diff --git "a/run-2024-07-15T17:00:53+00:00.log" "b/run-2024-07-15T17:00:53+00:00.log" --- "a/run-2024-07-15T17:00:53+00:00.log" +++ "b/run-2024-07-15T17:00:53+00:00.log" @@ -1210,4 +1210,1168 @@ Non-default generation parameters: {'max_length': 200, 'early_stopping': True, ' 44%|████▍ | 162600/371472 [1:57:52<18:45:45, 3.09it/s] 44%|████▍ | 162601/371472 [1:57:53<19:20:06, 3.00it/s] 44%|████▍ | 162602/371472 [1:57:53<18:08:06, 3.20it/s] 44%|████▍ | 162603/371472 [1:57:53<17:24:19, 3.33it/s] 44%|████▍ | 162604/371472 [1:57:53<17:07:34, 3.39it/s] 44%|████▍ | 162605/371472 [1:57:54<17:03:03, 3.40it/s] 44%|████▍ | 162606/371472 [1:57:54<16:56:38, 3.42it/s] 44%|████▍ | 162607/371472 [1:57:54<18:15:01, 3.18it/s] 44%|████▍ | 162608/371472 [1:57:55<18:34:43, 3.12it/s] 44%|████▍ | 162609/371472 [1:57:55<18:44:45, 3.09it/s] 44%|████▍ | 162610/371472 [1:57:55<18:23:13, 3.16it/s] 44%|████▍ | 162611/371472 [1:57:56<18:00:16, 3.22it/s] 44%|████▍ | 162612/371472 [1:57:56<17:41:15, 3.28it/s] 44%|████▍ | 162613/371472 [1:57:56<17:56:20, 3.23it/s] 44%|████▍ | 162614/371472 [1:57:57<18:07:59, 3.20it/s] 44%|████▍ | 162615/371472 [1:57:57<17:49:05, 3.26it/s] 44%|████▍ | 162616/371472 [1:57:57<19:26:07, 2.99it/s] 44%|████▍ | 162617/371472 [1:57:58<19:55:23, 2.91it/s] 44%|████▍ | 162618/371472 [1:57:58<19:06:19, 3.04it/s] 44%|████▍ | 162619/371472 [1:57:58<18:38:39, 3.11it/s] 44%|████▍ | 162620/371472 [1:57:59<17:45:00, 3.27it/s] {'loss': 3.0512, 'learning_rate': 6.062778771359002e-07, 'epoch': 7.0} 44%|████▍ | 162620/371472 [1:57:59<17:45:00, 3.27it/s] 44%|████▍ | 162621/371472 [1:57:59<18:47:58, 3.09it/s] 44%|████▍ | 162622/371472 [1:57:59<18:48:27, 3.08it/s] 44%|████▍ | 162623/371472 [1:58:00<18:43:23, 3.10it/s] 44%|████▍ | 162624/371472 [1:58:00<18:14:48, 3.18it/s] 44%|████▍ | 162625/371472 [1:58:00<18:12:59, 3.18it/s] 44%|████▍ | 162626/371472 [1:58:01<19:19:54, 3.00it/s] 44%|████▍ | 162627/371472 [1:58:01<19:32:01, 2.97it/s] 44%|████▍ | 162628/371472 [1:58:01<18:28:47, 3.14it/s] 44%|████▍ | 162629/371472 [1:58:02<18:48:22, 3.08it/s] 44%|████▍ | 162630/371472 [1:58:02<18:19:37, 3.17it/s] 44%|████▍ | 162631/371472 [1:58:02<19:08:05, 3.03it/s] 44%|████▍ | 162632/371472 [1:58:03<19:22:54, 2.99it/s] 44%|████▍ | 162633/371472 [1:58:03<20:10:48, 2.87it/s] 44%|████▍ | 162634/371472 [1:58:03<19:58:31, 2.90it/s] 44%|████▍ | 162635/371472 [1:58:04<20:47:42, 2.79it/s] 44%|████▍ | 162636/371472 [1:58:04<20:16:51, 2.86it/s] 44%|████▍ | 162637/371472 [1:58:04<19:26:14, 2.98it/s] 44%|████▍ | 162638/371472 [1:58:05<19:04:18, 3.04it/s] 44%|████▍ | 162639/371472 [1:58:05<18:47:09, 3.09it/s] 44%|████▍ | 162640/371472 [1:58:05<18:21:51, 3.16it/s] {'loss': 2.9536, 'learning_rate': 6.062293951604214e-07, 'epoch': 7.01} 44%|████▍ | 162640/371472 [1:58:05<18:21:51, 3.16it/s] 44%|████▍ | 162641/371472 [1:58:05<17:53:33, 3.24it/s] 44%|████▍ | 162642/371472 [1:58:06<17:32:54, 3.31it/s] 44%|████▍ | 162643/371472 [1:58:06<17:19:34, 3.35it/s] 44%|████▍ | 162644/371472 [1:58:06<18:05:34, 3.21it/s] 44%|████▍ | 162645/371472 [1:58:07<17:52:29, 3.25it/s] 44%|████▍ | 162646/371472 [1:58:07<17:37:08, 3.29it/s] 44%|████▍ | 162647/371472 [1:58:07<17:40:02, 3.28it/s] 44%|████▍ | 162648/371472 [1:58:08<17:37:19, 3.29it/s] 44%|████▍ | 162649/371472 [1:58:08<17:23:29, 3.34it/s] 44%|████▍ | 162650/371472 [1:58:08<17:58:32, 3.23it/s] 44%|████▍ | 162651/371472 [1:58:09<18:37:55, 3.11it/s] 44%|████▍ | 162652/371472 [1:58:09<18:14:18, 3.18it/s] 44%|████▍ | 162653/371472 [1:58:09<18:43:48, 3.10it/s] 44%|████▍ | 162654/371472 [1:58:10<18:52:43, 3.07it/s] 44%|████▍ | 162655/371472 [1:58:10<18:25:22, 3.15it/s] 44%|████▍ | 162656/371472 [1:58:10<18:40:29, 3.11it/s] 44%|████▍ | 162657/371472 [1:58:10<18:42:13, 3.10it/s] 44%|████▍ | 162658/371472 [1:58:11<18:29:00, 3.14it/s] 44%|████▍ | 162659/371472 [1:58:11<19:00:02, 3.05it/s] 44%|████▍ | 162660/371472 [1:58:11<18:26:29, 3.15it/s] {'loss': 3.1112, 'learning_rate': 6.061809131849426e-07, 'epoch': 7.01} - 44%|████▍ | 162660/371472 [1:58:11<18:26:29, 3.15it/s] 44%|████▍ | 162661/371472 [1:58:12<18:17:26, 3.17it/s] 44%|████▍ | 162662/371472 [1:58:12<18:49:07, 3.08it/s] 44%|████▍ | 162663/371472 [1:58:12<19:07:49, 3.03it/s] 44%|████▍ | 162664/371472 [1:58:13<18:10:33, 3.19it/s] \ No newline at end of file + 44%|████▍ | 162660/371472 [1:58:11<18:26:29, 3.15it/s] 44%|████▍ | 162661/371472 [1:58:12<18:17:26, 3.17it/s] 44%|████▍ | 162662/371472 [1:58:12<18:49:07, 3.08it/s] 44%|████▍ | 162663/371472 [1:58:12<19:07:49, 3.03it/s] 44%|████▍ | 162664/371472 [1:58:13<18:10:33, 3.19it/s] 44%|████▍ | 162665/371472 [1:58:13<20:37:39, 2.81it/s] 44%|████▍ | 162666/371472 [1:58:13<19:30:38, 2.97it/s] 44%|████▍ | 162667/371472 [1:58:14<18:24:29, 3.15it/s] 44%|████▍ | 162668/371472 [1:58:14<18:40:54, 3.10it/s] 44%|████▍ | 162669/371472 [1:58:14<17:49:57, 3.25it/s] 44%|████▍ | 162670/371472 [1:58:15<17:47:35, 3.26it/s] 44%|████▍ | 162671/371472 [1:58:15<17:41:14, 3.28it/s] 44%|████▍ | 162672/371472 [1:58:15<17:26:26, 3.33it/s] 44%|████▍ | 162673/371472 [1:58:16<17:08:27, 3.38it/s] 44%|████▍ | 162674/371472 [1:58:16<18:31:56, 3.13it/s] 44%|████▍ | 162675/371472 [1:58:16<18:26:39, 3.14it/s] 44%|████▍ | 162676/371472 [1:58:17<18:40:43, 3.11it/s] 44%|████▍ | 162677/371472 [1:58:17<18:00:45, 3.22it/s] 44%|████▍ | 162678/371472 [1:58:17<17:39:21, 3.28it/s] 44%|████▍ | 162679/371472 [1:58:17<17:28:44, 3.32it/s] 44%|████▍ | 162680/371472 [1:58:18<16:50:12, 3.44it/s] {'loss': 3.034, 'learning_rate': 6.061324312094636e-07, 'epoch': 7.01} + 44%|████▍ | 162680/371472 [1:58:18<16:50:12, 3.44it/s] 44%|████▍ | 162681/371472 [1:58:18<16:50:14, 3.44it/s] 44%|████▍ | 162682/371472 [1:58:18<19:50:14, 2.92it/s] 44%|████▍ | 162683/371472 [1:58:19<19:18:44, 3.00it/s] 44%|████▍ | 162684/371472 [1:58:19<19:10:49, 3.02it/s] 44%|████▍ | 162685/371472 [1:58:19<19:37:24, 2.96it/s] 44%|████▍ | 162686/371472 [1:58:20<19:31:00, 2.97it/s] 44%|████▍ | 162687/371472 [1:58:20<18:35:39, 3.12it/s] 44%|████▍ | 162688/371472 [1:58:20<18:10:12, 3.19it/s] 44%|████▍ | 162689/371472 [1:58:21<18:07:37, 3.20it/s] 44%|████▍ | 162690/371472 [1:58:21<18:01:17, 3.22it/s] 44%|████▍ | 162691/371472 [1:58:21<19:38:20, 2.95it/s] 44%|████▍ | 162692/371472 [1:58:22<18:57:24, 3.06it/s] 44%|████▍ | 162693/371472 [1:58:22<18:21:17, 3.16it/s] 44%|████▍ | 162694/371472 [1:58:22<17:53:29, 3.24it/s] 44%|████▍ | 162695/371472 [1:58:23<18:40:44, 3.10it/s] 44%|████▍ | 162696/371472 [1:58:23<18:10:04, 3.19it/s] 44%|████▍ | 162697/371472 [1:58:23<18:01:13, 3.22it/s] 44%|████▍ | 162698/371472 [1:58:23<17:26:39, 3.32it/s] 44%|████▍ | 162699/371472 [1:58:24<16:58:26, 3.42it/s] 44%|████▍ | 162700/371472 [1:58:24<17:23:13, 3.34it/s] {'loss': 2.8783, 'learning_rate': 6.060839492339847e-07, 'epoch': 7.01} + 44%|████▍ | 162700/371472 [1:58:24<17:23:13, 3.34it/s] 44%|████▍ | 162701/371472 [1:58:24<17:01:51, 3.41it/s] 44%|████▍ | 162702/371472 [1:58:25<16:55:52, 3.43it/s] 44%|████▍ | 162703/371472 [1:58:25<16:39:42, 3.48it/s] 44%|████▍ | 162704/371472 [1:58:25<17:30:39, 3.31it/s] 44%|████▍ | 162705/371472 [1:58:26<17:17:46, 3.35it/s] 44%|████▍ | 162706/371472 [1:58:26<16:56:59, 3.42it/s] 44%|████▍ | 162707/371472 [1:58:26<17:35:16, 3.30it/s] 44%|████▍ | 162708/371472 [1:58:26<17:11:49, 3.37it/s] 44%|████▍ | 162709/371472 [1:58:27<16:40:38, 3.48it/s] 44%|████▍ | 162710/371472 [1:58:27<16:31:28, 3.51it/s] 44%|████▍ | 162711/371472 [1:58:27<17:42:19, 3.28it/s] 44%|████▍ | 162712/371472 [1:58:28<18:20:28, 3.16it/s] 44%|████▍ | 162713/371472 [1:58:28<17:22:04, 3.34it/s] 44%|████▍ | 162714/371472 [1:58:28<17:20:04, 3.35it/s] 44%|████▍ | 162715/371472 [1:58:29<18:01:45, 3.22it/s] 44%|████▍ | 162716/371472 [1:58:29<17:50:38, 3.25it/s] 44%|████▍ | 162717/371472 [1:58:29<19:31:20, 2.97it/s] 44%|████▍ | 162718/371472 [1:58:30<18:37:11, 3.11it/s] 44%|████▍ | 162719/371472 [1:58:30<18:05:10, 3.21it/s] 44%|████▍ | 162720/371472 [1:58:30<19:14:20, 3.01it/s] {'loss': 2.9961, 'learning_rate': 6.060354672585059e-07, 'epoch': 7.01} + 44%|████▍ | 162720/371472 [1:58:30<19:14:20, 3.01it/s] 44%|████▍ | 162721/371472 [1:58:31<18:36:13, 3.12it/s] 44%|████▍ | 162722/371472 [1:58:31<18:26:07, 3.15it/s] 44%|████▍ | 162723/371472 [1:58:31<17:39:55, 3.28it/s] 44%|████▍ | 162724/371472 [1:58:31<17:44:16, 3.27it/s] 44%|████▍ | 162725/371472 [1:58:32<17:39:19, 3.28it/s] 44%|████▍ | 162726/371472 [1:58:32<17:40:16, 3.28it/s] 44%|████▍ | 162727/371472 [1:58:33<20:58:24, 2.76it/s] 44%|████▍ | 162728/371472 [1:58:33<19:54:41, 2.91it/s] 44%|████▍ | 162729/371472 [1:58:33<19:16:08, 3.01it/s] 44%|████▍ | 162730/371472 [1:58:33<18:42:51, 3.10it/s] 44%|████▍ | 162731/371472 [1:58:34<18:36:49, 3.12it/s] 44%|████▍ | 162732/371472 [1:58:34<18:14:56, 3.18it/s] 44%|████▍ | 162733/371472 [1:58:34<18:52:30, 3.07it/s] 44%|████▍ | 162734/371472 [1:58:35<19:38:21, 2.95it/s] 44%|████▍ | 162735/371472 [1:58:35<19:26:11, 2.98it/s] 44%|████▍ | 162736/371472 [1:58:35<20:02:14, 2.89it/s] 44%|████▍ | 162737/371472 [1:58:36<20:23:13, 2.84it/s] 44%|████▍ | 162738/371472 [1:58:36<19:35:42, 2.96it/s] 44%|████▍ | 162739/371472 [1:58:36<18:47:16, 3.09it/s] 44%|████▍ | 162740/371472 [1:58:37<18:44:19, 3.09it/s] {'loss': 2.9377, 'learning_rate': 6.05986985283027e-07, 'epoch': 7.01} + 44%|████▍ | 162740/371472 [1:58:37<18:44:19, 3.09it/s] 44%|████▍ | 162741/371472 [1:58:37<18:13:57, 3.18it/s] 44%|████▍ | 162742/371472 [1:58:37<18:30:54, 3.13it/s] 44%|████▍ | 162743/371472 [1:58:38<18:36:10, 3.12it/s] 44%|████▍ | 162744/371472 [1:58:38<18:35:40, 3.12it/s] 44%|████▍ | 162745/371472 [1:58:38<19:00:43, 3.05it/s] 44%|████▍ | 162746/371472 [1:58:39<18:04:19, 3.21it/s] 44%|████▍ | 162747/371472 [1:58:39<17:25:36, 3.33it/s] 44%|████▍ | 162748/371472 [1:58:39<17:04:41, 3.39it/s] 44%|████▍ | 162749/371472 [1:58:39<16:43:15, 3.47it/s] 44%|████▍ | 162750/371472 [1:58:40<17:17:04, 3.35it/s] 44%|████▍ | 162751/371472 [1:58:40<17:20:57, 3.34it/s] 44%|████▍ | 162752/371472 [1:58:40<17:25:54, 3.33it/s] 44%|████▍ | 162753/371472 [1:58:41<17:01:37, 3.41it/s] 44%|████▍ | 162754/371472 [1:58:41<17:22:38, 3.34it/s] 44%|████▍ | 162755/371472 [1:58:41<18:27:20, 3.14it/s] 44%|████▍ | 162756/371472 [1:58:42<18:21:52, 3.16it/s] 44%|████▍ | 162757/371472 [1:58:42<17:44:59, 3.27it/s] 44%|████▍ | 162758/371472 [1:58:42<18:06:18, 3.20it/s] 44%|████▍ | 162759/371472 [1:58:43<18:33:33, 3.12it/s] 44%|████▍ | 162760/371472 [1:58:43<17:51:58, 3.24it/s] {'loss': 2.9542, 'learning_rate': 6.05938503307548e-07, 'epoch': 7.01} + 44%|████▍ | 162760/371472 [1:58:43<17:51:58, 3.24it/s] 44%|████▍ | 162761/371472 [1:58:43<18:38:19, 3.11it/s] 44%|████▍ | 162762/371472 [1:58:43<17:55:28, 3.23it/s] 44%|████▍ | 162763/371472 [1:58:44<18:19:16, 3.16it/s] 44%|████▍ | 162764/371472 [1:58:44<18:20:31, 3.16it/s] 44%|████▍ | 162765/371472 [1:58:44<17:39:53, 3.28it/s] 44%|████▍ | 162766/371472 [1:58:45<18:31:06, 3.13it/s] 44%|████▍ | 162767/371472 [1:58:45<18:18:30, 3.17it/s] 44%|████▍ | 162768/371472 [1:58:45<18:48:26, 3.08it/s] 44%|████▍ | 162769/371472 [1:58:46<18:40:42, 3.10it/s] 44%|████▍ | 162770/371472 [1:58:46<18:47:23, 3.09it/s] 44%|████▍ | 162771/371472 [1:58:46<18:46:34, 3.09it/s] 44%|████▍ | 162772/371472 [1:58:47<18:31:03, 3.13it/s] 44%|████▍ | 162773/371472 [1:58:47<19:02:00, 3.05it/s] 44%|████▍ | 162774/371472 [1:58:47<19:17:33, 3.00it/s] 44%|████▍ | 162775/371472 [1:58:48<20:02:40, 2.89it/s] 44%|████▍ | 162776/371472 [1:58:48<19:20:16, 3.00it/s] 44%|████▍ | 162777/371472 [1:58:48<18:41:51, 3.10it/s] 44%|████▍ | 162778/371472 [1:58:49<17:55:09, 3.24it/s] 44%|████▍ | 162779/371472 [1:58:49<19:13:47, 3.01it/s] 44%|████▍ | 162780/371472 [1:58:49<19:05:44, 3.04it/s] {'loss': 3.0192, 'learning_rate': 6.058900213320691e-07, 'epoch': 7.01} + 44%|████▍ | 162780/371472 [1:58:49<19:05:44, 3.04it/s] 44%|████▍ | 162781/371472 [1:58:50<18:30:59, 3.13it/s] 44%|████▍ | 162782/371472 [1:58:50<17:55:52, 3.23it/s] 44%|████▍ | 162783/371472 [1:58:50<17:52:07, 3.24it/s] 44%|████▍ | 162784/371472 [1:58:51<17:39:44, 3.28it/s] 44%|████▍ | 162785/371472 [1:58:51<17:03:40, 3.40it/s] 44%|████▍ | 162786/371472 [1:58:51<17:21:30, 3.34it/s] 44%|████▍ | 162787/371472 [1:58:51<17:15:29, 3.36it/s] 44%|████▍ | 162788/371472 [1:58:52<16:58:49, 3.41it/s] 44%|████▍ | 162789/371472 [1:58:52<18:42:05, 3.10it/s] 44%|████▍ | 162790/371472 [1:58:52<19:07:16, 3.03it/s] 44%|████▍ | 162791/371472 [1:58:53<19:55:16, 2.91it/s] 44%|████▍ | 162792/371472 [1:58:53<19:18:41, 3.00it/s] 44%|████▍ | 162793/371472 [1:58:53<19:32:48, 2.97it/s] 44%|████▍ | 162794/371472 [1:58:54<19:45:05, 2.93it/s] 44%|████▍ | 162795/371472 [1:58:54<19:15:05, 3.01it/s] 44%|████▍ | 162796/371472 [1:58:54<19:18:20, 3.00it/s] 44%|████▍ | 162797/371472 [1:58:55<18:59:42, 3.05it/s] 44%|████▍ | 162798/371472 [1:58:55<19:17:07, 3.01it/s] 44%|████▍ | 162799/371472 [1:58:55<19:04:56, 3.04it/s] 44%|████▍ | 162800/371472 [1:58:56<20:05:54, 2.88it/s] {'loss': 2.9397, 'learning_rate': 6.058415393565903e-07, 'epoch': 7.01} + 44%|████▍ | 162800/371472 [1:58:56<20:05:54, 2.88it/s] 44%|████▍ | 162801/371472 [1:58:56<20:20:12, 2.85it/s] 44%|████▍ | 162802/371472 [1:58:57<19:42:19, 2.94it/s] 44%|████▍ | 162803/371472 [1:58:57<19:24:48, 2.99it/s] 44%|████▍ | 162804/371472 [1:58:57<19:02:52, 3.04it/s] 44%|████▍ | 162805/371472 [1:58:57<19:11:28, 3.02it/s] 44%|████▍ | 162806/371472 [1:58:58<19:46:43, 2.93it/s] 44%|████▍ | 162807/371472 [1:58:58<19:21:08, 3.00it/s] 44%|████▍ | 162808/371472 [1:58:58<18:38:24, 3.11it/s] 44%|████▍ | 162809/371472 [1:58:59<18:41:30, 3.10it/s] 44%|████▍ | 162810/371472 [1:58:59<18:24:22, 3.15it/s] 44%|████▍ | 162811/371472 [1:58:59<18:17:13, 3.17it/s] 44%|████▍ | 162812/371472 [1:59:00<18:20:20, 3.16it/s] 44%|████▍ | 162813/371472 [1:59:00<18:07:47, 3.20it/s] 44%|████▍ | 162814/371472 [1:59:00<18:15:56, 3.17it/s] 44%|████▍ | 162815/371472 [1:59:01<17:32:26, 3.30it/s] 44%|████▍ | 162816/371472 [1:59:01<17:19:09, 3.35it/s] 44%|████▍ | 162817/371472 [1:59:01<17:28:12, 3.32it/s] 44%|████▍ | 162818/371472 [1:59:02<17:28:10, 3.32it/s] 44%|████▍ | 162819/371472 [1:59:02<18:44:26, 3.09it/s] 44%|████▍ | 162820/371472 [1:59:02<18:23:23, 3.15it/s] {'loss': 3.0397, 'learning_rate': 6.057930573811115e-07, 'epoch': 7.01} + 44%|████▍ | 162820/371472 [1:59:02<18:23:23, 3.15it/s] 44%|████▍ | 162821/371472 [1:59:03<20:10:34, 2.87it/s] 44%|████▍ | 162822/371472 [1:59:03<21:11:19, 2.74it/s] 44%|████▍ | 162823/371472 [1:59:03<21:14:06, 2.73it/s] 44%|████▍ | 162824/371472 [1:59:04<20:16:44, 2.86it/s] 44%|████▍ | 162825/371472 [1:59:04<20:30:25, 2.83it/s] 44%|████▍ | 162826/371472 [1:59:04<20:43:31, 2.80it/s] 44%|████▍ | 162827/371472 [1:59:05<20:46:15, 2.79it/s] 44%|████▍ | 162828/371472 [1:59:05<19:45:37, 2.93it/s] 44%|████▍ | 162829/371472 [1:59:05<19:37:55, 2.95it/s] 44%|████▍ | 162830/371472 [1:59:06<19:07:39, 3.03it/s] 44%|████▍ | 162831/371472 [1:59:06<18:23:23, 3.15it/s] 44%|████▍ | 162832/371472 [1:59:06<17:46:05, 3.26it/s] 44%|████▍ | 162833/371472 [1:59:07<17:21:45, 3.34it/s] 44%|████▍ | 162834/371472 [1:59:07<17:50:59, 3.25it/s] 44%|████▍ | 162835/371472 [1:59:07<18:30:23, 3.13it/s] 44%|████▍ | 162836/371472 [1:59:08<19:33:09, 2.96it/s] 44%|████▍ | 162837/371472 [1:59:08<19:36:12, 2.96it/s] 44%|████▍ | 162838/371472 [1:59:08<18:49:23, 3.08it/s] 44%|████▍ | 162839/371472 [1:59:09<18:53:39, 3.07it/s] 44%|████▍ | 162840/371472 [1:59:09<20:02:16, 2.89it/s] {'loss': 2.8082, 'learning_rate': 6.057445754056325e-07, 'epoch': 7.01} + 44%|████▍ | 162840/371472 [1:59:09<20:02:16, 2.89it/s] 44%|████▍ | 162841/371472 [1:59:09<19:46:38, 2.93it/s] 44%|████▍ | 162842/371472 [1:59:10<19:06:53, 3.03it/s] 44%|████▍ | 162843/371472 [1:59:10<20:21:37, 2.85it/s] 44%|████▍ | 162844/371472 [1:59:10<19:46:28, 2.93it/s] 44%|████▍ | 162845/371472 [1:59:11<18:32:02, 3.13it/s] 44%|████▍ | 162846/371472 [1:59:11<18:03:28, 3.21it/s] 44%|████▍ | 162847/371472 [1:59:11<18:50:42, 3.08it/s] 44%|████▍ | 162848/371472 [1:59:12<18:10:06, 3.19it/s] 44%|████▍ | 162849/371472 [1:59:12<17:25:17, 3.33it/s] 44%|████▍ | 162850/371472 [1:59:12<18:03:01, 3.21it/s] 44%|████▍ | 162851/371472 [1:59:12<17:39:29, 3.28it/s] 44%|████▍ | 162852/371472 [1:59:13<18:19:08, 3.16it/s] 44%|████▍ | 162853/371472 [1:59:13<18:00:25, 3.22it/s] 44%|████▍ | 162854/371472 [1:59:13<19:09:39, 3.02it/s] 44%|████▍ | 162855/371472 [1:59:14<21:48:34, 2.66it/s] 44%|████▍ | 162856/371472 [1:59:14<21:11:54, 2.73it/s] 44%|████▍ | 162857/371472 [1:59:15<20:12:19, 2.87it/s] 44%|████▍ | 162858/371472 [1:59:15<20:39:39, 2.80it/s] 44%|████▍ | 162859/371472 [1:59:15<19:34:22, 2.96it/s] 44%|████▍ | 162860/371472 [1:59:16<19:27:04, 2.98it/s] {'loss': 2.9747, 'learning_rate': 6.056960934301536e-07, 'epoch': 7.01} + 44%|████▍ | 162860/371472 [1:59:16<19:27:04, 2.98it/s] 44%|████▍ | 162861/371472 [1:59:16<18:49:44, 3.08it/s] 44%|████▍ | 162862/371472 [1:59:16<18:10:47, 3.19it/s] 44%|████▍ | 162863/371472 [1:59:17<18:13:38, 3.18it/s] 44%|████▍ | 162864/371472 [1:59:17<17:57:26, 3.23it/s] 44%|████▍ | 162865/371472 [1:59:17<19:32:03, 2.97it/s] 44%|████▍ | 162866/371472 [1:59:18<19:38:38, 2.95it/s] 44%|████▍ | 162867/371472 [1:59:18<20:13:18, 2.87it/s] 44%|████▍ | 162868/371472 [1:59:18<19:43:58, 2.94it/s] 44%|████▍ | 162869/371472 [1:59:19<18:51:48, 3.07it/s] 44%|████▍ | 162870/371472 [1:59:19<18:30:53, 3.13it/s] 44%|████▍ | 162871/371472 [1:59:19<17:58:31, 3.22it/s] 44%|████▍ | 162872/371472 [1:59:19<18:27:09, 3.14it/s] 44%|████▍ | 162873/371472 [1:59:20<18:17:02, 3.17it/s] 44%|████▍ | 162874/371472 [1:59:20<17:38:56, 3.28it/s] 44%|████▍ | 162875/371472 [1:59:20<17:53:13, 3.24it/s] 44%|████▍ | 162876/371472 [1:59:21<17:45:56, 3.26it/s] 44%|████▍ | 162877/371472 [1:59:21<17:32:57, 3.30it/s] 44%|████▍ | 162878/371472 [1:59:21<17:55:27, 3.23it/s] 44%|████▍ | 162879/371472 [1:59:22<17:52:23, 3.24it/s] 44%|████▍ | 162880/371472 [1:59:22<18:20:55, 3.16it/s] {'loss': 2.8268, 'learning_rate': 6.056476114546747e-07, 'epoch': 7.02} + 44%|████▍ | 162880/371472 [1:59:22<18:20:55, 3.16it/s] 44%|████▍ | 162881/371472 [1:59:22<17:51:34, 3.24it/s] 44%|████▍ | 162882/371472 [1:59:23<17:40:48, 3.28it/s] 44%|████▍ | 162883/371472 [1:59:23<18:20:24, 3.16it/s] 44%|████▍ | 162884/371472 [1:59:23<18:25:31, 3.14it/s] 44%|████▍ | 162885/371472 [1:59:24<20:29:40, 2.83it/s] 44%|████▍ | 162886/371472 [1:59:24<19:54:53, 2.91it/s] 44%|████▍ | 162887/371472 [1:59:24<18:31:24, 3.13it/s] 44%|████▍ | 162888/371472 [1:59:25<18:21:20, 3.16it/s] 44%|████▍ | 162889/371472 [1:59:25<18:43:12, 3.10it/s] 44%|████▍ | 162890/371472 [1:59:25<18:38:25, 3.11it/s] 44%|████▍ | 162891/371472 [1:59:25<18:26:16, 3.14it/s] 44%|████▍ | 162892/371472 [1:59:26<18:40:32, 3.10it/s] 44%|████▍ | 162893/371472 [1:59:26<18:56:18, 3.06it/s] 44%|████▍ | 162894/371472 [1:59:26<18:37:18, 3.11it/s] 44%|████▍ | 162895/371472 [1:59:27<18:29:34, 3.13it/s] 44%|████▍ | 162896/371472 [1:59:27<18:56:16, 3.06it/s] 44%|████▍ | 162897/371472 [1:59:27<19:26:59, 2.98it/s] 44%|████▍ | 162898/371472 [1:59:28<18:39:03, 3.11it/s] 44%|████▍ | 162899/371472 [1:59:28<19:24:00, 2.99it/s] 44%|████▍ | 162900/371472 [1:59:28<19:01:22, 3.05it/s] {'loss': 3.1277, 'learning_rate': 6.055991294791959e-07, 'epoch': 7.02} + 44%|████▍ | 162900/371472 [1:59:28<19:01:22, 3.05it/s] 44%|████▍ | 162901/371472 [1:59:29<18:45:00, 3.09it/s] 44%|████▍ | 162902/371472 [1:59:29<18:54:38, 3.06it/s] 44%|████▍ | 162903/371472 [1:59:29<18:29:53, 3.13it/s] 44%|████▍ | 162904/371472 [1:59:30<18:29:38, 3.13it/s] 44%|████▍ | 162905/371472 [1:59:30<18:27:26, 3.14it/s] 44%|████▍ | 162906/371472 [1:59:30<17:38:38, 3.28it/s] 44%|████▍ | 162907/371472 [1:59:31<16:53:41, 3.43it/s] 44%|████▍ | 162908/371472 [1:59:31<17:12:41, 3.37it/s] 44%|████▍ | 162909/371472 [1:59:31<17:42:51, 3.27it/s] 44%|████▍ | 162910/371472 [1:59:32<18:09:52, 3.19it/s] 44%|████▍ | 162911/371472 [1:59:32<18:15:33, 3.17it/s] 44%|████▍ | 162912/371472 [1:59:32<17:53:56, 3.24it/s] 44%|████▍ | 162913/371472 [1:59:33<20:54:39, 2.77it/s] 44%|████▍ | 162914/371472 [1:59:33<20:35:10, 2.81it/s] 44%|████▍ | 162915/371472 [1:59:33<19:52:47, 2.91it/s] 44%|████▍ | 162916/371472 [1:59:34<18:50:57, 3.07it/s] 44%|████▍ | 162917/371472 [1:59:34<18:19:08, 3.16it/s] 44%|████▍ | 162918/371472 [1:59:34<17:53:10, 3.24it/s] 44%|████▍ | 162919/371472 [1:59:34<17:59:22, 3.22it/s] 44%|████▍ | 162920/371472 [1:59:35<17:18:25, 3.35it/s] {'loss': 3.0074, 'learning_rate': 6.055506475037168e-07, 'epoch': 7.02} + 44%|████▍ | 162920/371472 [1:59:35<17:18:25, 3.35it/s] 44%|████▍ | 162921/371472 [1:59:35<18:03:53, 3.21it/s] 44%|████▍ | 162922/371472 [1:59:35<19:46:09, 2.93it/s] 44%|████▍ | 162923/371472 [1:59:36<19:00:41, 3.05it/s] 44%|████▍ | 162924/371472 [1:59:36<17:59:57, 3.22it/s] 44%|████▍ | 162925/371472 [1:59:36<17:21:39, 3.34it/s] 44%|████▍ | 162926/371472 [1:59:37<17:02:41, 3.40it/s] 44%|████▍ | 162927/371472 [1:59:37<17:02:45, 3.40it/s] 44%|████▍ | 162928/371472 [1:59:37<16:34:18, 3.50it/s] 44%|████▍ | 162929/371472 [1:59:37<16:44:08, 3.46it/s] 44%|████▍ | 162930/371472 [1:59:38<17:02:50, 3.40it/s] 44%|████▍ | 162931/371472 [1:59:38<17:05:42, 3.39it/s] 44%|████▍ | 162932/371472 [1:59:38<17:28:14, 3.32it/s] 44%|████▍ | 162933/371472 [1:59:39<17:05:08, 3.39it/s] 44%|████▍ | 162934/371472 [1:59:39<16:37:03, 3.49it/s] 44%|████▍ | 162935/371472 [1:59:39<17:29:10, 3.31it/s] 44%|████▍ | 162936/371472 [1:59:40<17:28:08, 3.32it/s] 44%|████▍ | 162937/371472 [1:59:40<17:32:23, 3.30it/s] 44%|████▍ | 162938/371472 [1:59:40<17:25:48, 3.32it/s] 44%|████▍ | 162939/371472 [1:59:40<17:27:58, 3.32it/s] 44%|████▍ | 162940/371472 [1:59:41<17:57:21, 3.23it/s] {'loss': 2.8977, 'learning_rate': 6.05502165528238e-07, 'epoch': 7.02} + 44%|████▍ | 162940/371472 [1:59:41<17:57:21, 3.23it/s] 44%|████▍ | 162941/371472 [1:59:41<17:38:57, 3.28it/s] 44%|████▍ | 162942/371472 [1:59:41<17:30:00, 3.31it/s] 44%|████▍ | 162943/371472 [1:59:42<17:17:51, 3.35it/s] 44%|████▍ | 162944/371472 [1:59:42<17:23:55, 3.33it/s] 44%|████▍ | 162945/371472 [1:59:42<16:46:24, 3.45it/s] 44%|████▍ | 162946/371472 [1:59:43<17:19:53, 3.34it/s] 44%|████▍ | 162947/371472 [1:59:43<17:16:01, 3.35it/s] 44%|████▍ | 162948/371472 [1:59:43<17:20:27, 3.34it/s] 44%|████▍ | 162949/371472 [1:59:43<17:16:33, 3.35it/s] 44%|████▍ | 162950/371472 [1:59:44<18:10:11, 3.19it/s] 44%|████▍ | 162951/371472 [1:59:44<17:27:17, 3.32it/s] 44%|████▍ | 162952/371472 [1:59:44<17:09:12, 3.38it/s] 44%|████▍ | 162953/371472 [1:59:45<18:07:55, 3.19it/s] 44%|████▍ | 162954/371472 [1:59:45<17:47:34, 3.26it/s] 44%|████▍ | 162955/371472 [1:59:45<17:32:48, 3.30it/s] 44%|████▍ | 162956/371472 [1:59:46<17:11:03, 3.37it/s] 44%|████▍ | 162957/371472 [1:59:46<17:09:39, 3.38it/s] 44%|████▍ | 162958/371472 [1:59:46<17:18:03, 3.35it/s] 44%|████▍ | 162959/371472 [1:59:46<16:51:50, 3.43it/s] 44%|████▍ | 162960/371472 [1:59:47<16:39:20, 3.48it/s] {'loss': 2.8764, 'learning_rate': 6.054536835527592e-07, 'epoch': 7.02} + 44%|████▍ | 162960/371472 [1:59:47<16:39:20, 3.48it/s] 44%|████▍ | 162961/371472 [1:59:47<17:22:43, 3.33it/s] 44%|████▍ | 162962/371472 [1:59:47<17:34:39, 3.30it/s] 44%|████▍ | 162963/371472 [1:59:48<17:10:03, 3.37it/s] 44%|████▍ | 162964/371472 [1:59:48<16:57:27, 3.42it/s] 44%|████▍ | 162965/371472 [1:59:48<16:56:43, 3.42it/s] 44%|████▍ | 162966/371472 [1:59:49<17:03:57, 3.39it/s] 44%|████▍ | 162967/371472 [1:59:49<16:35:03, 3.49it/s] 44%|████▍ | 162968/371472 [1:59:49<16:50:59, 3.44it/s] 44%|████▍ | 162969/371472 [1:59:50<18:45:06, 3.09it/s] 44%|████▍ | 162970/371472 [1:59:50<18:32:07, 3.12it/s] 44%|████▍ | 162971/371472 [1:59:50<18:26:15, 3.14it/s] 44%|████▍ | 162972/371472 [1:59:50<18:22:05, 3.15it/s] 44%|████▍ | 162973/371472 [1:59:51<17:48:39, 3.25it/s] 44%|████▍ | 162974/371472 [1:59:51<17:36:48, 3.29it/s] 44%|████▍ | 162975/371472 [1:59:51<16:57:22, 3.42it/s] 44%|████▍ | 162976/371472 [1:59:52<17:08:58, 3.38it/s] 44%|████▍ | 162977/371472 [1:59:52<18:03:15, 3.21it/s] 44%|████▍ | 162978/371472 [1:59:52<17:34:03, 3.30it/s] 44%|████▍ | 162979/371472 [1:59:53<17:52:48, 3.24it/s] 44%|████▍ | 162980/371472 [1:59:53<19:02:20, 3.04it/s] {'loss': 2.9158, 'learning_rate': 6.054052015772804e-07, 'epoch': 7.02} + 44%|████▍ | 162980/371472 [1:59:53<19:02:20, 3.04it/s] 44%|████▍ | 162981/371472 [1:59:53<19:17:16, 3.00it/s] 44%|████▍ | 162982/371472 [1:59:54<18:50:35, 3.07it/s] 44%|████▍ | 162983/371472 [1:59:54<18:28:27, 3.13it/s] 44%|████▍ | 162984/371472 [1:59:54<17:59:30, 3.22it/s] 44%|████▍ | 162985/371472 [1:59:54<17:28:12, 3.31it/s] 44%|████▍ | 162986/371472 [1:59:55<16:53:23, 3.43it/s] 44%|████▍ | 162987/371472 [1:59:55<17:50:28, 3.25it/s] 44%|████▍ | 162988/371472 [1:59:55<17:34:51, 3.29it/s] 44%|████▍ | 162989/371472 [1:59:56<17:50:57, 3.24it/s] 44%|████▍ | 162990/371472 [1:59:56<17:11:00, 3.37it/s] 44%|████▍ | 162991/371472 [1:59:56<17:07:43, 3.38it/s] 44%|████▍ | 162992/371472 [1:59:57<17:26:51, 3.32it/s] 44%|████▍ | 162993/371472 [1:59:57<17:17:11, 3.35it/s] 44%|████▍ | 162994/371472 [1:59:57<17:06:16, 3.39it/s] 44%|████▍ | 162995/371472 [1:59:57<17:52:28, 3.24it/s] 44%|████▍ | 162996/371472 [1:59:58<18:41:48, 3.10it/s] 44%|████▍ | 162997/371472 [1:59:58<18:01:30, 3.21it/s] 44%|████▍ | 162998/371472 [1:59:58<18:00:16, 3.22it/s] 44%|████▍ | 162999/371472 [1:59:59<18:11:33, 3.18it/s] 44%|████▍ | 163000/371472 [1:59:59<17:44:59, 3.26it/s] {'loss': 2.7917, 'learning_rate': 6.053567196018013e-07, 'epoch': 7.02} + 44%|████▍ | 163000/371472 [1:59:59<17:44:59, 3.26it/s] 44%|████▍ | 163001/371472 [1:59:59<17:26:05, 3.32it/s] 44%|████▍ | 163002/371472 [2:00:00<17:10:06, 3.37it/s] 44%|████▍ | 163003/371472 [2:00:00<17:01:31, 3.40it/s] 44%|████▍ | 163004/371472 [2:00:00<16:53:28, 3.43it/s] 44%|████▍ | 163005/371472 [2:00:00<16:43:47, 3.46it/s] 44%|████▍ | 163006/371472 [2:00:01<17:07:54, 3.38it/s] 44%|████▍ | 163007/371472 [2:00:01<16:52:05, 3.43it/s] 44%|████▍ | 163008/371472 [2:00:01<16:42:48, 3.46it/s] 44%|████▍ | 163009/371472 [2:00:02<18:02:51, 3.21it/s] 44%|████▍ | 163010/371472 [2:00:02<18:05:51, 