File size: 5,668 Bytes
35923a9 3781c6c 9e1a1ec 35923a9 93eb6eb 35923a9 9e1a1ec 35923a9 2a23d55 9e1a1ec 35923a9 93eb6eb 35923a9 9e1a1ec 35923a9 3e020a5 35923a9 a840a3d fbaa713 a840a3d 121b41e 1719e62 b7b3720 52c5409 a4f14de a840a3d a4f14de a840a3d 9e1a1ec 52c5409 9e1a1ec d11fb56 8f558d6 d11fb56 629d716 d11fb56 9e1a1ec |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 |
---
library_name: transformers
license: llama3
datasets:
- aqua_rat
- microsoft/orca-math-word-problems-200k
- m-a-p/CodeFeedback-Filtered-Instruction
---
# Smaug-Llama-3-70B-Instruct
### Built with Meta Llama 3
![image/png](https://cdn-uploads.huggingface.co/production/uploads/64c14f6b02e1f8f67c73bd05/ZxYuHKmU_AtuEJbGtuEBC.png)
This model was built using a new Smaug recipe for improving performance on real world multi-turn conversations applied to
[meta-llama/Meta-Llama-3-70B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-70B-Instruct).
The model outperforms Llama-3-70B-Instruct substantially, and is on par with GPT-4-Turbo, on MT-Bench (see below).
EDIT: Smaug-Llama-3-70B-Instruct is the top open source model on Arena-Hard currently! It is also nearly on par with Claude Opus - see below.
We are conducting additional benchmark evaluations and will add those when available.
### Model Description
- **Developed by:** [Abacus.AI](https://abacus.ai)
- **License:** https://llama.meta.com/llama3/license/
- **Finetuned from model:** [meta-llama/Meta-Llama-3-70B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-70B-Instruct).
## How to use
The prompt format is unchanged from Llama 3 70B Instruct.
### Use with transformers
See the snippet below for usage with Transformers:
```python
import transformers
import torch
model_id = "abacusai/Smaug-Llama-3-70B-Instruct"
pipeline = transformers.pipeline(
"text-generation",
model=model_id,
model_kwargs={"torch_dtype": torch.bfloat16},
device_map="auto",
)
messages = [
{"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},
{"role": "user", "content": "Who are you?"},
]
prompt = pipeline.tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
terminators = [
pipeline.tokenizer.eos_token_id,
pipeline.tokenizer.convert_tokens_to_ids("<|eot_id|>")
]
outputs = pipeline(
prompt,
max_new_tokens=256,
eos_token_id=terminators,
do_sample=True,
temperature=0.6,
top_p=0.9,
)
print(outputs[0]["generated_text"][len(prompt):])
```
## Evaluation
### Arena-Hard
Score vs selected others (sourced from: (https://lmsys.org/blog/2024-04-19-arena-hard/#full-leaderboard-with-gpt-4-turbo-as-judge)). GPT-4o and Gemini-1.5-pro-latest were missing from the original blob post, and we produced those numbers from a local run using the same methodology.
| Model | Score | 95% Confidence Interval | Average Tokens |
| :---- | ---------: | ----------: | ------: |
| GPT-4-Turbo-2024-04-09 | 82.6 | (-1.8, 1.6) | 662 |
| GPT-4o | 78.3 | (-2.4, 2.1) | 685 |
| Gemini-1.5-pro-latest | 72.1 | (-2.3, 2.2) | 630 |
| Claude-3-Opus-20240229 | 60.4 | (-3.3, 2.4) | 541 |
| **Smaug-Llama-3-70B-Instruct** | 56.7 | (-2.2, 2.6) | 661 |
| GPT-4-0314 | 50.0 | (-0.0, 0.0) | 423 |
| Claude-3-Sonnet-20240229 | 46.8 | (-2.1, 2.2) | 552 |
| Llama-3-70B-Instruct | 41.1 | (-2.5, 2.4) | 583 |
| GPT-4-0613 | 37.9 | (-2.2, 2.0) | 354 |
| Mistral-Large-2402 | 37.7 | (-1.9, 2.6) | 400 |
| Mixtral-8x22B-Instruct-v0.1 | 36.4 | (-2.7, 2.9) | 430 |
| Qwen1.5-72B-Chat | 36.1 | (-2.5, 2.2) | 474 |
| Command-R-Plus | 33.1 | (-2.1, 2.2) | 541 |
| Mistral-Medium | 31.9 | (-2.3, 2.4) | 485 |
| GPT-3.5-Turbo-0613 | 24.8 | (-1.6, 2.0) | 401 |
### MT-Bench
```
########## First turn ##########
score
model turn
Smaug-Llama-3-70B-Instruct 1 9.40000
GPT-4-Turbo 1 9.37500
Meta-Llama-3-70B-Instruct 1 9.21250
########## Second turn ##########
score
model turn
Smaug-Llama-3-70B-Instruct 2 9.0125
GPT-4-Turbo 2 9.0000
Meta-Llama-3-70B-Instruct 2 8.8000
########## Average ##########
score
model
Smaug-Llama-3-70B-Instruct 9.206250
GPT-4-Turbo 9.187500
Meta-Llama-3-70B-Instruct 9.006250
```
| Model | First turn | Second Turn | Average |
| :---- | ---------: | ----------: | ------: |
| **Smaug-Llama-3-70B-Instruct** | 9.40 | 9.01 | 9.21 |
| GPT-4-Turbo | 9.38 | 9.00 | 9.19 |
| Meta-Llama-3-70B-Instruct | 9.21 | 8.80 | 9.01 |
### OpenLLM Leaderboard Manual Evaluation
| Model | ARC | Hellaswag | MMLU | TruthfulQA | Winogrande | GSM8K* | Average |
| :---- | ---: | ------: | ---: | ---: | ---: | ---: | ---: |
| Smaug-Llama-3-70B-Instruct | 70.6 | 86.1 | 79.2 | 62.5 | 83.5 | 90.5 | 78.7 |
| Llama-3-70B-Instruct | 71.4 | 85.7 | 80.0 | 61.8 | 82.9 | 91.1 | 78.8 |
**GSM8K** The GSM8K numbers quoted here are computed using a recent release
of the [LM Evaluation Harness](https://github.com/EleutherAI/lm-evaluation-harness/).
The commit used by the leaderboard has a significant issue that impacts models that
tend to use `:` in their responses due to a bug in the stop word configuration for
GSM8K. The issue is covered in more detail in this
[GSM8K evaluation discussion](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard/discussions/770).
The score for both Llama-3 and this model are significantly different when evaluated
with the updated harness as the issue with stop words has been addressed.
This version of Smaug uses new techniques and new data compared to [Smaug-72B](https://huggingface.co/abacusai/Smaug-72B-v0.1), and more information will be released later on. For now, see the previous Smaug paper: https://arxiv.org/abs/2402.13228. |