16689}
|
92 |
+
{"mode": "train", "epoch": 8, "iter": 4550, "lr": 0.00015, "memory": 19783, "data_time": 0.0076, "decode.loss_ce": 0.2394, "decode.acc_seg": 90.46837, "loss": 0.2394, "time": 0.17266}
|
93 |
+
{"mode": "train", "epoch": 8, "iter": 4600, "lr": 0.00015, "memory": 19783, "data_time": 0.00739, "decode.loss_ce": 0.24674, "decode.acc_seg": 90.0508, "loss": 0.24674, "time": 0.16544}
|
94 |
+
{"mode": "train", "epoch": 8, "iter": 4650, "lr": 0.00015, "memory": 19783, "data_time": 0.00713, "decode.loss_ce": 0.24889, "decode.acc_seg": 89.97996, "loss": 0.24889, "time": 0.17361}
|
95 |
+
{"mode": "train", "epoch": 8, "iter": 4700, "lr": 0.00015, "memory": 19783, "data_time": 0.00723, "decode.loss_ce": 0.25066, "decode.acc_seg": 90.10819, "loss": 0.25066, "time": 0.17526}
|
96 |
+
{"mode": "train", "epoch": 8, "iter": 4750, "lr": 0.00015, "memory": 19783, "data_time": 0.00725, "decode.loss_ce": 0.23078, "decode.acc_seg": 90.68572, "loss": 0.23078, "time": 0.16917}
|
97 |
+
{"mode": "train", "epoch": 8, "iter": 4800, "lr": 0.00015, "memory": 19783, "data_time": 0.00754, "decode.loss_ce": 0.24164, "decode.acc_seg": 90.21678, "loss": 0.24164, "time": 0.16936}
|
98 |
+
{"mode": "train", "epoch": 8, "iter": 4850, "lr": 0.00015, "memory": 19783, "data_time": 0.00749, "decode.loss_ce": 0.24123, "decode.acc_seg": 90.2115, "loss": 0.24123, "time": 0.17225}
|
99 |
+
{"mode": "train", "epoch": 8, "iter": 4900, "lr": 0.00015, "memory": 19783, "data_time": 0.00787, "decode.loss_ce": 0.24872, "decode.acc_seg": 90.06069, "loss": 0.24872, "time": 0.16871}
|
100 |
+
{"mode": "train", "epoch": 8, "iter": 4950, "lr": 0.00015, "memory": 19783, "data_time": 0.00731, "decode.loss_ce": 0.24157, "decode.acc_seg": 90.28286, "loss": 0.24157, "time": 0.1622}
|
101 |
+
{"mode": "train", "epoch": 8, "iter": 5000, "lr": 0.00015, "memory": 19783, "data_time": 0.00723, "decode.loss_ce": 0.23888, "decode.acc_seg": 90.337, "loss": 0.23888, "time": 0.17729}
|
102 |
+
{"mode": "train", "epoch": 9, "iter": 5050, "lr": 0.00015, "memory": 19783, "data_time": 0.05372, "decode.loss_ce": 0.23444, "decode.acc_seg": 90.65998, "loss": 0.23444, "time": 0.21327}
|
103 |
+
{"mode": "train", "epoch": 9, "iter": 5100, "lr": 0.00015, "memory": 19783, "data_time": 0.00674, "decode.loss_ce": 0.24385, "decode.acc_seg": 90.19634, "loss": 0.24385, "time": 0.17532}
|
104 |
+
{"mode": "train", "epoch": 9, "iter": 5150, "lr": 0.00015, "memory": 19783, "data_time": 0.00754, "decode.loss_ce": 0.24576, "decode.acc_seg": 90.23702, "loss": 0.24576, "time": 0.16991}
|
105 |
+
{"mode": "train", "epoch": 9, "iter": 5200, "lr": 0.00015, "memory": 19783, "data_time": 0.007, "decode.loss_ce": 0.2333, "decode.acc_seg": 90.51888, "loss": 0.2333, "time": 0.16263}
|
106 |
+
{"mode": "train", "epoch": 9, "iter": 5250, "lr": 0.00015, "memory": 19783, "data_time": 0.00714, "decode.loss_ce": 0.24466, "decode.acc_seg": 90.27321, "loss": 0.24466, "time": 0.16789}
|
107 |
+
{"mode": "train", "epoch": 9, "iter": 5300, "lr": 0.00015, "memory": 19783, "data_time": 0.0078, "decode.loss_ce": 0.24114, "decode.acc_seg": 90.39097, "loss": 0.24114, "time": 0.16739}
|
108 |
+
{"mode": "train", "epoch": 9, "iter": 5350, "lr": 0.00015, "memory": 19783, "data_time": 0.0073, "decode.loss_ce": 0.23671, "decode.acc_seg": 90.32327, "loss": 0.23671, "time": 0.1613}
|
109 |
+
{"mode": "train", "epoch": 9, "iter": 5400, "lr": 0.00015, "memory": 19783, "data_time": 0.00732, "decode.loss_ce": 0.23675, "decode.acc_seg": 90.48409, "loss": 0.23675, "time": 0.16479}
|
110 |
+
{"mode": "train", "epoch": 9, "iter": 5450, "lr": 0.00015, "memory": 19783, "data_time": 0.00771, "decode.loss_ce": 0.24392, "decode.acc_seg": 90.07503, "loss": 0.24392, "time": 0.16243}
|
111 |
+
{"mode": "train", "epoch": 9, "iter": 5500, "lr": 0.00015, "memory": 19783, "data_time": 0.0071, "decode.loss_ce": 0.2508, "decode.acc_seg": 89.99546, "loss": 0.2508, "time": 0.17402}
|
112 |
+
{"mode": "train", "epoch": 9, "iter": 5550, "lr": 0.00015, "memory": 19783, "data_time": 0.00696, "decode.loss_ce": 0.24176, "decode.acc_seg": 90.22726, "loss": 0.24176, "time": 0.17048}
|
113 |
+
{"mode": "train", "epoch": 9, "iter": 5600, "lr": 0.00015, "memory": 19783, "data_time": 0.00667, "decode.loss_ce": 0.23641, "decode.acc_seg": 90.32053, "loss": 0.23641, "time": 0.17978}
|
114 |
+
{"mode": "train", "epoch": 9, "iter": 5650, "lr": 0.00015, "memory": 19783, "data_time": 0.008, "decode.loss_ce": 0.22384, "decode.acc_seg": 90.89573, "loss": 0.22384, "time": 0.17304}
|
115 |
+
{"mode": "train", "epoch": 10, "iter": 5700, "lr": 0.00015, "memory": 19783, "data_time": 0.05376, "decode.loss_ce": 0.23805, "decode.acc_seg": 90.35932, "loss": 0.23805, "time": 0.21666}
|
116 |
+
{"mode": "train", "epoch": 10, "iter": 5750, "lr": 0.00015, "memory": 19783, "data_time": 0.00731, "decode.loss_ce": 0.23584, "decode.acc_seg": 90.47929, "loss": 0.23584, "time": 0.16638}
|
117 |
+
{"mode": "train", "epoch": 10, "iter": 5800, "lr": 0.00015, "memory": 19783, "data_time": 0.00671, "decode.loss_ce": 0.25196, "decode.acc_seg": 89.81801, "loss": 0.25196, "time": 0.16849}
|
118 |
+
{"mode": "train", "epoch": 10, "iter": 5850, "lr": 0.00015, "memory": 19783, "data_time": 0.00707, "decode.loss_ce": 0.23571, "decode.acc_seg": 90.36798, "loss": 0.23571, "time": 0.17485}
|
119 |
+
{"mode": "train", "epoch": 10, "iter": 5900, "lr": 0.00015, "memory": 19783, "data_time": 0.00676, "decode.loss_ce": 0.2416, "decode.acc_seg": 90.27747, "loss": 0.2416, "time": 0.17023}
|
120 |
+
{"mode": "train", "epoch": 10, "iter": 5950, "lr": 0.00015, "memory": 19783, "data_time": 0.00715, "decode.loss_ce": 0.23559, "decode.acc_seg": 90.43211, "loss": 0.23559, "time": 0.17164}
|
121 |
+
{"mode": "train", "epoch": 10, "iter": 6000, "lr": 0.00015, "memory": 19783, "data_time": 0.00697, "decode.loss_ce": 0.2205, "decode.acc_seg": 91.05051, "loss": 0.2205, "time": 0.17556}
|
122 |
+
{"mode": "train", "epoch": 10, "iter": 6050, "lr": 0.00015, "memory": 19783, "data_time": 0.00694, "decode.loss_ce": 0.23222, "decode.acc_seg": 90.57611, "loss": 0.23222, "time": 0.17327}
|
123 |
+
{"mode": "train", "epoch": 10, "iter": 6100, "lr": 0.00015, "memory": 19783, "data_time": 0.00714, "decode.loss_ce": 0.24064, "decode.acc_seg": 90.31305, "loss": 0.24064, "time": 0.16579}
|
124 |
+
{"mode": "train", "epoch": 10, "iter": 6150, "lr": 0.00015, "memory": 19783, "data_time": 0.00751, "decode.loss_ce": 0.23976, "decode.acc_seg": 90.38844, "loss": 0.23976, "time": 0.16872}
|
125 |
+
{"mode": "train", "epoch": 10, "iter": 6200, "lr": 0.00015, "memory": 19783, "data_time": 0.00733, "decode.loss_ce": 0.23414, "decode.acc_seg": 90.44385, "loss": 0.23414, "time": 0.16422}
|
126 |
+
{"mode": "train", "epoch": 10, "iter": 6250, "lr": 0.00015, "memory": 19783, "data_time": 0.00727, "decode.loss_ce": 0.24566, "decode.acc_seg": 90.27457, "loss": 0.24566, "time": 0.17081}
|
127 |
+
{"mode": "train", "epoch": 10, "iter": 6300, "lr": 0.00015, "memory": 19783, "data_time": 0.00741, "decode.loss_ce": 0.22406, "decode.acc_seg": 90.73291, "loss": 0.22406, "time": 0.172}
|
128 |
+
{"mode": "train", "epoch": 11, "iter": 6350, "lr": 0.00015, "memory": 19783, "data_time": 0.05658, "decode.loss_ce": 0.23578, "decode.acc_seg": 90.38232, "loss": 0.23578, "time": 0.21898}
|
129 |
+
{"mode": "train", "epoch": 11, "iter": 6400, "lr": 0.00015, "memory": 19783, "data_time": 0.00723, "decode.loss_ce": 0.22355, "decode.acc_seg": 90.76867, "loss": 0.22355, "time": 0.17097}
|
130 |
+
{"mode": "train", "epoch": 11, "iter": 6450, "lr": 0.00015, "memory": 19783, "data_time": 0.00727, "decode.loss_ce": 0.22216, "decode.acc_seg": 90.82901, "loss": 0.22216, "time": 0.17446}
|
131 |
+
{"mode": "train", "epoch": 11, "iter": 6500, "lr": 0.00015, "memory": 19783, "data_time": 0.00713, "decode.loss_ce": 0.22971, "decode.acc_seg": 90.70459, "loss": 0.22971, "time": 0.17473}
|
132 |
+
{"mode": "train", "epoch": 11, "iter": 6550, "lr": 0.00015, "memory": 19783, "data_time": 0.00783, "decode.loss_ce": 0.22432, "decode.acc_seg": 90.83311, "loss": 0.22432, "time": 0.1701}
|
133 |
+
{"mode": "train", "epoch": 11, "iter": 6600, "lr": 0.00015, "memory": 19783, "data_time": 0.00738, "decode.loss_ce": 0.24216, "decode.acc_seg": 90.42721, "loss": 0.24216, "time": 0.16582}
|
134 |
+
{"mode": "train", "epoch": 11, "iter": 6650, "lr": 0.00015, "memory": 19783, "data_time": 0.00664, "decode.loss_ce": 0.23376, "decode.acc_seg": 90.60508, "loss": 0.23376, "time": 0.17496}
|
135 |
+
{"mode": "train", "epoch": 11, "iter": 6700, "lr": 0.00015, "memory": 19783, "data_time": 0.00714, "decode.loss_ce": 0.24306, "decode.acc_seg": 90.1269, "loss": 0.24306, "time": 0.16614}
|
136 |
+
{"mode": "train", "epoch": 11, "iter": 6750, "lr": 0.00015, "memory": 19783, "data_time": 0.00718, "decode.loss_ce": 0.23822, "decode.acc_seg": 90.38081, "loss": 0.23822, "time": 0.16329}
|
137 |
+
{"mode": "train", "epoch": 11, "iter": 6800, "lr": 0.00015, "memory": 19783, "data_time": 0.00724, "decode.loss_ce": 0.2379, "decode.acc_seg": 90.49255, "loss": 0.2379, "time": 0.16966}
|
138 |
+
{"mode": "train", "epoch": 11, "iter": 6850, "lr": 0.00015, "memory": 19783, "data_time": 0.00708, "decode.loss_ce": 0.24489, "decode.acc_seg": 90.19225, "loss": 0.24489, "time": 0.16918}
|
139 |
+
{"mode": "train", "epoch": 11, "iter": 6900, "lr": 0.00015, "memory": 19783, "data_time": 0.00737, "decode.loss_ce": 0.23591, "decode.acc_seg": 90.47066, "loss": 0.23591, "time": 0.16545}
|
140 |
+
{"mode": "train", "epoch": 12, "iter": 6950, "lr": 0.00015, "memory": 19783, "data_time": 0.05516, "decode.loss_ce": 0.22491, "decode.acc_seg": 90.74824, "loss": 0.22491, "time": 0.22021}
|
141 |
+
{"mode": "train", "epoch": 12, "iter": 7000, "lr": 0.00015, "memory": 19783, "data_time": 0.00698, "decode.loss_ce": 0.22866, "decode.acc_seg": 90.84347, "loss": 0.22866, "time": 0.16929}
|
142 |
+
{"mode": "train", "epoch": 12, "iter": 7050, "lr": 0.00015, "memory": 19783, "data_time": 0.00713, "decode.loss_ce": 0.23445, "decode.acc_seg": 90.53955, "loss": 0.23445, "time": 0.16909}
|
143 |
+
{"mode": "train", "epoch": 12, "iter": 7100, "lr": 0.00015, "memory": 19783, "data_time": 0.00688, "decode.loss_ce": 0.22867, "decode.acc_seg": 90.72875, "loss": 0.22867, "time": 0.17427}
|
144 |
+
{"mode": "train", "epoch": 12, "iter": 7150, "lr": 0.00015, "memory": 19783, "data_time": 0.00774, "decode.loss_ce": 0.23175, "decode.acc_seg": 90.64853, "loss": 0.23175, "time": 0.16845}
|
145 |
+
{"mode": "train", "epoch": 12, "iter": 7200, "lr": 0.00015, "memory": 19783, "data_time": 0.00753, "decode.loss_ce": 0.23831, "decode.acc_seg": 90.29184, "loss": 0.23831, "time": 0.17243}
|
146 |
+
{"mode": "train", "epoch": 12, "iter": 7250, "lr": 0.00015, "memory": 19783, "data_time": 0.00724, "decode.loss_ce": 0.23129, "decode.acc_seg": 90.67923, "loss": 0.23129, "time": 0.16382}
|
147 |
+
{"mode": "train", "epoch": 12, "iter": 7300, "lr": 0.00015, "memory": 19783, "data_time": 0.00728, "decode.loss_ce": 0.23042, "decode.acc_seg": 90.6756, "loss": 0.23042, "time": 0.17514}
|
148 |
+
{"mode": "train", "epoch": 12, "iter": 7350, "lr": 0.00015, "memory": 19783, "data_time": 0.00762, "decode.loss_ce": 0.23096, "decode.acc_seg": 90.4861, "loss": 0.23096, "time": 0.17494}
|
149 |
+
{"mode": "train", "epoch": 12, "iter": 7400, "lr": 0.00015, "memory": 19783, "data_time": 0.00722, "decode.loss_ce": 0.23648, "decode.acc_seg": 90.41459, "loss": 0.23648, "time": 0.16612}
|
150 |
+
{"mode": "train", "epoch": 12, "iter": 7450, "lr": 0.00015, "memory": 19783, "data_time": 0.00698, "decode.loss_ce": 0.23389, "decode.acc_seg": 90.56373, "loss": 0.23389, "time": 0.16687}
|
151 |
+
{"mode": "train", "epoch": 12, "iter": 7500, "lr": 0.00015, "memory": 19783, "data_time": 0.00707, "decode.loss_ce": 0.22833, "decode.acc_seg": 90.66262, "loss": 0.22833, "time": 0.16645}
|
152 |
+
{"mode": "train", "epoch": 12, "iter": 7550, "lr": 0.00015, "memory": 19783, "data_time": 0.00708, "decode.loss_ce": 0.23725, "decode.acc_seg": 90.30798, "loss": 0.23725, "time": 0.16547}
|
153 |
+
{"mode": "train", "epoch": 13, "iter": 7600, "lr": 0.00015, "memory": 19783, "data_time": 0.05558, "decode.loss_ce": 0.23152, "decode.acc_seg": 90.56859, "loss": 0.23152, "time": 0.22103}
|
154 |
+
{"mode": "train", "epoch": 13, "iter": 7650, "lr": 0.00015, "memory": 19783, "data_time": 0.00695, "decode.loss_ce": 0.23743, "decode.acc_seg": 90.40197, "loss": 0.23743, "time": 0.17243}
|
155 |
+
{"mode": "train", "epoch": 13, "iter": 7700, "lr": 0.00015, "memory": 19783, "data_time": 0.0071, "decode.loss_ce": 0.23772, "decode.acc_seg": 90.38538, "loss": 0.23772, "time": 0.16691}
|
156 |
+
{"mode": "train", "epoch": 13, "iter": 7750, "lr": 0.00015, "memory": 19783, "data_time": 0.00726, "decode.loss_ce": 0.23096, "decode.acc_seg": 90.64128, "loss": 0.23096, "time": 0.16896}
|
157 |
+
{"mode": "train", "epoch": 13, "iter": 7800, "lr": 0.00015, "memory": 19783, "data_time": 0.00713, "decode.loss_ce": 0.23442, "decode.acc_seg": 90.45397, "loss": 0.23442, "time": 0.16189}
|
158 |
+
{"mode": "train", "epoch": 13, "iter": 7850, "lr": 0.00015, "memory": 19783, "data_time": 0.007, "decode.loss_ce": 0.23541, "decode.acc_seg": 90.56818, "loss": 0.23541, "time": 0.16867}
|
159 |
+
{"mode": "train", "epoch": 13, "iter": 7900, "lr": 0.00015, "memory": 19783, "data_time": 0.00689, "decode.loss_ce": 0.23165, "decode.acc_seg": 90.62381, "loss": 0.23165, "time": 0.16922}
|
160 |
+
{"mode": "train", "epoch": 13, "iter": 7950, "lr": 0.00015, "memory": 19783, "data_time": 0.0072, "decode.loss_ce": 0.22949, "decode.acc_seg": 90.78639, "loss": 0.22949, "time": 0.16628}
|
161 |
+
{"mode": "train", "epoch": 13, "iter": 8000, "lr": 0.00015, "memory": 19783, "data_time": 0.00678, "decode.loss_ce": 0.22824, "decode.acc_seg": 90.75584, "loss": 0.22824, "time": 0.18786}
|
ablation/ablation_segformer_mit_b2_segformer_head_unet_fc_single_step_ade_pretrained_freeze_embed_80k_ade20k151_mask/20230304_122534.log
ADDED
The diff for this file is too large to render.