3.20it/s] 44%|████▍ | 163011/371472 [2:00:02<18:29:33, 3.13it/s] 44%|████▍ | 163012/371472 [2:00:03<17:46:37, 3.26it/s] 44%|████▍ | 163013/371472 [2:00:03<17:24:18, 3.33it/s] 44%|████▍ | 163014/371472 [2:00:03<17:29:51, 3.31it/s] 44%|████▍ | 163015/371472 [2:00:04<17:19:32, 3.34it/s] 44%|████▍ | 163016/371472 [2:00:04<17:01:22, 3.40it/s] 44%|████▍ | 163017/371472 [2:00:04<16:38:11, 3.48it/s] 44%|████▍ | 163018/371472 [2:00:04<16:39:07, 3.48it/s] 44%|████▍ | 163019/371472 [2:00:05<17:02:03, 3.40it/s] 44%|████▍ | 163020/371472 [2:00:05<17:02:25, 3.40it/s] {'loss': 3.0121, 'learning_rate': 6.053082376263224e-07, 'epoch': 7.02} + 44%|████▍ | 163020/371472 [2:00:05<17:02:25, 3.40it/s] 44%|████▍ | 163021/371472 [2:00:05<17:04:46, 3.39it/s] 44%|████▍ | 163022/371472 [2:00:06<16:50:24, 3.44it/s] 44%|████▍ | 163023/371472 [2:00:06<16:53:02, 3.43it/s] 44%|████▍ | 163024/371472 [2:00:06<17:04:27, 3.39it/s] 44%|████▍ | 163025/371472 [2:00:06<17:11:52, 3.37it/s] 44%|████▍ | 163026/371472 [2:00:07<17:53:16, 3.24it/s] 44%|████▍ | 163027/371472 [2:00:07<17:42:02, 3.27it/s] 44%|████▍ | 163028/371472 [2:00:07<17:36:37, 3.29it/s] 44%|████▍ | 163029/371472 [2:00:08<17:22:41, 3.33it/s] 44%|████▍ | 163030/371472 [2:00:08<17:14:59, 3.36it/s] 44%|████▍ | 163031/371472 [2:00:08<17:13:51, 3.36it/s] 44%|████▍ | 163032/371472 [2:00:09<16:45:00, 3.46it/s] 44%|████▍ | 163033/371472 [2:00:09<16:50:49, 3.44it/s] 44%|████▍ | 163034/371472 [2:00:09<17:23:04, 3.33it/s] 44%|████▍ | 163035/371472 [2:00:10<18:45:57, 3.09it/s] 44%|████▍ | 163036/371472 [2:00:10<19:06:59, 3.03it/s] 44%|████▍ | 163037/371472 [2:00:10<18:45:25, 3.09it/s] 44%|████▍ | 163038/371472 [2:00:10<18:11:58, 3.18it/s] 44%|████▍ | 163039/371472 [2:00:11<17:42:09, 3.27it/s] 44%|████▍ | 163040/371472 [2:00:11<17:17:44, 3.35it/s] {'loss': 2.9799, 'learning_rate': 6.052597556508436e-07, 'epoch': 7.02} + 44%|████▍ | 163040/371472 [2:00:11<17:17:44, 3.35it/s] 44%|████▍ | 163041/371472 [2:00:11<17:24:47, 3.32it/s] 44%|████▍ | 163042/371472 [2:00:12<16:57:13, 3.42it/s] 44%|████▍ | 163043/371472 [2:00:12<16:51:45, 3.43it/s] 44%|████▍ | 163044/371472 [2:00:12<16:59:13, 3.41it/s] 44%|████▍ | 163045/371472 [2:00:13<17:21:00, 3.34it/s] 44%|████▍ | 163046/371472 [2:00:13<17:29:17, 3.31it/s] 44%|████▍ | 163047/371472 [2:00:13<16:45:28, 3.45it/s] 44%|████▍ | 163048/371472 [2:00:13<16:46:31, 3.45it/s] 44%|████▍ | 163049/371472 [2:00:14<16:54:43, 3.42it/s] 44%|████▍ | 163050/371472 [2:00:14<17:18:26, 3.35it/s] 44%|████▍ | 163051/371472 [2:00:14<17:06:58, 3.38it/s] 44%|████▍ | 163052/371472 [2:00:15<17:08:23, 3.38it/s] 44%|████▍ | 163053/371472 [2:00:15<17:00:54, 3.40it/s] 44%|████▍ | 163054/371472 [2:00:15<16:40:34, 3.47it/s] 44%|████▍ | 163055/371472 [2:00:15<17:05:54, 3.39it/s] 44%|████▍ | 163056/371472 [2:00:16<17:17:17, 3.35it/s] 44%|████▍ | 163057/371472 [2:00:16<17:48:15, 3.25it/s] 44%|████▍ | 163058/371472 [2:00:16<18:34:35, 3.12it/s] 44%|████▍ | 163059/371472 [2:00:17<17:37:58, 3.28it/s] 44%|████▍ | 163060/371472 [2:00:17<17:06:52, 3.38it/s] {'loss': 2.8608, 'learning_rate': 6.052112736753647e-07, 'epoch': 7.02} + 44%|████▍ | 163060/371472 [2:00:17<17:06:52, 3.38it/s] 44%|████▍ | 163061/371472 [2:00:17<17:41:56, 3.27it/s] 44%|████▍ | 163062/371472 [2:00:18<17:44:58, 3.26it/s] 44%|████▍ | 163063/371472 [2:00:18<17:34:11, 3.29it/s] 44%|████▍ | 163064/371472 [2:00:18<17:29:30, 3.31it/s] 44%|████▍ | 163065/371472 [2:00:19<17:43:21, 3.27it/s] 44%|████▍ | 163066/371472 [2:00:19<17:21:00, 3.34it/s] 44%|████▍ | 163067/371472 [2:00:19<17:20:47, 3.34it/s] 44%|████▍ | 163068/371472 [2:00:19<17:12:46, 3.36it/s] 44%|████▍ | 163069/371472 [2:00:20<16:57:14, 3.41it/s] 44%|████▍ | 163070/371472 [2:00:20<17:05:33, 3.39it/s] 44%|████▍ | 163071/371472 [2:00:20<17:05:49, 3.39it/s] 44%|████▍ | 163072/371472 [2:00:21<17:34:57, 3.29it/s] 44%|████▍ | 163073/371472 [2:00:21<18:28:24, 3.13it/s] 44%|████▍ | 163074/371472 [2:00:21<18:06:55, 3.20it/s] 44%|████▍ | 163075/371472 [2:00:22<17:46:13, 3.26it/s] 44%|████▍ | 163076/371472 [2:00:22<17:32:21, 3.30it/s] 44%|████▍ | 163077/371472 [2:00:22<17:32:56, 3.30it/s] 44%|████▍ | 163078/371472 [2:00:22<17:06:00, 3.39it/s] 44%|████▍ | 163079/371472 [2:00:23<16:59:11, 3.41it/s] 44%|████▍ | 163080/371472 [2:00:23<16:53:00, 3.43it/s] {'loss': 3.0588, 'learning_rate': 6.051627916998858e-07, 'epoch': 7.02} + 44%|████▍ | 163080/371472 [2:00:23<16:53:00, 3.43it/s] 44%|████▍ | 163081/371472 [2:00:23<16:47:12, 3.45it/s] 44%|████▍ | 163082/371472 [2:00:24<16:21:11, 3.54it/s] 44%|████▍ | 163083/371472 [2:00:24<16:18:47, 3.55it/s] 44%|████▍ | 163084/371472 [2:00:24<16:43:23, 3.46it/s] 44%|████▍ | 163085/371472 [2:00:25<18:08:23, 3.19it/s] 44%|████▍ | 163086/371472 [2:00:25<17:40:59, 3.27it/s] 44%|████▍ | 163087/371472 [2:00:25<17:20:48, 3.34it/s] 44%|████▍ | 163088/371472 [2:00:25<17:03:58, 3.39it/s] 44%|████▍ | 163089/371472 [2:00:26<17:06:53, 3.38it/s] 44%|████▍ | 163090/371472 [2:00:26<17:10:52, 3.37it/s] 44%|████▍ | 163091/371472 [2:00:26<16:49:40, 3.44it/s] 44%|████▍ | 163092/371472 [2:00:27<16:33:00, 3.50it/s] 44%|████▍ | 163093/371472 [2:00:27<16:27:31, 3.52it/s] 44%|████▍ | 163094/371472 [2:00:27<17:34:49, 3.29it/s] 44%|████▍ | 163095/371472 [2:00:27<17:20:06, 3.34it/s] 44%|████▍ | 163096/371472 [2:00:28<18:05:33, 3.20it/s] 44%|████▍ | 163097/371472 [2:00:28<17:37:55, 3.28it/s] 44%|████▍ | 163098/371472 [2:00:28<17:10:37, 3.37it/s] 44%|████▍ | 163099/371472 [2:00:29<17:03:54, 3.39it/s] 44%|████▍ | 163100/371472 [2:00:29<17:41:14, 3.27it/s] {'loss': 3.0159, 'learning_rate': 6.051143097244069e-07, 'epoch': 7.03} + 44%|████▍ | 163100/371472 [2:00:29<17:41:14, 3.27it/s] 44%|████▍ | 163101/371472 [2:00:29<19:47:02, 2.93it/s] 44%|████▍ | 163102/371472 [2:00:30<19:45:06, 2.93it/s] 44%|████▍ | 163103/371472 [2:00:30<19:02:24, 3.04it/s] 44%|████▍ | 163104/371472 [2:00:30<17:56:00, 3.23it/s] 44%|████▍ | 163105/371472 [2:00:31<17:21:25, 3.33it/s] 44%|████▍ | 163106/371472 [2:00:31<17:21:16, 3.34it/s] 44%|████▍ | 163107/371472 [2:00:31<17:04:49, 3.39it/s] 44%|████▍ | 163108/371472 [2:00:31<17:04:45, 3.39it/s] 44%|████▍ | 163109/371472 [2:00:32<16:50:26, 3.44it/s] 44%|████▍ | 163110/371472 [2:00:32<17:06:46, 3.38it/s] 44%|████▍ | 163111/371472 [2:00:32<17:09:32, 3.37it/s] 44%|████▍ | 163112/371472 [2:00:33<18:31:55, 3.12it/s] 44%|████▍ | 163113/371472 [2:00:33<19:11:06, 3.02it/s] 44%|████▍ | 163114/371472 [2:00:33<18:21:56, 3.15it/s] 44%|████▍ | 163115/371472 [2:00:34<17:52:19, 3.24it/s] 44%|████▍ | 163116/371472 [2:00:34<17:13:04, 3.36it/s] 44%|████▍ | 163117/371472 [2:00:34<17:09:50, 3.37it/s] 44%|████▍ | 163118/371472 [2:00:35<17:06:17, 3.38it/s] 44%|████▍ | 163119/371472 [2:00:35<17:59:03, 3.22it/s] 44%|████▍ | 163120/371472 [2:00:35<17:37:05, 3.29it/s] {'loss': 2.9035, 'learning_rate': 6.05065827748928e-07, 'epoch': 7.03} + 44%|████▍ | 163120/371472 [2:00:35<17:37:05, 3.29it/s] 44%|████▍ | 163121/371472 [2:00:35<17:53:32, 3.23it/s] 44%|████▍ | 163122/371472 [2:00:36<17:46:37, 3.26it/s] 44%|████▍ | 163123/371472 [2:00:36<19:13:20, 3.01it/s] 44%|████▍ | 163124/371472 [2:00:36<18:48:22, 3.08it/s] 44%|████▍ | 163125/371472 [2:00:37<18:04:01, 3.20it/s] 44%|████▍ | 163126/371472 [2:00:37<18:42:34, 3.09it/s] 44%|████▍ | 163127/371472 [2:00:37<18:47:50, 3.08it/s] 44%|████▍ | 163128/371472 [2:00:38<18:32:05, 3.12it/s] 44%|████▍ | 163129/371472 [2:00:38<18:41:19, 3.10it/s] 44%|████▍ | 163130/371472 [2:00:38<18:44:50, 3.09it/s] 44%|████▍ | 163131/371472 [2:00:39<18:22:23, 3.15it/s] 44%|████▍ | 163132/371472 [2:00:39<17:55:46, 3.23it/s] 44%|████▍ | 163133/371472 [2:00:39<17:35:59, 3.29it/s] 44%|████▍ | 163134/371472 [2:00:40<16:57:26, 3.41it/s] 44%|████▍ | 163135/371472 [2:00:40<16:54:47, 3.42it/s] 44%|████▍ | 163136/371472 [2:00:40<16:41:06, 3.47it/s] 44%|████▍ | 163137/371472 [2:00:40<16:43:40, 3.46it/s] 44%|████▍ | 163138/371472 [2:00:41<16:23:33, 3.53it/s] 44%|████▍ | 163139/371472 [2:00:41<16:06:41, 3.59it/s] 44%|████▍ | 163140/371472 [2:00:41<16:12:40, 3.57it/s] {'loss': 2.8273, 'learning_rate': 6.050173457734491e-07, 'epoch': 7.03} + 44%|████▍ | 163140/371472 [2:00:41<16:12:40, 3.57it/s] 44%|████▍ | 163141/371472 [2:00:42<16:31:57, 3.50it/s] 44%|████▍ | 163142/371472 [2:00:42<16:53:59, 3.42it/s] 44%|████▍ | 163143/371472 [2:00:42<17:10:28, 3.37it/s] 44%|████▍ | 163144/371472 [2:00:42<16:41:23, 3.47it/s] 44%|████▍ | 163145/371472 [2:00:43<17:20:50, 3.34it/s] 44%|████▍ | 163146/371472 [2:00:43<17:02:29, 3.40it/s] 44%|████▍ | 163147/371472 [2:00:43<17:08:18, 3.38it/s] 44%|████▍ | 163148/371472 [2:00:44<17:09:42, 3.37it/s] 44%|████▍ | 163149/371472 [2:00:44<17:07:26, 3.38it/s] 44%|████▍ | 163150/371472 [2:00:44<17:06:09, 3.38it/s] 44%|████▍ | 163151/371472 [2:00:45<17:31:15, 3.30it/s] 44%|████▍ | 163152/371472 [2:00:45<17:11:17, 3.37it/s] 44%|████▍ | 163153/371472 [2:00:45<17:37:03, 3.28it/s] 44%|████▍ | 163154/371472 [2:00:45<17:26:02, 3.32it/s] 44%|████▍ | 163155/371472 [2:00:46<17:22:38, 3.33it/s] 44%|████▍ | 163156/371472 [2:00:46<18:14:27, 3.17it/s] 44%|████▍ | 163157/371472 [2:00:46<18:13:26, 3.18it/s] 44%|████▍ | 163158/371472 [2:00:47<18:49:49, 3.07it/s] 44%|████▍ | 163159/371472 [2:00:47<19:11:45, 3.01it/s] 44%|████▍ | 163160/371472 [2:00:47<18:52:13, 3.07it/s] {'loss': 2.9879, 'learning_rate': 6.049688637979701e-07, 'epoch': 7.03} + 44%|████▍ | 163160/371472 [2:00:47<18:52:13, 3.07it/s] 44%|████▍ | 163161/371472 [2:00:48<18:01:25, 3.21it/s] 44%|████▍ | 163162/371472 [2:00:48<18:32:51, 3.12it/s] 44%|████▍ | 163163/371472 [2:00:48<17:43:58, 3.26it/s] 44%|████▍ | 163164/371472 [2:00:49<17:39:22, 3.28it/s] 44%|████▍ | 163165/371472 [2:00:49<17:18:30, 3.34it/s] 44%|████▍ | 163166/371472 [2:00:49<17:52:06, 3.24it/s] 44%|████▍ | 163167/371472 [2:00:50<18:08:37, 3.19it/s] 44%|████▍ | 163168/371472 [2:00:50<19:42:27, 2.94it/s] 44%|████▍ | 163169/371472 [2:00:50<19:23:12, 2.98it/s] 44%|████▍ | 163170/371472 [2:00:51<18:47:38, 3.08it/s] 44%|████▍ | 163171/371472 [2:00:51<18:26:17, 3.14it/s] 44%|████▍ | 163172/371472 [2:00:51<18:05:38, 3.20it/s] 44%|████▍ | 163173/371472 [2:00:51<18:04:14, 3.20it/s] 44%|████▍ | 163174/371472 [2:00:52<20:41:51, 2.80it/s] 44%|████▍ | 163175/371472 [2:00:52<19:29:10, 2.97it/s] 44%|████▍ | 163176/371472 [2:00:53<19:20:42, 2.99it/s] 44%|████▍ | 163177/371472 [2:00:53<18:20:26, 3.15it/s] 44%|████▍ | 163178/371472 [2:00:53<17:49:46, 3.25it/s] 44%|████▍ | 163179/371472 [2:00:53<17:26:13, 3.32it/s] 44%|████▍ | 163180/371472 [2:00:54<16:47:23, 3.45it/s] {'loss': 2.8966, 'learning_rate': 6.049203818224913e-07, 'epoch': 7.03} + 44%|████▍ | 163180/371472 [2:00:54<16:47:23, 3.45it/s] 44%|████▍ | 163181/371472 [2:00:54<16:21:30, 3.54it/s] 44%|████▍ | 163182/371472 [2:00:54<16:17:35, 3.55it/s] 44%|████▍ | 163183/371472 [2:00:55<16:36:54, 3.48it/s] 44%|████▍ | 163184/371472 [2:00:55<16:33:21, 3.49it/s] 44%|████▍ | 163185/371472 [2:00:55<17:41:02, 3.27it/s] 44%|████▍ | 163186/371472 [2:00:55<18:07:40, 3.19it/s] 44%|████▍ | 163187/371472 [2:00:56<17:46:52, 3.25it/s] 44%|████▍ | 163188/371472 [2:00:56<17:14:21, 3.36it/s] 44%|████▍ | 163189/371472 [2:00:56<18:49:31, 3.07it/s] 44%|████▍ | 163190/371472 [2:00:57<18:14:27, 3.17it/s] 44%|████▍ | 163191/371472 [2:00:57<17:35:43, 3.29it/s] 44%|████▍ | 163192/371472 [2:00:57<17:27:17, 3.31it/s] 44%|████▍ | 163193/371472 [2:00:58<17:40:12, 3.27it/s] 44%|████▍ | 163194/371472 [2:00:58<17:05:38, 3.38it/s] 44%|████▍ | 163195/371472 [2:00:58<17:52:04, 3.24it/s] 44%|████▍ | 163196/371472 [2:00:59<17:29:51, 3.31it/s] 44%|████▍ | 163197/371472 [2:00:59<18:36:44, 3.11it/s] 44%|████▍ | 163198/371472 [2:00:59<17:48:05, 3.25it/s] 44%|████▍ | 163199/371472 [2:00:59<17:43:53, 3.26it/s] 44%|████▍ | 163200/371472 [2:01:00<17:14:04, 3.36it/s] {'loss': 3.0789, 'learning_rate': 6.048718998470125e-07, 'epoch': 7.03} + 44%|████▍ | 163200/371472 [2:01:00<17:14:04, 3.36it/s] 44%|████▍ | 163201/371472 [2:01:00<18:21:14, 3.15it/s] 44%|████▍ | 163202/371472 [2:01:00<17:45:37, 3.26it/s] 44%|████▍ | 163203/371472 [2:01:01<17:59:07, 3.22it/s] 44%|████▍ | 163204/371472 [2:01:01<17:42:47, 3.27it/s] 44%|████▍ | 163205/371472 [2:01:01<17:42:31, 3.27it/s] 44%|████▍ | 163206/371472 [2:01:02<18:06:50, 3.19it/s] 44%|████▍ | 163207/371472 [2:01:02<18:17:22, 3.16it/s] 44%|████▍ | 163208/371472 [2:01:02<18:15:10, 3.17it/s] 44%|████▍ | 163209/371472 [2:01:03<18:12:50, 3.18it/s] 44%|████▍ | 163210/371472 [2:01:03<17:48:47, 3.25it/s] 44%|████▍ | 163211/371472 [2:01:03<17:22:00, 3.33it/s] 44%|████▍ | 163212/371472 [2:01:03<17:03:18, 3.39it/s] 44%|████▍ | 163213/371472 [2:01:04<16:47:26, 3.45it/s] 44%|████▍ | 163214/371472 [2:01:04<16:59:47, 3.40it/s] 44%|████▍ | 163215/371472 [2:01:04<17:53:04, 3.23it/s] 44%|████▍ | 163216/371472 [2:01:05<17:34:44, 3.29it/s] 44%|████▍ | 163217/371472 [2:01:05<17:41:42, 3.27it/s] 44%|████▍ | 163218/371472 [2:01:05<17:38:47, 3.28it/s] 44%|████▍ | 163219/371472 [2:01:06<17:18:57, 3.34it/s] 44%|████▍ | 163220/371472 [2:01:06<17:17:37, 3.35it/s] {'loss': 2.9414, 'learning_rate': 