Text Generation
Transformers
Safetensors
mistral
conversational
text-generation-inference
Inference Endpoints
ArkaAbacus commited on
Commit
be25031
1 Parent(s): 6da886f

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +25 -7
README.md CHANGED
@@ -1,5 +1,6 @@
1
  ---
2
  license: apache-2.0
 
3
  datasets:
4
  - abacusai/MetaMathFewshot
5
  - shahules786/orca-chat
@@ -8,14 +9,22 @@ datasets:
8
 
9
  ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64c14f6b02e1f8f67c73bd05/pf4d6FA7DriRtVq5HCkxd.png)
10
 
11
- Trained on the MetamathFewshot (https://huggingface.co/datasets/abacusai/MetaMathFewshot) dataset from base Mistral, as well as the Vicuna (https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered) dataset and the OrcaChat (https://huggingface.co/datasets/shahules786/orca-chat) dataset.
12
 
13
- Instruction tuned with the following parameters:
14
 
15
- - LORA, Rank 8, Alpha 16, Dropout 0.05, all modules (QKV and MLP)
16
- - 3 epochs
17
- - Micro Batch Size 32 over 4xH100, gradient accumulation steps = 1
18
- - AdamW with learning rate 5e-5
 
 
 
 
 
 
 
 
19
 
20
  # Evaluation Results
21
 
@@ -33,4 +42,13 @@ First Turn: 6.9
33
 
34
  Second Turn: 6.51875
35
 
36
- **Average: 6.709375**
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: apache-2.0
3
+ base_model: mistralai/Mistral-7B-v0.1
4
  datasets:
5
  - abacusai/MetaMathFewshot
6
  - shahules786/orca-chat
 
9
 
10
  ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64c14f6b02e1f8f67c73bd05/pf4d6FA7DriRtVq5HCkxd.png)
11
 
12
+ This model was trained on our MetamathFewshot (https://huggingface.co/datasets/abacusai/MetaMathFewshot) dataset, as well as the Vicuna (https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered) dataset and the OrcaChat (https://huggingface.co/datasets/shahules786/orca-chat) dataset.
13
 
14
+ It has been finetuned from base Mistral 7B (https://huggingface.co/mistralai/Mistral-7B-v0.1)
15
 
16
+ # Usage
17
+
18
+ This model uses a specific prompt format which is encoded as a [chat template](https://huggingface.co/docs/transformers/main/en/chat_templating). To apply this, you can use the tokenizer.apply_chat_template() method of the attached tokenizer:
19
+
20
+ ```python
21
+ messages = [
22
+ {"role": "user", "content": "What is the capital of Spain?"},
23
+ {"role": "assistant", "content": "The capital of Spain is Madrid."}
24
+ ]
25
+ gen_input = tokenizer.apply_chat_template(message, return_tensors="pt")
26
+ model.generate(**gen_input)
27
+ ```
28
 
29
  # Evaluation Results
30
 
 
42
 
43
  Second Turn: 6.51875
44
 
45
+ **Average: 6.709375**
46
+
47
+ # Training Details
48
+
49
+ Instruction tuned with the following parameters:
50
+
51
+ - LORA, Rank 8, Alpha 16, Dropout 0.05, all modules (QKV and MLP)
52
+ - 3 epochs
53
+ - Micro Batch Size 32 over 4xH100, gradient accumulation steps = 1
54
+ - AdamW with learning rate 5e-5