See raw diff
|
|
ablation/ablation_segformer_mit_b2_segformer_head_unet_fc_single_step_ade_pretrained_freeze_embed_80k_ade20k151_mask/20230304_122534.log.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
ablation/ablation_segformer_mit_b2_segformer_head_unet_fc_single_step_ade_pretrained_freeze_embed_80k_ade20k151_mask/ablation_segformer_mit_b2_segformer_head_unet_fc_single_step_ade_pretrained_freeze_embed_80k_ade20k151_mask.py
ADDED
@@ -0,0 +1,184 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
norm_cfg = dict(type='SyncBN', requires_grad=True)
|
2 |
+
checkpoint = 'pretrained/segformer_mit-b2_512x512_160k_ade20k_20220620_114047-64e4feca.pth'
|
3 |
+
model = dict(
|
4 |
+
type='EncoderDecoderFreeze',
|
5 |
+
freeze_parameters=['backbone', 'decode_head'],
|
6 |
+
pretrained=
|
7 |
+
'pretrained/segformer_mit-b2_512x512_160k_ade20k_20220620_114047-64e4feca.pth',
|
8 |
+
backbone=dict(
|
9 |
+
type='MixVisionTransformerCustomInitWeights',
|
10 |
+
in_channels=3,
|
11 |
+
embed_dims=64,
|
12 |
+
num_stages=4,
|
13 |
+
num_layers=[3, 4, 6, 3],
|
14 |
+
num_heads=[1, 2, 5, 8],
|
15 |
+
patch_sizes=[7, 3, 3, 3],
|
16 |
+
sr_ratios=[8, 4, 2, 1],
|
17 |
+
out_indices=(0, 1, 2, 3),
|
18 |
+
mlp_ratio=4,
|
19 |
+
qkv_bias=True,
|
20 |
+
drop_rate=0.0,
|
21 |
+
attn_drop_rate=0.0,
|
22 |
+
drop_path_rate=0.1),
|
23 |
+
decode_head=dict(
|
24 |
+
type='SegformerHeadUnetFCHeadSingleStepMask',
|
25 |
+
pretrained=
|
26 |
+
'pretrained/segformer_mit-b2_512x512_160k_ade20k_20220620_114047-64e4feca.pth',
|
27 |
+
dim=128,
|
28 |
+
out_dim=256,
|
29 |
+
unet_channels=272,
|
30 |
+
dim_mults=[1, 1, 1],
|
31 |
+
cat_embedding_dim=16,
|
32 |
+
in_channels=[64, 128, 320, 512],
|
33 |
+
in_index=[0, 1, 2, 3],
|
34 |
+
channels=256,
|
35 |
+
dropout_ratio=0.1,
|
36 |
+
num_classes=151,
|
37 |
+
norm_cfg=dict(type='SyncBN', requires_grad=True),
|
38 |
+
align_corners=False,
|
39 |
+
ignore_index=0,
|
40 |
+
loss_decode=dict(
|
41 |
+
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)),
|
42 |
+
train_cfg=dict(),
|
43 |
+
test_cfg=dict(mode='whole'))
|
44 |
+
dataset_type = 'ADE20K151Dataset'
|
45 |
+
data_root = 'data/ade/ADEChallengeData2016'
|
46 |
+
img_norm_cfg = dict(
|
47 |
+
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
|
48 |
+
crop_size = (512, 512)
|
49 |
+
train_pipeline = [
|
50 |
+
dict(type='LoadImageFromFile'),
|
51 |
+
dict(type='LoadAnnotations', reduce_zero_label=False),
|
52 |
+
dict(type='Resize', img_scale=(2048, 512), ratio_range=(0.5, 2.0)),
|
53 |
+
dict(type='RandomCrop', crop_size=(512, 512), cat_max_ratio=0.75),
|
54 |
+
dict(type='RandomFlip', prob=0.5),
|
55 |
+
dict(type='PhotoMetricDistortion'),
|
56 |
+
dict(
|
57 |
+
type='Normalize',
|
58 |
+
mean=[123.675, 116.28, 103.53],
|
59 |
+
std=[58.395, 57.12, 57.375],
|
60 |
+
to_rgb=True),
|
61 |
+
dict(type='Pad', size=(512, 512), pad_val=0, seg_pad_val=0),
|
62 |
+
dict(type='DefaultFormatBundle'),
|
63 |
+
dict(type='Collect', keys=['img', 'gt_semantic_seg'])
|
64 |
+
]
|
65 |
+
test_pipeline = [
|
66 |
+
dict(type='LoadImageFromFile'),
|
67 |
+
dict(
|
68 |
+
type='MultiScaleFlipAug',
|
69 |
+
img_scale=(2048, 512),
|
70 |
+
flip=False,
|
71 |
+
transforms=[
|
72 |
+
dict(type='Resize', keep_ratio=True),
|
73 |
+
dict(type='RandomFlip'),
|
74 |
+
dict(
|
75 |
+
type='Normalize',
|
76 |
+
mean=[123.675, 116.28, 103.53],
|
77 |
+
std=[58.395, 57.12, 57.375],
|
78 |
+
to_rgb=True),
|
79 |
+
dict(type='Pad', size_divisor=16, pad_val=0, seg_pad_val=0),
|
80 |
+
dict(type='ImageToTensor', keys=['img']),
|
81 |
+
dict(type='Collect', keys=['img'])
|
82 |
+
])
|
83 |
+
]
|
84 |
+
data = dict(
|
85 |
+
samples_per_gpu=4,
|
86 |
+
workers_per_gpu=4,
|
87 |
+
train=dict(
|
88 |
+
type='ADE20K151Dataset',
|
89 |
+
data_root='data/ade/ADEChallengeData2016',
|
90 |
+
img_dir='images/training',
|
91 |
+
ann_dir='annotations/training',
|
92 |
+
pipeline=[
|
93 |
+
dict(type='LoadImageFromFile'),
|
94 |
+
dict(type='LoadAnnotations', reduce_zero_label=False),
|
95 |
+
dict(type='Resize', img_scale=(2048, 512), ratio_range=(0.5, 2.0)),
|
96 |
+
dict(type='RandomCrop', crop_size=(512, 512), cat_max_ratio=0.75),
|
97 |
+
dict(type='RandomFlip', prob=0.5),
|
98 |
+
dict(type='PhotoMetricDistortion'),
|
99 |
+
dict(
|
100 |
+
type='Normalize',
|
101 |
+
mean=[123.675, 116.28, 103.53],
|
102 |
+
std=[58.395, 57.12, 57.375],
|
103 |
+
to_rgb=True),
|
104 |
+
dict(type='Pad', size=(512, 512), pad_val=0, seg_pad_val=0),
|
105 |
+
dict(type='DefaultFormatBundle'),
|
106 |
+
dict(type='Collect', keys=['img', 'gt_semantic_seg'])
|
107 |
+
]),
|
108 |
+
val=dict(
|
109 |
+
type='ADE20K151Dataset',
|
110 |
+
data_root='data/ade/ADEChallengeData2016',
|
111 |
+
img_dir='images/validation',
|
112 |
+
ann_dir='annotations/validation',
|
113 |
+
pipeline=[
|
114 |
+
dict(type='LoadImageFromFile'),
|
115 |
+
dict(
|
116 |
+
type='MultiScaleFlipAug',
|
117 |
+
img_scale=(2048, 512),
|
118 |
+
flip=False,
|
119 |
+
transforms=[
|
120 |
+
dict(type='Resize', keep_ratio=True),
|
121 |
+
dict(type='RandomFlip'),
|
122 |
+
dict(
|
123 |
+
type='Normalize',
|
124 |
+
mean=[123.675, 116.28, 103.53],
|
125 |
+
std=[58.395, 57.12, 57.375],
|
126 |
+
to_rgb=True),
|
127 |
+
dict(
|
128 |
+
type='Pad', size_divisor=16, pad_val=0, seg_pad_val=0),
|
129 |
+
dict(type='ImageToTensor', keys=['img']),
|
130 |
+
dict(type='Collect', keys=['img'])
|
131 |
+
])
|
132 |
+
]),
|
133 |
+
test=dict(
|
134 |
+
type='ADE20K151Dataset',
|
135 |
+
data_root='data/ade/ADEChallengeData2016',
|
136 |
+
img_dir='images/validation',
|
137 |
+
ann_dir='annotations/validation',
|
138 |
+
pipeline=[
|
139 |
+
dict(type='LoadImageFromFile'),
|
140 |
+
dict(
|
141 |
+
type='MultiScaleFlipAug',
|
142 |
+
img_scale=(2048, 512),
|
143 |
+
flip=False,
|
144 |
+
transforms=[
|
145 |
+
dict(type='Resize', keep_ratio=True),
|
146 |
+
dict(type='RandomFlip'),
|
147 |
+
dict(
|
148 |
+
type='Normalize',
|
149 |
+
mean=[123.675, 116.28, 103.53],
|
150 |
+
std=[58.395, 57.12, 57.375],
|
151 |
+
to_rgb=True),
|
152 |
+
dict(
|
153 |
+
type='Pad', size_divisor=16, pad_val=0, seg_pad_val=0),
|
154 |
+
dict(type='ImageToTensor', keys=['img']),
|
155 |
+
dict(type='Collect', keys=['img'])
|
156 |
+
])
|
157 |
+
]))
|
158 |
+
log_config = dict(
|
159 |
+
interval=50, hooks=[dict(type='TextLoggerHook', by_epoch=False)])
|
160 |
+
dist_params = dict(backend='nccl')
|
161 |
+
log_level = 'INFO'
|
162 |
+
load_from = None
|
163 |
+
resume_from = None
|
164 |
+
workflow = [('train', 1)]
|
165 |
+
cudnn_benchmark = True
|
166 |
+
optimizer = dict(
|
167 |
+
type='AdamW', lr=0.00015, betas=[0.9, 0.96], weight_decay=0.045)
|
168 |
+
optimizer_config = dict()
|
169 |
+
lr_config = dict(
|
170 |
+
policy='step',
|
171 |
+
warmup='linear',
|
172 |
+
warmup_iters=1000,
|
173 |
+
warmup_ratio=1e-06,
|
174 |
+
step=10000,
|
175 |
+
gamma=0.5,
|
176 |
+
min_lr=1e-06,
|
177 |
+
by_epoch=False)
|
178 |
+
runner = dict(type='IterBasedRunner', max_iters=80000)
|
179 |
+
checkpoint_config = dict(by_epoch=False, interval=8000)
|
180 |
+
evaluation = dict(
|
181 |
+
interval=8000, metric='mIoU', pre_eval=True, save_best='mIoU')
|
182 |
+
work_dir = './work_dirs2/ablation_segformer_mit_b2_segformer_head_unet_fc_single_step_ade_pretrained_freeze_embed_80k_ade20k151_mask'
|
183 |
+
gpu_ids = range(0, 8)
|
184 |
+
auto_resume = True
|
ablation/ablation_segformer_mit_b2_segformer_head_unet_fc_single_step_ade_pretrained_freeze_embed_80k_ade20k151_mask/best_mIoU_iter_80000.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:081c08833e6ff1558fecbbb2faf46fb5d8eac1ac84e8262ffdcc37b15a7a0a14
|
3 |
+
size 235548318
|
ablation/ablation_segformer_mit_b2_segformer_head_unet_fc_single_step_ade_pretrained_freeze_embed_80k_ade20k151_mask/iter_16000.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d535ddd93d708f0cb46b2d4f94066a6e7b3e28a15c5ba3e149ea7faa8d23f91e
|
3 |
+
size 235548318
|
ablation/ablation_segformer_mit_b2_segformer_head_unet_fc_single_step_ade_pretrained_freeze_embed_80k_ade20k151_mask/iter_24000.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9d00a51da87942936bd198abc14b563649c0b16cf50b05a213c851e5796d9f0f
|
3 |
+
size 235548318
|
ablation/ablation_segformer_mit_b2_segformer_head_unet_fc_single_step_ade_pretrained_freeze_embed_80k_ade20k151_mask/iter_32000.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7275faca1dd9925c1cc880b13a61d9e85021f7312bdcd0b6aa56091e1aa0a5f8
|
3 |
+
size 235548318
|
ablation/ablation_segformer_mit_b2_segformer_head_unet_fc_single_step_ade_pretrained_freeze_embed_80k_ade20k151_mask/iter_40000.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7df7c1d42c842cfab9edbd862afd1922dccf0335b32af1f83faa24483a1c8191
|
3 |
+
size 235548318
|
ablation/ablation_segformer_mit_b2_segformer_head_unet_fc_single_step_ade_pretrained_freeze_embed_80k_ade20k151_mask/iter_48000.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:da5506d445951321beeb2ed61005415e06a3ca9f286236fa597d067971954695
|
3 |
+
size 235548318
|
ablation/ablation_segformer_mit_b2_segformer_head_unet_fc_single_step_ade_pretrained_freeze_embed_80k_ade20k151_mask/iter_56000.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8cd4ede6001fea5831fe892f2ba8b8e222ccf8019c592ed0763b443b86847f97
|
3 |
+
size 235548318
|
ablation/ablation_segformer_mit_b2_segformer_head_unet_fc_single_step_ade_pretrained_freeze_embed_80k_ade20k151_mask/iter_64000.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ae9768a3d8d2a7b90cb594ceca93ab5233c99ad513cc404b86ebb4c68801d807
|
3 |
+
size 235548318
|
ablation/ablation_segformer_mit_b2_segformer_head_unet_fc_single_step_ade_pretrained_freeze_embed_80k_ade20k151_mask/iter_72000.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:63d77ed6173ae933c1ba225b175550faeb7e09f1e1ae334dbce6437d88cec317
|
3 |
+
size 235548318
|
ablation/ablation_segformer_mit_b2_segformer_head_unet_fc_single_step_ade_pretrained_freeze_embed_80k_ade20k151_mask/iter_8000.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:584332478ca3ec6ccb3370d1bdb91adc01484d87ffbec918c777050cda731c53
|
3 |
+
size 235547678
|
ablation/ablation_segformer_mit_b2_segformer_head_unet_fc_single_step_ade_pretrained_freeze_embed_80k_ade20k151_mask/iter_80000.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ca82e7718d63dce0a800ea751b899f4f38cf0d4788a4378c5dc07a616e783d41
|
3 |
+
size 235548318
|
ablation/ablation_segformer_mit_b2_segformer_head_unet_fc_single_step_ade_pretrained_freeze_embed_80k_ade20k151_mask/latest.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ca82e7718d63dce0a800ea751b899f4f38cf0d4788a4378c5dc07a616e783d41
|
3 |
+
size 235548318
|
ablation/ablation_segformer_mit_b2_segformer_head_unet_fc_small_multi_step_ade_pretrained_freeze_embed_160k_ade20k151_finetune_ema_ce/20230305_231050.log
ADDED
@@ -0,0 +1,1152 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2023-03-05 23:10:50,099 - mmseg - INFO - Multi-processing start method is `None`
|
2 |
+
2023-03-05 23:10:50,117 - mmseg - INFO - OpenCV num_threads is `128
|
3 |
+
2023-03-05 23:10:50,117 - mmseg - INFO - OMP num threads is 1
|
4 |
+
2023-03-05 23:10:50,169 - mmseg - INFO - Environment info:
|
5 |
+
------------------------------------------------------------
|
6 |
+
sys.platform: linux
|
7 |
+
Python: 3.7.16 (default, Jan 17 2023, 22:20:44) [GCC 11.2.0]
|
8 |
+
CUDA available: True
|
9 |
+
GPU 0,1,2,3,4,5,6,7: NVIDIA A100-SXM4-80GB
|
10 |
+
CUDA_HOME: /mnt/petrelfs/laizeqiang/miniconda3/envs/torch
|
11 |
+
NVCC: Cuda compilation tools, release 11.6, V11.6.124
|
12 |
+
GCC: gcc (GCC) 4.8.5 20150623 (Red Hat 4.8.5-44)
|
13 |
+
PyTorch: 1.13.1
|
14 |
+
PyTorch compiling details: PyTorch built with:
|
15 |
+
- GCC 9.3
|
16 |
+
- C++ Version: 201402
|
17 |
+
- Intel(R) oneAPI Math Kernel Library Version 2021.4-Product Build 20210904 for Intel(R) 64 architecture applications
|
18 |
+
- Intel(R) MKL-DNN v2.6.0 (Git Hash 52b5f107dd9cf10910aaa19cb47f3abf9b349815)
|
19 |
+
- OpenMP 201511 (a.k.a. OpenMP 4.5)
|
20 |
+
- LAPACK is enabled (usually provided by MKL)
|
21 |
+
- NNPACK is enabled
|
22 |
+
- CPU capability usage: AVX2
|
23 |
+
- CUDA Runtime 11.6
|
24 |
+
- NVCC architecture flags: -gencode;arch=compute_37,code=sm_37;-gencode;arch=compute_50,code=sm_50;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_61,code=sm_61;-gencode;arch=compute_70,code=sm_70;-gencode;arch=compute_75,code=sm_75;-gencode;arch=compute_80,code=sm_80;-gencode;arch=compute_86,code=sm_86;-gencode;arch=compute_37,code=compute_37
|
25 |
+
- CuDNN 8.3.2 (built against CUDA 11.5)
|
26 |
+
- Magma 2.6.1
|
27 |
+
- Build settings: BLAS_INFO=mkl, BUILD_TYPE=Release, CUDA_VERSION=11.6, CUDNN_VERSION=8.3.2, CXX_COMPILER=/opt/rh/devtoolset-9/root/usr/bin/c++, CXX_FLAGS= -fabi-version=11 -Wno-deprecated -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -fopenmp -DNDEBUG -DUSE_KINETO -DUSE_FBGEMM -DUSE_QNNPACK -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE -DEDGE_PROFILER_USE_KINETO -O2 -fPIC -Wno-narrowing -Wall -Wextra -Werror=return-type -Werror=non-virtual-dtor -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wunused-local-typedefs -Wno-unused-parameter -Wno-unused-function -Wno-unused-result -Wno-strict-overflow -Wno-strict-aliasing -Wno-error=deprecated-declarations -Wno-stringop-overflow -Wno-psabi -Wno-error=pedantic -Wno-error=redundant-decls -Wno-error=old-style-cast -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Werror=cast-function-type -Wno-stringop-overflow, LAPACK_INFO=mkl, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, PERF_WITH_AVX512=1, TORCH_VERSION=1.13.1, USE_CUDA=ON, USE_CUDNN=ON, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_MKL=ON, USE_MKLDNN=ON, USE_MPI=OFF, USE_NCCL=ON, USE_NNPACK=ON, USE_OPENMP=ON, USE_ROCM=OFF,
|
28 |
+
|
29 |
+
TorchVision: 0.14.1
|
30 |
+
OpenCV: 4.7.0
|
31 |
+
MMCV: 1.7.1
|
32 |
+
MMCV Compiler: GCC 9.3
|
33 |
+
MMCV CUDA Compiler: 11.6
|
34 |
+
MMSegmentation: 0.30.0+6db5ece
|
35 |
+
------------------------------------------------------------
|
36 |
+
|
37 |
+
2023-03-05 23:10:50,169 - mmseg - INFO - Distributed training: True
|
38 |
+
2023-03-05 23:10:50,859 - mmseg - INFO - Config:
|
39 |
+
norm_cfg = dict(type='SyncBN', requires_grad=True)
|
40 |
+
checkpoint = 'work_dirs2/segformer_mit_b2_segformer_head_unet_fc_single_step_ade_pretrained_freeze_embed_80k_ade20k151/best_mIoU_iter_64000.pth'
|
41 |
+
model = dict(
|
42 |
+
type='EncoderDecoderDiffusion',
|
43 |
+
freeze_parameters=['backbone', 'decode_head'],
|
44 |
+
pretrained=
|
45 |
+
'work_dirs2/segformer_mit_b2_segformer_head_unet_fc_single_step_ade_pretrained_freeze_embed_80k_ade20k151/best_mIoU_iter_64000.pth',
|
46 |
+
backbone=dict(