6.048234178715335e-07, 'epoch': 7.03} + 44%|████▍ | 163220/371472 [2:01:06<17:17:37, 3.35it/s] 44%|████▍ | 163221/371472 [2:01:06<16:51:57, 3.43it/s] 44%|████▍ | 163222/371472 [2:01:06<16:25:56, 3.52it/s] 44%|████▍ | 163223/371472 [2:01:07<16:09:49, 3.58it/s] 44%|████▍ | 163224/371472 [2:01:07<16:31:04, 3.50it/s] 44%|████▍ | 163225/371472 [2:01:07<16:38:05, 3.48it/s] 44%|████▍ | 163226/371472 [2:01:08<17:49:09, 3.25it/s] 44%|████▍ | 163227/371472 [2:01:08<17:44:42, 3.26it/s] 44%|████▍ | 163228/371472 [2:01:08<17:55:02, 3.23it/s] 44%|████▍ | 163229/371472 [2:01:09<17:44:55, 3.26it/s] 44%|████▍ | 163230/371472 [2:01:09<18:32:00, 3.12it/s] 44%|████▍ | 163231/371472 [2:01:09<18:38:27, 3.10it/s] 44%|████▍ | 163232/371472 [2:01:10<18:03:07, 3.20it/s] 44%|████▍ | 163233/371472 [2:01:10<17:50:07, 3.24it/s] 44%|████▍ | 163234/371472 [2:01:10<17:52:39, 3.24it/s] 44%|████▍ | 163235/371472 [2:01:10<17:44:43, 3.26it/s] 44%|████▍ | 163236/371472 [2:01:11<17:05:36, 3.38it/s] 44%|████▍ | 163237/371472 [2:01:11<16:48:20, 3.44it/s] 44%|████▍ | 163238/371472 [2:01:11<16:57:09, 3.41it/s] 44%|████▍ | 163239/371472 [2:01:12<17:10:50, 3.37it/s] 44%|████▍ | 163240/371472 [2:01:12<16:44:20, 3.46it/s] {'loss': 2.9182, 'learning_rate': 6.047749358960546e-07, 'epoch': 7.03} + 44%|████▍ | 163240/371472 [2:01:12<16:44:20, 3.46it/s] 44%|████▍ | 163241/371472 [2:01:12<16:26:33, 3.52it/s] 44%|████▍ | 163242/371472 [2:01:12<16:50:24, 3.43it/s] 44%|████▍ | 163243/371472 [2:01:13<16:52:36, 3.43it/s] 44%|████▍ | 163244/371472 [2:01:13<16:47:34, 3.44it/s] 44%|████▍ | 163245/371472 [2:01:13<18:13:04, 3.17it/s] 44%|████▍ | 163246/371472 [2:01:14<18:12:51, 3.18it/s] 44%|████▍ | 163247/371472 [2:01:14<17:51:26, 3.24it/s] 44%|████▍ | 163248/371472 [2:01:14<17:21:30, 3.33it/s] 44%|████▍ | 163249/371472 [2:01:15<17:07:35, 3.38it/s] 44%|████▍ | 163250/371472 [2:01:15<17:21:57, 3.33it/s] 44%|████▍ | 163251/371472 [2:01:15<17:13:50, 3.36it/s] 44%|████▍ | 163252/371472 [2:01:16<18:37:10, 3.11it/s] 44%|████▍ | 163253/371472 [2:01:16<17:43:56, 3.26it/s] 44%|████▍ | 163254/371472 [2:01:16<17:22:06, 3.33it/s] 44%|████▍ | 163255/371472 [2:01:16<17:05:58, 3.38it/s] 44%|████▍ | 163256/371472 [2:01:17<17:13:18, 3.36it/s] 44%|████▍ | 163257/371472 [2:01:17<17:04:20, 3.39it/s] 44%|████▍ | 163258/371472 [2:01:17<17:57:35, 3.22it/s] 44%|████▍ | 163259/371472 [2:01:18<18:26:53, 3.14it/s] 44%|████▍ | 163260/371472 [2:01:18<17:53:24, 3.23it/s] {'loss': 2.8845, 'learning_rate': 6.047264539205757e-07, 'epoch': 7.03} + 44%|████▍ | 163260/371472 [2:01:18<17:53:24, 3.23it/s] 44%|████▍ | 163261/371472 [2:01:18<18:46:29, 3.08it/s] 44%|████▍ | 163262/371472 [2:01:19<18:31:04, 3.12it/s] 44%|████▍ | 163263/371472 [2:01:19<18:12:32, 3.18it/s] 44%|████▍ | 163264/371472 [2:01:19<17:48:33, 3.25it/s] 44%|████▍ | 163265/371472 [2:01:19<17:08:15, 3.37it/s] 44%|████▍ | 163266/371472 [2:01:20<17:13:52, 3.36it/s] 44%|████▍ | 163267/371472 [2:01:20<17:49:34, 3.24it/s] 44%|████▍ | 163268/371472 [2:01:20<17:13:21, 3.36it/s] 44%|████▍ | 163269/371472 [2:01:21<17:08:26, 3.37it/s] 44%|████▍ | 163270/371472 [2:01:21<17:17:18, 3.35it/s] 44%|████▍ | 163271/371472 [2:01:21<16:36:07, 3.48it/s] 44%|████▍ | 163272/371472 [2:01:22<20:16:29, 2.85it/s] 44%|████▍ | 163273/371472 [2:01:22<19:27:44, 2.97it/s] 44%|████▍ | 163274/371472 [2:01:22<18:36:25, 3.11it/s] 44%|████▍ | 163275/371472 [2:01:23<17:58:18, 3.22it/s] 44%|████▍ | 163276/371472 [2:01:23<18:53:02, 3.06it/s] 44%|████▍ | 163277/371472 [2:01:23<18:00:27, 3.21it/s] 44%|████▍ | 163278/371472 [2:01:24<18:21:07, 3.15it/s] 44%|████▍ | 163279/371472 [2:01:24<18:01:00, 3.21it/s] 44%|████▍ | 163280/371472 [2:01:24<17:40:27, 3.27it/s] {'loss': 2.9894, 'learning_rate': 6.046779719450968e-07, 'epoch': 7.03} + 44%|████▍ | 163280/371472 [2:01:24<17:40:27, 3.27it/s] 44%|████▍ | 163281/371472 [2:01:24<17:35:51, 3.29it/s] 44%|████▍ | 163282/371472 [2:01:25<17:16:39, 3.35it/s] 44%|████▍ | 163283/371472 [2:01:25<17:43:55, 3.26it/s] 44%|████▍ | 163284/371472 [2:01:25<17:25:15, 3.32it/s] 44%|████▍ | 163285/371472 [2:01:26<17:19:34, 3.34it/s] 44%|████▍ | 163286/371472 [2:01:26<17:54:18, 3.23it/s] 44%|████▍ | 163287/371472 [2:01:26<17:21:09, 3.33it/s] 44%|████▍ | 163288/371472 [2:01:27<17:36:17, 3.28it/s] 44%|████▍ | 163289/371472 [2:01:27<19:15:15, 3.00it/s] 44%|████▍ | 163290/371472 [2:01:27<18:19:43, 3.16it/s] 44%|████▍ | 163291/371472 [2:01:28<18:04:49, 3.20it/s] 44%|████▍ | 163292/371472 [2:01:28<17:37:50, 3.28it/s] 44%|████▍ | 163293/371472 [2:01:28<17:10:33, 3.37it/s] 44%|████▍ | 163294/371472 [2:01:28<17:12:04, 3.36it/s] 44%|████▍ | 163295/371472 [2:01:29<18:14:37, 3.17it/s] 44%|████▍ | 163296/371472 [2:01:29<17:55:25, 3.23it/s] 44%|████▍ | 163297/371472 [2:01:29<17:14:08, 3.36it/s] 44%|████▍ | 163298/371472 [2:01:30<17:09:59, 3.37it/s] 44%|████▍ | 163299/371472 [2:01:30<17:01:40, 3.40it/s] 44%|████▍ | 163300/371472 [2:01:30<16:58:36, 3.41it/s] {'loss': 2.981, 'learning_rate': 6.046294899696179e-07, 'epoch': 7.03} + 44%|████▍ | 163300/371472 [2:01:30<16:58:36, 3.41it/s] 44%|████▍ | 163301/371472 [2:01:31<17:16:55, 3.35it/s] 44%|████▍ | 163302/371472 [2:01:31<16:41:27, 3.46it/s] 44%|████▍ | 163303/371472 [2:01:31<16:33:53, 3.49it/s] 44%|████▍ | 163304/371472 [2:01:31<16:28:17, 3.51it/s] 44%|████▍ | 163305/371472 [2:01:32<16:24:20, 3.52it/s] 44%|████▍ | 163306/371472 [2:01:32<16:30:24, 3.50it/s] 44%|████▍ | 163307/371472 [2:01:32<17:57:35, 3.22it/s] 44%|████▍ | 163308/371472 [2:01:33<17:15:10, 3.35it/s] 44%|████▍ | 163309/371472 [2:01:33<17:46:02, 3.25it/s] 44%|████▍ | 163310/371472 [2:01:33<18:48:24, 3.07it/s] 44%|████▍ | 163311/371472 [2:01:34<18:17:56, 3.16it/s] 44%|████▍ | 163312/371472 [2:01:34<17:57:46, 3.22it/s] 44%|████▍ | 163313/371472 [2:01:34<18:31:31, 3.12it/s] 44%|████▍ | 163314/371472 [2:01:34<17:38:32, 3.28it/s] 44%|████▍ | 163315/371472 [2:01:35<18:37:48, 3.10it/s] 44%|████▍ | 163316/371472 [2:01:35<17:34:33, 3.29it/s] 44%|████▍ | 163317/371472 [2:01:35<17:23:19, 3.33it/s] 44%|████▍ | 163318/371472 [2:01:36<18:11:26, 3.18it/s] 44%|████▍ | 163319/371472 [2:01:36<19:55:07, 2.90it/s] 44%|████▍ | 163320/371472 [2:01:36<18:50:26, 3.07it/s] {'loss': 3.0679, 'learning_rate': 6.04581007994139e-07, 'epoch': 7.03} + 44%|████▍ | 163320/371472 [2:01:36<18:50:26, 3.07it/s] 44%|████▍ | 163321/371472 [2:01:37<18:14:01, 3.17it/s] 44%|████▍ | 163322/371472 [2:01:37<18:01:16, 3.21it/s] 44%|████▍ | 163323/371472 [2:01:37<17:49:09, 3.24it/s] 44%|████▍ | 163324/371472 [2:01:38<18:32:15, 3.12it/s] 44%|████▍ | 163325/371472 [2:01:38<18:11:35, 3.18it/s] 44%|████▍ | 163326/371472 [2:01:38<17:54:11, 3.23it/s] 44%|████▍ | 163327/371472 [2:01:39<17:27:11, 3.31it/s] 44%|████▍ | 163328/371472 [2:01:39<17:50:36, 3.24it/s] 44%|████▍ | 163329/371472 [2:01:39<18:01:02, 3.21it/s] 44%|████▍ | 163330/371472 [2:01:39<17:29:21, 3.31it/s] 44%|████▍ | 163331/371472 [2:01:40<17:16:25, 3.35it/s] 44%|████▍ | 163332/371472 [2:01:40<17:45:25, 3.26it/s] 44%|████▍ | 163333/371472 [2:01:40<17:19:16, 3.34it/s] 44%|████▍ | 163334/371472 [2:01:41<17:30:25, 3.30it/s] 44%|████▍ | 163335/371472 [2:01:41<17:44:14, 3.26it/s] 44%|████▍ | 163336/371472 [2:01:41<17:11:26, 3.36it/s] 44%|████▍ | 163337/371472 [2:01:42<17:17:16, 3.34it/s] 44%|████▍ | 163338/371472 [2:01:42<17:19:47, 3.34it/s] 44%|████▍ | 163339/371472 [2:01:42<18:06:58, 3.19it/s] 44%|████▍ | 163340/371472 [2:01:43<18:35:17, 3.11it/s] {'loss': 2.7753, 'learning_rate': 6.045325260186602e-07, 'epoch': 7.04} + 44%|████▍ | 163340/371472 [2:01:43<18:35:17, 3.11it/s] 44%|████▍ | 163341/371472 [2:01:43<18:43:53, 3.09it/s] 44%|████▍ | 163342/371472 [2:01:43<18:37:41, 3.10it/s] 44%|████▍ | 163343/371472 [2:01:44<18:04:00, 3.20it/s] 44%|████▍ | 163344/371472 [2:01:44<17:52:03, 3.24it/s] 44%|████▍ | 163345/371472 [2:01:44<18:18:26, 3.16it/s] 44%|████▍ | 163346/371472 [2:01:44<17:34:19, 3.29it/s] 44%|████▍ | 163347/371472 [2:01:45<17:13:05, 3.36it/s] 44%|████▍ | 163348/371472 [2:01:45<18:17:01, 3.16it/s] 44%|████▍ | 163349/371472 [2:01:45<17:21:35, 3.33it/s] 44%|████▍ | 163350/371472 [2:01:46<17:11:15, 3.36it/s] 44%|██���█▍ | 163351/371472 [2:01:46<16:45:24, 3.45it/s] 44%|████▍ | 163352/371472 [2:01:46<17:24:09, 3.32it/s] 44%|████▍ | 163353/371472 [2:01:47<17:36:35, 3.28it/s] 44%|████▍ | 163354/371472 [2:01:47<17:13:45, 3.36it/s] 44%|████▍ | 163355/371472 [2:01:47<16:59:49, 3.40it/s] 44%|████▍ | 163356/371472 [2:01:47<17:01:35, 3.40it/s] 44%|████▍ | 163357/371472 [2:01:48<16:35:48, 3.48it/s] 44%|████▍ | 163358/371472 [2:01:48<17:09:53, 3.37it/s] 44%|████▍ | 163359/371472 [2:01:48<16:51:20, 3.43it/s] 44%|████▍ | 163360/371472 [2:01:49<17:38:23, 3.28it/s] {'loss': 2.8831, 'learning_rate': 6.044840440431813e-07, 'epoch': 7.04} + 44%|████▍ | 163360/371472 [2:01:49<17:38:23, 3.28it/s] 44%|████▍ | 163361/371472 [2:01:49<17:05:56, 3.38it/s] 44%|████▍ | 163362/371472 [2:01:49<17:41:00, 3.27it/s] 44%|████▍ | 163363/371472 [2:01:49<17:18:32, 3.34it/s] 44%|████▍ | 163364/371472 [2:01:50<17:33:51, 3.29it/s] 44%|████▍ | 163365/371472 [2:01:50<17:46:21, 3.25it/s] 44%|████▍ | 163366/371472 [2:01:50<18:40:37, 3.10it/s] 44%|████▍ | 163367/371472 [2:01:51<17:56:37, 3.22it/s] 44%|████▍ | 163368/371472 [2:01:51<18:03:17, 3.20it/s] 44%|████▍ | 163369/371472 [2:01:51<17:22:26, 3.33it/s] 44%|████▍ | 163370/371472 [2:01:52<17:04:58, 3.38it/s] 44%|████▍ | 163371/371472 [2:01:52<17:04:16, 3.39it/s] 44%|████▍ | 163372/371472 [2:01:52<17:08:14, 3.37it/s] 44%|████▍ | 163373/371472 [2:01:53<17:07:26, 3.38it/s] 44%|████▍ | 163374/371472 [2:01:53<16:49:56, 3.43it/s] 44%|████▍ | 163375/371472 [2:01:53<16:58:02, 3.41it/s] 44%|████▍ | 163376/371472 [2:01:53<17:33:58, 3.29it/s] 44%|████▍ | 163377/371472 [2:01:54<17:03:23, 3.39it/s] 44%|████▍ | 163378/371472 [2:01:54<16:50:54, 3.43it/s] 44%|████▍ | 163379/371472 [2:01:54<16:52:48, 3.42it/s] 44%|████▍ | 163380/371472 [2:01:55<17:31:41, 3.30it/s] {'loss': 3.0505, 'learning_rate': 6.044355620677023e-07, 'epoch': 7.04} + 44%|████▍ | 163380/371472 [2:01:55<17:31:41, 3.30it/s] 44%|████▍ | 163381/371472 [2:01:55<17:17:02, 3.34it/s] 44%|████▍ | 163382/371472 [2:01:55<17:23:38, 3.32it/s] 44%|████▍ | 163383/371472 [2:01:56<17:28:46, 3.31it/s] 44%|████▍ | 163384/371472 [2:01:56<17:15:22, 3.35it/s] 44%|████▍ | 163385/371472 [2:01:56<16:39:34, 3.47it/s] 44%|████▍ | 163386/371472 [2:01:56<17:06:00, 3.38it/s] 44%|████▍ | 163387/371472 [2:01:57<17:16:17, 3.35it/s] 44%|████▍ | 163388/371472 [2:01:57<18:04:47, 3.20it/s] 44%|████▍ | 163389/371472 [2:01:57<18:01:08, 3.21it/s] 44%|████▍ | 163390/371472 [2:01:58<17:52:39, 3.23it/s] 44%|████▍ | 163391/371472 [2:01:58<18:45:06, 3.08it/s] 44%|████▍ | 163392/371472 [2:01:58<17:34:26, 3.29it/s] 44%|████▍ | 163393/371472 [2:01:59<17:01:16, 3.40it/s] 44%|████▍ | 163394/371472 [2:01:59<16:40:13, 3.47it/s] 44%|████▍ | 163395/371472 [2:01:59<16:36:45, 3.48it/s] 44%|████▍ | 163396/371472 [2:01:59<16:46:26, 3.45it/s] 44%|████▍ | 163397/371472 [2:02:00<17:06:04, 3.38it/s] 44%|████▍ | 163398/371472 [2:02:00<17:19:15, 3.34it/s] 44%|████▍ | 163399/371472 [2:02:00<17:22:43, 3.33it/s] 44%|████▍ | 163400/371472 [2:02:01<16:59:47, 3.40it/s] {'loss': 3.0424, 'learning_rate': 6.043870800922234e-07, 'epoch': 7.04} + 44%|████▍ | 163400/371472 [2:02:01<16:59:47, 3.40it/s] 44%|████▍ | 163401/371472 [2:02:01<16:56:09, 3.41it/s] 44%|████▍ | 163402/371472 [2:02:01<17:39:04, 3.27it/s] 44%|████▍ | 163403/371472 [2:02:01<17:00:26, 3.40it/s] 44%|████▍ | 163404/371472 [2:02:02<18:14:29, 3.17it/s] 44%|████▍ | 163405/371472 [2:02:02<17:27:48, 3.31it/s] 44%|████▍ | 163406/371472 [2:02:02<17:14:48, 3.35it/s] 44%|████▍ | 163407/371472 [2:02:03<17:20:15, 3.33it/s] 44%|████▍ | 163408/371472 [2:02:03<18:56:58, 3.05it/s] 44%|████▍ | 163409/371472 [2:02:03<19:34:55, 2.95it/s] 44%|████▍ | 163410/371472 [2:02:04<18:57:50, 3.05it/s] 44%|████▍ | 163411/371472 [2:02:04<18:06:52, 3.19it/s] 44%|████▍ | 163412/371472 [2:02:04<17:37:20, 3.28it/s] 44%|████▍ | 163413/371472 [2:02:05<17:23:25, 3.32it/s] 44%|████▍ | 163414/371472 [2:02:05<17:58:45, 3.21it/s] 44%|████▍ | 163415/371472 [2:02:05<17:37:21, 3.28it/s] 44%|████▍ | 163416/371472 [2:02:06<17:10:36, 3.36it/s] 44%|████▍ | 163417/371472 [2:02:06<16:38:24, 3.47it/s] 44%|████▍ | 163418/371472 [2:02:06<16:49:47, 3.43it/s] 44%|████▍ | 163419/371472 [2:02:06<16:28:10, 3.51it/s] 44%|████▍ | 163420/371472 [2:02:07<16:44:06, 3.45it/s] {'loss': 2.8949, 'learning_rate': 6.043385981167446e-07, 'epoch': 7.04} + 44%|████▍ | 163420/371472 [2:02:07<16:44:06, 3.45it/s] 44%|████▍ | 163421/371472 [2:02:07<16:50:47, 3.43it/s] 44%|████▍ | 163422/371472 [2:02:07<16:52:26, 3.42it/s] 44%|████▍ | 163423/371472 [2:02:08<17:19:26, 3.34it/s] 44%|████▍ | 163424/371472 [2:02:08<17:17:48, 3.34it/s] 44%|████▍ | 163425/371472 [2:02:08<16:48:20, 3.44it/s] 44%|████▍ | 163426/371472 [2:02:08<16:52:27, 3.42it/s] 44%|████▍ | 163427/371472 [2:02:09<16:32:41, 3.49it/s] 44%|████▍ | 163428/371472 [2:02:09<16:26:01, 3.52it/s] 44%|████▍ | 163429/371472 [2:02:09<16:51:25, 