Text Generation
Transformers
Safetensors
llama
conversational
text-generation-inference
Inference Endpoints
File size: 5,668 Bytes
35923a9
 
3781c6c
9e1a1ec
 
 
 
35923a9
 
93eb6eb
35923a9
9e1a1ec
35923a9
2a23d55
 
 
9e1a1ec
 
35923a9
93eb6eb
 
 
 
 
35923a9
 
 
9e1a1ec
 
 
35923a9
3e020a5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35923a9
 
 
a840a3d
 
fbaa713
a840a3d
 
 
 
121b41e
1719e62
b7b3720
52c5409
a4f14de
 
a840a3d
a4f14de
a840a3d
 
 
 
 
 
 
9e1a1ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
52c5409
9e1a1ec
 
 
d11fb56
 
8f558d6
 
 
 
d11fb56
 
 
 
 
629d716
 
d11fb56
 
 
 
9e1a1ec
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
---
library_name: transformers
license: llama3
datasets:
- aqua_rat
- microsoft/orca-math-word-problems-200k
- m-a-p/CodeFeedback-Filtered-Instruction
---

# Smaug-Llama-3-70B-Instruct

### Built with Meta Llama 3


![image/png](https://cdn-uploads.huggingface.co/production/uploads/64c14f6b02e1f8f67c73bd05/ZxYuHKmU_AtuEJbGtuEBC.png)

This model was built using a new Smaug recipe  for improving performance on real world multi-turn conversations applied to 
[meta-llama/Meta-Llama-3-70B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-70B-Instruct).

The model outperforms Llama-3-70B-Instruct substantially, and is on par with GPT-4-Turbo, on MT-Bench (see below).

EDIT: Smaug-Llama-3-70B-Instruct is the top open source model on Arena-Hard currently! It is also nearly on par with Claude Opus - see below.

We are conducting additional benchmark evaluations and will add those when available.

### Model Description

- **Developed by:** [Abacus.AI](https://abacus.ai)
- **License:** https://llama.meta.com/llama3/license/
- **Finetuned from model:** [meta-llama/Meta-Llama-3-70B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-70B-Instruct).

## How to use

The prompt format is unchanged from Llama 3 70B Instruct.

### Use with transformers

See the snippet below for usage with Transformers:

```python
import transformers
import torch

model_id = "abacusai/Smaug-Llama-3-70B-Instruct"

pipeline = transformers.pipeline(
    "text-generation",
    model=model_id,
    model_kwargs={"torch_dtype": torch.bfloat16},
    device_map="auto",
)

messages = [
    {"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},
    {"role": "user", "content": "Who are you?"},
]

prompt = pipeline.tokenizer.apply_chat_template(
		messages, 
		tokenize=False, 
		add_generation_prompt=True
)

terminators = [
    pipeline.tokenizer.eos_token_id,
    pipeline.tokenizer.convert_tokens_to_ids("<|eot_id|>")
]

outputs = pipeline(
    prompt,
    max_new_tokens=256,
    eos_token_id=terminators,
    do_sample=True,
    temperature=0.6,
    top_p=0.9,
)
print(outputs[0]["generated_text"][len(prompt):])
```


## Evaluation

### Arena-Hard

Score vs selected others (sourced from: (https://lmsys.org/blog/2024-04-19-arena-hard/#full-leaderboard-with-gpt-4-turbo-as-judge)). GPT-4o and Gemini-1.5-pro-latest were missing from the original blob post, and we produced those numbers from a local run using the same methodology. 

| Model | Score | 95% Confidence Interval | Average Tokens |
| :---- | ---------: | ----------: | ------: |
| GPT-4-Turbo-2024-04-09 | 82.6  | (-1.8, 1.6)  | 662 |
| GPT-4o | 78.3  | (-2.4, 2.1)  | 685 |
| Gemini-1.5-pro-latest | 72.1  | (-2.3, 2.2)  | 630 |
| Claude-3-Opus-20240229 | 60.4  | (-3.3, 2.4)  | 541 |
| **Smaug-Llama-3-70B-Instruct** | 56.7  | (-2.2, 2.6)  | 661 |
| GPT-4-0314 | 50.0  | (-0.0, 0.0)  | 423 |
| Claude-3-Sonnet-20240229 | 46.8  | (-2.1, 2.2)  | 552 |
| Llama-3-70B-Instruct | 41.1  | (-2.5, 2.4)  | 583 |
| GPT-4-0613 | 37.9  | (-2.2, 2.0)  | 354 |
| Mistral-Large-2402 | 37.7 | (-1.9, 2.6)  | 400 |
| Mixtral-8x22B-Instruct-v0.1 | 36.4  | (-2.7, 2.9)  | 430 |
| Qwen1.5-72B-Chat | 36.1 | (-2.5, 2.2)  | 474 |
| Command-R-Plus | 33.1 | (-2.1, 2.2)  | 541 |
| Mistral-Medium | 31.9  | (-2.3, 2.4)  | 485 |
| GPT-3.5-Turbo-0613 | 24.8 | (-1.6, 2.0)  | 401 |

### MT-Bench

```
########## First turn ##########
                   score
model             turn
Smaug-Llama-3-70B-Instruct         1     9.40000                                                                                                                            
GPT-4-Turbo                        1     9.37500
Meta-Llama-3-70B-Instruct          1     9.21250 
########## Second turn ##########
                   score
model             turn
Smaug-Llama-3-70B-Instruct         2     9.0125
GPT-4-Turbo                        2     9.0000
Meta-Llama-3-70B-Instruct          2     8.8000
########## Average ##########
                 score
model
Smaug-Llama-3-70B-Instruct          9.206250
GPT-4-Turbo                         9.187500
Meta-Llama-3-70B-Instruct           9.006250
```

| Model | First turn | Second Turn | Average |
| :---- | ---------: | ----------: | ------: |
| **Smaug-Llama-3-70B-Instruct**  | 9.40 | 9.01 | 9.21 |
| GPT-4-Turbo | 9.38 |  9.00 | 9.19 |
| Meta-Llama-3-70B-Instruct | 9.21 |  8.80 | 9.01 |

### OpenLLM Leaderboard Manual Evaluation

| Model | ARC  | Hellaswag | MMLU | TruthfulQA | Winogrande | GSM8K* | Average |
| :---- | ---: | ------:   | ---: | ---:       | ---:       | ---:   | ---:   |
| Smaug-Llama-3-70B-Instruct | 70.6 | 86.1 | 79.2 | 62.5 | 83.5 | 90.5 | 78.7 |
| Llama-3-70B-Instruct | 71.4 | 85.7 | 80.0 | 61.8 | 82.9 | 91.1 | 78.8 |

**GSM8K** The GSM8K numbers quoted here are computed using a recent release
of the [LM Evaluation Harness](https://github.com/EleutherAI/lm-evaluation-harness/).
The commit used by the leaderboard has a significant issue that impacts models that
tend to use `:` in their responses due to a bug in the stop word configuration for
GSM8K. The issue is covered in more detail in this
[GSM8K evaluation discussion](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard/discussions/770).
The score for both Llama-3 and this model are significantly different when evaluated
with the updated harness as the issue with stop words has been addressed.


This version of Smaug uses new techniques and new data compared to [Smaug-72B](https://huggingface.co/abacusai/Smaug-72B-v0.1), and more information will be released later on. For now, see the previous Smaug paper: https://arxiv.org/abs/2402.13228.