|
47 |
+
type='MixVisionTransformerCustomInitWeights',
|
48 |
+
in_channels=3,
|
49 |
+
embed_dims=64,
|
50 |
+
num_stages=4,
|
51 |
+
num_layers=[3, 4, 6, 3],
|
52 |
+
num_heads=[1, 2, 5, 8],
|
53 |
+
patch_sizes=[7, 3, 3, 3],
|
54 |
+
sr_ratios=[8, 4, 2, 1],
|
55 |
+
out_indices=(0, 1, 2, 3),
|
56 |
+
mlp_ratio=4,
|
57 |
+
qkv_bias=True,
|
58 |
+
drop_rate=0.0,
|
59 |
+
attn_drop_rate=0.0,
|
60 |
+
drop_path_rate=0.1),
|
61 |
+
decode_head=dict(
|
62 |
+
type='SegformerHeadUnetFCHeadMultiStepCE',
|
63 |
+
pretrained=
|
64 |
+
'work_dirs2/segformer_mit_b2_segformer_head_unet_fc_single_step_ade_pretrained_freeze_embed_80k_ade20k151/best_mIoU_iter_64000.pth',
|
65 |
+
dim=128,
|
66 |
+
out_dim=256,
|
67 |
+
unet_channels=272,
|
68 |
+
dim_mults=[1, 1, 1],
|
69 |
+
cat_embedding_dim=16,
|
70 |
+
diffusion_timesteps=100,
|
71 |
+
collect_timesteps=[0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 99],
|
72 |
+
in_channels=[64, 128, 320, 512],
|
73 |
+
in_index=[0, 1, 2, 3],
|
74 |
+
channels=256,
|
75 |
+
dropout_ratio=0.1,
|
76 |
+
num_classes=151,
|
77 |
+
norm_cfg=dict(type='SyncBN', requires_grad=True),
|
78 |
+
align_corners=False,
|
79 |
+
ignore_index=0,
|
80 |
+
loss_decode=dict(
|
81 |
+
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.1)),
|
82 |
+
train_cfg=dict(),
|
83 |
+
test_cfg=dict(mode='whole'))
|
84 |
+
dataset_type = 'ADE20K151Dataset'
|
85 |
+
data_root = 'data/ade/ADEChallengeData2016'
|
86 |
+
img_norm_cfg = dict(
|
87 |
+
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
|
88 |
+
crop_size = (512, 512)
|
89 |
+
train_pipeline = [
|
90 |
+
dict(type='LoadImageFromFile'),
|
91 |
+
dict(type='LoadAnnotations', reduce_zero_label=False),
|
92 |
+
dict(type='Resize', img_scale=(2048, 512), ratio_range=(0.5, 2.0)),
|
93 |
+
dict(type='RandomCrop', crop_size=(512, 512), cat_max_ratio=0.75),
|
94 |
+
dict(type='RandomFlip', prob=0.5),
|
95 |
+
dict(type='PhotoMetricDistortion'),
|
96 |
+
dict(
|
97 |
+
type='Normalize',
|
98 |
+
mean=[123.675, 116.28, 103.53],
|
99 |
+
std=[58.395, 57.12, 57.375],
|
100 |
+
to_rgb=True),
|
101 |
+
dict(type='Pad', size=(512, 512), pad_val=0, seg_pad_val=0),
|
102 |
+
dict(type='DefaultFormatBundle'),
|
103 |
+
dict(type='Collect', keys=['img', 'gt_semantic_seg'])
|
104 |
+
]
|
105 |
+
test_pipeline = [
|
106 |
+
dict(type='LoadImageFromFile'),
|
107 |
+
dict(
|
108 |
+
type='MultiScaleFlipAug',
|
109 |
+
img_scale=(2048, 512),
|
110 |
+
flip=False,
|
111 |
+
transforms=[
|
112 |
+
dict(type='Resize', keep_ratio=True),
|
113 |
+
dict(type='RandomFlip'),
|
114 |
+
dict(
|
115 |
+
type='Normalize',
|
116 |
+
mean=[123.675, 116.28, 103.53],
|
117 |
+
std=[58.395, 57.12, 57.375],
|
118 |
+
to_rgb=True),
|
119 |
+
dict(type='Pad', size_divisor=16, pad_val=0, seg_pad_val=0),
|
120 |
+
dict(type='ImageToTensor', keys=['img']),
|
121 |
+
dict(type='Collect', keys=['img'])
|
122 |
+
])
|
123 |
+
]
|
124 |
+
data = dict(
|
125 |
+
samples_per_gpu=4,
|
126 |
+
workers_per_gpu=4,
|
127 |
+
train=dict(
|
128 |
+
type='ADE20K151Dataset',
|
129 |
+
data_root='data/ade/ADEChallengeData2016',
|
130 |
+
img_dir='images/training',
|
131 |
+
ann_dir='annotations/training',
|
132 |
+
pipeline=[
|
133 |
+
dict(type='LoadImageFromFile'),
|
134 |
+
dict(type='LoadAnnotations', reduce_zero_label=False),
|
135 |
+
dict(type='Resize', img_scale=(2048, 512), ratio_range=(0.5, 2.0)),
|
136 |
+
dict(type='RandomCrop', crop_size=(512, 512), cat_max_ratio=0.75),
|
137 |
+
dict(type='RandomFlip', prob=0.5),
|
138 |
+
dict(type='PhotoMetricDistortion'),
|
139 |
+
dict(
|
140 |
+
type='Normalize',
|
141 |
+
mean=[123.675, 116.28, 103.53],
|
142 |
+
std=[58.395, 57.12, 57.375],
|
143 |
+
to_rgb=True),
|
144 |
+
dict(type='Pad', size=(512, 512), pad_val=0, seg_pad_val=0),
|
145 |
+
dict(type='DefaultFormatBundle'),
|
146 |
+
dict(type='Collect', keys=['img', 'gt_semantic_seg'])
|
147 |
+
]),
|
148 |
+
val=dict(
|
149 |
+
type='ADE20K151Dataset',
|
150 |
+
data_root='data/ade/ADEChallengeData2016',
|
151 |
+
img_dir='images/validation',
|
152 |
+
ann_dir='annotations/validation',
|
153 |
+
pipeline=[
|
154 |
+
dict(type='LoadImageFromFile'),
|
155 |
+
dict(
|
156 |
+
type='MultiScaleFlipAug',
|
157 |
+
img_scale=(2048, 512),
|
158 |
+
flip=False,
|
159 |
+
transforms=[
|
160 |
+
dict(type='Resize', keep_ratio=True),
|
161 |
+
dict(type='RandomFlip'),
|
162 |
+
dict(
|
163 |
+
type='Normalize',
|
164 |
+
mean=[123.675, 116.28, 103.53],
|
165 |
+
std=[58.395, 57.12, 57.375],
|
166 |
+
to_rgb=True),
|
167 |
+
dict(
|
168 |
+
type='Pad', size_divisor=16, pad_val=0, seg_pad_val=0),
|
169 |
+
dict(type='ImageToTensor', keys=['img']),
|
170 |
+
dict(type='Collect', keys=['img'])
|
171 |
+
])
|
172 |
+
]),
|
173 |
+
test=dict(
|
174 |
+
type='ADE20K151Dataset',
|
175 |
+
data_root='data/ade/ADEChallengeData2016',
|
176 |
+
img_dir='images/validation',
|
177 |
+
ann_dir='annotations/validation',
|
178 |
+
pipeline=[
|
179 |
+
dict(type='LoadImageFromFile'),
|
180 |
+
dict(
|
181 |
+
type='MultiScaleFlipAug',
|
182 |
+
img_scale=(2048, 512),
|
183 |
+
flip=False,
|
184 |
+
transforms=[
|
185 |
+
dict(type='Resize', keep_ratio=True),
|
186 |
+
dict(type='RandomFlip'),
|
187 |
+
dict(
|
188 |
+
type='Normalize',
|
189 |
+
mean=[123.675, 116.28, 103.53],
|
190 |
+
std=[58.395, 57.12, 57.375],
|
191 |
+
to_rgb=True),
|
192 |
+
dict(
|
193 |
+
type='Pad', size_divisor=16, pad_val=0, seg_pad_val=0),
|
194 |
+
dict(type='ImageToTensor', keys=['img']),
|
195 |
+
dict(type='Collect', keys=['img'])
|
196 |
+
])
|
197 |
+
]))
|
198 |
+
log_config = dict(
|
199 |
+
interval=50, hooks=[dict(type='TextLoggerHook', by_epoch=False)])
|
200 |
+
dist_params = dict(backend='nccl')
|
201 |
+
log_level = 'INFO'
|
202 |
+
load_from = None
|
203 |
+
resume_from = None
|
204 |
+
workflow = [('train', 1)]
|
205 |
+
cudnn_benchmark = True
|
206 |
+
optimizer = dict(
|
207 |
+
type='AdamW', lr=0.00015, betas=[0.9, 0.96], weight_decay=0.045)
|
208 |
+
optimizer_config = dict()
|
209 |
+
lr_config = dict(
|
210 |
+
policy='step',
|
211 |
+
warmup='linear',
|
212 |
+
warmup_iters=1000,
|
213 |
+
warmup_ratio=1e-06,
|
214 |
+
step=20000,
|
215 |
+
gamma=0.5,
|
216 |
+
min_lr=1e-06,
|
217 |
+
by_epoch=False)
|
218 |
+
runner = dict(type='IterBasedRunner', max_iters=160000)
|
219 |
+
checkpoint_config = dict(by_epoch=False, interval=16000, max_keep_ckpts=1)
|
220 |
+
evaluation = dict(
|
221 |
+
interval=16000, metric='mIoU', pre_eval=True, save_best='mIoU')
|
222 |
+
custom_hooks = [
|
223 |
+
dict(
|
224 |
+
type='ConstantMomentumEMAHook',
|
225 |
+
momentum=0.01,
|
226 |
+
interval=25,
|
227 |
+
eval_interval=16000,
|
228 |
+
auto_resume=True,
|
229 |
+
priority=49)
|
230 |
+
]
|
231 |
+
work_dir = './work_dirs2/ablation_segformer_mit_b2_segformer_head_unet_fc_small_multi_step_ade_pretrained_freeze_embed_160k_ade20k151_finetune_ema_ce'
|
232 |
+
gpu_ids = range(0, 8)
|
233 |
+
auto_resume = True
|
234 |
+
|
235 |
+
2023-03-05 23:10:55,198 - mmseg - INFO - Set random seed to 1580901347, deterministic: False
|
236 |
+
2023-03-05 23:10:55,464 - mmseg - INFO - Parameters in backbone freezed!
|
237 |
+
2023-03-05 23:10:55,465 - mmseg - INFO - Trainable parameters in SegformerHeadUnetFCHeadMultiStep: ['unet.init_conv.weight', 'unet.init_conv.bias', 'unet.time_mlp.1.weight', 'unet.time_mlp.1.bias', 'unet.time_mlp.3.weight', 'unet.time_mlp.3.bias', 'unet.downs.0.0.mlp.1.weight', 'unet.downs.0.0.mlp.1.bias', 'unet.downs.0.0.block1.proj.weight', 'unet.downs.0.0.block1.proj.bias', 'unet.downs.0.0.block1.norm.weight', 'unet.downs.0.0.block1.norm.bias', 'unet.downs.0.0.block2.proj.weight', 'unet.downs.0.0.block2.proj.bias', 'unet.downs.0.0.block2.norm.weight', 'unet.downs.0.0.block2.norm.bias', 'unet.downs.0.1.mlp.1.weight', 'unet.downs.0.1.mlp.1.bias', 'unet.downs.0.1.block1.proj.weight', 'unet.downs.0.1.block1.proj.bias', 'unet.downs.0.1.block1.norm.weight', 'unet.downs.0.1.block1.norm.bias', 'unet.downs.0.1.block2.proj.weight', 'unet.downs.0.1.block2.proj.bias', 'unet.downs.0.1.block2.norm.weight', 'unet.downs.0.1.block2.norm.bias', 'unet.downs.0.2.fn.fn.to_qkv.weight', 'unet.downs.0.2.fn.fn.to_out.0.weight', 'unet.downs.0.2.fn.fn.to_out.0.bias', 'unet.downs.0.2.fn.fn.to_out.1.g', 'unet.downs.0.2.fn.norm.g', 'unet.downs.0.3.weight', 'unet.downs.0.3.bias', 'unet.downs.1.0.mlp.1.weight', 'unet.downs.1.0.mlp.1.bias', 'unet.downs.1.0.block1.proj.weight', 'unet.downs.1.0.block1.proj.bias', 'unet.downs.1.0.block1.norm.weight', 'unet.downs.1.0.block1.norm.bias', 'unet.downs.1.0.block2.proj.weight', 'unet.downs.1.0.block2.proj.bias', 'unet.downs.1.0.block2.norm.weight', 'unet.downs.1.0.block2.norm.bias', 'unet.downs.1.1.mlp.1.weight', 'unet.downs.1.1.mlp.1.bias', 'unet.downs.1.1.block1.proj.weight', 'unet.downs.1.1.block1.proj.bias', 'unet.downs.1.1.block1.norm.weight', 'unet.downs.1.1.block1.norm.bias', 'unet.downs.1.1.block2.proj.weight', 'unet.downs.1.1.block2.proj.bias', 'unet.downs.1.1.block2.norm.weight', 'unet.downs.1.1.block2.norm.bias', 'unet.downs.1.2.fn.fn.to_qkv.weight', 'unet.downs.1.2.fn.fn.to_out.0.weight', 'unet.downs.1.2.fn.fn.to_out.0.bias', 'unet.downs.1.2.fn.fn.to_out.1.g', 'unet.downs.1.2.fn.norm.g', 'unet.downs.1.3.weight', 'unet.downs.1.3.bias', 'unet.downs.2.0.mlp.1.weight', 'unet.downs.2.0.mlp.1.bias', 'unet.downs.2.0.block1.proj.weight', 'unet.downs.2.0.block1.proj.bias', 'unet.downs.2.0.block1.norm.weight', 'unet.downs.2.0.block1.norm.bias', 'unet.downs.2.0.block2.proj.weight', 'unet.downs.2.0.block2.proj.bias', 'unet.downs.2.0.block2.norm.weight', 'unet.downs.2.0.block2.norm.bias', 'unet.downs.2.1.mlp.1.weight', 'unet.downs.2.1.mlp.1.bias', 'unet.downs.2.1.block1.proj.weight', 'unet.downs.2.1.block1.proj.bias', 'unet.downs.2.1.block1.norm.weight', 'unet.downs.2.1.block1.norm.bias', 'unet.downs.2.1.block2.proj.weight', 'unet.downs.2.1.block2.proj.bias', 'unet.downs.2.1.block2.norm.weight', 'unet.downs.2.1.block2.norm.bias', 'unet.downs.2.2.fn.fn.to_qkv.weight', 'unet.downs.2.2.fn.fn.to_out.0.weight', 'unet.downs.2.2.fn.fn.to_out.0.bias', 'unet.downs.2.2.fn.fn.to_out.1.g', 'unet.downs.2.2.fn.norm.g', 'unet.downs.2.3.weight', 'unet.downs.2.3.bias', 'unet.ups.0.0.mlp.1.weight', 'unet.ups.0.0.mlp.1.bias', 'unet.ups.0.0.block1.proj.weight', 'unet.ups.0.0.block1.proj.bias', 'unet.ups.0.0.block1.norm.weight', 'unet.ups.0.0.block1.norm.bias', 'unet.ups.0.0.block2.proj.weight', 'unet.ups.0.0.block2.proj.bias', 'unet.ups.0.0.block2.norm.weight', 'unet.ups.0.0.block2.norm.bias', 'unet.ups.0.0.res_conv.weight', 'unet.ups.0.0.res_conv.bias', 'unet.ups.0.1.mlp.1.weight', 'unet.ups.0.1.mlp.1.bias', 'unet.ups.0.1.block1.proj.weight', 'unet.ups.0.1.block1.proj.bias', 'unet.ups.0.1.block1.norm.weight', 'unet.ups.0.1.block1.norm.bias', 'unet.ups.0.1.block2.proj.weight', 'unet.ups.0.1.block2.proj.bias', 'unet.ups.0.1.block2.norm.weight', 'unet.ups.0.1.block2.norm.bias', 'unet.ups.0.1.res_conv.weight', 'unet.ups.0.1.res_conv.bias', 'unet.ups.0.2.fn.fn.to_qkv.weight', 'unet.ups.0.2.fn.fn.to_out.0.weight', 'unet.ups.0.2.fn.fn.to_out.0.bias', 'unet.ups.0.2.fn.fn.to_out.1.g', 'unet.ups.0.2.fn.norm.g', 'unet.ups.0.3.1.weight', 'unet.ups.0.3.1.bias', 'unet.ups.1.0.mlp.1.weight', 'unet.ups.1.0.mlp.1.bias', 'unet.ups.1.0.block1.proj.weight', 'unet.ups.1.0.block1.proj.bias', 'unet.ups.1.0.block1.norm.weight', 'unet.ups.1.0.block1.norm.bias', 'unet.ups.1.0.block2.proj.weight', 'unet.ups.1.0.block2.proj.bias', 'unet.ups.1.0.block2.norm.weight', 'unet.ups.1.0.block2.norm.bias', 'unet.ups.1.0.res_conv.weight', 'unet.ups.1.0.res_conv.bias', 'unet.ups.1.1.mlp.1.weight', 'unet.ups.1.1.mlp.1.bias', 'unet.ups.1.1.block1.proj.weight', 'unet.ups.1.1.block1.proj.bias', 'unet.ups.1.1.block1.norm.weight', 'unet.ups.1.1.block1.norm.bias', 'unet.ups.1.1.block2.proj.weight', 'unet.ups.1.1.block2.proj.bias', 'unet.ups.1.1.block2.norm.weight', 'unet.ups.1.1.block2.norm.bias', 'unet.ups.1.1.res_conv.weight', 'unet.ups.1.1.res_conv.bias', 'unet.ups.1.2.fn.fn.to_qkv.weight', 'unet.ups.1.2.fn.fn.to_out.0.weight', 'unet.ups.1.2.fn.fn.to_out.0.bias', 'unet.ups.1.2.fn.fn.to_out.1.g', 'unet.ups.1.2.fn.norm.g', 'unet.ups.1.3.1.weight', 'unet.ups.1.3.1.bias', 'unet.ups.2.0.mlp.1.weight', 'unet.ups.2.0.mlp.1.bias', 'unet.ups.2.0.block1.proj.weight', 'unet.ups.2.0.block1.proj.bias', 'unet.ups.2.0.block1.norm.weight', 'unet.ups.2.0.block1.norm.bias', 'unet.ups.2.0.block2.proj.weight', 'unet.ups.2.0.block2.proj.bias', 'unet.ups.2.0.block2.norm.weight', 'unet.ups.2.0.block2.norm.bias', 'unet.ups.2.0.res_conv.weight', 'unet.ups.2.0.res_conv.bias', 'unet.ups.2.1.mlp.1.weight', 'unet.ups.2.1.mlp.1.bias', 'unet.ups.2.1.block1.proj.weight', 'unet.ups.2.1.block1.proj.bias', 'unet.ups.2.1.block1.norm.weight', 'unet.ups.2.1.block1.norm.bias', 'unet.ups.2.1.block2.proj.weight', 'unet.ups.2.1.block2.proj.bias', 'unet.ups.2.1.block2.norm.weight', 'unet.ups.2.1.block2.norm.bias', 'unet.ups.2.1.res_conv.weight', 'unet.ups.2.1.res_conv.bias', 'unet.ups.2.2.fn.fn.to_qkv.weight', 'unet.ups.2.2.fn.fn.to_out.0.weight', 'unet.ups.2.2.fn.fn.to_out.0.bias', 'unet.ups.2.2.fn.fn.to_out.1.g', 'unet.ups.2.2.fn.norm.g', 'unet.ups.2.3.weight', 'unet.ups.2.3.bias', 'unet.mid_block1.mlp.1.weight', 'unet.mid_block1.mlp.1.bias', 'unet.mid_block1.block1.proj.weight', 'unet.mid_block1.block1.proj.bias', 'unet.mid_block1.block1.norm.weight', 'unet.mid_block1.block1.norm.bias', 'unet.mid_block1.block2.proj.weight', 'unet.mid_block1.block2.proj.bias', 'unet.mid_block1.block2.norm.weight', 'unet.mid_block1.block2.norm.bias', 'unet.mid_attn.fn.fn.to_qkv.weight', 'unet.mid_attn.fn.fn.to_out.weight', 'unet.mid_attn.fn.fn.to_out.bias', 'unet.mid_attn.fn.norm.g', 'unet.mid_block2.mlp.1.weight', 'unet.mid_block2.mlp.1.bias', 'unet.mid_block2.block1.proj.weight', 'unet.mid_block2.block1.proj.bias', 'unet.mid_block2.block1.norm.weight', 'unet.mid_block2.block1.norm.bias', 'unet.mid_block2.block2.proj.weight', 'unet.mid_block2.block2.proj.bias', 'unet.mid_block2.block2.norm.weight', 'unet.mid_block2.block2.norm.bias', 'unet.final_res_block.mlp.1.weight', 'unet.final_res_block.mlp.1.bias', 'unet.final_res_block.block1.proj.weight', 'unet.final_res_block.block1.proj.bias', 'unet.final_res_block.block1.norm.weight', 'unet.final_res_block.block1.norm.bias', 'unet.final_res_block.block2.proj.weight', 'unet.final_res_block.block2.proj.bias', 'unet.final_res_block.block2.norm.weight', 'unet.final_res_block.block2.norm.bias', 'unet.final_res_block.res_conv.weight', 'unet.final_res_block.res_conv.bias', 'unet.final_conv.weight', 'unet.final_conv.bias', 'conv_seg_new.weight', 'conv_seg_new.bias']
|
238 |
+
2023-03-05 23:10:55,465 - mmseg - INFO - Parameters in decode_head freezed!