3.43it/s] 44%|████▍ | 163430/371472 [2:02:10<18:19:50, 3.15it/s] 44%|████▍ | 163431/371472 [2:02:10<17:49:12, 3.24it/s] 44%|████▍ | 163432/371472 [2:02:10<17:21:53, 3.33it/s] 44%|████▍ | 163433/371472 [2:02:11<17:37:24, 3.28it/s] 44%|████▍ | 163434/371472 [2:02:11<17:15:52, 3.35it/s] 44%|████▍ | 163435/371472 [2:02:11<17:11:20, 3.36it/s] 44%|████▍ | 163436/371472 [2:02:12<21:23:25, 2.70it/s] 44%|████▍ | 163437/371472 [2:02:12<19:39:19, 2.94it/s] 44%|████▍ | 163438/371472 [2:02:12<18:35:05, 3.11it/s] 44%|████▍ | 163439/371472 [2:02:13<18:12:08, 3.17it/s] 44%|████▍ | 163440/371472 [2:02:13<18:15:50, 3.16it/s] {'loss': 2.8069, 'learning_rate': 6.042901161412656e-07, 'epoch': 7.04} + 44%|████▍ | 163440/371472 [2:02:13<18:15:50, 3.16it/s] 44%|████▍ | 163441/371472 [2:02:13<18:37:19, 3.10it/s] 44%|████▍ | 163442/371472 [2:02:13<18:06:59, 3.19it/s] 44%|████▍ | 163443/371472 [2:02:14<18:09:52, 3.18it/s] 44%|████▍ | 163444/371472 [2:02:14<17:25:41, 3.32it/s] 44%|████▍ | 163445/371472 [2:02:14<17:28:17, 3.31it/s] 44%|████▍ | 163446/371472 [2:02:15<17:29:32, 3.30it/s] 44%|████▍ | 163447/371472 [2:02:15<18:04:21, 3.20it/s] 44%|████▍ | 163448/371472 [2:02:15<18:01:52, 3.20it/s] 44%|████▍ | 163449/371472 [2:02:16<17:35:48, 3.28it/s] 44%|████▍ | 163450/371472 [2:02:16<18:15:59, 3.16it/s] 44%|████▍ | 163451/371472 [2:02:16<17:44:19, 3.26it/s] 44%|████▍ | 163452/371472 [2:02:17<17:15:20, 3.35it/s] 44%|████▍ | 163453/371472 [2:02:17<17:11:06, 3.36it/s] 44%|████▍ | 163454/371472 [2:02:17<17:16:33, 3.34it/s] 44%|████▍ | 163455/371472 [2:02:17<17:27:33, 3.31it/s] 44%|████▍ | 163456/371472 [2:02:18<17:18:13, 3.34it/s] 44%|████▍ | 163457/371472 [2:02:18<16:57:55, 3.41it/s] 44%|████▍ | 163458/371472 [2:02:18<17:14:19, 3.35it/s] 44%|████▍ | 163459/371472 [2:02:19<16:58:38, 3.40it/s] 44%|████▍ | 163460/371472 [2:02:19<16:46:58, 3.44it/s] {'loss': 3.0025, 'learning_rate': 6.042416341657868e-07, 'epoch': 7.04} + 44%|████▍ | 163460/371472 [2:02:19<16:46:58, 3.44it/s] 44%|████▍ | 163461/371472 [2:02:19<16:36:05, 3.48it/s] 44%|████▍ | 163462/371472 [2:02:19<16:19:53, 3.54it/s] 44%|████▍ | 163463/371472 [2:02:20<16:05:11, 3.59it/s] 44%|████▍ | 163464/371472 [2:02:20<15:48:19, 3.66it/s] 44%|████▍ | 163465/371472 [2:02:20<15:45:38, 3.67it/s] 44%|████▍ | 163466/371472 [2:02:21<15:54:34, 3.63it/s] 44%|████▍ | 163467/371472 [2:02:21<15:53:35, 3.64it/s] 44%|████▍ | 163468/371472 [2:02:21<17:12:59, 3.36it/s] 44%|████▍ | 163469/371472 [2:02:21<17:01:08, 3.39it/s] 44%|████▍ | 163470/371472 [2:02:22<16:51:08, 3.43it/s] 44%|████▍ | 163471/371472 [2:02:22<19:40:21, 2.94it/s] 44%|████▍ | 163472/371472 [2:02:23<20:10:39, 2.86it/s] 44%|████▍ | 163473/371472 [2:02:23<19:04:51, 3.03it/s] 44%|████▍ | 163474/371472 [2:02:23<18:42:42, 3.09it/s] 44%|████▍ | 163475/371472 [2:02:23<18:36:48, 3.10it/s] 44%|████▍ | 163476/371472 [2:02:24<19:36:16, 2.95it/s] 44%|████▍ | 163477/371472 [2:02:24<18:47:10, 3.08it/s] 44%|████▍ | 163478/371472 [2:02:24<18:03:10, 3.20it/s] 44%|████▍ | 163479/371472 [2:02:25<18:11:55, 3.17it/s] 44%|████▍ | 163480/371472 [2:02:25<17:42:28, 3.26it/s] {'loss': 2.962, 'learning_rate': 6.041931521903079e-07, 'epoch': 7.04} + 44%|████▍ | 163480/371472 [2:02:25<17:42:28, 3.26it/s] 44%|████▍ | 163481/371472 [2:02:25<17:16:14, 3.35it/s] 44%|████▍ | 163482/371472 [2:02:26<16:45:03, 3.45it/s] 44%|████▍ | 163483/371472 [2:02:26<16:39:23, 3.47it/s] 44%|████▍ | 163484/371472 [2:02:26<16:43:09, 3.46it/s] 44%|████▍ | 163485/371472 [2:02:27<18:05:07, 3.19it/s] 44%|████▍ | 163486/371472 [2:02:27<17:45:07, 3.25it/s] 44%|████▍ | 163487/371472 [2:02:27<17:23:42, 3.32it/s] 44%|████▍ | 163488/371472 [2:02:27<17:29:56, 3.30it/s] 44%|████▍ | 163489/371472 [2:02:28<19:04:48, 3.03it/s] 44%|████▍ | 163490/371472 [2:02:28<17:59:25, 3.21it/s] 44%|████▍ | 163491/371472 [2:02:28<17:22:42, 3.32it/s] 44%|████▍ | 163492/371472 [2:02:29<16:56:18, 3.41it/s] 44%|████▍ | 163493/371472 [2:02:29<16:48:11, 3.44it/s] 44%|████▍ | 163494/371472 [2:02:29<16:47:52, 3.44it/s] 44%|████▍ | 163495/371472 [2:02:29<17:09:14, 3.37it/s] 44%|████▍ | 163496/371472 [2:02:30<17:56:16, 3.22it/s] 44%|████▍ | 163497/371472 [2:02:30<18:00:43, 3.21it/s] 44%|████▍ | 163498/371472 [2:02:30<18:40:15, 3.09it/s] 44%|████▍ | 163499/371472 [2:02:31<17:49:19, 3.24it/s] 44%|████▍ | 163500/371472 [2:02:31<17:16:25, 3.34it/s] {'loss': 3.0152, 'learning_rate': 6.04144670214829e-07, 'epoch': 7.04} + 44%|████▍ | 163500/371472 [2:02:31<17:16:25, 3.34it/s] 44%|████▍ | 163501/371472 [2:02:31<17:39:04, 3.27it/s] 44%|████▍ | 163502/371472 [2:02:32<17:37:48, 3.28it/s] 44%|████▍ | 163503/371472 [2:02:32<17:50:17, 3.24it/s] 44%|████▍ | 163504/371472 [2:02:32<18:26:14, 3.13it/s] 44%|████▍ | 163505/371472 [2:02:33<18:11:05, 3.18it/s] 44%|████▍ | 163506/371472 [2:02:33<17:16:53, 3.34it/s] 44%|████▍ | 163507/371472 [2:02:33<17:12:24, 3.36it/s] 44%|████▍ | 163508/371472 [2:02:33<16:49:10, 3.43it/s] 44%|████▍ | 163509/371472 [2:02:34<16:29:39, 3.50it/s] 44%|████▍ | 163510/371472 [2:02:34<16:43:26, 3.45it/s] 44%|████▍ | 163511/371472 [2:02:34<16:36:02, 3.48it/s] 44%|████▍ | 163512/371472 [2:02:35<17:07:21, 3.37it/s] 44%|████▍ | 163513/371472 [2:02:35<17:07:37, 3.37it/s] 44%|████▍ | 163514/371472 [2:02:35<17:56:47, 3.22it/s] 44%|████▍ | 163515/371472 [2:02:36<17:35:03, 3.29it/s] 44%|████▍ | 163516/371472 [2:02:36<17:06:20, 3.38it/s] 44%|████▍ | 163517/371472 [2:02:36<17:08:59, 3.37it/s] 44%|████▍ | 163518/371472 [2:02:37<18:25:17, 3.14it/s] 44%|████▍ | 163519/371472 [2:02:37<17:33:40, 3.29it/s] 44%|████▍ | 163520/371472 [2:02:37<17:25:14, 3.32it/s] {'loss': 2.8635, 'learning_rate': 6.040961882393501e-07, 'epoch': 7.04} + 44%|████▍ | 163520/371472 [2:02:37<17:25:14, 3.32it/s] 44%|████▍ | 163521/371472 [2:02:37<17:56:04, 3.22it/s] 44%|████▍ | 163522/371472 [2:02:38<17:16:14, 3.34it/s] 44%|████▍ | 163523/371472 [2:02:38<17:06:54, 3.38it/s] 44%|████▍ | 163524/371472 [2:02:38<17:01:14, 3.39it/s] 44%|████▍ | 163525/371472 [2:02:39<16:48:24, 3.44it/s] 44%|████▍ | 163526/371472 [2:02:39<17:49:17, 3.24it/s] 44%|████▍ | 163527/371472 [2:02:39<17:30:14, 3.30it/s] 44%|████▍ | 163528/371472 [2:02:39<17:02:34, 3.39it/s] 44%|████▍ | 163529/371472 [2:02:40<17:02:52, 3.39it/s] 44%|████▍ | 163530/371472 [2:02:40<16:49:23, 3.43it/s] 44%|████▍ | 163531/371472 [2:02:40<17:49:03, 3.24it/s] 44%|████▍ | 163532/371472 [2:02:41<18:20:49, 3.15it/s] 44%|████▍ | 163533/371472 [2:02:41<17:48:03, 3.24it/s] 44%|████▍ | 163534/371472 [2:02:41<17:44:04, 3.26it/s] 44%|████▍ | 163535/371472 [2:02:42<17:14:46, 3.35it/s] 44%|████▍ | 163536/371472 [2:02:42<16:37:41, 3.47it/s] 44%|████▍ | 163537/371472 [2:02:42<16:29:26, 3.50it/s] 44%|████▍ | 163538/371472 [2:02:42<16:38:01, 3.47it/s] 44%|████▍ | 163539/371472 [2:02:43<16:42:30, 3.46it/s] 44%|████▍ | 163540/371472 [2:02:43<16:56:17, 3.41it/s] {'loss': 2.9724, 'learning_rate': 6.040477062638712e-07, 'epoch': 7.04} + 44%|████▍ | 163540/371472 [2:02:43<16:56:17, 3.41it/s] 44%|████▍ | 163541/371472 [2:02:43<16:54:04, 3.42it/s] 44%|████▍ | 163542/371472 [2:02:44<18:04:10, 3.20it/s] 44%|████▍ | 163543/371472 [2:02:44<17:37:19, 3.28it/s] 44%|████▍ | 163544/371472 [2:02:44<18:22:19, 3.14it/s] 44%|████▍ | 163545/371472 [2:02:45<18:18:21, 3.16it/s] 44%|████▍ | 163546/371472 [2:02:45<18:20:13, 3.15it/s] 44%|████▍ | 163547/371472 [2:02:45<18:46:49, 3.08it/s] 44%|████▍ | 163548/371472 [2:02:46<18:00:32, 3.21it/s] 44%|████▍ | 163549/371472 [2:02:46<17:29:19, 3.30it/s] 44%|████▍ | 163550/371472 [2:02:46<18:08:57, 3.18it/s] 44%|████▍ | 163551/371472 [2:02:47<18:04:17, 3.20it/s] 44%|████▍ | 163552/371472 [2:02:47<18:17:49, 3.16it/s] 44%|████▍ | 163553/371472 [2:02:47<18:12:03, 3.17it/s] 44%|████▍ | 163554/371472 [2:02:47<17:54:07, 3.23it/s] 44%|████▍ | 163555/371472 [2:02:48<18:03:34, 3.20it/s] 44%|████▍ | 163556/371472 [2:02:48<17:40:46, 3.27it/s] 44%|████▍ | 163557/371472 [2:02:48<17:17:22, 3.34it/s] 44%|████▍ | 163558/371472 [2:02:49<18:07:24, 3.19it/s] 44%|████▍ | 163559/371472 [2:02:49<17:45:46, 3.25it/s] 44%|████▍ | 163560/371472 [2:02:49<17:22:39, 3.32it/s] {'loss': 2.9637, 'learning_rate': 6.039992242883923e-07, 'epoch': 7.04} + 44%|████▍ | 163560/371472 [2:02:49<17:22:39, 3.32it/s] 44%|████▍ | 163561/371472 [2:02:50<17:12:00, 3.36it/s] 44%|████▍ | 163562/371472 [2:02:50<17:55:26, 3.22it/s] 44%|████▍ | 163563/371472 [2:02:50<18:17:42, 3.16it/s] 44%|████▍ | 163564/371472 [2:02:51<17:43:00, 3.26it/s] 44%|████▍ | 163565/371472 [2:02:51<17:26:50, 3.31it/s] 44%|████▍ | 163566/371472 [2:02:51<17:05:01, 3.38it/s] 44%|████▍ | 163567/371472 [2:02:51<17:32:28, 3.29it/s] 44%|████▍ | 163568/371472 [2:02:52<17:02:59, 3.39it/s] 44%|████▍ | 163569/371472 [2:02:52<17:01:17, 3.39it/s] 44%|████▍ | 163570/371472 [2:02:52<17:51:31, 3.23it/s] 44%|████▍ | 163571/371472 [2:02:53<18:00:40, 3.21it/s] 44%|████▍ | 163572/371472 [2:02:53<17:09:58, 3.36it/s] 44%|████▍ | 163573/371472 [2:02:53<18:30:47, 3.12it/s] 44%|████▍ | 163574/371472 [2:02:54<18:06:16, 3.19it/s] 44%|████▍ | 163575/371472 [2:02:54<18:02:36, 3.20it/s] 44%|████▍ | 163576/371472 [2:02:54<17:45:25, 3.25it/s] 44%|████▍ | 163577/371472 [2:02:54<16:54:44, 3.41it/s] 44%|████▍ | 163578/371472 [2:02:55<16:54:03, 3.42it/s] 44%|████▍ | 163579/371472 [2:02:55<16:49:15, 3.43it/s] 44%|████▍ | 163580/371472 [2:02:55<16:42:47, 3.46it/s] {'loss': 3.1147, 'learning_rate': 6.039507423129134e-07, 'epoch': 7.05} + 44%|████▍ | 163580/371472 [2:02:55<16:42:47, 3.46it/s] 44%|████▍ | 163581/371472 [2:02:56<16:50:15, 3.43it/s] 44%|████▍ | 163582/371472 [2:02:56<16:38:46, 3.47it/s] 44%|████▍ | 163583/371472 [2:02:56<16:29:22, 3.50it/s] 44%|████▍ | 163584/371472 [2:02:56<16:37:51, 3.47it/s] 44%|████▍ | 163585/371472 [2:02:57<17:08:41, 3.37it/s] 44%|████▍ | 163586/371472 [2:02:57<16:55:52, 3.41it/s] 44%|████▍ | 163587/371472 [2:02:57<17:13:38, 3.35it/s] 44%|████▍ | 163588/371472 [2:02:58<18:12:41, 3.17it/s] 44%|████▍ | 163589/371472 [2:02:58<17:42:09, 3.26it/s] 44%|████▍ | 163590/371472 [2:02:58<17:16:01, 3.34it/s] 44%|████▍ | 163591/371472 [2:02:59<17:35:52, 3.28it/s] 44%|████▍ | 163592/371472 [2:02:59<16:59:40, 3.40it/s] 44%|████▍ | 163593/371472 [2:02:59<16:44:37, 3.45it/s] 44%|████▍ | 163594/371472 [2:02:59<16:44:21, 3.45it/s] 44%|████▍ | 163595/371472 [2:03:00<16:34:34, 3.48it/s] 44%|████▍ | 163596/371472 [2:03:00<16:30:30, 3.50it/s] 44%|████▍ | 163597/371472 [2:03:00<16:53:59, 3.42it/s] 44%|████▍ | 163598/371472 [2:03:01<17:39:02, 3.27it/s] 44%|████▍ | 163599/371472 [2:03:01<17:56:22, 3.22it/s] 44%|████▍ | 163600/371472 [2:03:01<17:41:05, 3.27it/s] {'loss': 3.136, 'learning_rate': 6.039022603374346e-07, 'epoch': 7.05} + 44%|████▍ | 163600/371472 [2:03:01<17:41:05, 3.27it/s] 44%|████▍ | 163601/371472 [2:03:02<17:10:40, 3.36it/s] 44%|████▍ | 163602/371472 [2:03:02<18:59:53, 3.04it/s] 44%|████▍ | 163603/371472 [2:03:02<18:07:29, 3.19it/s] 44%|████▍ | 163604/371472 [2:03:03<18:50:31, 3.06it/s] 44%|████▍ | 163605/371472 [2:03:03<18:58:38, 3.04it/s] 44%|████▍ | 163606/371472 [2:03:03<18:18:37, 3.15it/s] 44%|████▍ | 163607/371472 [2:03:04<18:00:32, 3.21it/s] 44%|████▍ | 163608/371472 [2:03:04<18:02:33, 3.20it/s] 44%|████▍ | 163609/371472 [2:03:04<17:32:32, 3.29it/s] 44%|████▍ | 163610/371472 [2:03:04<18:57:20, 3.05it/s] 44%|████▍ | 163611/371472 [2:03:05<18:05:23, 3.19it/s] 44%|████▍ | 163612/371472 [2:03:05<17:54:51, 3.22it/s] 44%|████▍ | 163613/371472 [2:03:05<19:23:32, 2.98it/s] 44%|████▍ | 163614/371472 [2:03:06<18:37:17, 3.10it/s] 44%|████▍ | 163615/371472 [2:03:06<17:44:05, 3.26it/s] 44%|████▍ | 163616/371472 [2:03:06<17:11:49, 3.36it/s] 44%|████▍ | 163617/371472 [2:03:07<17:00:35, 3.39it/s] 44%|████▍ | 163618/371472 [2:03:07<16:44:51, 3.45it/s] 44%|████▍ | 163619/371472 [2:03:07<16:47:01, 3.44it/s] 44%|████▍ | 163620/371472 [2:03:07<17:10:02, 3.36it/s] {'loss': 2.9028, 'learning_rate': 6.038537783619557e-07, 'epoch': 7.05} + 44%|████▍ | 163620/371472 [2:03:07<17:10:02, 3.36it/s] 44%|████▍ | 163621/371472 [2:03:08<16:40:36, 3.46it/s] 44%|████▍ | 163622/371472 [2:03:08<16:32:33, 3.49it/s] 44%|████▍ | 163623/371472 [2:03:08<16:44:07, 3.45it/s] 44%|████▍ | 163624/371472 [2:03:09<16:45:38, 3.44it/s] 44%|████▍ | 163625/371472 [2:03:09<16:34:02, 3.48it/s] 44%|████▍ | 163626/371472 [2:03:09<16:29:03, 3.50it/s] 44%|████▍ | 163627/371472 [2:03:09<16:44:33, 3.45it/s] 44%|████▍ | 163628/371472 [2:03:10<16:40:49, 3.46it/s] 44%|████▍ | 163629/371472 [2:03:10<16:49:25, 3.43it/s] 44%|████▍ | 163630/371472 [2:03:10<16:49:08, 3.43it/s] 44%|████▍ | 163631/371472 [2:03:11<16:31:00, 3.50it/s] 44%|████▍ | 163632/371472 [2:03:11<16:18:51, 3.54it/s] 44%|████▍ | 163633/371472 [2:03:11<16:27:14, 3.51it/s] 44%|████▍ | 163634/371472 [2:03:11<16:00:51, 3.61it/s] 44%|████▍ | 163635/371472 [2:03:12<16:29:01, 3.50it/s] 44%|████▍ | 163636/371472 [2:03:12<17:13:40, 3.35it/s] 44%|████▍ | 163637/371472 [2:03:12<16:46:03, 3.44it/s] 44%|████▍ | 163638/371472 [2:03:13<16:36:40, 3.48it/s] 44%|████▍ | 163639/371472 [2:03:13<16:31:04, 3.50it/s] 44%|████▍ | 163640/371472 [2:03:13<19:08:26, 3.02it/s] {'loss': 3.1695, 'learning_rate': 6.038052963864767e-07, 'epoch': 7.05} + 44%|████▍ | 163640/371472 [2:03:13<19:08:26, 3.02it/s] 44%|████▍ | 163641/371472 [2:03:14<18:22:15, 3.14it/s] 44%|████▍ | 163642/371472 [2:03:14<17:47:18, 3.25it/s] 44%|████▍ | 163643/371472 [2:03:14<17:25:45, 3.31it/s] 44%|████▍ | 163644/371472 [2:03:14<16:52:14, 3.42it/s] 44%|████▍ | 163645/371472 [2:03:15<16:58:48, 3.40it/s] 44%|████▍ | 163646/371472 [2:03:15<16:36:52, 3.47it/s] 44%|████▍ | 163647/371472 [2:03:15<17:04:29, 3.38it/s] 44%|████▍ | 163648/371472 [2:03:16<17:51:00, 3.23it/s] 44%|████▍ | 163649/371472 [2:03:16<17:31:12, 3.29it/s] 44%|████▍ | 163650/371472 [2:03:16<17:31:59, 3.29it/s] 44%|████▍ | 163651/371472 [2:03:17<18:09:45, 3.18it/s] 44%|████▍ | 163652/371472 [2:03:17<18:00:34, 3.21it/s] 44%|████▍ | 163653/371472 [2:03:17<17:20:50, 3.33it/s] 44%|████▍ | 163654/371472 [2:03:18<17:47:35, 3.24it/s] 44%|████▍ | 163655/371472 [2:03:18<18:12:18, 3.17it/s] 44%|████▍ | 163656/371472 [2:03:18<18:17:24, 3.16it/s] 44%|████▍ | 163657/371472 [2:03:18<17:38:36, 3.27it/s] 44%|████▍ | 163658/371472 [2:03:19<17:06:34, 3.37it/s] 44%|████▍ | 163659/371472 [2:03:19<17:32:48, 3.29it/s] 44%|████▍ | 163660/371472 [2:03:19<17:14:33, 3.35it/s] {'loss': 2.964, 'learning_rate': 6.037568144109978e-07, 'epoch': 7.05} + 44%|████▍ | 163660/371472 [2:03:19<17:14:33, 3.35it/s] 44%|████▍ | 163661/371472 [2:03:20<18:43:45, 3.08it/s] 44%|████▍ | 163662/371472 [2:03:20<17:54:53, 3.22it/s] 44%|████▍ | 163663/371472 [2:03:20<17:52:20, 3.23it/s] 44%|████▍ | 163664/371472 [2:03:21<17:55:24, 3.22it/s] 44%|████▍ | 163665/371472 [2:03:21<17:32:19, 3.29it/s] 44%|████▍ | 163666/371472 [2:03:21<17:25:34, 3.31it/s] 44%|████▍ | 163667/371472 [2:03:22<18:53:17, 3.06it/s] 44%|████▍ | 163668/371472 [2:03:22<17:59:22, 3.21it/s] 44%|████▍ | 163669/371472 [2:03:22<17:26:15, 3.31it/s] 44%|████▍ | 163670/371472 [2:03:22<16:47:29, 3.44it/s] 44%|████▍ | 163671/371472 [2:03:23<16:28:42, 3.50it/s] 44%|████▍ | 163672/371472 [2:03:23<16:56:54, 3.41it/s] 44%|████▍ | 163673/371472 [2:03:23<17:05:21, 3.38it/s] 44%|████▍ | 163674/371472 [2:03:24<16:57:21, 3.40it/s] 44%|████▍ | 163675/371472 [2:03:24<16:54:43, 3.41it/s] 44%|████▍ | 163676/371472 [2:03:24<17:03:36, 3.38it/s] 44%|████▍ | 163677/371472 [2:03:25<17:24:43, 3.31it/s] 44%|████▍ | 163678/371472 [2:03:25<17:10:21, 3.36it/s] 44%|████▍ | 163679/371472 [2:03:25<17:55:18, 3.22it/s] 44%|████▍ | 163680/371472 [2:03:26<19:25:00, 2.97it/s] {'loss': 2.9293, 'learning_rate': 6.03708332435519e-07, 'epoch': 7.05} + 44%|████▍ | 163680/371472 [2:03:26<19:25:00, 2.97it/s] 44%|████▍ | 163681/371472 [2:03:26<18:46:24, 3.07it/s] 44%|████▍ | 163682/371472 [2:03:26<18:36:52, 3.10it/s] 44%|████▍ | 163683/371472 [2:03:26<18:12:50, 3.17it/s] 44%|████▍ | 163684/371472 [2:03:27<17:28:56, 3.30it/s] 44%|████▍ | 163685/371472 [2:03:27<17:36:46, 3.28it/s] 44%|████▍ | 163686/371472 [2:03:27<17:34:12, 3.29it/s] 44%|████▍ | 163687/371472 [2:03:28<17:52:16, 3.23it/s] 44%|████▍ | 163688/371472 [2:03:28<17:31:50, 3.29it/s] 44%|████▍ | 163689/371472 [2:03:28<17:14:45, 3.35it/s] 44%|████▍ | 163690/371472 [2:03:29<17:16:00, 3.34it/s] 44%|████▍ | 163691/371472 [2:03:29<17:03:52, 3.38it/s] 44%|████▍ | 163692/371472 [2:03:29<16:55:42, 3.41it/s] 44%|████▍ | 163693/371472 [2:03:29<17:01:54, 3.39it/s] 44%|████▍ | 163694/371472 [2:03:30<17:13:51, 3.35it/s] 44%|████▍ | 163695/371472 [2:03:30<17:34:22, 3.28it/s] 44%|████▍ | 163696/371472 [2:03:30<17:27:06, 3.31it/s] 44%|████▍ | 163697/371472 [2:03:31<17:40:45, 3.26it/s] 44%|████▍ | 163698/371472 [2:03:31<18:35:06, 3.11it/s] 44%|████▍ | 163699/371472 [2:03:31<17:55:58, 3.22it/s] 44%|████▍ | 163700/371472 [2:03:32<18:28:32, 3.12it/s] {'loss': 2.844, 'learning_rate': 6.0365985046004e-07, 'epoch': 7.05} + 44%|████▍ | 163700/371472 [2:03:32<18:28:32, 3.12it/s] 44%|████▍ | 163701/371472 [2:03:32<18:07:06, 3.19it/s] 44%|████▍ | 163702/371472 [2:03:32<17:43:10, 3.26it/s] 44%|████▍ | 163703/371472 [2:03:33<17:12:12, 3.35it/s] 44%|████▍ | 163704/371472 [2:03:33<16:53:10, 3.42it/s] 44%|████▍ | 163705/371472 [2:03:33<16:49:24, 3.43it/s] 44%|████▍ | 163706/371472 [2:03:33<17:38:02, 3.27it/s] 44%|████▍ | 163707/371472 [2:03:34<17:39:10, 3.27it/s] 44%|████▍ | 163708/371472 [2:03:34<18:43:19, 3.08it/s] 44%|████▍ | 163709/371472 [2:03:34<18:41:45, 3.09it/s] 44%|████▍ | 163710/371472 [2:03:35<18:06:21, 3.19it/s] 44%|████▍ | 163711/371472 [2:03:35<18:08:21, 3.18it/s] 44%|████▍ | 163712/371472 [2:03:35<17:54:17, 3.22it/s] 44%|████▍ | 163713/371472 [2:03:36<17:50:13, 3.24it/s] 44%|████▍ | 163714/371472 [2:03:36<17:39:43, 3.27it/s] 44%|████▍ | 163715/371472 [2:03:36<17:01:44, 3.39it/s] 44%|████▍ | 163716/371472 [2:03:36<16:56:33, 3.41it/s] 44%|████▍ | 163717/371472 [2:03:37<16:39:02, 3.47it/s] 44%|████▍ | 163718/371472 [2:03:37<16:53:52, 3.42it/s] 44%|████▍ | 163719/371472 [2:03:37<17:46:30, 3.25it/s] 44%|████▍ | 163720/371472 [2:03:38<17:16:23, 3.34it/s] {'loss': 2.9406, 'learning_rate': 6.036113684845612e-07, 'epoch': 7.05} + 44%|████▍ | 163720/371472 [2:03:38<17:16:23, 3.34it/s] 44%|████▍ | 163721/371472 [2:03:38<17:32:18, 3.29it/s] 44%|████▍ | 163722/371472 [2:03:38<17:14:18, 3.35it/s] 44%|████▍ | 163723/371472 [2:03:39<17:09:01, 3.36it/s] 44%|████▍ | 163724/371472 [2:03:39<16:53:11, 3.42it/s] 44%|████▍ | 163725/371472 [2:03:39<16:52:19, 3.42it/s] 44%|████▍ | 163726/371472 [2:03:39<16:53:06, 3.42it/s] 44%|████▍ | 163727/371472 [2:03:40<18:19:32, 3.15it/s] 44%|████▍ | 163728/371472 [2:03:40<17:47:25, 3.24it/s] 44%|████▍ | 163729/371472 [2:03:40<17:43:07, 3.26it/s] 44%|████▍ | 163730/371472 [2:03:41<21:00:27, 2.75it/s] 44%|████▍ | 163731/371472 [2:03:41<20:40:00, 2.79it/s] 44%|████▍ | 163732/371472 [2:03:42<19:46:35, 2.92it/s] 44%|████▍ | 163733/371472 [2:03:42<19:02:25, 3.03it/s] 44%|████▍ | 163734/371472 [2:03:42<18:19:43, 3.15it/s] 44%|████▍ | 163735/371472 [2:03:42<17:49:34, 3.24it/s] 44%|████▍ | 163736/371472 [2:03:43<17:57:23, 3.21it/s] 44%|████▍ | 163737/371472 [2:03:43<17:41:25, 3.26it/s] 44%|████▍ | 163738/371472 [2:03:43<17:38:44, 3.27it/s] 44%|████▍ | 163739/371472 [2:03:44<17:25:16, 3.31it/s] 44%|████▍ | 163740/371472 [2:03:44<17:35:18, 3.28it/s] {'loss': 2.8727, 'learning_rate': 6.035628865090823e-07, 'epoch': 7.05} + 44%|████▍ | 163740/371472 [2:03:44<17:35:18, 3.28it/s] 44%|████▍ | 163741/371472 [2:03:44<17:38:19, 3.27it/s] 44%|████▍ | 163742/371472 [2:03:45<19:10:36, 3.01it/s] 44%|████▍ | 163743/371472 [2:03:45<18:56:00, 3.05it/s] 44%|████▍ | 163744/371472 [2:03:45<18:21:20, 3.14it/s] 44%|████▍ | 163745/371472 [2:03:46<17:59:14, 3.21it/s] 44%|████▍ | 163746/371472 [2:03:46<17:26:14, 3.31it/s] 44%|████▍ | 163747/371472 [2:03:46<17:08:58, 3.36it/s] 44%|████▍ | 163748/371472 [2:03:46<16:49:57, 3.43it/s] 44%|████▍ | 163749/371472 [2:03:47<16:54:43, 3.41it/s] 44%|████▍ | 163750/371472 [2:03:47<17:26:21, 3.31it/s] 44%|████▍ | 163751/371472 [2:03:47<18:15:50, 3.16it/s] 44%|████▍ | 163752/371472 [2:03:48<18:21:28, 3.14it/s] 44%|████▍ | 163753/371472 [2:03:48<17:38:20, 3.27it/s] 44%|████▍ | 163754/371472 [2:03:48<18:14:45, 3.16it/s] 44%|████▍ | 163755/371472 [2:03:49<17:41:53, 3.26it/s] 44%|████▍ | 163756/371472 [2:03:49<17:39:26, 3.27it/s] 44%|████▍ | 163757/371472 [2:03:49<17:33:54, 3.28it/s] 44%|████▍ | 163758/371472 [2:03:50<17:42:57, 3.26it/s] 44%|████▍ | 163759/371472 [2:03:50<18:24:17, 3.13it/s] 44%|████▍ | 163760/371472 [2:03:50<18:30:07, 3.12it/s] {'loss': 3.0454, 'learning_rate': 6.035144045336032e-07, 'epoch': 7.05} + 44%|████▍ | 163760/371472 [2:03:50<18:30:07, 3.12it/s] 44%|████▍ | 163761/371472 [2:03:51<18:20:06, 3.15it/s] 44%|████▍ | 163762/371472 [2:03:51<18:13:48, 3.16it/s] 44%|████▍ | 163763/371472 [2:03:51<17:58:00, 3.21it/s] 44%|████▍ | 163764/371472 [2:03:51<17:53:32, 3.22it/s] 44%|████▍ | 163765/371472 [2:03:52<17:12:49, 3.35it/s] 44%|████▍ | 163766/371472 [2:03:52<17:02:01, 3.39it/s] 44%|████▍ | 163767/371472 [2:03:52<17:17:15, 3.34it/s] 44%|████▍ | 163768/371472 [2:03:53<17:45:53, 3.25it/s] 44%|████▍ | 163769/371472 [2:03:53<18:24:26, 3.13it/s] 44%|████▍ | 163770/371472 [2:03:53<17:53:05, 3.23it/s] 44%|████▍ | 163771/371472 [2:03:54<17:27:22, 3.31it/s] 44%|████▍ | 163772/371472 [2:03:54<17:26:12, 3.31it/s] 44%|████▍ | 163773/371472 [2:03:54<17:12:50, 3.35it/s] 44%|████▍ | 163774/371472 [2:03:54<16:44:21, 3.45it/s] 44%|████▍ | 163775/371472 [2:03:55<17:04:04, 3.38it/s] 44%|████▍ | 163776/371472 [2:03:55<17:06:14, 3.37it/s] 44%|████▍ | 163777/371472 [2:03:55<17:16:27, 3.34it/s] 44%|████▍ | 163778/371472 [2:03:56<16:49:28, 3.43it/s] 44%|████▍ | 163779/371472 [2:03:56<17:07:15, 3.37it/s] 44%|████▍ | 163780/371472 [2:03:56<20:16:09, 2.85it/s] {'loss': 2.9611, 'learning_rate': 6.034659225581244e-07, 'epoch': 7.05} + 44%|████▍ | 163780/371472 [2:03:56<20:16:09, 2.85it/s] 44%|████▍ | 163781/371472 [2:03:57<19:38:40, 2.94it/s] 44%|████▍ | 163782/371472 [2:03:57<19:31:32, 2.95it/s] 44%|████▍ | 163783/371472 [2:03:57<20:01:21, 2.88it/s] 44%|████▍ | 163784/371472 [2:03:58<18:51:47, 3.06it/s] 44%|████▍ | 163785/371472 [2:03:58<18:45:31, 3.08it/s] 44%|████▍ | 163786/371472 [2:03:58<18:37:33, 3.10it/s] 44%|████▍ | 163787/371472 [2:03:59<18:01:09, 3.20it/s] 44%|████▍ | 163788/371472 [2:03:59<21:24:52, 2.69it/s] 44%|████▍ | 163789/371472 [2:03:59<20:35:36, 2.80it/s] 44%|████▍ | 163790/371472 [2:04:00<20:06:04, 2.87it/s] 44%|████▍ | 163791/371472 [2:04:00<19:07:21, 3.02it/s] 44%|████▍ | 163792/371472 [2:04:00<18:43:16, 3.08it/s] 44%|████▍ | 163793/371472 [2:04:01<18:30:52, 3.12it/s] 44%|████▍ | 163794/371472 [2:04:01<18:53:44, 3.05it/s] 44%|████▍ | 163795/371472 [2:04:01<19:13:37, 3.00it/s] 44%|████▍ | 163796/371472 [2:04:02<19:44:31, 2.92it/s] 44%|████▍ | 163797/371472 [2:04:02<18:43:08, 3.08it/s] 44%|████▍ | 163798/371472 [2:04:02<18:01:41, 3.20it/s] 44%|████▍ | 163799/371472 [2:04:03<17:44:38, 3.25it/s] 44%|████▍ | 163800/371472 [2:04:03<17:01:10, 3.39it/s] {'loss': 3.0298, 'learning_rate': 6.034174405826456e-07, 'epoch': 7.06} + 44%|████▍ | 163800/371472 [2:04:03<17:01:10, 3.39it/s] 44%|████▍ | 163801/371472 [2:04:03<17:05:09, 3.38it/s] 44%|████▍ | 163802/371472 [2:04:03<16:48:36, 3.43it/s] 44%|████▍ | 163803/371472 [2:04:04<17:44:09, 3.25it/s] 44%|████▍ | 163804/371472 [2:04:04<17:16:24, 3.34it/s] 44%|████▍ | 163805/371472 [2:04:04<16:57:30, 3.40it/s] 44%|████▍ | 163806/371472 [2:04:05<16:33:27, 3.48it/s] 44%|████▍ | 163807/371472 [2:04:05<16:37:55, 3.47it/s] 44%|████▍ | 163808/371472 [2:04:05<17:18:26, 3.33it/s] 44%|████▍ | 163809/371472 [2:04:06<17:11:22, 3.36it/s] 44%|████▍ | 163810/371472 [2:04:06<16:57:00, 3.40it/s] 44%|████▍ | 163811/371472 [2:04:06<17:05:13, 3.38it/s] 44%|████▍ | 163812/371472 [2:04:06<17:12:26, 3.35it/s] 44%|████▍ | 163813/371472 [2:04:07<17:01:57, 3.39it/s] 44%|████▍ | 163814/371472 [2:04:07<16:45:26, 3.44it/s] 44%|████▍ | 163815/371472 [2:04:07<17:06:00, 3.37it/s] 44%|████▍ | 163816/371472 [2:04:08<17:08:07, 3.37it/s] 44%|████▍ | 163817/371472 [2:04:08<17:25:25, 3.31it/s] 44%|████▍ | 163818/371472 [2:04:08<17:34:25, 3.28it/s] 44%|████▍ | 163819/371472 [2:04:09<17:07:52, 3.37it/s] 44%|████▍ | 163820/371472 [2:04:09<17:01:13, 3.39it/s] {'loss': 2.9875, 'learning_rate': 6.033689586071667e-07, 'epoch': 7.06} + 44%|████▍ | 163820/371472 [2:04:09<17:01:13, 3.39it/s] 44%|████▍ | 163821/371472 [2:04:09<17:38:42, 3.27it/s] 44%|████▍ | 163822/371472 [2:04:09<17:59:39, 3.21it/s] 44%|████▍ | 163823/371472 [2:04:10<17:30:03, 3.30it/s] 44%|████▍ | 163824/371472 [2:04:10<17:36:09, 3.28it/s] 44%|████▍ | 163825/371472 [2:04:10<16:58:46, 3.40it/s] 44%|████▍ | 163826/371472 [2:04:11<17:25:59, 3.31it/s] 44%|████▍ | 163827/371472 [2:04:11<17:25:00, 3.31it/s] 44%|████▍ | 163828/371472 [2:04:11<17:29:25, 3.30it/s] 44%|████▍ | 163829/371472 [2:04:12<18:03:55, 3.19it/s] 44%|████▍ | 163830/371472 [2:04:12<17:57:46, 3.21it/s] 44%|████▍ | 163831/371472 [2:04:12<17:21:03, 3.32it/s] 44%|████▍ | 163832/371472 [2:04:12<17:30:12, 3.30it/s] 44%|████▍ | 163833/371472 [2:04:13<17:37:08, 3.27it/s] 44%|████▍ | 163834/371472 [2:04:13<17:02:21, 3.38it/s] 44%|████▍ | 163835/371472 [2:04:13<17:16:42, 3.34it/s] 44%|████▍ | 163836/371472 [2:04:14<16:39:59, 3.46it/s] 44%|████▍ | 163837/371472 [2:04:14<17:15:38, 3.34it/s] 44%|████▍ | 163838/371472 [2:04:14<17:27:43, 3.30it/s] 44%|████▍ | 163839/371472 [2:04:15<17:50:20, 3.23it/s] 44%|████▍ | 163840/371472 [2:04:15<17:37:45, 3.27it/s] {'loss': 2.964, 'learning_rate': 6.033204766316878e-07, 'epoch': 7.06} + 44%|████▍ | 163840/371472 [2:04:15<17:37:45, 3.27it/s] 44%|████▍ | 163841/371472 [2:04:15<17:26:43, 3.31it/s] 44%|████▍ | 163842/371472 [2:04:15<17:03:37, 3.38it/s] 44%|████▍ | 163843/371472 [2:04:16<17:22:31, 3.32it/s] 44%|████▍ | 163844/371472 [2:04:16<17:08:21, 3.37it/s] 44%|████▍ | 163845/371472 [2:04:16<17:17:48, 3.33it/s] 44%|████▍ | 163846/371472 [2:04:17<17:36:35, 3.28it/s] 44%|████▍ | 163847/371472 [2:04:17<17:16:47, 3.34it/s] 44%|████▍ | 163848/371472 [2:04:17<17:38:31, 