|
239 |
+
2023-03-05 23:10:55,486 - mmseg - INFO - load checkpoint from local path: work_dirs2/segformer_mit_b2_segformer_head_unet_fc_single_step_ade_pretrained_freeze_embed_80k_ade20k151/best_mIoU_iter_64000.pth
|
240 |
+
2023-03-05 23:10:56,307 - mmseg - WARNING - The model and loaded state dict do not match exactly
|
241 |
+
|
242 |
+
unexpected key in source state_dict: decode_head.convs.0.conv.weight, decode_head.convs.0.bn.weight, decode_head.convs.0.bn.bias, decode_head.convs.0.bn.running_mean, decode_head.convs.0.bn.running_var, decode_head.convs.0.bn.num_batches_tracked, decode_head.convs.1.conv.weight, decode_head.convs.1.bn.weight, decode_head.convs.1.bn.bias, decode_head.convs.1.bn.running_mean, decode_head.convs.1.bn.running_var, decode_head.convs.1.bn.num_batches_tracked, decode_head.convs.2.conv.weight, decode_head.convs.2.bn.weight, decode_head.convs.2.bn.bias, decode_head.convs.2.bn.running_mean, decode_head.convs.2.bn.running_var, decode_head.convs.2.bn.num_batches_tracked, decode_head.convs.3.conv.weight, decode_head.convs.3.bn.weight, decode_head.convs.3.bn.bias, decode_head.convs.3.bn.running_mean, decode_head.convs.3.bn.running_var, decode_head.convs.3.bn.num_batches_tracked, decode_head.fusion_conv.conv.weight, decode_head.fusion_conv.bn.weight, decode_head.fusion_conv.bn.bias, decode_head.fusion_conv.bn.running_mean, decode_head.fusion_conv.bn.running_var, decode_head.fusion_conv.bn.num_batches_tracked, decode_head.unet.init_conv.weight, decode_head.unet.init_conv.bias, decode_head.unet.time_mlp.1.weight, decode_head.unet.time_mlp.1.bias, decode_head.unet.time_mlp.3.weight, decode_head.unet.time_mlp.3.bias, decode_head.unet.downs.0.0.mlp.1.weight, decode_head.unet.downs.0.0.mlp.1.bias, decode_head.unet.downs.0.0.block1.proj.weight, decode_head.unet.downs.0.0.block1.proj.bias, decode_head.unet.downs.0.0.block1.norm.weight, decode_head.unet.downs.0.0.block1.norm.bias, decode_head.unet.downs.0.0.block2.proj.weight, decode_head.unet.downs.0.0.block2.proj.bias, decode_head.unet.downs.0.0.block2.norm.weight, decode_head.unet.downs.0.0.block2.norm.bias, decode_head.unet.downs.0.1.mlp.1.weight, decode_head.unet.downs.0.1.mlp.1.bias, decode_head.unet.downs.0.1.block1.proj.weight, decode_head.unet.downs.0.1.block1.proj.bias, decode_head.unet.downs.0.1.block1.norm.weight, decode_head.unet.downs.0.1.block1.norm.bias, decode_head.unet.downs.0.1.block2.proj.weight, decode_head.unet.downs.0.1.block2.proj.bias, decode_head.unet.downs.0.1.block2.norm.weight, decode_head.unet.downs.0.1.block2.norm.bias, decode_head.unet.downs.0.2.fn.fn.to_qkv.weight, decode_head.unet.downs.0.2.fn.fn.to_out.0.weight, decode_head.unet.downs.0.2.fn.fn.to_out.0.bias, decode_head.unet.downs.0.2.fn.fn.to_out.1.g, decode_head.unet.downs.0.2.fn.norm.g, decode_head.unet.downs.0.3.weight, decode_head.unet.downs.0.3.bias, decode_head.unet.downs.1.0.mlp.1.weight, decode_head.unet.downs.1.0.mlp.1.bias, decode_head.unet.downs.1.0.block1.proj.weight, decode_head.unet.downs.1.0.block1.proj.bias, decode_head.unet.downs.1.0.block1.norm.weight, decode_head.unet.downs.1.0.block1.norm.bias, decode_head.unet.downs.1.0.block2.proj.weight, decode_head.unet.downs.1.0.block2.proj.bias, decode_head.unet.downs.1.0.block2.norm.weight, decode_head.unet.downs.1.0.block2.norm.bias, decode_head.unet.downs.1.1.mlp.1.weight, decode_head.unet.downs.1.1.mlp.1.bias, decode_head.unet.downs.1.1.block1.proj.weight, decode_head.unet.downs.1.1.block1.proj.bias, decode_head.unet.downs.1.1.block1.norm.weight, decode_head.unet.downs.1.1.block1.norm.bias, decode_head.unet.downs.1.1.block2.proj.weight, decode_head.unet.downs.1.1.block2.proj.bias, decode_head.unet.downs.1.1.block2.norm.weight, decode_head.unet.downs.1.1.block2.norm.bias, decode_head.unet.downs.1.2.fn.fn.to_qkv.weight, decode_head.unet.downs.1.2.fn.fn.to_out.0.weight, decode_head.unet.downs.1.2.fn.fn.to_out.0.bias, decode_head.unet.downs.1.2.fn.fn.to_out.1.g, decode_head.unet.downs.1.2.fn.norm.g, decode_head.unet.downs.1.3.weight, decode_head.unet.downs.1.3.bias, decode_head.unet.downs.2.0.mlp.1.weight, decode_head.unet.downs.2.0.mlp.1.bias, decode_head.unet.downs.2.0.block1.proj.weight, decode_head.unet.downs.2.0.block1.proj.bias, decode_head.unet.downs.2.0.block1.norm.weight, decode_head.unet.downs.2.0.block1.norm.bias, decode_head.unet.downs.2.0.block2.proj.weight, decode_head.unet.downs.2.0.block2.proj.bias, decode_head.unet.downs.2.0.block2.norm.weight, decode_head.unet.downs.2.0.block2.norm.bias, decode_head.unet.downs.2.1.mlp.1.weight, decode_head.unet.downs.2.1.mlp.1.bias, decode_head.unet.downs.2.1.block1.proj.weight, decode_head.unet.downs.2.1.block1.proj.bias, decode_head.unet.downs.2.1.block1.norm.weight, decode_head.unet.downs.2.1.block1.norm.bias, decode_head.unet.downs.2.1.block2.proj.weight, decode_head.unet.downs.2.1.block2.proj.bias, decode_head.unet.downs.2.1.block2.norm.weight, decode_head.unet.downs.2.1.block2.norm.bias, decode_head.unet.downs.2.2.fn.fn.to_qkv.weight, decode_head.unet.downs.2.2.fn.fn.to_out.0.weight, decode_head.unet.downs.2.2.fn.fn.to_out.0.bias, decode_head.unet.downs.2.2.fn.fn.to_out.1.g, decode_head.unet.downs.2.2.fn.norm.g, decode_head.unet.downs.2.3.weight, decode_head.unet.downs.2.3.bias, decode_head.unet.ups.0.0.mlp.1.weight, decode_head.unet.ups.0.0.mlp.1.bias, decode_head.unet.ups.0.0.block1.proj.weight, decode_head.unet.ups.0.0.block1.proj.bias, decode_head.unet.ups.0.0.block1.norm.weight, decode_head.unet.ups.0.0.block1.norm.bias, decode_head.unet.ups.0.0.block2.proj.weight, decode_head.unet.ups.0.0.block2.proj.bias, decode_head.unet.ups.0.0.block2.norm.weight, decode_head.unet.ups.0.0.block2.norm.bias, decode_head.unet.ups.0.0.res_conv.weight, decode_head.unet.ups.0.0.res_conv.bias, decode_head.unet.ups.0.1.mlp.1.weight, decode_head.unet.ups.0.1.mlp.1.bias, decode_head.unet.ups.0.1.block1.proj.weight, decode_head.unet.ups.0.1.block1.proj.bias, decode_head.unet.ups.0.1.block1.norm.weight, decode_head.unet.ups.0.1.block1.norm.bias, decode_head.unet.ups.0.1.block2.proj.weight, decode_head.unet.ups.0.1.block2.proj.bias, decode_head.unet.ups.0.1.block2.norm.weight, decode_head.unet.ups.0.1.block2.norm.bias, decode_head.unet.ups.0.1.res_conv.weight, decode_head.unet.ups.0.1.res_conv.bias, decode_head.unet.ups.0.2.fn.fn.to_qkv.weight, decode_head.unet.ups.0.2.fn.fn.to_out.0.weight, decode_head.unet.ups.0.2.fn.fn.to_out.0.bias, decode_head.unet.ups.0.2.fn.fn.to_out.1.g, decode_head.unet.ups.0.2.fn.norm.g, decode_head.unet.ups.0.3.1.weight, decode_head.unet.ups.0.3.1.bias, decode_head.unet.ups.1.0.mlp.1.weight, decode_head.unet.ups.1.0.mlp.1.bias, decode_head.unet.ups.1.0.block1.proj.weight, decode_head.unet.ups.1.0.block1.proj.bias, decode_head.unet.ups.1.0.block1.norm.weight, decode_head.unet.ups.1.0.block1.norm.bias, decode_head.unet.ups.1.0.block2.proj.weight, decode_head.unet.ups.1.0.block2.proj.bias, decode_head.unet.ups.1.0.block2.norm.weight, decode_head.unet.ups.1.0.block2.norm.bias, decode_head.unet.ups.1.0.res_conv.weight, decode_head.unet.ups.1.0.res_conv.bias, decode_head.unet.ups.1.1.mlp.1.weight, decode_head.unet.ups.1.1.mlp.1.bias, decode_head.unet.ups.1.1.block1.proj.weight, decode_head.unet.ups.1.1.block1.proj.bias, decode_head.unet.ups.1.1.block1.norm.weight, decode_head.unet.ups.1.1.block1.norm.bias, decode_head.unet.ups.1.1.block2.proj.weight, decode_head.unet.ups.1.1.block2.proj.bias, decode_head.unet.ups.1.1.block2.norm.weight, decode_head.unet.ups.1.1.block2.norm.bias, decode_head.unet.ups.1.1.res_conv.weight, decode_head.unet.ups.1.1.res_conv.bias, decode_head.unet.ups.1.2.fn.fn.to_qkv.weight, decode_head.unet.ups.1.2.fn.fn.to_out.0.weight, decode_head.unet.ups.1.2.fn.fn.to_out.0.bias, decode_head.unet.ups.1.2.fn.fn.to_out.1.g, decode_head.unet.ups.1.2.fn.norm.g, decode_head.unet.ups.1.3.1.weight, decode_head.unet.ups.1.3.1.bias, decode_head.unet.ups.2.0.mlp.1.weight, decode_head.unet.ups.2.0.mlp.1.bias, decode_head.unet.ups.2.0.block1.proj.weight, decode_head.unet.ups.2.0.block1.proj.bias, decode_head.unet.ups.2.0.block1.norm.weight, decode_head.unet.ups.2.0.block1.norm.bias, decode_head.unet.ups.2.0.block2.proj.weight, decode_head.unet.ups.2.0.block2.proj.bias, decode_head.unet.ups.2.0.block2.norm.weight, decode_head.unet.ups.2.0.block2.norm.bias, decode_head.unet.ups.2.0.res_conv.weight, decode_head.unet.ups.2.0.res_conv.bias, decode_head.unet.ups.2.1.mlp.1.weight, decode_head.unet.ups.2.1.mlp.1.bias, decode_head.unet.ups.2.1.block1.proj.weight, decode_head.unet.ups.2.1.block1.proj.bias, decode_head.unet.ups.2.1.block1.norm.weight, decode_head.unet.ups.2.1.block1.norm.bias, decode_head.unet.ups.2.1.block2.proj.weight, decode_head.unet.ups.2.1.block2.proj.bias, decode_head.unet.ups.2.1.block2.norm.weight, decode_head.unet.ups.2.1.block2.norm.bias, decode_head.unet.ups.2.1.res_conv.weight, decode_head.unet.ups.2.1.res_conv.bias, decode_head.unet.ups.2.2.fn.fn.to_qkv.weight, decode_head.unet.ups.2.2.fn.fn.to_out.0.weight, decode_head.unet.ups.2.2.fn.fn.to_out.0.bias, decode_head.unet.ups.2.2.fn.fn.to_out.1.g, decode_head.unet.ups.2.2.fn.norm.g, decode_head.unet.ups.2.3.weight, decode_head.unet.ups.2.3.bias, decode_head.unet.mid_block1.mlp.1.weight, decode_head.unet.mid_block1.mlp.1.bias, decode_head.unet.mid_block1.block1.proj.weight, decode_head.unet.mid_block1.block1.proj.bias, decode_head.unet.mid_block1.block1.norm.weight, decode_head.unet.mid_block1.block1.norm.bias, decode_head.unet.mid_block1.block2.proj.weight, decode_head.unet.mid_block1.block2.proj.bias, decode_head.unet.mid_block1.block2.norm.weight, decode_head.unet.mid_block1.block2.norm.bias, decode_head.unet.mid_attn.fn.fn.to_qkv.weight, decode_head.unet.mid_attn.fn.fn.to_out.weight, decode_head.unet.mid_attn.fn.fn.to_out.bias, decode_head.unet.mid_attn.fn.norm.g, decode_head.unet.mid_block2.mlp.1.weight, decode_head.unet.mid_block2.mlp.1.bias, decode_head.unet.mid_block2.block1.proj.weight, decode_head.unet.mid_block2.block1.proj.bias, decode_head.unet.mid_block2.block1.norm.weight, decode_head.unet.mid_block2.block1.norm.bias, decode_head.unet.mid_block2.block2.proj.weight, decode_head.unet.mid_block2.block2.proj.bias, decode_head.unet.mid_block2.block2.norm.weight, decode_head.unet.mid_block2.block2.norm.bias, decode_head.unet.final_res_block.mlp.1.weight, decode_head.unet.final_res_block.mlp.1.bias, decode_head.unet.final_res_block.block1.proj.weight, decode_head.unet.final_res_block.block1.proj.bias, decode_head.unet.final_res_block.block1.norm.weight, decode_head.unet.final_res_block.block1.norm.bias, decode_head.unet.final_res_block.block2.proj.weight, decode_head.unet.final_res_block.block2.proj.bias, decode_head.unet.final_res_block.block2.norm.weight, decode_head.unet.final_res_block.block2.norm.bias, decode_head.unet.final_res_block.res_conv.weight, decode_head.unet.final_res_block.res_conv.bias, decode_head.unet.final_conv.weight, decode_head.unet.final_conv.bias, decode_head.conv_seg_new.weight, decode_head.conv_seg_new.bias, decode_head.embed.weight
|
243 |
+
|
244 |
+
2023-03-05 23:10:56,324 - mmseg - INFO - load checkpoint from local path: work_dirs2/segformer_mit_b2_segformer_head_unet_fc_single_step_ade_pretrained_freeze_embed_80k_ade20k151/best_mIoU_iter_64000.pth
|
245 |
+
2023-03-05 23:10:56,771 - mmseg - WARNING - The model and loaded state dict do not match exactly
|
246 |
+
|
247 |
+
unexpected key in source state_dict: backbone.layers.0.0.projection.weight, backbone.layers.0.0.projection.bias, backbone.layers.0.0.norm.weight, backbone.layers.0.0.norm.bias, backbone.layers.0.1.0.norm1.weight, backbone.layers.0.1.0.norm1.bias, backbone.layers.0.1.0.attn.attn.in_proj_weight, backbone.layers.0.1.0.attn.attn.in_proj_bias, backbone.layers.0.1.0.attn.attn.out_proj.weight, backbone.layers.0.1.0.attn.attn.out_proj.bias, backbone.layers.0.1.0.attn.sr.weight, backbone.layers.0.1.0.attn.sr.bias, backbone.layers.0.1.0.attn.norm.weight, backbone.layers.0.1.0.attn.norm.bias, backbone.layers.0.1.0.norm2.weight, backbone.layers.0.1.0.norm2.bias, backbone.layers.0.1.0.ffn.layers.0.weight, backbone.layers.0.1.0.ffn.layers.0.bias, backbone.layers.0.1.0.ffn.layers.1.weight, backbone.layers.0.1.0.ffn.layers.1.bias, backbone.layers.0.1.0.ffn.layers.4.weight, backbone.layers.0.1.0.ffn.layers.4.bias, backbone.layers.0.1.1.norm1.weight, backbone.layers.0.1.1.norm1.bias, backbone.layers.0.1.1.attn.attn.in_proj_weight, backbone.layers.0.1.1.attn.attn.in_proj_bias, backbone.layers.0.1.1.attn.attn.out_proj.weight, backbone.layers.0.1.1.attn.attn.out_proj.bias, backbone.layers.0.1.1.attn.sr.weight, backbone.layers.0.1.1.attn.sr.bias, backbone.layers.0.1.1.attn.norm.weight, backbone.layers.0.1.1.attn.norm.bias, backbone.layers.0.1.1.norm2.weight, backbone.layers.0.1.1.norm2.bias, backbone.layers.0.1.1.ffn.layers.0.weight, backbone.layers.0.1.1.ffn.layers.0.bias, backbone.layers.0.1.1.ffn.layers.1.weight, backbone.layers.0.1.1.ffn.layers.1.bias, backbone.layers.0.1.1.ffn.layers.4.weight, backbone.layers.0.1.1.ffn.layers.4.bias, backbone.layers.0.1.2.norm1.weight, backbone.layers.0.1.2.norm1.bias, backbone.layers.0.1.2.attn.attn.in_proj_weight, backbone.layers.0.1.2.attn.attn.in_proj_bias, backbone.layers.0.1.2.attn.attn.out_proj.weight, backbone.layers.0.1.2.attn.attn.out_proj.bias, backbone.layers.0.1.2.attn.sr.weight, backbone.layers.0.1.2.attn.sr.bias, backbone.layers.0.1.2.attn.norm.weight, backbone.layers.0.1.2.attn.norm.bias, backbone.layers.0.1.2.norm2.weight, backbone.layers.0.1.2.norm2.bias, backbone.layers.0.1.2.ffn.layers.0.weight, backbone.layers.0.1.2.ffn.layers.0.bias, backbone.layers.0.1.2.ffn.layers.1.weight, backbone.layers.0.1.2.ffn.layers.1.bias, backbone.layers.0.1.2.ffn.layers.4.weight, backbone.layers.0.1.2.ffn.layers.4.bias, backbone.layers.0.2.weight, backbone.layers.0.2.bias, backbone.layers.1.0.projection.weight, backbone.layers.1.0.projection.bias, backbone.layers.1.0.norm.weight, backbone.layers.1.0.norm.bias, backbone.layers.1.1.0.norm1.weight, backbone.layers.1.1.0.norm1.bias, backbone.layers.1.1.0.attn.attn.in_proj_weight, backbone.layers.1.1.0.attn.attn.in_proj_bias, backbone.layers.1.1.0.attn.attn.out_proj.weight, backbone.layers.1.1.0.attn.attn.out_proj.bias, backbone.layers.1.1.0.attn.sr.weight, backbone.layers.1.1.0.attn.sr.bias, backbone.layers.1.1.0.attn.norm.weight, backbone.layers.1.1.0.attn.norm.bias, backbone.layers.1.1.0.norm2.weight, backbone.layers.1.1.0.norm2.bias, backbone.layers.1.1.0.ffn.layers.0.weight, backbone.layers.1.1.0.ffn.layers.0.bias, backbone.layers.1.1.0.ffn.layers.1.weight, backbone.layers.1.1.0.ffn.layers.1.bias, backbone.layers.1.1.0.ffn.layers.4.weight, backbone.layers.1.1.0.ffn.layers.4.bias, backbone.layers.1.1.1.norm1.weight, backbone.layers.1.1.1.norm1.bias, backbone.layers.1.1.1.attn.attn.in_proj_weight, backbone.layers.1.1.1.attn.attn.in_proj_bias, backbone.layers.1.1.1.attn.attn.out_proj.weight, backbone.layers.1.1.1.attn.attn.out_proj.bias, backbone.layers.1.1.1.attn.sr.weight, backbone.layers.1.1.1.attn.sr.bias, backbone.layers.1.1.1.attn.norm.weight, backbone.layers.1.1.1.attn.norm.bias, backbone.layers.1.1.1.norm2.weight, backbone.layers.1.1.1.norm2.bias, backbone.layers.1.1.1.ffn.layers.0.weight, backbone.layers.1.1.1.ffn.layers.0.bias, backbone.layers.1.1.1.ffn.layers.1.weight, backbone.layers.1.1.1.ffn.layers.1.bias, backbone.layers.1.1.1.ffn.layers.4.weight, backbone.layers.1.1.1.ffn.layers.4.bias, backbone.layers.1.1.2.norm1.weight, backbone.layers.1.1.2.norm1.bias, backbone.layers.1.1.2.attn.attn.in_proj_weight, backbone.layers.1.1.2.attn.attn.in_proj_bias, backbone.layers.1.1.2.attn.attn.out_proj.weight, backbone.layers.1.1.2.attn.attn.out_proj.bias, backbone.layers.1.1.2.attn.sr.weight, backbone.layers.1.1.2.attn.sr.bias, backbone.layers.1.1.2.attn.norm.weight, backbone.layers.1.1.2.attn.norm.bias, backbone.layers.1.1.2.norm2.weight, backbone.layers.1.1.2.norm2.bias, backbone.layers.1.1.2.ffn.layers.0.weight, backbone.layers.1.1.2.ffn.layers.0.bias, backbone.layers.1.1.2.ffn.layers.1.weight, backbone.layers.1.1.2.ffn.layers.1.bias, backbone.layers.1.1.2.ffn.layers.4.weight, backbone.layers.1.1.2.ffn.layers.4.bias, backbone.layers.1.1.3.norm1.weight, backbone.layers.1.1.3.norm1.bias, backbone.layers.1.1.3.attn.attn.in_proj_weight, backbone.layers.1.1.3.attn.attn.in_proj_bias, backbone.layers.1.1.3.attn.attn.out_proj.weight, backbone.layers.1.1.3.attn.attn.out_proj.bias, backbone.layers.1.1.3.attn.sr.weight, backbone.layers.1.1.3.attn.sr.bias, backbone.layers.1.1.3.attn.norm.weight, backbone.layers.1.1.3.attn.norm.bias, backbone.layers.1.1.3.norm2.weight, backbone.layers.1.1.3.norm2.bias, backbone.layers.1.1.3.ffn.layers.0.weight, backbone.layers.1.1.3.ffn.layers.0.bias, backbone.layers.1.1.3.ffn.layers.1.weight, backbone.layers.1.1.3.ffn.layers.1.bias, backbone.layers.1.1.3.ffn.layers.4.weight, backbone.layers.1.1.3.ffn.layers.4.bias, backbone.layers.1.2.weight, backbone.layers.1.2.bias, backbone.layers.2.0.projection.weight, backbone.layers.2.0.projection.bias, backbone.layers.2.0.norm.weight, backbone.layers.2.0.norm.bias, backbone.layers.2.1.0.norm1.weight, backbone.layers.2.1.0.norm1.bias, backbone.layers.2.1.0.attn.attn.in_proj_weight, backbone.layers.2.1.0.attn.attn.in_proj_bias, backbone.layers.2.1.0.attn.attn.out_proj.weight, backbone.layers.2.1.0.attn.attn.out_proj.bias, backbone.layers.2.1.0.attn.sr.weight, backbone.layers.2.1.0.attn.sr.bias, backbone.layers.2.1.0.attn.norm.weight, backbone.layers.2.1.0.attn.norm.bias, backbone.layers.2.1.0.norm2.weight, backbone.layers.2.1.0.norm2.bias, backbone.layers.2.1.0.ffn.layers.0.weight, backbone.layers.2.1.0.ffn.layers.0.bias, backbone.layers.2.1.0.ffn.layers.1.weight, backbone.layers.2.1.0.ffn.layers.1.bias, backbone.layers.2.1.0.ffn.layers.4.weight, backbone.layers.2.1.0.ffn.layers.4.bias, backbone.layers.2.1.1.norm1.weight, backbone.layers.2.1.1.norm1.bias, backbone.layers.2.1.1.attn.attn.in_proj_weight, backbone.layers.2.1.1.attn.attn.in_proj_bias, backbone.layers.2.1.1.attn.attn.out_proj.weight, backbone.layers.2.1.1.attn.attn.out_proj.bias, backbone.layers.2.1.1.attn.sr.weight, backbone.layers.2.1.1.attn.sr.bias, backbone.layers.2.1.1.attn.norm.weight, backbone.layers.2.1.1.attn.norm.bias, backbone.layers.2.1.1.norm2.weight, backbone.layers.2.1.1.norm2.bias, backbone.layers.2.1.1.ffn.layers.0.weight, backbone.layers.2.1.1.ffn.layers.0.bias, backbone.layers.2.1.1.ffn.layers.1.weight, backbone.layers.2.1.1.ffn.layers.1.bias, backbone.layers.2.1.1.ffn.layers.4.weight, backbone.layers.2.1.1.ffn.layers.4.bias, backbone.layers.2.1.2.norm1.weight, backbone.layers.2.1.2.norm1.bias, backbone.layers.2.1.2.attn.attn.in_proj_weight, backbone.layers.2.1.2.attn.attn.in_proj_bias, backbone.layers.2.1.2.attn.attn.out_proj.weight, backbone.layers.2.1.2.attn.attn.out_proj.bias, backbone.layers.2.1.2.attn.sr.weight, backbone.layers.2.1.2.attn.sr.bias, backbone.layers.2.1.2.attn.norm.weight, backbone.layers.2.1.2.attn.norm.bias, backbone.layers.2.1.2.norm2.weight, backbone.layers.2.1.2.norm2.bias, backbone.layers.2.1.2.ffn.layers.0.weight, backbone.layers.2.1.2.ffn.layers.0.bias, backbone.layers.2.1.2.ffn.layers.1.weight, backbone.layers.2.1.2.ffn.layers.1.bias, backbone.layers.2.1.2.ffn.layers.4.weight, backbone.layers.2.1.2.ffn.layers.4.bias, backbone.layers.2.1.3.norm1.weight, backbone.layers.2.1.3.norm1.bias, backbone.layers.2.1.3.attn.attn.in_proj_weight, backbone.layers.2.1.3.attn.attn.in_proj_bias, backbone.layers.2.1.3.attn.attn.out_proj.weight, backbone.layers.2.1.3.attn.attn.out_proj.bias, backbone.layers.2.1.3.attn.sr.weight, backbone.layers.2.1.3.attn.sr.bias, backbone.layers.2.1.3.attn.norm.weight, backbone.layers.2.1.3.attn.norm.bias, backbone.layers.2.1.3.norm2.weight, backbone.layers.2.1.3.norm2.bias, backbone.layers.2.1.3.ffn.layers.0.weight, backbone.layers.2.1.3.ffn.layers.0.bias, backbone.layers.2.1.3.ffn.layers.1.weight, backbone.layers.2.1.3.ffn.layers.1.bias, backbone.layers.2.1.3.ffn.layers.4.weight, backbone.layers.2.1.3.ffn.layers.4.bias, backbone.layers.2.1.4.norm1.weight, backbone.layers.2.1.4.norm1.bias, backbone.layers.2.1.4.attn.attn.in_proj_weight, backbone.layers.2.1.4.attn.attn.in_proj_bias, backbone.layers.2.1.4.attn.attn.out_proj.weight, backbone.layers.2.1.4.attn.attn.out_proj.bias, backbone.layers.2.1.4.attn.sr.weight, backbone.layers.2.1.4.attn.sr.bias, backbone.layers.2.1.4.attn.norm.weight, backbone.layers.2.1.4.attn.norm.bias, backbone.layers.2.1.4.norm2.weight, backbone.layers.2.1.4.norm2.bias, backbone.layers.2.1.4.ffn.layers.0.weight, backbone.layers.2.1.4.ffn.layers.0.bias, backbone.layers.2.1.4.ffn.layers.1.weight, backbone.layers.2.1.4.ffn.layers.1.bias, backbone.layers.2.1.4.ffn.layers.4.weight, backbone.layers.2.1.4.ffn.layers.4.bias, backbone.layers.2.1.5.norm1.weight, backbone.layers.2.1.5.norm1.bias, backbone.layers.2.1.5.attn.attn.in_proj_weight, backbone.layers.2.1.5.attn.attn.in_proj_bias, backbone.layers.2.1.5.attn.attn.out_proj.weight, backbone.layers.2.1.5.attn.attn.out_proj.bias, backbone.layers.2.1.5.attn.sr.weight, backbone.layers.2.1.5.attn.sr.bias, backbone.layers.2.1.5.attn.norm.weight, backbone.layers.2.1.5.attn.norm.bias, backbone.layers.2.1.5.norm2.weight, backbone.layers.2.1.5.norm2.bias, backbone.layers.2.1.5.ffn.layers.0.weight, backbone.layers.2.1.5.ffn.layers.0.bias, backbone.layers.2.1.5.ffn.layers.1.weight, backbone.layers.2.1.5.ffn.layers.1.bias, backbone.layers.2.1.5.ffn.layers.4.weight, backbone.layers.2.1.5.ffn.layers.4.bias, backbone.layers.2.2.weight, backbone.layers.2.2.bias, backbone.layers.3.0.projection.weight, backbone.layers.3.0.projection.bias, backbone.layers.3.0.norm.weight, backbone.layers.3.0.norm.bias, backbone.layers.3.1.0.norm1.weight, backbone.layers.3.1.0.norm1.bias, backbone.layers.3.1.0.attn.attn.in_proj_weight, backbone.layers.3.1.0.attn.attn.in_proj_bias, backbone.layers.3.1.0.attn.attn.out_proj.weight, backbone.layers.3.1.0.attn.attn.out_proj.bias, backbone.layers.3.1.0.norm2.weight, backbone.layers.3.1.0.norm2.bias, backbone.layers.3.1.0.ffn.layers.0.weight, backbone.layers.3.1.0.ffn.layers.0.bias, backbone.layers.3.1.0.ffn.layers.1.weight, backbone.layers.3.1.0.ffn.layers.1.bias, backbone.layers.3.1.0.ffn.layers.4.weight, backbone.layers.3.1.0.ffn.layers.4.bias, backbone.layers.3.1.1.norm1.weight, backbone.layers.3.1.1.norm1.bias, backbone.layers.3.1.1.attn.attn.in_proj_weight, backbone.layers.3.1.1.attn.attn.in_proj_bias, backbone.layers.3.1.1.attn.attn.out_proj.weight, backbone.layers.3.1.1.attn.attn.out_proj.bias, backbone.layers.3.1.1.norm2.weight, backbone.layers.3.1.1.norm2.bias, backbone.layers.3.1.1.ffn.layers.0.weight, backbone.layers.3.1.1.ffn.layers.0.bias, backbone.layers.3.1.1.ffn.layers.1.weight, backbone.layers.3.1.1.ffn.layers.1.bias, backbone.layers.3.1.1.ffn.layers.4.weight, backbone.layers.3.1.1.ffn.layers.4.bias, backbone.layers.3.1.2.norm1.weight, backbone.layers.3.1.2.norm1.bias, backbone.layers.3.1.2.attn.attn.in_proj_weight, backbone.layers.3.1.2.attn.attn.in_proj_bias, backbone.layers.3.1.2.attn.attn.out_proj.weight, backbone.layers.3.1.2.attn.attn.out_proj.bias, backbone.layers.3.1.2.norm2.weight, backbone.layers.3.1.2.norm2.bias, backbone.layers.3.1.2.ffn.layers.0.weight, backbone.layers.3.1.2.ffn.layers.0.bias, backbone.layers.3.1.2.ffn.layers.1.weight, backbone.layers.3.1.2.ffn.layers.1.bias, backbone.layers.3.1.2.ffn.layers.4.weight, backbone.layers.3.1.2.ffn.layers.4.bias, backbone.layers.3.2.weight, backbone.layers.3.2.bias
|
248 |
+
|
249 |
+
missing keys in source state_dict: log_cumprod_at, log_cumprod_bt, log_at, log_bt
|
250 |
+
|
251 |
+
2023-03-05 23:10:56,795 - mmseg - INFO - EncoderDecoderDiffusion(
|
252 |
+
(backbone): MixVisionTransformerCustomInitWeights(
|
253 |
+
(layers): ModuleList(
|
254 |
+
(0): ModuleList(
|
255 |
+
(0): PatchEmbed(
|
256 |
+
(projection): Conv2d(3, 64, kernel_size=(7, 7), stride=(4, 4), padding=(3, 3))
|
257 |
+
(norm): LayerNorm((64,), eps=1e-06, elementwise_affine=True)
|
258 |
+
)
|
259 |
+
(1): ModuleList(
|
260 |
+
(0): TransformerEncoderLayer(
|
261 |
+
(norm1): LayerNorm((64,), eps=1e-06, elementwise_affine=True)
|
262 |
+
(attn): EfficientMultiheadAttention(
|
263 |
+
(attn): MultiheadAttention(
|
264 |
+
(out_proj): NonDynamicallyQuantizableLinear(in_features=64, out_features=64, bias=True)
|
265 |
+
)
|
266 |
+
(proj_drop): Dropout(p=0.0, inplace=False)
|
267 |
+
(dropout_layer): DropPath()
|
268 |
+
(sr): Conv2d(64, 64, kernel_size=(8, 8), stride=(8, 8))
|
269 |
+
(norm): LayerNorm((64,), eps=1e-06, elementwise_affine=True)
|
270 |
+
)
|
271 |
+
(norm2): LayerNorm((64,), eps=1e-06, elementwise_affine=True)
|
272 |
+
(ffn): MixFFN(
|
273 |
+
(activate): GELU(approximate='none')
|
274 |
+
(layers): Sequential(
|
275 |
+
(0): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1))
|
276 |
+
(1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=256)
|
277 |
+
(2): GELU(approximate='none')
|
278 |
+
(3): Dropout(p=0.0, inplace=False)
|
279 |
+
(4): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1))
|
280 |
+
(5): Dropout(p=0.0, inplace=False)
|
281 |
+
)
|
282 |
+
(dropout_layer): DropPath()
|
283 |
+
)
|
284 |
+
)
|
285 |
+
(1): TransformerEncoderLayer(
|
286 |
+
(norm1): LayerNorm((64,), eps=1e-06, elementwise_affine=True)
|
287 |
+
(attn): EfficientMultiheadAttention(
|
288 |
+
(attn): MultiheadAttention(
|
289 |
+
(out_proj): NonDynamicallyQuantizableLinear(in_features=64, out_features=64, bias=True)
|
290 |
+
)
|
291 |
+
(proj_drop): Dropout(p=0.0, inplace=False)
|
292 |
+
(dropout_layer): DropPath()
|
293 |
+
(sr): Conv2d(64, 64, kernel_size=(8, 8), stride=(8, 8))
|
294 |
+
(norm): LayerNorm((64,), eps=1e-06, elementwise_affine=True)
|
295 |
+
)
|
296 |
+
(norm2): LayerNorm((64,), eps=1e-06, elementwise_affine=True)
|
297 |
+
(ffn): MixFFN(
|
298 |
+
(activate): GELU(approximate='none')
|
299 |
+
(layers): Sequential(
|
300 |
+
(0): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1))
|
301 |
+
(1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=256)
|
302 |
+
(2): GELU(approximate='none')
|
303 |
+
(3): Dropout(p=0.0, inplace=False)
|
304 |
+
(4): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1))
|
305 |
+
(5): Dropout(p=0.0, inplace=False)
|
306 |
+
)
|
307 |
+
(dropout_layer): DropPath()
|
308 |
+
)
|
309 |
+
)
|
310 |
+
(2): TransformerEncoderLayer(
|
311 |
+
(norm1): LayerNorm((64,), eps=1e-06, elementwise_affine=True)
|
312 |
+
(attn): EfficientMultiheadAttention(
|
313 |
+
(attn): MultiheadAttention(
|
314 |
+
(out_proj): NonDynamicallyQuantizableLinear(in_features=64, out_features=64, bias=True)
|
315 |
+
)
|
316 |
+
(proj_drop): Dropout(p=0.0, inplace=False)
|
317 |
+
(dropout_layer): DropPath()
|
318 |
+
(sr): Conv2d(64, 64, kernel_size=(8, 8), stride=(8, 8))
|
319 |
+
(norm): LayerNorm((64,), eps=1e-06, elementwise_affine=True)
|
320 |
+
)
|
321 |
+
(norm2): LayerNorm((64,), eps=1e-06, elementwise_affine=True)
|
322 |
+
(ffn): MixFFN(
|
323 |
+
(activate): GELU(approximate='none')
|
324 |
+
(layers): Sequential(
|
325 |
+
(0): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1))
|
326 |
+
(1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=256)
|
327 |
+
(2): GELU(approximate='none')
|
328 |
+
(3): Dropout(p=0.0, inplace=False)
|
329 |
+
(4): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1))
|
330 |
+
(5): Dropout(p=0.0, inplace=False)
|
331 |
+
)
|
332 |
+
(dropout_layer): DropPath()
|
333 |
+
)
|
334 |
+
)
|
335 |
+
)
|
336 |
+
(2): LayerNorm((64,), eps=1e-06, elementwise_affine=True)
|
337 |
+
)
|
338 |
+
(1): ModuleList(
|
339 |
+
(0): PatchEmbed(
|
340 |
+
(projection): Conv2d(64, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
|
341 |
+
(norm): LayerNorm((128,), eps=1e-06, elementwise_affine=True)
|
342 |
+
)
|
343 |
+
(1): ModuleList(
|
344 |
+
(0): TransformerEncoderLayer(
|
345 |
+
(norm1): LayerNorm((128,), eps=1e-06, elementwise_affine=True)
|
346 |
+
(attn): EfficientMultiheadAttention(
|
347 |
+
(attn): MultiheadAttention(
|
348 |
+
(out_proj): NonDynamicallyQuantizableLinear(in_features=128, out_features=128, bias=True)
|
349 |
+
)
|
350 |
+
(proj_drop): Dropout(p=0.0, inplace=False)
|
351 |
+
(dropout_layer): DropPath()
|
352 |
+
(sr): Conv2d(128, 128, kernel_size=(4, 4), stride=(4, 4))
|
353 |
+
(norm): LayerNorm((128,), eps=1e-06, elementwise_affine=True)
|
354 |
+
)
|
355 |
+
(norm2): LayerNorm((128,), eps=1e-06, elementwise_affine=True)
|
356 |
+
(ffn): MixFFN(
|
357 |
+
(activate): GELU(approximate='none')
|
358 |
+
(layers): Sequential(
|
359 |
+
(0): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1))
|
360 |
+
(1): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=512)
|
361 |
+
(2): GELU(approximate='none')
|
362 |
+
(3): Dropout(p=0.0, inplace=False)
|
363 |
+
(4): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1))
|
364 |
+
(5): Dropout(p=0.0, inplace=False)
|
365 |
+
)
|
366 |
+
(dropout_layer): DropPath()
|
367 |
+
)
|
368 |
+
)
|
369 |
+
(1): TransformerEncoderLayer(
|
370 |
+
(norm1): LayerNorm((128,), eps=1e-06, elementwise_affine=True)
|
371 |
+
(attn): EfficientMultiheadAttention(
|
372 |
+
(attn): MultiheadAttention(
|
373 |
+
(out_proj): NonDynamicallyQuantizableLinear(in_features=128, out_features=128, bias=True)
|
374 |
+
)
|
375 |
+
(proj_drop): Dropout(p=0.0, inplace=False)
|
376 |
+
(dropout_layer): DropPath()
|
377 |
+
(sr): Conv2d(128, 128, kernel_size=(4, 4), stride=(4, 4))
|
378 |
+
(norm): LayerNorm((128,), eps=1e-06, elementwise_affine=True)
|
379 |
+
)
|
380 |
+
(norm2): LayerNorm((128,), eps=1e-06, elementwise_affine=True)
|
381 |
+
(ffn): MixFFN(
|
382 |
+
(activate): GELU(approximate='none')
|
383 |
+
(layers): Sequential(
|
384 |
+
(0): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1))
|
385 |
+
(1): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=512)
|
386 |
+
(2): GELU(approximate='none')
|
387 |
+
(3): Dropout(p=0.0, inplace=False)
|
388 |
+
(4): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1))
|
389 |
+
(5): Dropout(p=0.0, inplace=False)
|
390 |
+
)
|
391 |
+
(dropout_layer): DropPath()
|
392 |
+
)
|
393 |
+
)
|
394 |
+
(2): TransformerEncoderLayer(
|
395 |
+
(norm1): LayerNorm((128,), eps=1e-06, elementwise_affine=True)
|
396 |
+
(attn): EfficientMultiheadAttention(
|
397 |
+
(attn): MultiheadAttention(
|
398 |
+
(out_proj): NonDynamicallyQuantizableLinear(in_features=128, out_features=128, bias=True)
|
399 |
+
)
|
400 |
+
(proj_drop): Dropout(p=0.0, inplace=False)
|
401 |
+
(dropout_layer): DropPath()
|
402 |
+
(sr): Conv2d(128, 128, kernel_size=(4, 4), stride=(4, 4))
|
403 |
+
(norm): LayerNorm((128,), eps=1e-06, elementwise_affine=True)
|
404 |
+
)
|
405 |
+
(norm2): LayerNorm((128,), eps=1e-06, elementwise_affine=True)
|
406 |
+
(ffn): MixFFN(
|
407 |
+
(activate): GELU(approximate='none')
|
408 |
+
(layers): Sequential(
|
409 |
+
(0): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1))
|
410 |
+
(1): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=512)
|
411 |
+
(2): GELU(approximate='none')
|
412 |
+
(3): Dropout(p=0.0, inplace=False)
|
413 |
+
(4): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1))
|
414 |
+
(5): Dropout(p=0.0, inplace=False)
|
415 |
+
)
|
416 |
+
(dropout_layer): DropPath()
|
417 |
+
)
|
418 |
+
)
|
419 |
+
(3): TransformerEncoderLayer(
|
420 |
+
(norm1): LayerNorm((128,), eps=1e-06, elementwise_affine=True)
|
421 |
+
(attn): EfficientMultiheadAttention(
|
422 |
+
(attn): MultiheadAttention(
|
423 |
+
(out_proj): NonDynamicallyQuantizableLinear(in_features=128, out_features=128, bias=True)
|
424 |
+
)
|
425 |
+
(proj_drop): Dropout(p=0.0, inplace=False)
|
426 |
+
(dropout_layer): DropPath()
|
427 |
+
(sr): Conv2d(128, 128, kernel_size=(4, 4), stride=(4, 4))
|
428 |
+
(norm): LayerNorm((128,), eps=1e-06, elementwise_affine=True)
|
429 |
+
)
|
430 |
+
(norm2): LayerNorm((128,), eps=1e-06, elementwise_affine=True)
|
431 |
+
(ffn): MixFFN(
|
432 |
+
(activate): GELU(approximate='none')
|
433 |
+
(layers): Sequential(
|
434 |
+
(0): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1))
|
435 |
+
(1): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=512)
|
436 |
+
(2): GELU(approximate='none')
|
437 |
+
(3): Dropout(p=0.0, inplace=False)
|
438 |
+
(4): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1))
|
439 |
+
(5): Dropout(p=0.0, inplace=False)
|
440 |
+
)
|
441 |
+
(dropout_layer): DropPath()
|
442 |
+
)
|
443 |
+
)
|
444 |
+
)
|
445 |
+
(2): LayerNorm((128,), eps=1e-06, elementwise_affine=True)
|
446 |
+
)
|
447 |
+
(2): ModuleList(
|
448 |
+
(0): PatchEmbed(
|
449 |
+
(projection): Conv2d(128, 320, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
|
450 |
+
(norm): LayerNorm((320,), eps=1e-06, elementwise_affine=True)
|
451 |
+
)
|
452 |
+
(1): ModuleList(
|
453 |
+
(0): TransformerEncoderLayer(
|
454 |
+
(norm1): LayerNorm((320,), eps=1e-06, elementwise_affine=True)
|
455 |
+
(attn): EfficientMultiheadAttention(
|
456 |
+
(attn): MultiheadAttention(
|
457 |
+
(out_proj): NonDynamicallyQuantizableLinear(in_features=320, out_features=320, bias=True)
|
458 |
+
)
|
459 |
+
(proj_drop): Dropout(p=0.0, inplace=False)
|
460 |
+
(dropout_layer): DropPath()
|
461 |
+
(sr): Conv2d(320, 320, kernel_size=(2, 2), stride=(2, 2))
|
462 |
+
(norm): LayerNorm((320,), eps=1e-06, elementwise_affine=True)
|
463 |
+
)
|
464 |
+
(norm2): LayerNorm((320,), eps=1e-06, elementwise_affine=True)
|
465 |
+
(ffn): MixFFN(
|
466 |
+
(activate): GELU(approximate='none')
|
467 |
+
(layers): Sequential(
|
468 |
+
(0): Conv2d(320, 1280, kernel_size=(1, 1), stride=(1, 1))
|
469 |
+
(1): Conv2d(1280, 1280, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=1280)
|
470 |
+
(2): GELU(approximate='none')
|
471 |
+
(3): Dropout(p=0.0, inplace=False)
|
472 |
+
(4): Conv2d(1280, 320, kernel_size=(1, 1), stride=(1, 1))
|
473 |
+
(5): Dropout(p=0.0, inplace=False)
|
474 |
+
)
|
475 |
+
(dropout_layer): DropPath()
|
476 |
+
)
|
477 |
+
)
|
478 |
+
(1): TransformerEncoderLayer(
|
479 |
+
(norm1): LayerNorm((320,), eps=1e-06, elementwise_affine=True)
|
480 |
+
(attn): EfficientMultiheadAttention(
|
481 |
+
(attn): MultiheadAttention(
|
482 |
+
(out_proj): NonDynamicallyQuantizableLinear(in_features=320, out_features=320, bias=True)
|
483 |
+
)
|
484 |
+
(proj_drop): Dropout(p=0.0, inplace=False)
|
485 |
+
(dropout_layer): DropPath()
|
486 |
+
(sr): Conv2d(320, 320, kernel_size=(2, 2), stride=(2, 2))
|
487 |
+
(norm): LayerNorm((320,), eps=1e-06, elementwise_affine=True)
|
488 |
+
)
|
489 |
+
(norm2): LayerNorm((320,), eps=1e-06, elementwise_affine=True)
|
490 |
+
(ffn): MixFFN(
|
491 |
+
(activate): GELU(approximate='none')
|
492 |
+
(layers): Sequential(
|
493 |
+
(0): Conv2d(320, 1280, kernel_size=(1, 1), stride=(1, 1))
|
494 |
+
(1): Conv2d(1280, 1280, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=1280)
|
495 |
+
(2): GELU(approximate='none')
|
496 |
+
(3): Dropout(p=0.0, inplace=False)
|
497 |
+
(4): Conv2d(1280, 320, kernel_size=(1, 1), stride=(1, 1))
|
498 |
+
(5): Dropout(p=0.0, inplace=False)
|
499 |
+
)
|
500 |
+
(dropout_layer): DropPath()
|
501 |
+
)
|
502 |
+
)
|
503 |
+
(2): TransformerEncoderLayer(
|
504 |
+
(norm1): LayerNorm((320,), eps=1e-06, elementwise_affine=True)
|
505 |
+
(attn): EfficientMultiheadAttention(
|
506 |
+
(attn): MultiheadAttention(
|
507 |
+
(out_proj): NonDynamicallyQuantizableLinear(in_features=320, out_features=320, bias=True)
|
508 |
+
)
|
509 |
+
(proj_drop): Dropout(p=0.0, inplace=False)
|
510 |
+
(dropout_layer): DropPath()
|
511 |
+
(sr): Conv2d(320, 320, kernel_size=(2, 2), stride=(2, 2))
|
512 |
+
(norm): LayerNorm((320,), eps=1e-06, elementwise_affine=True)
|
513 |
+
)
|
514 |
+
(norm2): LayerNorm((320,), eps=1e-06, elementwise_affine=True)
|
515 |
+
(ffn): MixFFN(
|
516 |
+
(activate): GELU(approximate='none')
|
517 |
+
(layers): Sequential(
|
518 |
+
(0): Conv2d(320, 1280, kernel_size=(1, 1), stride=(1, 1))
|
519 |
+
(1): Conv2d(1280, 1280, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=1280)
|
520 |
+
(2): GELU(approximate='none')
|
521 |
+
(3): Dropout(p=0.0, inplace=False)
|
522 |
+
(4): Conv2d(1280, 320, kernel_size=(1, 1), stride=(1, 1))
|
523 |
+
(5): Dropout(p=0.0, inplace=False)
|
524 |
+
)
|
525 |
+
(dropout_layer): DropPath()
|
526 |
+
)
|
527 |
+
)
|
528 |
+
(3): TransformerEncoderLayer(
|
529 |
+
(norm1): LayerNorm((320,), eps=1e-06, elementwise_affine=True)
|
530 |
+
(attn): EfficientMultiheadAttention(
|
531 |
+
(attn): MultiheadAttention(
|
532 |
+
(out_proj): NonDynamicallyQuantizableLinear(in_features=320, out_features=320, bias=True)
|
533 |
+
)
|
534 |
+
(proj_drop): Dropout(p=0.0, inplace=False)
|
535 |
+
(dropout_layer): DropPath()
|
536 |
+
(sr): Conv2d(320, 320, kernel_size=(2, 2), stride=(2, 2))
|
537 |
+
(norm): LayerNorm((320,), eps=1e-06, elementwise_affine=True)
|
538 |
+
)
|
539 |
+
(norm2): LayerNorm((320,), eps=1e-06, elementwise_affine=True)
|
540 |
+
(ffn): MixFFN(
|
541 |
+
(activate): GELU(approximate='none')
|
542 |
+
(layers): Sequential(
|
543 |
+
(0): Conv2d(320, 1280, kernel_size=(1, 1), stride=(1, 1))
|
544 |
+
(1): Conv2d(1280, 1280, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=1280)
|
545 |
+
(2): GELU(approximate='none')
|
546 |
+
(3): Dropout(p=0.0, inplace=False)
|
547 |
+
(4): Conv2d(1280, 320, kernel_size=(1, 1), stride=(1, 1))
|
548 |
+
(5): Dropout(p=0.0, inplace=False)
|
549 |
+
)
|
550 |
+
(dropout_layer): DropPath()
|
551 |
+
)
|
552 |
+
)
|
553 |
+
(4): TransformerEncoderLayer(
|
554 |
+
(norm1): LayerNorm((320,), eps=1e-06, elementwise_affine=True)
|
555 |
+
(attn): EfficientMultiheadAttention(
|
556 |
+
(attn): MultiheadAttention(
|
557 |
+
(out_proj): NonDynamicallyQuantizableLinear(in_features=320, out_features=320, bias=True)
|
558 |
+
)
|
559 |
+
(proj_drop): Dropout(p=0.0, inplace=False)
|
560 |
+
(dropout_layer): DropPath()
|
561 |
+
(sr): Conv2d(320, 320, kernel_size=(2, 2), stride=(2, 2))
|
562 |
+
(norm): LayerNorm((320,), eps=1e-06, elementwise_affine=True)
|
563 |
+
)
|
564 |
+
(norm2): LayerNorm((320,), eps=1e-06, elementwise_affine=True)
|
565 |
+
(ffn): MixFFN(
|
566 |
+
(activate): GELU(approximate='none')
|
567 |
+
(layers): Sequential(
|
568 |
+
(0): Conv2d(320, 1280, kernel_size=(1, 1), stride=(1, 1))
|
569 |
+
(1): Conv2d(1280, 1280, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=1280)
|
570 |
+
(2): GELU(approximate='none')
|
571 |
+
(3): Dropout(p=0.0, inplace=False)
|
572 |
+
(4): Conv2d(1280, 320, kernel_size=(1, 1), stride=(1, 1))
|
573 |
+
(5): Dropout(p=0.0, inplace=False)
|
574 |
+
)
|
575 |
+
(dropout_layer): DropPath()
|
576 |
+
)
|
577 |
+
)
|
578 |
+
(5): TransformerEncoderLayer(
|
579 |
+
(norm1): LayerNorm((320,), eps=1e-06, elementwise_affine=True)
|
580 |
+
(attn): EfficientMultiheadAttention(
|
581 |
+
(attn): MultiheadAttention(
|
582 |
+
(out_proj): NonDynamicallyQuantizableLinear(in_features=320, out_features=320, bias=True)
|
583 |
+
)
|
584 |
+
(proj_drop): Dropout(p=0.0, inplace=False)
|
585 |
+
(dropout_layer): DropPath()
|
586 |
+
(sr): Conv2d(320, 320, kernel_size=(2, 2), stride=(2, 2))
|
587 |
+
(norm): LayerNorm((320,), eps=1e-06, elementwise_affine=True)
|
588 |
+
)
|
589 |
+
(norm2): LayerNorm((320,), eps=1e-06, elementwise_affine=True)
|
590 |
+
(ffn): MixFFN(
|
591 |
+
(activate): GELU(approximate='none')
|
592 |
+
(layers): Sequential(
|
593 |
+
(0): Conv2d(320, 1280, kernel_size=(1, 1), stride=(1, 1))
|
594 |
+
(1): Conv2d(1280, 1280, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=1280)
|
595 |
+
(2): GELU(approximate='none')
|
596 |
+
(3): Dropout(p=0.0, inplace=False)
|
597 |
+
(4): Conv2d(1280, 320, kernel_size=(1, 1), stride=(1, 1))
|
598 |
+
(5): Dropout(p=0.0, inplace=False)
|
599 |
+
)
|
600 |
+
(dropout_layer): DropPath()
|
601 |
+
)
|
602 |
+
)
|
603 |
+
)
|
604 |
+
(2): LayerNorm((320,), eps=1e-06, elementwise_affine=True)
|
605 |
+
)
|
606 |
+
(3): ModuleList(
|
607 |
+
(0): PatchEmbed(
|
608 |
+
(projection): Conv2d(320, 512, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
|
609 |
+
(norm): LayerNorm((512,), eps=1e-06, elementwise_affine=True)
|
610 |
+
)
|
611 |
+
(1): ModuleList(
|
612 |
+
(0): TransformerEncoderLayer(
|
613 |
+
(norm1): LayerNorm((512,), eps=1e-06, elementwise_affine=True)
|
614 |
+
(attn): EfficientMultiheadAttention(
|
615 |
+
(attn): MultiheadAttention(
|
616 |
+
(out_proj): NonDynamicallyQuantizableLinear(in_features=512, out_features=512, bias=True)
|
617 |
+
)
|
618 |
+
(proj_drop): Dropout(p=0.0, inplace=False)
|
619 |
+
(dropout_layer): DropPath()
|
620 |
+
)
|
621 |
+
(norm2): LayerNorm((512,), eps=1e-06, elementwise_affine=True)
|
622 |
+
(ffn): MixFFN(
|
623 |
+
(activate): GELU(approximate='none')
|
624 |
+
(layers): Sequential(
|
625 |
+
(0): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1))
|
626 |
+
(1): Conv2d(2048, 2048, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=2048)
|
627 |
+
(2): GELU(approximate='none')
|
628 |
+
(3): Dropout(p=0.0, inplace=False)
|
629 |
+
(4): Conv2d(2048, 512, kernel_size=(1, 1), stride=(1, 1))
|
630 |
+
(5): Dropout(p=0.0, inplace=False)
|
631 |
+
)
|
632 |
+
(dropout_layer): DropPath()
|
633 |
+
)
|
634 |
+
)
|
635 |
+
(1): TransformerEncoderLayer(
|
636 |
+
(norm1): LayerNorm((512,), eps=1e-06, elementwise_affine=True)
|
637 |
+
(attn): EfficientMultiheadAttention(
|
638 |
+
(attn): MultiheadAttention(
|
639 |
+
(out_proj): NonDynamicallyQuantizableLinear(in_features=512, out_features=512, bias=True)
|
640 |
+
)
|
641 |
+
(proj_drop): Dropout(p=0.0, inplace=False)
|
642 |
+
(dropout_layer): DropPath()
|
643 |
+
)
|
644 |
+
(norm2): LayerNorm((512,), eps=1e-06, elementwise_affine=True)
|
645 |
+
(ffn): MixFFN(
|
646 |
+
(activate): GELU(approximate='none')
|
647 |
+
(layers): Sequential(
|
648 |
+
(0): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1))
|
649 |
+
(1): Conv2d(2048, 2048, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=2048)
|
650 |
+
(2): GELU(approximate='none')
|
651 |
+
(3): Dropout(p=0.0, inplace=False)
|
652 |
+
(4): Conv2d(2048, 512, kernel_size=(1, 1), stride=(1, 1))
|
653 |
+
(5): Dropout(p=0.0, inplace=False)
|
654 |
+
)
|
655 |
+
(dropout_layer): DropPath()
|
656 |
+
)
|
657 |
+
)
|
658 |
+
(2): TransformerEncoderLayer(
|
659 |
+
(norm1): LayerNorm((512,), eps=1e-06, elementwise_affine=True)
|
660 |
+
(attn): EfficientMultiheadAttention(
|
661 |
+
(attn): MultiheadAttention(
|
662 |
+
(out_proj): NonDynamicallyQuantizableLinear(in_features=512, out_features=512, bias=True)
|
663 |
+
)
|
664 |
+
(proj_drop): Dropout(p=0.0, inplace=False)
|
665 |
+
(dropout_layer): DropPath()
|
666 |
+
)
|
667 |
+
(norm2): LayerNorm((512,), eps=1e-06, elementwise_affine=True)
|
668 |
+
(ffn): MixFFN(
|
669 |
+
(activate): GELU(approximate='none')
|
670 |
+
(layers): Sequential(
|
671 |
+
(0): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1))
|
672 |
+
(1): Conv2d(2048, 2048, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=2048)
|
673 |
+
(2): GELU(approximate='none')
|
674 |
+
(3): Dropout(p=0.0, inplace=False)
|
675 |
+
(4): Conv2d(2048, 512, kernel_size=(1, 1), stride=(1, 1))
|
676 |
+
(5): Dropout(p=0.0, inplace=False)
|
677 |
+
)
|
678 |
+
(dropout_layer): DropPath()
|
679 |
+
)
|
680 |
+
)
|
681 |
+
)
|
682 |
+
(2): LayerNorm((512,), eps=1e-06, elementwise_affine=True)
|
683 |
+
)
|
684 |
+
)
|
685 |
+
)
|
686 |
+
init_cfg={'type': 'Pretrained', 'checkpoint': 'work_dirs2/segformer_mit_b2_segformer_head_unet_fc_single_step_ade_pretrained_freeze_embed_80k_ade20k151/best_mIoU_iter_64000.pth'}
|
687 |
+
(decode_head): SegformerHeadUnetFCHeadMultiStepCE(
|
688 |
+
input_transform=multiple_select, ignore_index=0, align_corners=False
|
689 |
+
(loss_decode): CrossEntropyLoss(avg_non_ignore=False)
|
690 |
+
(conv_seg): None
|
691 |
+
(dropout): Dropout2d(p=0.1, inplace=False)
|
692 |
+
(convs): ModuleList(
|
693 |
+
(0): ConvModule(
|
694 |
+
(conv): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
695 |
+
(bn): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
696 |
+
(activate): ReLU(inplace=True)
|
697 |
+
)
|
698 |
+
(1): ConvModule(
|
699 |
+
(conv): Conv2d(128, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
700 |
+
(bn): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
701 |
+
(activate): ReLU(inplace=True)
|
702 |
+
)
|
703 |
+
(2): ConvModule(
|
704 |
+
(conv): Conv2d(320, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
705 |
+
(bn): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
706 |
+
(activate): ReLU(inplace=True)
|
707 |
+
)
|
708 |
+
(3): ConvModule(
|
709 |
+
(conv): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
710 |
+
(bn): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
711 |
+
(activate): ReLU(inplace=True)
|
712 |
+
)
|
713 |
+
)
|
714 |
+
(fusion_conv): ConvModule(
|
715 |
+
(conv): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
716 |
+
(bn): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
717 |
+
(activate): ReLU(inplace=True)
|
718 |
+
)
|
719 |
+
(unet): Unet(
|
720 |
+
(init_conv): Conv2d(272, 128, kernel_size=(7, 7), stride=(1, 1), padding=(3, 3))
|
721 |
+
(time_mlp): Sequential(
|
722 |
+
(0): SinusoidalPosEmb()
|
723 |
+
(1): Linear(in_features=128, out_features=512, bias=True)
|
724 |
+
(2): GELU(approximate='none')
|
725 |
+
(3): Linear(in_features=512, out_features=512, bias=True)
|
726 |
+
)
|
727 |
+
(downs): ModuleList(
|
728 |
+
(0): ModuleList(
|
729 |
+
(0): ResnetBlock(
|
730 |
+
(mlp): Sequential(
|
731 |
+
(0): SiLU()
|
732 |
+
(1): Linear(in_features=512, out_features=256, bias=True)
|
733 |
+
)
|
734 |
+
(block1): Block(
|
735 |
+
(proj): WeightStandardizedConv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
736 |
+
(norm): GroupNorm(8, 128, eps=1e-05, affine=True)
|
737 |
+
(act): SiLU()
|
738 |
+
)
|
739 |
+
(block2): Block(
|
740 |
+
(proj): WeightStandardizedConv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
741 |
+
(norm): GroupNorm(8, 128, eps=1e-05, affine=True)
|
742 |
+
(act): SiLU()
|
743 |
+
)
|
744 |
+
(res_conv): Identity()
|
745 |
+
)
|
746 |
+
(1): ResnetBlock(
|
747 |
+
(mlp): Sequential(
|
748 |
+
(0): SiLU()
|
749 |
+
(1): Linear(in_features=512, out_features=256, bias=True)
|
750 |
+
)
|
751 |
+
(block1): Block(
|
752 |
+
(proj): WeightStandardizedConv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
753 |
+
(norm): GroupNorm(8, 128, eps=1e-05, affine=True)
|
754 |
+
(act): SiLU()
|
755 |
+
)
|
756 |
+
(block2): Block(
|
757 |
+
(proj): WeightStandardizedConv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
758 |
+
(norm): GroupNorm(8, 128, eps=1e-05, affine=True)
|
759 |
+
(act): SiLU()
|
760 |
+
)
|
761 |
+
(res_conv): Identity()
|
762 |
+
)
|
763 |
+
(2): Residual(
|
764 |
+
(fn): PreNorm(
|
765 |
+
(fn): LinearAttention(
|
766 |
+
(to_qkv): Conv2d(128, 384, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
767 |
+
(to_out): Sequential(
|
768 |
+
(0): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1))
|
769 |
+
(1): LayerNorm()
|
770 |
+
)
|
771 |
+
)
|
772 |
+
(norm): LayerNorm()
|
773 |
+
)
|
774 |
+
)
|
775 |
+
(3): Conv2d(128, 128, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
|
776 |
+
)
|
777 |
+
(1): ModuleList(
|
778 |
+
(0): ResnetBlock(
|
779 |
+
(mlp): Sequential(
|
780 |
+
(0): SiLU()
|
781 |
+
(1): Linear(in_features=512, out_features=256, bias=True)
|
782 |
+
)
|
783 |
+
(block1): Block(
|
784 |
+
(proj): WeightStandardizedConv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
785 |
+
(norm): GroupNorm(8, 128, eps=1e-05, affine=True)
|
786 |
+
(act): SiLU()
|
787 |
+
)
|
788 |
+
(block2): Block(
|
789 |
+
(proj): WeightStandardizedConv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
790 |
+
(norm): GroupNorm(8, 128, eps=1e-05, affine=True)
|
791 |
+
(act): SiLU()
|
792 |
+
)
|
793 |
+
(res_conv): Identity()
|
794 |
+
)
|
795 |
+
(1): ResnetBlock(
|
796 |
+
(mlp): Sequential(
|
797 |
+
(0): SiLU()
|
798 |
+
(1): Linear(in_features=512, out_features=256, bias=True)
|
799 |
+
)
|
800 |
+
(block1): Block(
|
801 |
+
(proj): WeightStandardizedConv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
802 |
+
(norm): GroupNorm(8, 128, eps=1e-05, affine=True)
|
803 |
+
(act): SiLU()
|
804 |
+
)
|
805 |
+
(block2): Block(
|
806 |
+
(proj): WeightStandardizedConv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
807 |
+
(norm): GroupNorm(8, 128, eps=1e-05, affine=True)
|
808 |
+
(act): SiLU()
|
809 |
+
)
|
810 |
+
(res_conv): Identity()
|
811 |
+
)
|
812 |
+
(2): Residual(
|
813 |
+
(fn): PreNorm(
|
814 |
+
(fn): LinearAttention(
|
815 |
+
(to_qkv): Conv2d(128, 384, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
816 |
+
(to_out): Sequential(
|
817 |
+
(0): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1))
|
818 |
+
(1): LayerNorm()
|
819 |
+
)
|
820 |
+
)
|
821 |
+
(norm): LayerNorm()
|
822 |
+
)
|
823 |
+
)
|
824 |
+
(3): Conv2d(128, 128, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
|
825 |
+
)
|
826 |
+
(2): ModuleList(
|
827 |
+
(0): ResnetBlock(
|
828 |
+
(mlp): Sequential(
|
829 |
+
(0): SiLU()
|
830 |
+
(1): Linear(in_features=512, out_features=256, bias=True)
|
831 |
+
)
|
832 |
+
(block1): Block(
|
833 |
+
(proj): WeightStandardizedConv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
834 |
+
(norm): GroupNorm(8, 128, eps=1e-05, affine=True)
|
835 |
+
(act): SiLU()
|
836 |
+
)
|
837 |
+
(block2): Block(
|
838 |
+
(proj): WeightStandardizedConv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
839 |
+
(norm): GroupNorm(8, 128, eps=1e-05, affine=True)
|
840 |
+
(act): SiLU()
|
841 |
+
)
|
842 |
+
(res_conv): Identity()
|
843 |
+
)
|
844 |
+
(1): ResnetBlock(
|
845 |
+
(mlp): Sequential(
|
846 |
+
(0): SiLU()
|
847 |
+
(1): Linear(in_features=512, out_features=256, bias=True)
|
848 |
+
)
|
849 |
+
(block1): Block(
|
850 |
+
(proj): WeightStandardizedConv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
851 |
+
(norm): GroupNorm(8, 128, eps=1e-05, affine=True)
|
852 |
+
(act): SiLU()
|
853 |
+
)
|
854 |
+
(block2): Block(
|
855 |
+
(proj): WeightStandardizedConv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
856 |
+
(norm): GroupNorm(8, 128, eps=1e-05, affine=True)
|
857 |
+
(act): SiLU()
|
858 |
+
)
|
859 |
+
(res_conv): Identity()
|
860 |
+
)
|
861 |
+
(2): Residual(
|
862 |
+
(fn): PreNorm(
|
863 |
+
(fn): LinearAttention(
|
864 |
+
(to_qkv): Conv2d(128, 384, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
865 |
+
(to_out): Sequential(
|
866 |
+
(0): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1))
|
867 |
+
(1): LayerNorm()
|
868 |
+
)
|
869 |
+
)
|
870 |
+
(norm): LayerNorm()
|
871 |
+
)
|
872 |
+
)
|
873 |
+
(3): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
874 |
+
)
|
875 |
+
)
|
876 |
+
(ups): ModuleList(
|
877 |
+
(0): ModuleList(
|
878 |
+
(0): ResnetBlock(
|
879 |
+
(mlp): Sequential(
|
880 |
+
(0): SiLU()
|
881 |
+
(1): Linear(in_features=512, out_features=256, bias=True)
|
882 |
+
)
|
883 |
+
(block1): Block(
|
884 |
+
(proj): WeightStandardizedConv2d(256, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
885 |
+
(norm): GroupNorm(8, 128, eps=1e-05, affine=True)
|
886 |
+
(act): SiLU()
|
887 |
+
)
|
888 |
+
(block2): Block(
|
889 |
+
(proj): WeightStandardizedConv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
890 |
+
(norm): GroupNorm(8, 128, eps=1e-05, affine=True)
|
891 |
+
(act): SiLU()
|
892 |
+
)
|
893 |
+
(res_conv): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1))
|
894 |
+
)
|
895 |
+
(1): ResnetBlock(
|
896 |
+
(mlp): Sequential(
|
897 |
+
(0): SiLU()
|
898 |
+
(1): Linear(in_features=512, out_features=256, bias=True)
|
899 |
+
)
|
900 |
+
(block1): Block(
|
901 |
+
(proj): WeightStandardizedConv2d(256, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
902 |
+
(norm): GroupNorm(8, 128, eps=1e-05, affine=True)
|
903 |
+
(act): SiLU()
|
904 |
+
)
|
905 |
+
(block2): Block(
|
906 |
+
(proj): WeightStandardizedConv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
907 |
+
(norm): GroupNorm(8, 128, eps=1e-05, affine=True)
|
908 |
+
(act): SiLU()
|
909 |
+
)
|
910 |
+
(res_conv): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1))
|
911 |
+
)
|
912 |
+
(2): Residual(
|
913 |
+
(fn): PreNorm(
|
914 |
+
(fn): LinearAttention(
|
915 |
+
(to_qkv): Conv2d(128, 384, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
916 |
+
(to_out): Sequential(
|
917 |
+
(0): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1))
|
918 |
+
(1): LayerNorm()
|
919 |
+
)
|
920 |
+
)
|
921 |
+
(norm): LayerNorm()
|
922 |
+
)
|
923 |
+
)
|
924 |
+
(3): Sequential(
|
925 |
+
(0): Upsample(scale_factor=2.0, mode=nearest)
|
926 |
+
(1): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
927 |
+
)
|
928 |
+
)
|
929 |
+
(1): ModuleList(
|
930 |
+
(0): ResnetBlock(
|
931 |
+
(mlp): Sequential(
|
932 |
+
(0): SiLU()
|
933 |
+
(1): Linear(in_features=512, out_features=256, bias=True)
|
934 |
+
)
|
935 |
+
(block1): Block(
|
936 |
+
(proj): WeightStandardizedConv2d(256, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
937 |
+
(norm): GroupNorm(8, 128, eps=1e-05, affine=True)
|
938 |
+
(act): SiLU()
|
939 |
+
)
|
940 |
+
(block2): Block(
|
941 |
+
(proj): WeightStandardizedConv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
942 |
+
(norm): GroupNorm(8, 128, eps=1e-05, affine=True)
|
943 |
+
(act): SiLU()
|
944 |
+
)
|
945 |
+
(res_conv): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1))
|
946 |
+
)
|
947 |
+
(1): ResnetBlock(
|
948 |
+
(mlp): Sequential(
|
949 |
+
(0): SiLU()
|
950 |
+
(1): Linear(in_features=512, out_features=256, bias=True)
|
951 |
+
)
|
952 |
+
(block1): Block(
|
953 |
+
(proj): WeightStandardizedConv2d(256, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
954 |
+
(norm): GroupNorm(8, 128, eps=1e-05, affine=True)
|
955 |
+
(act): SiLU()
|
956 |
+
)
|
957 |
+
(block2): Block(
|
958 |
+
(proj): WeightStandardizedConv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
959 |
+
(norm): GroupNorm(8, 128, eps=1e-05, affine=True)
|
960 |
+
(act): SiLU()
|
961 |
+
)
|
962 |
+
(res_conv): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1))
|
963 |
+
)
|
964 |
+
(2): Residual(
|
965 |
+
(fn): PreNorm(
|
966 |
+
(fn): LinearAttention(
|
967 |
+
(to_qkv): Conv2d(128, 384, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
968 |
+
(to_out): Sequential(
|
969 |
+
(0): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1))
|
970 |
+
(1): LayerNorm()
|
971 |
+
)
|
972 |
+
)
|
973 |
+
(norm): LayerNorm()
|
974 |
+
)
|
975 |
+
)
|
976 |
+
(3): Sequential(
|
977 |
+
(0): Upsample(scale_factor=2.0, mode=nearest)
|
978 |
+
(1): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
979 |
+
)
|
980 |
+
)
|
981 |
+
(2): ModuleList(
|
982 |
+
(0): ResnetBlock(
|
983 |
+
(mlp): Sequential(
|
984 |
+
(0): SiLU()
|
985 |
+
(1): Linear(in_features=512, out_features=256, bias=True)
|
986 |
+
)
|
987 |
+
(block1): Block(
|
988 |
+
(proj): WeightStandardizedConv2d(256, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
989 |
+
(norm): GroupNorm(8, 128, eps=1e-05, affine=True)
|
990 |
+
(act): SiLU()
|
991 |
+
)
|
992 |
+
(block2): Block(
|
993 |
+
(proj): WeightStandardizedConv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
994 |
+
(norm): GroupNorm(8, 128, eps=1e-05, affine=True)
|
995 |
+
(act): SiLU()
|
996 |
+
)
|
997 |
+
(res_conv): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1))
|
998 |
+
)
|
999 |
+
(1): ResnetBlock(
|
1000 |
+
(mlp): Sequential(
|
1001 |
+
(0): SiLU()
|
1002 |
+
(1): Linear(in_features=512, out_features=256, bias=True)
|
1003 |
+
)
|
1004 |
+
(block1): Block(
|
1005 |
+
(proj): WeightStandardizedConv2d(256, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
1006 |
+
(norm): GroupNorm(8, 128, eps=1e-05, affine=True)
|
1007 |
+
(act): SiLU()
|
1008 |
+
)
|
1009 |
+
(block2): Block(
|
1010 |
+
(proj): WeightStandardizedConv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
1011 |
+
(norm): GroupNorm(8, 128, eps=1e-05, affine=True)
|
1012 |
+
(act): SiLU()
|
1013 |
+
)
|
1014 |
+
(res_conv): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1))
|
1015 |
+
)
|
1016 |
+
(2): Residual(
|
1017 |
+
(fn): PreNorm(
|
1018 |
+
(fn): LinearAttention(
|
1019 |
+
(to_qkv): Conv2d(128, 384, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
1020 |
+
(to_out): Sequential(
|
1021 |
+
(0): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1))
|
1022 |
+
(1): LayerNorm()
|
1023 |
+
)
|
1024 |
+
)
|
1025 |
+
(norm): LayerNorm()
|
1026 |
+
)
|
1027 |
+
)
|
1028 |
+
(3): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
1029 |
+
)
|
1030 |
+
)
|
1031 |
+
(mid_block1): ResnetBlock(
|
1032 |
+
(mlp): Sequential(
|
1033 |
+
(0): SiLU()
|
1034 |
+
(1): Linear(in_features=512, out_features=256, bias=True)
|
1035 |
+
)
|
1036 |
+
(block1): Block(
|
1037 |
+
(proj): WeightStandardizedConv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
1038 |
+
(norm): GroupNorm(8, 128, eps=1e-05, affine=True)
|
1039 |
+
(act): SiLU()
|
1040 |
+
)
|
1041 |
+
(block2): Block(
|
1042 |
+
(proj): WeightStandardizedConv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
1043 |
+
(norm): GroupNorm(8, 128, eps=1e-05, affine=True)
|
1044 |
+
(act): SiLU()
|
1045 |
+
)
|
1046 |
+
(res_conv): Identity()
|
1047 |
+
)
|
1048 |
+
(mid_attn): Residual(
|
1049 |
+
(fn): PreNorm(
|
1050 |
+
(fn): Attention(
|
1051 |
+
(to_qkv): Conv2d(128, 384, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
1052 |
+
(to_out): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1))
|
1053 |
+
)
|
1054 |
+
(norm): LayerNorm()
|
1055 |
+
)
|
1056 |
+
)
|
1057 |
+
(mid_block2): ResnetBlock(
|
1058 |
+
(mlp): Sequential(
|
1059 |
+
(0): SiLU()
|
1060 |
+
(1): Linear(in_features=512, out_features=256, bias=True)
|
1061 |
+
)
|
1062 |
+
(block1): Block(
|
1063 |
+
(proj): WeightStandardizedConv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
1064 |
+
(norm): GroupNorm(8, 128, eps=1e-05, affine=True)
|
1065 |
+
(act): SiLU()
|
1066 |
+
)
|
1067 |
+
(block2): Block(
|
1068 |
+
(proj): WeightStandardizedConv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
1069 |
+
(norm): GroupNorm(8, 128, eps=1e-05, affine=True)
|
1070 |
+
(act): SiLU()
|
1071 |
+
)
|
1072 |
+
(res_conv): Identity()
|
1073 |
+
)
|
1074 |
+
(final_res_block): ResnetBlock(
|
1075 |
+
(mlp): Sequential(
|
1076 |
+
(0): SiLU()
|
1077 |
+
(1): Linear(in_features=512, out_features=256, bias=True)
|
1078 |
+
)
|
1079 |
+
(block1): Block(
|
1080 |
+
(proj): WeightStandardizedConv2d(256, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
1081 |
+
(norm): GroupNorm(8, 128, eps=1e-05, affine=True)
|
1082 |
+
(act): SiLU()
|
1083 |
+
)
|
1084 |
+
(block2): Block(
|
1085 |
+
(proj): WeightStandardizedConv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
1086 |
+
(norm): GroupNorm(8, 128, eps=1e-05, affine=True)
|
1087 |
+
(act): SiLU()
|
1088 |
+
)
|
1089 |
+
(res_conv): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1))
|
1090 |
+
)
|
1091 |
+
(final_conv): Conv2d(128, 256, kernel_size=(1, 1), stride=(1, 1))
|
1092 |
+
)
|
1093 |
+
(conv_seg_new): Conv2d(256, 151, kernel_size=(1, 1), stride=(1, 1))
|
1094 |
+
(embed): Embedding(151, 16)
|
1095 |
+
)
|
1096 |
+
init_cfg={'type': 'Pretrained', 'checkpoint': 'work_dirs2/segformer_mit_b2_segformer_head_unet_fc_single_step_ade_pretrained_freeze_embed_80k_ade20k151/best_mIoU_iter_64000.pth'}
|
1097 |
+
)
|
1098 |
+
2023-03-05 23:10:57,286 - mmseg - INFO - Loaded 20210 images
|
1099 |
+
2023-03-05 23:11:00,862 - mmseg - INFO - Loaded 2000 images
|
1100 |
+
2023-03-05 23:11:00,864 - mmseg - INFO - Start running, host: laizeqiang@SH-IDC1-10-140-37-110, work_dir: /mnt/petrelfs/laizeqiang/mmseg-baseline/work_dirs2/ablation_segformer_mit_b2_segformer_head_unet_fc_small_multi_step_ade_pretrained_freeze_embed_160k_ade20k151_finetune_ema_ce
|
1101 |
+
2023-03-05 23:11:00,865 - mmseg - INFO - Hooks will be executed in the following order:
|
1102 |
+
before_run:
|
1103 |
+
(VERY_HIGH ) StepLrUpdaterHook
|
1104 |
+
(49 ) ConstantMomentumEMAHook
|
1105 |
+
(NORMAL ) CheckpointHook
|
1106 |
+
(LOW ) DistEvalHookMultiSteps
|
1107 |
+
(VERY_LOW ) TextLoggerHook
|
1108 |
+
--------------------
|
1109 |
+
before_train_epoch:
|
1110 |
+
(VERY_HIGH ) StepLrUpdaterHook
|
1111 |
+
(LOW ) IterTimerHook
|
1112 |
+
(LOW ) DistEvalHookMultiSteps
|
1113 |
+
(VERY_LOW ) TextLoggerHook
|
1114 |
+
--------------------
|
1115 |
+
before_train_iter:
|
1116 |
+
(VERY_HIGH ) StepLrUpdaterHook
|
1117 |
+
(49 ) ConstantMomentumEMAHook
|
1118 |
+
(LOW ) IterTimerHook
|
1119 |
+
(LOW ) DistEvalHookMultiSteps
|
1120 |
+
--------------------
|
1121 |
+
after_train_iter:
|
1122 |
+
(ABOVE_NORMAL) OptimizerHook
|
1123 |
+
(49 ) ConstantMomentumEMAHook
|
1124 |
+
(NORMAL ) CheckpointHook
|
1125 |
+
(LOW ) IterTimerHook
|
1126 |
+
(LOW ) DistEvalHookMultiSteps
|
1127 |
+
(VERY_LOW ) TextLoggerHook
|
1128 |
+
--------------------
|
1129 |
+
after_train_epoch:
|
1130 |
+
(NORMAL ) CheckpointHook
|
1131 |
+
(LOW ) DistEvalHookMultiSteps
|
1132 |
+
(VERY_LOW ) TextLoggerHook
|
1133 |
+
--------------------
|
1134 |
+
before_val_epoch:
|
1135 |
+
(LOW ) IterTimerHook
|
1136 |
+
(VERY_LOW ) TextLoggerHook
|
1137 |
+
--------------------
|
1138 |
+
before_val_iter:
|
1139 |
+
(LOW ) IterTimerHook
|
1140 |
+
--------------------
|
1141 |
+
after_val_iter:
|
1142 |
+
(LOW ) IterTimerHook
|
1143 |
+
--------------------
|
1144 |
+
after_val_epoch:
|
1145 |
+
(VERY_LOW ) TextLoggerHook
|
1146 |
+
--------------------
|
1147 |
+
after_run:
|
1148 |
+
(VERY_LOW ) TextLoggerHook
|
1149 |
+
--------------------
|
1150 |
+
2023-03-05 23:11:00,865 - mmseg - INFO - workflow: [('train', 1)], max: 160000 iters
|
1151 |
+
2023-03-05 23:11:00,901 - mmseg - INFO - Checkpoints will be saved to /mnt/petrelfs/laizeqiang/mmseg-baseline/work_dirs2/ablation_segformer_mit_b2_segformer_head_unet_fc_small_multi_step_ade_pretrained_freeze_embed_160k_ade20k151_finetune_ema_ce by HardDiskBackend.
|
1152 |
+
2023-03-05 23:11:25,138 - mmseg - INFO - Swap parameters (before train) before iter [1]
|
ablation/ablation_segformer_mit_b2_segformer_head_unet_fc_small_multi_step_ade_pretrained_freeze_embed_160k_ade20k151_finetune_ema_ce/20230305_231050.log.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"env_info": "sys.platform: linux\nPython: 3.7.16 (default, Jan 17 2023, 22:20:44) [GCC 11.2.0]\nCUDA available: True\nGPU 0,1,2,3,4,5,6,7: NVIDIA A100-SXM4-80GB\nCUDA_HOME: /mnt/petrelfs/laizeqiang/miniconda3/envs/torch\nNVCC: Cuda compilation tools, release 11.6, V11.6.124\nGCC: gcc (GCC) 4.8.5 20150623 (Red Hat 4.8.5-44)\nPyTorch: 1.13.1\nPyTorch compiling details: PyTorch built with:\n - GCC 9.3\n - C++ Version: 201402\n - Intel(R) oneAPI Math Kernel Library Version 2021.4-Product Build 20210904 for Intel(R) 64 architecture applications\n - Intel(R) MKL-DNN v2.6.0 (Git Hash 52b5f107dd9cf10910aaa19cb47f3abf9b349815)\n - OpenMP 201511 (a.k.a. OpenMP 4.5)\n - LAPACK is enabled (usually provided by MKL)\n - NNPACK is enabled\n - CPU capability usage: AVX2\n - CUDA Runtime 11.6\n - NVCC architecture flags: -gencode;arch=compute_37,code=sm_37;-gencode;arch=compute_50,code=sm_50;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_61,code=sm_61;-gencode;arch=compute_70,code=sm_70;-gencode;arch=compute_75,code=sm_75;-gencode;arch=compute_80,code=sm_80;-gencode;arch=compute_86,code=sm_86;-gencode;arch=compute_37,code=compute_37\n - CuDNN 8.3.2 (built against CUDA 11.5)\n - Magma 2.6.1\n - Build settings: BLAS_INFO=mkl, BUILD_TYPE=Release, CUDA_VERSION=11.6, CUDNN_VERSION=8.3.2, CXX_COMPILER=/opt/rh/devtoolset-9/root/usr/bin/c++, CXX_FLAGS= -fabi-version=11 -Wno-deprecated -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -fopenmp -DNDEBUG -DUSE_KINETO -DUSE_FBGEMM -DUSE_QNNPACK -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE -DEDGE_PROFILER_USE_KINETO -O2 -fPIC -Wno-narrowing -Wall -Wextra -Werror=return-type -Werror=non-virtual-dtor -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wunused-local-typedefs -Wno-unused-parameter -Wno-unused-function -Wno-unused-result -Wno-strict-overflow -Wno-strict-aliasing -Wno-error=deprecated-declarations -Wno-stringop-overflow -Wno-psabi -Wno-error=pedantic -Wno-error=redundant-decls -Wno-error=old-style-cast -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Werror=cast-function-type -Wno-stringop-overflow, LAPACK_INFO=mkl, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, PERF_WITH_AVX512=1, TORCH_VERSION=1.13.1, USE_CUDA=ON, USE_CUDNN=ON, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_MKL=ON, USE_MKLDNN=ON, USE_MPI=OFF, USE_NCCL=ON, USE_NNPACK=ON, USE_OPENMP=ON, USE_ROCM=OFF, \n\nTorchVision: 0.14.1\nOpenCV: 4.7.0\nMMCV: 1.7.1\nMMCV Compiler: GCC 9.3\nMMCV CUDA Compiler: 11.6\nMMSegmentation: 0.30.0+6db5ece", "seed": 1580901347, "exp_name": "ablation_segformer_mit_b2_segformer_head_unet_fc_small_multi_step_ade_pretrained_freeze_embed_160k_ade20k151_finetune_ema_ce.py", "mmseg_version": "0.30.0+6db5ece", "config": "norm_cfg = dict(type='SyncBN', requires_grad=True)\ncheckpoint = 'work_dirs2/segformer_mit_b2_segformer_head_unet_fc_single_step_ade_pretrained_freeze_embed_80k_ade20k151/best_mIoU_iter_64000.pth'\nmodel = dict(\n type='EncoderDecoderDiffusion',\n freeze_parameters=['backbone', 'decode_head'],\n pretrained=\n 'work_dirs2/segformer_mit_b2_segformer_head_unet_fc_single_step_ade_pretrained_freeze_embed_80k_ade20k151/best_mIoU_iter_64000.pth',\n backbone=dict(\n type='MixVisionTransformerCustomInitWeights',\n in_channels=3,\n embed_dims=64,\n num_stages=4,\n num_layers=[3, 4, 6, 3],\n num_heads=[1, 2, 5, 8],\n patch_sizes=[7, 3, 3, 3],\n sr_ratios=[8, 4, 2, 1],\n out_indices=(0, 1, 2, 3),\n mlp_ratio=4,\n qkv_bias=True,\n drop_rate=0.0,\n attn_drop_rate=0.0,\n drop_path_rate=0.1,\n pretrained=\n 'work_dirs2/segformer_mit_b2_segformer_head_unet_fc_single_step_ade_pretrained_freeze_embed_80k_ade20k151/best_mIoU_iter_64000.pth'\n ),\n decode_head=dict(\n type='SegformerHeadUnetFCHeadMultiStepCE',\n pretrained=\n 'work_dirs2/segformer_mit_b2_segformer_head_unet_fc_single_step_ade_pretrained_freeze_embed_80k_ade20k151/best_mIoU_iter_64000.pth',\n dim=128,\n out_dim=256,\n unet_channels=272,\n dim_mults=[1, 1, 1],\n cat_embedding_dim=16,\n diffusion_timesteps=100,\n collect_timesteps=[0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 99],\n in_channels=[64, 128, 320, 512],\n in_index=[0, 1, 2, 3],\n channels=256,\n dropout_ratio=0.1,\n num_classes=151,\n norm_cfg=dict(type='SyncBN', requires_grad=True),\n align_corners=False,\n ignore_index=0,\n loss_decode=dict(\n type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.1)),\n train_cfg=dict(),\n test_cfg=dict(mode='whole'))\ndataset_type = 'ADE20K151Dataset'\ndata_root = 'data/ade/ADEChallengeData2016'\nimg_norm_cfg = dict(\n mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)\ncrop_size = (512, 512)\ntrain_pipeline = [\n dict(type='LoadImageFromFile'),\n dict(type='LoadAnnotations', reduce_zero_label=False),\n dict(type='Resize', img_scale=(2048, 512), ratio_range=(0.5, 2.0)),\n dict(type='RandomCrop', crop_size=(512, 512), cat_max_ratio=0.75),\n dict(type='RandomFlip', prob=0.5),\n dict(type='PhotoMetricDistortion'),\n dict(\n type='Normalize',\n mean=[123.675, 116.28, 103.53],\n std=[58.395, 57.12, 57.375],\n to_rgb=True),\n dict(type='Pad', size=(512, 512), pad_val=0, seg_pad_val=0),\n dict(type='DefaultFormatBundle'),\n dict(type='Collect', keys=['img', 'gt_semantic_seg'])\n]\ntest_pipeline = [\n dict(type='LoadImageFromFile'),\n dict(\n type='MultiScaleFlipAug',\n img_scale=(2048, 512),\n flip=False,\n transforms=[\n dict(type='Resize', keep_ratio=True),\n dict(type='RandomFlip'),\n dict(\n type='Normalize',\n mean=[123.675, 116.28, 103.53],\n std=[58.395, 57.12, 57.375],\n to_rgb=True),\n dict(type='Pad', size_divisor=16, pad_val=0, seg_pad_val=0),\n dict(type='ImageToTensor', keys=['img']),\n dict(type='Collect', keys=['img'])\n ])\n]\ndata = dict(\n samples_per_gpu=4,\n workers_per_gpu=4,\n train=dict(\n type='ADE20K151Dataset',\n data_root='data/ade/ADEChallengeData2016',\n img_dir='images/training',\n ann_dir='annotations/training',\n pipeline=[\n dict(type='LoadImageFromFile'),\n dict(type='LoadAnnotations', reduce_zero_label=False),\n dict(type='Resize', img_scale=(2048, 512), ratio_range=(0.5, 2.0)),\n dict(type='RandomCrop', crop_size=(512, 512), cat_max_ratio=0.75),\n dict(type='RandomFlip', prob=0.5),\n dict(type='PhotoMetricDistortion'),\n dict(\n type='Normalize',\n mean=[123.675, 116.28, 103.53],\n std=[58.395, 57.12, 57.375],\n to_rgb=True),\n dict(type='Pad', size=(512, 512), pad_val=0, seg_pad_val=0),\n dict(type='DefaultFormatBundle'),\n dict(type='Collect', keys=['img', 'gt_semantic_seg'])\n ]),\n val=dict(\n type='ADE20K151Dataset',\n data_root='data/ade/ADEChallengeData2016',\n img_dir='images/validation',\n ann_dir='annotations/validation',\n pipeline=[\n dict(type='LoadImageFromFile'),\n dict(\n type='MultiScaleFlipAug',\n img_scale=(2048, 512),\n flip=False,\n transforms=[\n dict(type='Resize', keep_ratio=True),\n dict(type='RandomFlip'),\n dict(\n type='Normalize',\n mean=[123.675, 116.28, 103.53],\n std=[58.395, 57.12, 57.375],\n to_rgb=True),\n dict(\n type='Pad', size_divisor=16, pad_val=0, seg_pad_val=0),\n dict(type='ImageToTensor', keys=['img']),\n dict(type='Collect', keys=['img'])\n ])\n ]),\n test=dict(\n type='ADE20K151Dataset',\n data_root='data/ade/ADEChallengeData2016',\n img_dir='images/validation',\n ann_dir='annotations/validation',\n pipeline=[\n dict(type='LoadImageFromFile'),\n dict(\n type='MultiScaleFlipAug',\n img_scale=(2048, 512),\n flip=False,\n transforms=[\n dict(type='Resize', keep_ratio=True),\n dict(type='RandomFlip'),\n dict(\n type='Normalize',\n mean=[123.675, 116.28, 103.53],\n std=[58.395, 57.12, 57.375],\n to_rgb=True),\n dict(\n type='Pad', size_divisor=16, pad_val=0, seg_pad_val=0),\n dict(type='ImageToTensor', keys=['img']),\n dict(type='Collect', keys=['img'])\n ])\n ]))\nlog_config = dict(\n interval=50, hooks=[dict(type='TextLoggerHook', by_epoch=False)])\ndist_params = dict(backend='nccl')\nlog_level = 'INFO'\nload_from = None\nresume_from = None\nworkflow = [('train', 1)]\ncudnn_benchmark = True\noptimizer = dict(\n type='AdamW', lr=0.00015, betas=[0.9, 0.96], weight_decay=0.045)\noptimizer_config = dict()\nlr_config = dict(\n policy='step',\n warmup='linear',\n warmup_iters=1000,\n warmup_ratio=1e-06,\n step=20000,\n gamma=0.5,\n min_lr=1e-06,\n by_epoch=False)\nrunner = dict(type='IterBasedRunner', max_iters=160000)\ncheckpoint_config = dict(by_epoch=False, interval=16000, max_keep_ckpts=1)\nevaluation = dict(\n interval=16000, metric='mIoU', pre_eval=True, save_best='mIoU')\ncustom_hooks = [\n dict(\n type='ConstantMomentumEMAHook',\n momentum=0.01,\n interval=25,\n eval_interval=16000,\n auto_resume=True,\n priority=49)\n]\nwork_dir = './work_dirs2/ablation_segformer_mit_b2_segformer_head_unet_fc_small_multi_step_ade_pretrained_freeze_embed_160k_ade20k151_finetune_ema_ce'\ngpu_ids = range(0, 8)\nauto_resume = True\ndevice = 'cuda'\nseed = 1580901347\n", "CLASSES": ["background", "wall", "building", "sky", "floor", "tree", "ceiling", "road", "bed ", "windowpane", "grass", "cabinet", "sidewalk", "person", "earth", "door", "table", "mountain", "plant", "curtain", "chair", "car", "water", "painting", "sofa", "shelf", "house", "sea", "mirror", "rug", "field", "armchair", "seat", "fence", "desk", "rock", "wardrobe", "lamp", "bathtub", "railing", "cushion", "base", "box", "column", "signboard", "chest of drawers", "counter", "sand", "sink", "skyscraper", "fireplace", "refrigerator", "grandstand", "path", "stairs", "runway", "case", "pool table", "pillow", "screen door", "stairway", "river", "bridge", "bookcase", "blind", "coffee table", "toilet", "flower", "book", "hill", "bench", "countertop", "stove", "palm", "kitchen island", "computer", "swivel chair", "boat", "bar", "arcade machine", "hovel", "bus", "towel", "light", "truck", "tower", "chandelier", "awning", "streetlight", "booth", "television receiver", "airplane", "dirt track", "apparel", "pole", "land", "bannister", "escalator", "ottoman", "bottle", "buffet", "poster", "stage", "van", "ship", "fountain", "conveyer belt", "canopy", "washer", "plaything", "swimming pool", "stool", "barrel", "basket", "waterfall", "tent", "bag", "minibike", "cradle", "oven", "ball", "food", "step", "tank", "trade name", "microwave", "pot", "animal", "bicycle", "lake", "dishwasher", "screen", "blanket", "sculpture", "hood", "sconce", "vase", "traffic light", "tray", "ashcan", "fan", "pier", "crt screen", "plate", "monitor", "bulletin board", "shower", "radiator", "glass", "clock", "flag"], "PALETTE": [[0, 0, 0], [120, 120, 120], [180, 120, 120], [6, 230, 230], [80, 50, 50], [4, 200, 3], [120, 120, 80], [140, 140, 140], [204, 5, 255], [230, 230, 230], [4, 250, 7], [224, 5, 255], [235, 255, 7], [150, 5, 61], [120, 120, 70], [8, 255, 51], [255, 6, 82], [143, 255, 140], [204, 255, 4], [255, 51, 7], [204, 70, 3], [0, 102, 200], [61, 230, 250], [255, 6, 51], [11, 102, 255], [255, 7, 71], [255, 9, 224], [9, 7, 230], [220, 220, 220], [255, 9, 92], [112, 9, 255], [8, 255, 214], [7, 255, 224], [255, 184, 6], [10, 255, 71], [255, 41, 10], [7, 255, 255], [224, 255, 8], [102, 8, 255], [255, 61, 6], [255, 194, 7], [255, 122, 8], [0, 255, 20], [255, 8, 41], [255, 5, 153], [6, 51, 255], [235, 12, 255], [160, 150, 20], [0, 163, 255], [140, 140, 140], [250, 10, 15], [20, 255, 0], [31, 255, 0], [255, 31, 0], [255, 224, 0], [153, 255, 0], [0, 0, 255], [255, 71, 0], [0, 235, 255], [0, 173, 255], [31, 0, 255], [11, 200, 200], [255, 82, 0], [0, 255, 245], [0, 61, 255], [0, 255, 112], [0, 255, 133], [255, 0, 0], [255, 163, 0], [255, 102, 0], [194, 255, 0], [0, 143, 255], [51, 255, 0], [0, 82, 255], [0, 255, 41], [0, 255, 173], [10, 0, 255], [173, 255, 0], [0, 255, 153], [255, 92, 0], [255, 0, 255], [255, 0, 245], [255, 0, 102], [255, 173, 0], [255, 0, 20], [255, 184, 184], [0, 31, 255], [0, 255, 61], [0, 71, 255], [255, 0, 204], [0, 255, 194], [0, 255, 82], [0, 10, 255], [0, 112, 255], [51, 0, 255], [0, 194, 255], [0, 122, 255], [0, 255, 163], [255, 153, 0], [0, 255, 10], [255, 112, 0], [143, 255, 0], [82, 0, 255], [163, 255, 0], [255, 235, 0], [8, 184, 170], [133, 0, 255], [0, 255, 92], [184, 0, 255], [255, 0, 31], [0, 184, 255], [0, 214, 255], [255, 0, 112], [92, 255, 0], [0, 224, 255], [112, 224, 255], [70, 184, 160], [163, 0, 255], [153, 0, 255], [71, 255, 0], [255, 0, 163], [255, 204, 0], [255, 0, 143], [0, 255, 235], [133, 255, 0], [255, 0, 235], [245, 0, 255], [255, 0, 122], [255, 245, 0], [10, 190, 212], [214, 255, 0], [0, 204, 255], [20, 0, 255], [255, 255, 0], [0, 153, 255], [0, 41, 255], [0, 255, 204], [41, 0, 255], [41, 255, 0], [173, 0, 255], [0, 245, 255], [71, 0, 255], [122, 0, 255], [0, 255, 184], [0, 92, 255], [184, 255, 0], [0, 133, 255], [255, 214, 0], [25, 194, 194], [102, 255, 0], [92, 0, 255]], "hook_msgs": {}}
|
ablation/ablation_segformer_mit_b2_segformer_head_unet_fc_small_multi_step_ade_pretrained_freeze_embed_160k_ade20k151_finetune_ema_ce/20230305_231207.log
ADDED
The diff for this file is too large to render.
See raw diff
|
|
ablation/ablation_segformer_mit_b2_segformer_head_unet_fc_small_multi_step_ade_pretrained_freeze_embed_160k_ade20k151_finetune_ema_ce/20230305_231207.log.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
ablation/ablation_segformer_mit_b2_segformer_head_unet_fc_small_multi_step_ade_pretrained_freeze_embed_160k_ade20k151_finetune_ema_ce/ablation_segformer_mit_b2_segformer_head_unet_fc_small_multi_step_ade_pretrained_freeze_embed_160k_ade20k151_finetune_ema_ce.py
ADDED
@@ -0,0 +1,195 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
norm_cfg = dict(type='SyncBN', requires_grad=True)
|
2 |
+
checkpoint = 'work_dirs2/segformer_mit_b2_segformer_head_unet_fc_single_step_ade_pretrained_freeze_embed_80k_ade20k151/best_mIoU_iter_64000.pth'
|
3 |
+
model = dict(
|
4 |
+
type='EncoderDecoderDiffusion',
|
5 |
+
freeze_parameters=['backbone', 'decode_head'],
|
6 |
+
pretrained=
|
7 |
+
'work_dirs2/segformer_mit_b2_segformer_head_unet_fc_single_step_ade_pretrained_freeze_embed_80k_ade20k151/best_mIoU_iter_64000.pth',
|
8 |
+
backbone=dict(
|
9 |
+
type='MixVisionTransformerCustomInitWeights',
|
10 |
+
in_channels=3,
|
11 |
+
embed_dims=64,
|
12 |
+
num_stages=4,
|
13 |
+
num_layers=[3, 4, 6, 3],
|
14 |
+
num_heads=[1, 2, 5, 8],
|
15 |
+
patch_sizes=[7, 3, 3, 3],
|
16 |
+
sr_ratios=[8, 4, 2, 1],
|
17 |
+
out_indices=(0, 1, 2, 3),
|
18 |
+
mlp_ratio=4,
|
19 |
+
qkv_bias=True,
|
20 |
+
drop_rate=0.0,
|
21 |
+
attn_drop_rate=0.0,
|
22 |
+
drop_path_rate=0.1),
|
23 |
+
decode_head=dict(
|
24 |
+
type='SegformerHeadUnetFCHeadMultiStepCE',
|
25 |
+
pretrained=
|
26 |
+
'work_dirs2/segformer_mit_b2_segformer_head_unet_fc_single_step_ade_pretrained_freeze_embed_80k_ade20k151/best_mIoU_iter_64000.pth',
|
27 |
+
dim=128,
|
28 |
+
out_dim=256,
|
29 |
+
unet_channels=272,
|
30 |
+
dim_mults=[1, 1, 1],
|
31 |
+
cat_embedding_dim=16,
|
32 |
+
diffusion_timesteps=100,
|
33 |
+
collect_timesteps=[0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 99],
|
34 |
+
in_channels=[64, 128, 320, 512],
|
35 |
+
in_index=[0, 1, 2, 3],
|
36 |
+
channels=256,
|
37 |
+
dropout_ratio=0.1,
|
38 |
+
num_classes=151,
|
39 |
+
norm_cfg=dict(type='SyncBN', requires_grad=True),
|
40 |
+
align_corners=False,
|
41 |
+
ignore_index=0,
|
42 |
+
loss_decode=dict(
|
43 |
+
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.1)),
|
44 |
+
train_cfg=dict(),
|
45 |
+
test_cfg=dict(mode='whole'))
|
46 |
+
dataset_type = 'ADE20K151Dataset'
|
47 |
+
data_root = 'data/ade/ADEChallengeData2016'
|
48 |
+
img_norm_cfg = dict(
|
49 |
+
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
|
50 |
+
crop_size = (512, 512)
|
51 |
+
train_pipeline = [
|
52 |
+
dict(type='LoadImageFromFile'),
|
53 |
+
dict(type='LoadAnnotations', reduce_zero_label=False),
|
54 |
+
dict(type='Resize', img_scale=(2048, 512), ratio_range=(0.5, 2.0)),
|
55 |
+
dict(type='RandomCrop', crop_size=(512, 512), cat_max_ratio=0.75),
|
56 |
+
dict(type='RandomFlip', prob=0.5),
|
57 |
+
dict(type='PhotoMetricDistortion'),
|
58 |
+
dict(
|
59 |
+
type='Normalize',
|
60 |
+
mean=[123.675, 116.28, 103.53],
|
61 |
+
std=[58.395, 57.12, 57.375],
|
62 |
+
to_rgb=True),
|
63 |
+
dict(type='Pad', size=(512, 512), pad_val=0, seg_pad_val=0),
|
64 |
+
dict(type='DefaultFormatBundle'),
|
65 |
+
dict(type='Collect', keys=['img', 'gt_semantic_seg'])
|
66 |
+
]
|
67 |
+
test_pipeline = [
|
68 |
+
dict(type='LoadImageFromFile'),
|
69 |
+
dict(
|
70 |
+
type='MultiScaleFlipAug',
|
71 |
+
img_scale=(2048, 512),
|
72 |
+
flip=False,
|
73 |
+
transforms=[
|
74 |
+
dict(type='Resize', keep_ratio=True),
|
75 |
+
dict(type='RandomFlip'),
|
76 |
+
dict(
|
77 |
+
type='Normalize',
|
78 |
+
mean=[123.675, 116.28, 103.53],
|
79 |
+
std=[58.395, 57.12, 57.375],
|
80 |
+
to_rgb=True),
|
81 |
+
dict(type='Pad', size_divisor=16, pad_val=0, seg_pad_val=0),
|
82 |
+
dict(type='ImageToTensor', keys=['img']),
|
83 |
+
dict(type='Collect', keys=['img'])
|
84 |
+
])
|
85 |
+
]
|
86 |
+
data = dict(
|
87 |
+
samples_per_gpu=4,
|
88 |
+
workers_per_gpu=4,
|
89 |
+
train=dict(
|
90 |
+
type='ADE20K151Dataset',
|
91 |
+
data_root='data/ade/ADEChallengeData2016',
|
92 |
+
img_dir='images/training',
|
93 |
+
ann_dir='annotations/training',
|
94 |
+
pipeline=[
|
95 |
+
dict(type='LoadImageFromFile'),
|
96 |
+
dict(type='LoadAnnotations', reduce_zero_label=False),
|
97 |
+
dict(type='Resize', img_scale=(2048, 512), ratio_range=(0.5, 2.0)),
|
98 |
+
dict(type='RandomCrop', crop_size=(512, 512), cat_max_ratio=0.75),
|
99 |
+
dict(type='RandomFlip', prob=0.5),
|
100 |
+
dict(type='PhotoMetricDistortion'),
|
101 |
+
dict(
|
102 |
+
type='Normalize',
|
103 |
+
mean=[123.675, 116.28, 103.53],
|
104 |
+
std=[58.395, 57.12, 57.375],
|
105 |
+
to_rgb=True),
|
106 |
+
dict(type='Pad', size=(512, 512), pad_val=0, seg_pad_val=0),
|
107 |
+
dict(type='DefaultFormatBundle'),
|
108 |
+
dict(type='Collect', keys=['img', 'gt_semantic_seg'])
|
109 |
+
]),
|
110 |
+
val=dict(
|
111 |
+
type='ADE20K151Dataset',
|
112 |
+
data_root='data/ade/ADEChallengeData2016',
|
113 |
+
img_dir='images/validation',
|
114 |
+
ann_dir='annotations/validation',
|
115 |
+
pipeline=[
|
116 |
+
dict(type='LoadImageFromFile'),
|
117 |
+
dict(
|
118 |
+
type='MultiScaleFlipAug',
|
119 |
+
img_scale=(2048, 512),
|
120 |
+
flip=False,
|
121 |
+
transforms=[
|
122 |
+
dict(type='Resize', keep_ratio=True),
|
123 |
+
dict(type='RandomFlip'),
|
124 |
+
dict(
|
125 |
+
type='Normalize',
|
126 |
+
mean=[123.675, 116.28, 103.53],
|
127 |
+
std=[58.395, 57.12, 57.375],
|
128 |
+
to_rgb=True),
|
129 |
+
dict(
|
130 |
+
type='Pad', size_divisor=16, pad_val=0, seg_pad_val=0),
|
131 |
+
dict(type='ImageToTensor', keys=['img']),
|
132 |
+
dict(type='Collect', keys=['img'])
|
133 |
+
])
|
134 |
+
]),
|
135 |
+
test=dict(
|
136 |
+
type='ADE20K151Dataset',
|
137 |
+
data_root='data/ade/ADEChallengeData2016',
|
138 |
+
img_dir='images/validation',
|
139 |
+
ann_dir='annotations/validation',
|
140 |
+
pipeline=[
|
141 |
+
dict(type='LoadImageFromFile'),
|
142 |
+
dict(
|
143 |
+
type='MultiScaleFlipAug',
|
144 |
+
img_scale=(2048, 512),
|
145 |
+
flip=False,
|
146 |
+
transforms=[
|
147 |
+
dict(type='Resize', keep_ratio=True),
|
148 |
+
dict(type='RandomFlip'),
|
149 |
+
dict(
|
150 |
+
type='Normalize',
|
151 |
+
mean=[123.675, 116.28, 103.53],
|
152 |
+
std=[58.395, 57.12, 57.375],
|
153 |
+
to_rgb=True),
|
154 |
+
dict(
|
155 |
+
type='Pad', size_divisor=16, pad_val=0, seg_pad_val=0),
|
156 |
+
dict(type='ImageToTensor', keys=['img']),
|
157 |
+
dict(type='Collect', keys=['img'])
|
158 |
+
])
|
159 |
+
]))
|
160 |
+
log_config = dict(
|
161 |
+
interval=50, hooks=[dict(type='TextLoggerHook', by_epoch=False)])
|
162 |
+
dist_params = dict(backend='nccl')
|
163 |
+
log_level = 'INFO'
|
164 |
+
load_from = None
|
165 |
+
resume_from = None
|
166 |
+
workflow = [('train', 1)]
|
167 |
+
cudnn_benchmark = True
|
168 |
+
optimizer = dict(
|
169 |
+
type='AdamW', lr=0.00015, betas=[0.9, 0.96], weight_decay=0.045)
|
170 |
+
optimizer_config = dict()
|
171 |
+
lr_config = dict(
|
172 |
+
policy='step',
|
173 |
+
warmup='linear',
|
174 |
+
warmup_iters=1000,
|
175 |
+
warmup_ratio=1e-06,
|
176 |
+
step=20000,
|
177 |
+
gamma=0.5,
|
178 |
+
min_lr=1e-06,
|
179 |
+
by_epoch=False)
|
180 |
+
runner = dict(type='IterBasedRunner', max_iters=160000)
|
181 |
+
checkpoint_config = dict(by_epoch=False, interval=16000, max_keep_ckpts=1)
|
182 |
+
evaluation = dict(
|
183 |
+
interval=16000, metric='mIoU', pre_eval=True, save_best='mIoU')
|
184 |
+
custom_hooks = [
|
185 |
+
dict(
|
186 |
+
type='ConstantMomentumEMAHook',
|
187 |
+
momentum=0.01,
|
188 |
+
interval=25,
|
189 |
+
eval_interval=16000,
|
190 |
+
auto_resume=True,
|
191 |
+
priority=49)
|
192 |
+
]
|
193 |
+
work_dir = './work_dirs2/ablation_segformer_mit_b2_segformer_head_unet_fc_small_multi_step_ade_pretrained_freeze_embed_160k_ade20k151_finetune_ema_ce'
|
194 |
+
gpu_ids = range(0, 8)
|
195 |
+
auto_resume = True
|
ablation/ablation_segformer_mit_b2_segformer_head_unet_fc_small_multi_step_ade_pretrained_freeze_embed_160k_ade20k151_finetune_ema_ce/best_mIoU_iter_32000.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a66cad0c00553fd60ce7f9480e3f7d1df97731fd92aa99695ddc1bf240a6d274
|
3 |
+
size 380051503
|
ablation/ablation_segformer_mit_b2_segformer_head_unet_fc_small_multi_step_ade_pretrained_freeze_embed_160k_ade20k151_finetune_ema_ce/iter_160000.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d4c68bd09b726447e49b3a8d30c7a888f069b446c65d971ff6d1eb2e93130120
|
3 |
+
size 380051503
|
ablation/ablation_segformer_mit_b2_segformer_head_unet_fc_small_multi_step_ade_pretrained_freeze_embed_160k_ade20k151_finetune_ema_ce/latest.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d4c68bd09b726447e49b3a8d30c7a888f069b446c65d971ff6d1eb2e93130120
|
3 |
+
size 380051503
|