3.27it/s] 44%|████▍ | 163849/371472 [2:04:18<17:51:13, 3.23it/s] 44%|████▍ | 163850/371472 [2:04:18<17:40:12, 3.26it/s] 44%|████▍ | 163851/371472 [2:04:18<17:24:20, 3.31it/s] 44%|████▍ | 163852/371472 [2:04:19<17:56:44, 3.21it/s] 44%|████▍ | 163853/371472 [2:04:19<18:13:41, 3.16it/s] 44%|████▍ | 163854/371472 [2:04:19<17:48:07, 3.24it/s] 44%|████▍ | 163855/371472 [2:04:19<17:53:50, 3.22it/s] 44%|████▍ | 163856/371472 [2:04:20<17:34:03, 3.28it/s] 44%|████▍ | 163857/371472 [2:04:20<18:01:36, 3.20it/s] 44%|████▍ | 163858/371472 [2:04:20<18:20:49, 3.14it/s] 44%|████▍ | 163859/371472 [2:04:21<19:00:35, 3.03it/s] 44%|████▍ | 163860/371472 [2:04:21<18:15:03, 3.16it/s] {'loss': 2.9821, 'learning_rate': 6.03271994656209e-07, 'epoch': 7.06} + 44%|████▍ | 163860/371472 [2:04:21<18:15:03, 3.16it/s] 44%|████▍ | 163861/371472 [2:04:21<17:48:30, 3.24it/s] 44%|████▍ | 163862/371472 [2:04:22<18:26:55, 3.13it/s] 44%|████▍ | 163863/371472 [2:04:22<17:41:04, 3.26it/s] 44%|████▍ | 163864/371472 [2:04:22<17:21:48, 3.32it/s] 44%|████▍ | 163865/371472 [2:04:23<17:47:32, 3.24it/s] 44%|████▍ | 163866/371472 [2:04:23<18:45:26, 3.07it/s] 44%|████▍ | 163867/371472 [2:04:23<18:04:42, 3.19it/s] 44%|████▍ | 163868/371472 [2:04:24<17:54:32, 3.22it/s] 44%|████▍ | 163869/371472 [2:04:24<17:40:00, 3.26it/s] 44%|████▍ | 163870/371472 [2:04:24<17:30:03, 3.30it/s] 44%|████▍ | 163871/371472 [2:04:24<18:32:56, 3.11it/s] 44%|████▍ | 163872/371472 [2:04:25<18:28:52, 3.12it/s] 44%|████▍ | 163873/371472 [2:04:25<18:54:12, 3.05it/s] 44%|████▍ | 163874/371472 [2:04:25<18:32:55, 3.11it/s] 44%|████▍ | 163875/371472 [2:04:26<18:05:37, 3.19it/s] 44%|████▍ | 163876/371472 [2:04:26<17:14:06, 3.35it/s] 44%|████▍ | 163877/371472 [2:04:26<17:32:32, 3.29it/s] 44%|████▍ | 163878/371472 [2:04:27<18:20:18, 3.14it/s] 44%|████▍ | 163879/371472 [2:04:27<18:08:57, 3.18it/s] 44%|████▍ | 163880/371472 [2:04:27<17:40:42, 3.26it/s] {'loss': 2.9721, 'learning_rate': 6.032235126807299e-07, 'epoch': 7.06} + 44%|████▍ | 163880/371472 [2:04:27<17:40:42, 3.26it/s] 44%|████▍ | 163881/371472 [2:04:28<17:53:06, 3.22it/s] 44%|████▍ | 163882/371472 [2:04:28<17:51:43, 3.23it/s] 44%|████▍ | 163883/371472 [2:04:28<17:41:32, 3.26it/s] 44%|████▍ | 163884/371472 [2:04:28<17:14:13, 3.35it/s] 44%|████▍ | 163885/371472 [2:04:29<17:21:59, 3.32it/s] 44%|████▍ | 163886/371472 [2:04:29<17:10:51, 3.36it/s] 44%|████▍ | 163887/371472 [2:04:29<17:11:38, 3.35it/s] 44%|████▍ | 163888/371472 [2:04:30<17:53:49, 3.22it/s] 44%|████▍ | 163889/371472 [2:04:30<17:18:43, 3.33it/s] 44%|████▍ | 163890/371472 [2:04:30<17:16:37, 3.34it/s] 44%|████▍ | 163891/371472 [2:04:31<16:58:00, 3.40it/s] 44%|████▍ | 163892/371472 [2:04:31<17:01:09, 3.39it/s] 44%|████▍ | 163893/371472 [2:04:31<16:51:49, 3.42it/s] 44%|████▍ | 163894/371472 [2:04:32<17:52:05, 3.23it/s] 44%|████▍ | 163895/371472 [2:04:32<17:19:48, 3.33it/s] 44%|████▍ | 163896/371472 [2:04:32<17:39:26, 3.27it/s] 44%|████▍ | 163897/371472 [2:04:32<17:34:18, 3.28it/s] 44%|████▍ | 163898/371472 [2:04:33<17:29:59, 3.29it/s] 44%|████▍ | 163899/371472 [2:04:33<17:05:56, 3.37it/s] 44%|████▍ | 163900/371472 [2:04:33<17:59:17, 3.21it/s] {'loss': 3.0335, 'learning_rate': 6.031750307052511e-07, 'epoch': 7.06} + 44%|████▍ | 163900/371472 [2:04:33<17:59:17, 3.21it/s] 44%|████▍ | 163901/371472 [2:04:34<17:41:28, 3.26it/s] 44%|████▍ | 163902/371472 [2:04:34<18:30:10, 3.12it/s] 44%|████▍ | 163903/371472 [2:04:34<17:46:56, 3.24it/s] 44%|████▍ | 163904/371472 [2:04:35<17:02:45, 3.38it/s] 44%|████▍ | 163905/371472 [2:04:35<17:05:07, 3.37it/s] 44%|████▍ | 163906/371472 [2:04:35<17:02:52, 3.38it/s] 44%|████▍ | 163907/371472 [2:04:35<16:41:40, 3.45it/s] 44%|████▍ | 163908/371472 [2:04:36<16:29:31, 3.50it/s] 44%|████▍ | 163909/371472 [2:04:36<16:24:44, 3.51it/s] 44%|████▍ | 163910/371472 [2:04:36<16:48:30, 3.43it/s] 44%|████▍ | 163911/371472 [2:04:37<16:32:06, 3.49it/s] 44%|████▍ | 163912/371472 [2:04:37<16:56:43, 3.40it/s] 44%|████▍ | 163913/371472 [2:04:37<17:05:04, 3.37it/s] 44%|████▍ | 163914/371472 [2:04:37<17:17:29, 3.33it/s] 44%|████▍ | 163915/371472 [2:04:38<17:49:07, 3.24it/s] 44%|████▍ | 163916/371472 [2:04:38<17:37:59, 3.27it/s] 44%|████▍ | 163917/371472 [2:04:38<17:19:50, 3.33it/s] 44%|████▍ | 163918/371472 [2:04:39<17:13:06, 3.35it/s] 44%|���███▍ | 163919/371472 [2:04:39<17:22:56, 3.32it/s] 44%|████▍ | 163920/371472 [2:04:39<18:05:52, 3.19it/s] {'loss': 3.0767, 'learning_rate': 6.031265487297722e-07, 'epoch': 7.06} + 44%|████▍ | 163920/371472 [2:04:39<18:05:52, 3.19it/s] 44%|████▍ | 163921/371472 [2:04:40<17:40:01, 3.26it/s] 44%|████▍ | 163922/371472 [2:04:40<17:07:57, 3.37it/s] 44%|████▍ | 163923/371472 [2:04:40<16:57:11, 3.40it/s] 44%|████▍ | 163924/371472 [2:04:41<20:00:13, 2.88it/s] 44%|████▍ | 163925/371472 [2:04:41<18:48:47, 3.06it/s] 44%|████▍ | 163926/371472 [2:04:41<18:12:01, 3.17it/s] 44%|████▍ | 163927/371472 [2:04:42<17:44:52, 3.25it/s] 44%|████▍ | 163928/371472 [2:04:42<17:02:00, 3.38it/s] 44%|████▍ | 163929/371472 [2:04:42<18:14:24, 3.16it/s] 44%|████▍ | 163930/371472 [2:04:42<18:17:45, 3.15it/s] 44%|████▍ | 163931/371472 [2:04:43<18:31:12, 3.11it/s] 44%|████▍ | 163932/371472 [2:04:43<18:11:32, 3.17it/s] 44%|████▍ | 163933/371472 [2:04:43<17:50:11, 3.23it/s] 44%|████▍ | 163934/371472 [2:04:44<17:23:39, 3.31it/s] 44%|████▍ | 163935/371472 [2:04:44<17:32:01, 3.29it/s] 44%|████▍ | 163936/371472 [2:04:44<17:24:15, 3.31it/s] 44%|████▍ | 163937/371472 [2:04:45<17:34:35, 3.28it/s] 44%|████▍ | 163938/371472 [2:04:45<17:45:43, 3.25it/s] 44%|████▍ | 163939/371472 [2:04:45<17:51:12, 3.23it/s] 44%|████▍ | 163940/371472 [2:04:46<17:30:57, 3.29it/s] {'loss': 2.8802, 'learning_rate': 6.030780667542933e-07, 'epoch': 7.06} + 44%|████▍ | 163940/371472 [2:04:46<17:30:57, 3.29it/s] 44%|████▍ | 163941/371472 [2:04:46<17:33:22, 3.28it/s] 44%|████▍ | 163942/371472 [2:04:46<18:16:52, 3.15it/s] 44%|████▍ | 163943/371472 [2:04:46<18:00:32, 3.20it/s] 44%|████▍ | 163944/371472 [2:04:47<17:39:38, 3.26it/s] 44%|████▍ | 163945/371472 [2:04:47<17:53:33, 3.22it/s] 44%|████▍ | 163946/371472 [2:04:47<17:30:02, 3.29it/s] 44%|████▍ | 163947/371472 [2:04:48<17:27:37, 3.30it/s] 44%|████▍ | 163948/371472 [2:04:48<18:36:49, 3.10it/s] 44%|████▍ | 163949/371472 [2:04:48<18:58:54, 3.04it/s] 44%|████▍ | 163950/371472 [2:04:49<18:50:09, 3.06it/s] 44%|████▍ | 163951/371472 [2:04:49<18:02:42, 3.19it/s] 44%|████▍ | 163952/371472 [2:04:49<17:24:37, 3.31it/s] 44%|████▍ | 163953/371472 [2:04:50<17:02:31, 3.38it/s] 44%|████▍ | 163954/371472 [2:04:50<16:53:06, 3.41it/s] 44%|████▍ | 163955/371472 [2:04:50<17:47:29, 3.24it/s] 44%|████▍ | 163956/371472 [2:04:50<17:22:37, 3.32it/s] 44%|████▍ | 163957/371472 [2:04:51<17:36:59, 3.27it/s] 44%|████▍ | 163958/371472 [2:04:51<17:25:46, 3.31it/s] 44%|████▍ | 163959/371472 [2:04:51<17:39:59, 3.26it/s] 44%|████▍ | 163960/371472 [2:04:52<17:21:32, 3.32it/s] {'loss': 2.9003, 'learning_rate': 6.030295847788144e-07, 'epoch': 7.06} + 44%|████▍ | 163960/371472 [2:04:52<17:21:32, 3.32it/s] 44%|████▍ | 163961/371472 [2:04:52<17:51:21, 3.23it/s] 44%|████▍ | 163962/371472 [2:04:52<17:15:54, 3.34it/s] 44%|████▍ | 163963/371472 [2:04:53<17:44:51, 3.25it/s] 44%|████▍ | 163964/371472 [2:04:53<17:46:41, 3.24it/s] 44%|████▍ | 163965/371472 [2:04:53<17:29:04, 3.30it/s] 44%|████▍ | 163966/371472 [2:04:54<17:26:36, 3.30it/s] 44%|████▍ | 163967/371472 [2:04:54<17:30:38, 3.29it/s] 44%|████▍ | 163968/371472 [2:04:54<17:22:12, 3.32it/s] 44%|████▍ | 163969/371472 [2:04:54<16:48:17, 3.43it/s] 44%|████▍ | 163970/371472 [2:04:55<16:44:29, 3.44it/s] 44%|████▍ | 163971/371472 [2:04:55<16:20:59, 3.53it/s] 44%|████▍ | 163972/371472 [2:04:55<16:08:22, 3.57it/s] 44%|████▍ | 163973/371472 [2:04:56<16:47:56, 3.43it/s] 44%|████▍ | 163974/371472 [2:04:56<16:59:09, 3.39it/s] 44%|████▍ | 163975/371472 [2:04:56<18:07:29, 3.18it/s] 44%|████▍ | 163976/371472 [2:04:56<17:56:04, 3.21it/s] 44%|████▍ | 163977/371472 [2:04:57<18:12:15, 3.17it/s] 44%|████▍ | 163978/371472 [2:04:57<18:04:03, 3.19it/s] 44%|████▍ | 163979/371472 [2:04:57<17:42:34, 3.25it/s] 44%|████▍ | 163980/371472 [2:04:58<17:55:38, 3.22it/s] {'loss': 2.973, 'learning_rate': 6.029811028033356e-07, 'epoch': 7.06} + 44%|████▍ | 163980/371472 [2:04:58<17:55:38, 3.22it/s] 44%|████▍ | 163981/371472 [2:04:58<17:41:51, 3.26it/s] 44%|████▍ | 163982/371472 [2:04:58<17:18:15, 3.33it/s] 44%|████▍ | 163983/371472 [2:04:59<17:33:57, 3.28it/s] 44%|████▍ | 163984/371472 [2:04:59<17:05:56, 3.37it/s] 44%|████▍ | 163985/371472 [2:04:59<16:57:03, 3.40it/s] 44%|████▍ | 163986/371472 [2:05:00<17:21:08, 3.32it/s] 44%|████▍ | 163987/371472 [2:05:00<16:57:44, 3.40it/s] 44%|████▍ | 163988/371472 [2:05:00<16:41:47, 3.45it/s] 44%|████▍ | 163989/371472 [2:05:00<16:35:23, 3.47it/s] 44%|████▍ | 163990/371472 [2:05:01<17:05:55, 3.37it/s] 44%|████▍ | 163991/371472 [2:05:01<17:03:44, 3.38it/s] 44%|████▍ | 163992/371472 [2:05:01<16:42:58, 3.45it/s] 44%|████▍ | 163993/371472 [2:05:02<16:47:57, 3.43it/s] 44%|████▍ | 163994/371472 [2:05:02<17:02:14, 3.38it/s] 44%|████▍ | 163995/371472 [2:05:02<17:03:24, 3.38it/s] 44%|████▍ | 163996/371472 [2:05:02<17:05:10, 3.37it/s] 44%|████▍ | 163997/371472 [2:05:03<16:50:09, 3.42it/s] 44%|████▍ | 163998/371472 [2:05:03<18:29:48, 3.12it/s] 44%|████▍ | 163999/371472 [2:05:03<17:49:30, 3.23it/s] 44%|████▍ | 164000/371472 [2:05:04<17:23:20, 3.31it/s] {'loss': 2.9174, 'learning_rate': 6.029326208278567e-07, 'epoch': 7.06} + 44%|████▍ | 164000/371472 [2:05:04<17:23:20, 3.31it/s] 44%|████▍ | 164001/371472 [2:05:04<18:07:00, 3.18it/s] 44%|████▍ | 164002/371472 [2:05:04<18:50:49, 3.06it/s] 44%|████▍ | 164003/371472 [2:05:05<17:58:56, 3.20it/s] 44%|████▍ | 164004/371472 [2:05:05<17:37:14, 3.27it/s] 44%|████▍ | 164005/371472 [2:05:05<19:33:14, 2.95it/s] 44%|████▍ | 164006/371472 [2:05:06<19:00:57, 3.03it/s] 44%|████▍ | 164007/371472 [2:05:06<18:15:52, 3.16it/s] 44%|████▍ | 164008/371472 [2:05:06<17:59:04, 3.20it/s] 44%|████▍ | 164009/371472 [2:05:07<17:52:19, 3.22it/s] 44%|████▍ | 164010/371472 [2:05:07<18:11:51, 3.17it/s] 44%|████▍ | 164011/371472 [2:05:07<18:08:22, 3.18it/s] 44%|████▍ | 164012/371472 [2:05:08<18:27:49, 3.12it/s] 44%|████▍ | 164013/371472 [2:05:08<18:10:38, 3.17it/s] 44%|████▍ | 164014/371472 [2:05:08<18:52:28, 3.05it/s] 44%|████▍ | 164015/371472 [2:05:09<19:27:59, 2.96it/s] 44%|████▍ | 164016/371472 [2:05:09<18:46:16, 3.07it/s] 44%|████▍ | 164017/371472 [2:05:09<19:25:20, 2.97it/s] 44%|████▍ | 164018/371472 [2:05:10<18:24:17, 3.13it/s] 44%|████▍ | 164019/371472 [2:05:10<17:56:21, 3.21it/s] 44%|████▍ | 164020/371472 [2:05:10<18:05:46, 3.18it/s] {'loss': 2.9363, 'learning_rate': 6.028841388523777e-07, 'epoch': 7.06} + 44%|████▍ | 164020/371472 [2:05:10<18:05:46, 3.18it/s] 44%|████▍ | 164021/371472 [2:05:10<17:38:12, 3.27it/s] 44%|████▍ | 164022/371472 [2:05:11<17:42:59, 3.25it/s] 44%|████▍ | 164023/371472 [2:05:11<17:11:30, 3.35it/s] 44%|████▍ | 164024/371472 [2:05:11<16:44:23, 3.44it/s] 44%|████▍ | 164025/371472 [2:05:12<16:28:45, 3.50it/s] 44%|████▍ | 164026/371472 [2:05:12<16:50:05, 3.42it/s] 44%|████▍ | 164027/371472 [2:05:12<16:35:29, 3.47it/s] 44%|████▍ | 164028/371472 [2:05:12<16:46:33, 3.43it/s] 44%|████▍ | 164029/371472 [2:05:13<16:14:15, 3.55it/s] 44%|████▍ | 164030/371472 [2:05:13<16:09:21, 3.57it/s] 44%|████▍ | 164031/371472 [2:05:13<16:18:56, 3.53it/s] 44%|████▍ | 164032/371472 [2:05:14<16:46:55, 3.43it/s] 44%|████▍ | 164033/371472 [2:05:14<17:39:34, 3.26it/s] 44%|████▍ | 164034/371472 [2:05:14<17:20:28, 3.32it/s] 44%|████▍ | 164035/371472 [2:05:14<17:11:29, 3.35it/s] 44%|████▍ | 164036/371472 [2:05:15<17:01:55, 3.38it/s] 44%|████▍ | 164037/371472 [2:05:15<16:32:02, 3.48it/s] 44%|████▍ | 164038/371472 [2:05:15<16:23:16, 3.52it/s] 44%|████▍ | 164039/371472 [2:05:16<16:23:38, 3.51it/s] 44%|████▍ | 164040/371472 [2:05:16<16:16:28, 3.54it/s] {'loss': 2.9845, 'learning_rate': 6.028356568768988e-07, 'epoch': 7.07} + 44%|████▍ | 164040/371472 [2:05:16<16:16:28, 3.54it/s] 44%|████▍ | 164041/371472 [2:05:16<16:48:32, 3.43it/s] 44%|████▍ | 164042/371472 [2:05:17<17:17:33, 3.33it/s] 44%|████▍ | 164043/371472 [2:05:17<18:01:42, 3.20it/s] 44%|████▍ | 164044/371472 [2:05:17<17:29:01, 3.30it/s] 44%|████▍ | 164045/371472 [2:05:18<18:44:16, 3.07it/s] 44%|████▍ | 164046/371472 [2:05:18<20:07:43, 2.86it/s] 44%|████▍ | 164047/371472 [2:05:18<19:16:55, 2.99it/s] 44%|████▍ | 164048/371472 [2:05:19<18:43:36, 3.08it/s] 44%|████▍ | 164049/371472 [2:05:19<18:22:57, 3.13it/s] 44%|████▍ | 164050/371472 [2:05:19<17:26:14, 3.30it/s] 44%|████▍ | 164051/371472 [2:05:19<17:10:59, 3.35it/s] 44%|████▍ | 164052/371472 [2:05:20<17:50:54, 3.23it/s] 44%|████▍ | 164053/371472 [2:05:20<17:35:06, 3.28it/s] 44%|████▍ | 164054/371472 [2:05:20<17:21:46, 3.32it/s] 44%|████▍ | 164055/371472 [2:05:21<17:40:54, 3.26it/s] 44%|████▍ | 164056/371472 [2:05:21<17:27:02, 3.30it/s] 44%|████▍ | 164057/371472 [2:05:21<17:47:10, 3.24it/s] 44%|████▍ | 164058/371472 [2:05:22<17:19:23, 3.33it/s] 44%|████▍ | 164059/371472 [2:05:22<18:43:09, 3.08it/s] 44%|████▍ | 164060/371472 [2:05:22<18:12:19, 3.16it/s] {'loss': 3.1542, 'learning_rate': 6.0278717490142e-07, 'epoch': 7.07} + 44%|████▍ | 164060/371472 [2:05:22<18:12:19, 3.16it/s] 44%|████▍ | 164061/371472 [2:05:22<17:52:14, 3.22it/s] 44%|████▍ | 164062/371472 [2:05:23<17:35:37, 3.27it/s] 44%|████▍ | 164063/371472 [2:05:23<17:40:19, 3.26it/s] 44%|████▍ | 164064/371472 [2:05:23<16:55:39, 3.40it/s] 44%|████▍ | 164065/371472 [2:05:24<16:51:37, 3.42it/s] 44%|████▍ | 164066/371472 [2:05:24<17:20:24, 3.32it/s] 44%|████▍ | 164067/371472 [2:05:24<17:17:58, 3.33it/s] 44%|████▍ | 164068/371472 [2:05:25<17:06:35, 3.37it/s] 44%|████▍ | 164069/371472 [2:05:25<17:07:57, 3.36it/s] 44%|████▍ | 164070/371472 [2:05:25<16:57:59, 3.40it/s] 44%|████▍ | 164071/371472 [2:05:25<16:47:46, 3.43it/s] 44%|████▍ | 164072/371472 [2:05:26<16:55:08, 3.41it/s] 44%|████▍ | 164073/371472 [2:05:26<17:36:17, 3.27it/s] 44%|████▍ | 164074/371472 [2:05:26<17:34:34, 3.28it/s] 44%|████▍ | 164075/371472 [2:05:27<16:52:25, 3.41it/s] 44%|████▍ | 164076/371472 [2:05:27<16:55:12, 3.40it/s] 44%|████▍ | 164077/371472 [2:05:27<18:10:57, 3.17it/s] 44%|████▍ | 164078/371472 [2:05:28<18:15:14, 3.16it/s] 44%|████▍ | 164079/371472 [2:05:28<18:05:52, 3.18it/s] 44%|████▍ | 164080/371472 [2:05:28<17:45:27, 3.24it/s] {'loss': 3.1543, 'learning_rate': 6.027386929259411e-07, 'epoch': 7.07} + 44%|████▍ | 164080/371472 [2:05:28<17:45:27, 3.24it/s] 44%|████▍ | 164081/371472 [2:05:29<17:34:59, 3.28it/s] 44%|████▍ | 164082/371472 [2:05:29<17:25:22, 3.31it/s] 44%|████▍ | 164083/371472 [2:05:29<17:06:00, 3.37it/s] 44%|████▍ | 164084/371472 [2:05:29<16:54:47, 3.41it/s] 44%|████▍ | 164085/371472 [2:05:30<17:16:37, 3.33it/s] 44%|████▍ | 164086/371472 [2:05:30<17:13:13, 3.35it/s] 44%|████▍ | 164087/371472 [2:05:30<16:40:12, 3.46it/s] 44%|████▍ | 164088/371472 [2:05:31<17:04:44, 3.37it/s] 44%|████▍ | 164089/371472 [2:05:31<16:59:13, 3.39it/s] 44%|████▍ | 164090/371472 [2:05:31<16:56:39, 3.40it/s] 44%|████▍ | 164091/371472 [2:05:31<16:41:39, 3.45it/s] 44%|████▍ | 164092/371472 [2:05:32<17:01:50, 3.38it/s] 44%|████▍ | 164093/371472 [2:05:32<16:43:58, 3.44it/s] 44%|████▍ | 164094/371472 [2:05:32<16:49:26, 3.42it/s] 44%|████▍ | 164095/371472 [2:05:33<17:23:52, 3.31it/s] 44%|████▍ | 164096/371472 [2:05:33<16:57:17, 3.40it/s] 44%|████▍ | 164097/371472 [2:05:33<16:42:22, 3.45it/s] 44%|████▍ | 164098/371472 [2:05:34<17:13:27, 3.34it/s] 44%|████▍ | 164099/371472 [2:05:34<17:31:49, 3.29it/s] 44%|████▍ | 164100/371472 [2:05:34<18:01:46, 3.19it/s] {'loss': 2.9746, 'learning_rate': 6.026902109504622e-07, 'epoch': 7.07} + 44%|████▍ | 164100/371472 [2:05:34<18:01:46, 3.19it/s] 44%|████▍ | 164101/371472 [2:05:34<17:14:57, 3.34it/s] 44%|████▍ | 164102/371472 [2:05:35<17:09:20, 3.36it/s] 44%|████▍ | 164103/371472 [2:05:35<17:09:20, 3.36it/s] 44%|████▍ | 164104/371472 [2:05:35<17:12:03, 3.35it/s] 44%|████▍ | 164105/371472 [2:05:36<17:22:50, 3.31it/s] 44%|████▍ | 164106/371472 [2:05:36<17:17:08, 3.33it/s] 44%|████▍ | 164107/371472 [2:05:36<17:14:53, 3.34it/s] 44%|████▍ | 164108/371472 [2:05:37<17:50:04, 3.23it/s] 44%|████▍ | 164109/371472 [2:05:37<17:30:59, 3.29it/s] 44%|████▍ | 164110/371472 [2:05:37<17:39:06, 3.26it/s] 44%|████▍ | 164111/371472 [2:05:37<17:43:27, 3.25it/s] 44%|████▍ | 164112/371472 [2:05:38<17:21:42, 3.32it/s] 44%|████▍ | 164113/371472 [2:05:38<17:22:59, 3.31it/s] 44%|████▍ | 164114/371472 [2:05:38<17:20:29, 3.32it/s] 44%|████▍ | 164115/371472 [2:05:39<17:20:06, 3.32it/s] 44%|████▍ | 164116/371472 [2:05:39<17:41:36, 3.26it/s] 44%|████▍ | 164117/371472 [2:05:39<17:23:17, 3.31it/s] 44%|████▍ | 164118/371472 [2:05:40<17:08:37, 3.36it/s] 44%|████▍ | 164119/371472 [2:05:40<17:18:11, 3.33it/s] 44%|████▍ | 164120/371472 [2:05:40<17:13:39, 3.34it/s] {'loss': 2.9436, 'learning_rate': 6.026417289749833e-07, 'epoch': 7.07} + 44%|████▍ | 164120/371472 [2:05:40<17:13:39, 3.34it/s] 44%|████▍ | 164121/371472 [2:05:40<17:00:26, 3.39it/s] 44%|████▍ | 164122/371472 [2:05:41<16:51:55, 3.42it/s] 44%|████▍ | 164123/371472 [2:05:41<17:00:17, 3.39it/s] 44%|████▍ | 164124/371472 [2:05:41<16:42:13, 3.45it/s] 44%|████▍ | 164125/371472 [2:05:42<17:45:10, 3.24it/s] 44%|████▍ | 164126/371472 [2:05:42<18:05:31, 3.18it/s] 44%|████▍ | 164127/371472 [2:05:42<17:40:43, 3.26it/s] 44%|████▍ | 164128/371472 [2:05:43<17:24:53, 3.31it/s] 44%|████▍ | 164129/371472 [2:05:43<17:14:12, 3.34it/s] 44%|████▍ | 164130/371472 [2:05:43<17:45:09, 3.24it/s] 44%|████▍ | 164131/371472 [2:05:44<18:30:25, 3.11it/s] 44%|████▍ | 164132/371472 [2:05:44<17:50:55, 3.23it/s] 44%|████▍ | 164133/371472 [2:05:44<17:21:24, 3.32it/s] 44%|████▍ | 164134/371472 [2:05:44<17:15:13, 3.34it/s] 44%|████▍ | 164135/371472 [2:05:45<17:59:11, 3.20it/s] 44%|████▍ | 164136/371472 [2:05:45<17:42:58, 3.25it/s] 44%|████▍ | 164137/371472 [2:05:45<17:12:36, 3.35it/s] 44%|████▍ | 164138/371472 [2:05:46<16:51:50, 3.42it/s] 44%|████▍ | 164139/371472 [2:05:46<16:52:55, 3.41it/s] 44%|████▍ | 164140/371472 [2:05:46<16:42:30, 3.45it/s] {'loss': 3.0228, 'learning_rate': 6.025932469995044e-07, 'epoch': 7.07} + 44%|████▍ | 164140/371472 [2:05:46<16:42:30, 3.45it/s] 44%|████▍ | 164141/371472 [2:05:47<17:05:24, 3.37it/s] 44%|████▍ | 164142/371472 [2:05:47<16:58:25, 3.39it/s] 44%|████▍ | 164143/371472 [2:05:47<16:55:06, 3.40it/s] 44%|████▍ | 164144/371472 [2:05:47<16:56:18, 3.40it/s] 44%|████▍ | 164145/371472 [2:05:48<17:00:07, 3.39it/s] 44%|████▍ | 164146/371472 [2:05:48<18:59:45, 3.03it/s] 44%|████▍ | 164147/371472 [2:05:48<18:09:42, 3.17it/s] 44%|████▍ | 164148/371472 [2:05:49<17:24:07, 3.31it/s] 44%|████▍ | 164149/371472 [2:05:49<17:16:08, 3.33it/s] 44%|████▍ | 164150/371472 [2:05:49<17:00:32, 3.39it/s] 44%|████▍ | 164151/371472 [2:05:50<16:46:29, 3.43it/s] 44%|████▍ | 164152/371472 [2:05:50<16:30:47, 3.49it/s] 44%|████▍ | 164153/371472 [2:05:50<17:33:45, 3.28it/s] 44%|████▍ | 164154/371472 [2:05:50<17:07:13, 3.36it/s] 44%|████▍ | 164155/371472 [2:05:51<17:30:15, 3.29it/s] 44%|████▍ | 164156/371472 [2:05:51<17:02:19, 3.38it/s] 44%|████▍ | 164157/371472 [2:05:51<16:47:07, 3.43it/s] 44%|████▍ | 164158/371472 [2:05:52<16:34:02, 3.48it/s] 44%|████▍ | 164159/371472 [2:05:52<16:40:14, 3.45it/s] 44%|████▍ | 164160/371472 [2:05:52<17:14:22, 3.34it/s] {'loss': 3.046, 'learning_rate': 6.025447650240255e-07, 'epoch': 7.07} + 44%|████▍ | 164160/371472 [2:05:52<17:14:22, 3.34it/s] 44%|████▍ | 164161/371472 [2:05:53<20:46:08, 2.77it/s] 44%|████▍ | 164162/371472 [2:05:53<19:35:20, 2.94it/s] 44%|████▍ | 164163/371472 [2:05:53<18:52:46, 3.05it/s] 44%|████▍ | 164164/371472 [2:05:54<18:47:45, 3.06it/s] 44%|████▍ | 164165/371472 [2:05:54<18:44:10, 3.07it/s] 44%|████▍ | 164166/371472 [2:05:54<18:08:23, 3.17it/s] 44%|████▍ | 164167/371472 [2:05:54<17:35:47, 3.27it/s] 44%|████▍ | 164168/371472 [2:05:55<17:30:28, 3.29it/s] 44%|████▍ | 164169/371472 [2:05:55<17:10:08, 3.35it/s] 44%|████▍ | 164170/371472 [2:05:55<18:02:31, 3.19it/s] 44%|████▍ | 164171/371472 [2:05:56<17:30:25, 3.29it/s] 44%|████▍ | 164172/371472 [2:05:56<17:08:43, 3.36it/s] 44%|████▍ | 164173/371472 [2:05:56<16:49:20, 3.42it/s] 44%|████▍ | 164174/371472 [2:05:57<16:55:20, 3.40it/s] 44%|████▍ | 164175/371472 [2:05:57<16:42:19, 3.45it/s] 44%|████▍ | 164176/371472 [2:05:57<16:53:47, 3.41it/s] 44%|████▍ | 164177/371472 [2:05:57<17:00:15, 3.39it/s] 44%|████▍ | 164178/371472 [2:05:58<17:00:51, 3.38it/s] 44%|████▍ | 164179/371472 [2:05:58<17:10:18, 3.35it/s] 44%|████▍ | 164180/371472 [2:05:58<17:19:53, 3.32it/s] {'loss': 2.9359, 'learning_rate': 6.024962830485465e-07, 'epoch': 7.07} + 44%|████▍ | 164180/371472 [2:05:58<17:19:53, 3.32it/s] 44%|████▍ | 164181/371472 [2:05:59<19:50:12, 2.90it/s] 44%|████▍ | 164182/371472 [2:05:59<18:37:16, 3.09it/s] 44%|████▍ | 164183/371472 [2:05:59<18:34:52, 3.10it/s] 44%|████▍ | 164184/371472 [2:06:00<20:51:06, 2.76it/s] 44%|████▍ | 164185/371472 [2:06:00<19:28:16, 2.96it/s] 44%|████▍ | 164186/371472 [2:06:00<18:40:49, 3.08it/s] 44%|████▍ | 164187/371472 [2:06:01<17:34:21, 3.28it/s] 44%|████▍ | 164188/371472 [2:06:01<17:41:57, 3.25it/s] 44%|████▍ | 164189/371472 [2:06:01<17:27:38, 3.30it/s] 44%|████▍ | 164190/371472 [2:06:02<17:03:46, 3.37it/s] 44%|████▍ | 164191/371472 [2:06:02<16:52:31, 3.41it/s] 44%|████▍ | 164192/371472 [2:06:02<16:42:30, 3.45it/s] 44%|████▍ | 164193/371472 [2:06:03<18:54:01, 3.05it/s] 44%|████▍ | 164194/371472 [2:06:03<18:48:41, 3.06it/s] 44%|████▍ | 164195/371472 [2:06:03<18:01:03, 3.20it/s] 44%|████▍ | 164196/371472 [2:06:03<17:25:54, 3.30it/s] 44%|████▍ | 164197/371472 [2:06:04<18:04:46, 3.18it/s] 44%|████▍ | 164198/371472 [2:06:04<17:45:46, 3.24it/s] 44%|████▍ | 164199/371472 [2:06:04<17:43:47, 3.25it/s] 44%|████▍ | 164200/371472 [2:06:05<17:38:30, 3.26it/s] {'loss': 2.9893, 'learning_rate': 6.024478010730677e-07, 'epoch': 7.07} + 44%|████▍ | 164200/371472 [2:06:05<17:38:30, 3.26it/s] 44%|████▍ | 164201/371472 [2:06:05<17:34:38, 3.28it/s] 44%|████▍ | 164202/371472 [2:06:05<17:22:41, 3.31it/s] 44%|████▍ | 164203/371472 [2:06:06<17:18:39, 3.33it/s] 44%|████▍ | 164204/371472 [2:06:06<17:17:15, 3.33it/s] 44%|████▍ | 164205/371472 [2:06:06<17:06:49, 3.36it/s] 44%|████▍ | 164206/371472 [2:06:06<17:10:17, 3.35it/s] 44%|████▍ | 164207/371472 [2:06:07<17:13:25, 3.34it/s] 44%|████▍ | 164208/371472 [2:06:07<17:44:03, 3.25it/s] 44%|████▍ | 164209/371472 [2:06:07<17:21:55, 3.32it/s] 44%|████▍ | 164210/371472 [2:06:08<16:53:28, 3.41it/s] 44%|████▍ | 164211/371472 [2:06:08<16:43:23, 3.44it/s] 44%|████▍ | 164212/371472 [2:06:08<17:11:35, 3.35it/s] 44%|████▍ | 164213/371472 [2:06:09<16:47:34, 3.43it/s] 44%|████▍ | 164214/371472 [2:06:09<16:57:50, 3.39it/s] 44%|████▍ | 164215/371472 [2:06:09<16:42:47, 3.44it/s] 44%|████▍ | 164216/371472 [2:06:09<17:18:37, 3.33it/s] 44%|████▍ | 164217/371472 [2:06:10<17:04:25, 3.37it/s] 44%|████▍ | 164218/371472 [2:06:10<17:16:57, 3.33it/s] 44%|████▍ | 164219/371472 [2:06:10<17:07:37, 3.36it/s] 44%|████▍ | 164220/371472 [2:06:11<17:57:12, 3.21it/s] {'loss': 3.0916, 'learning_rate': 6.023993190975889e-07, 'epoch': 7.07} + 44%|████▍ | 164220/371472 [2:06:11<17:57:12, 3.21it/s] 44%|████▍ | 164221/371472 [2:06:11<17:28:04, 3.30it/s] 44%|████▍ | 164222/371472 [2:06:11<17:40:01, 3.26it/s] 44%|████▍ | 164223/371472 [2:06:12<17:07:01, 3.36it/s] 44%|████▍ | 164224/371472 [2:06:12<18:35:26, 3.10it/s] 44%|████▍ | 164225/371472 [2:06:12<18:10:07, 3.17it/s] 44%|████▍ | 164226/371472 [2:06:13<17:34:47, 3.27it/s] 44%|████▍ | 164227/371472 [2:06:13<17:13:10, 3.34it/s] 44%|████▍ | 164228/371472 [2:06:13<17:04:52, 3.37it/s] 44%|████▍ | 164229/371472 [2:06:13<16:55:35, 3.40it/s] 44%|████▍ | 164230/371472 [2:06:14<17:04:13, 3.37it/s] 44%|████▍ | 164231/371472 [2:06:14<16:42:26, 3.45it/s] 44%|████▍ | 164232/371472 [2:06:14<17:16:41, 3.33it/s] 44%|████▍ | 164233/371472 [2:06:15<16:56:36, 3.40it/s] 44%|████▍ | 164234/371472 [2:06:15<16:56:34, 3.40it/s] 44%|████▍ | 164235/371472 [2:06:15<16:53:18, 3.41it/s] 44%|████▍ | 164236/371472 [2:06:15<17:03:07, 3.38it/s] 44%|████▍ | 164237/371472 [2:06:16<17:07:01, 3.36it/s] 44%|████▍ | 164238/371472 [2:06:16<17:14:41, 3.34it/s] 44%|████▍ | 164239/371472 [2:06:16<17:06:16, 3.37it/s] 44%|████▍ | 164240/371472 [2:06:17<17:24:22, 3.31it/s] {'loss': 2.8421, 'learning_rate': 6.023508371221099e-07, 'epoch': 7.07} + 44%|████▍ | 164240/371472 [2:06:17<17:24:22, 3.31it/s] 44%|████▍ | 164241/371472 [2:06:17<17:35:10, 3.27it/s] 44%|████▍ | 164242/371472 [2:06:17<17:43:20, 3.25it/s] 44%|████▍ | 164243/371472 [2:06:18<17:38:49, 3.26it/s] 44%|████▍ | 164244/371472 [2:06:18<16:57:22, 3.39it/s] 44%|████▍ | 164245/371472 [2:06:18<17:07:42, 3.36it/s] 44%|████▍ | 164246/371472 [2:06:18<17:12:29, 3.35it/s] 44%|████▍ | 164247/371472 [2:06:19<17:16:06, 3.33it/s] 44%|████▍ | 164248/371472 [2:06:19<17:25:56, 3.30it/s] 44%|████▍ | 164249/371472 [2:06:19<16:52:56, 3.41it/s] 44%|████▍ | 164250/371472 [2:06:20<16:35:24, 3.47it/s] 44%|████▍ | 164251/371472 [2:06:20<17:25:26, 3.30it/s] 44%|████▍ | 164252/371472 [2:06:20<17:28:34, 3.29it/s] 44%|████▍ | 164253/371472 [2:06:21<17:26:46, 3.30it/s] 44%|████▍ | 164254/371472 [2:06:21<17:02:56, 3.38it/s] 44%|████▍ | 164255/371472 [2:06:21<18:07:21, 3.18it/s] 44%|████▍ | 164256/371472 [2:06:22<18:43:12, 3.07it/s] 44%|████▍ | 164257/371472 [2:06:22<19:57:26, 2.88it/s] 44%|████▍ | 164258/371472 [2:06:22<19:08:32, 3.01it/s] 44%|████▍ | 164259/371472 [2:06:23<18:34:38, 3.10it/s] 44%|████▍ | 164260/371472 [2:06:23<17:57:06, 3.21it/s] {'loss': 2.7733, 'learning_rate': 6.02302355146631e-07, 'epoch': 7.07} + 44%|████▍ | 164260/371472 [2:06:23<17:57:06, 3.21it/s] 44%|████▍ | 164261/371472 [2:06:23<17:40:57, 3.26it/s] 44%|████▍ | 164262/371472 [2:06:23<17:17:40, 3.33it/s] 44%|████▍ | 164263/371472 [2:06:24<17:12:00, 3.35it/s] 44%|████▍ | 164264/371472 [2:06:24<16:56:39, 3.40it/s] 44%|████▍ | 164265/371472 [2:06:24<17:32:45, 3.28it/s] 44%|████▍ | 164266/371472 [2:06:25<17:42:33, 3.25it/s] 44%|████▍ | 164267/371472 [2:06:25<18:25:06, 3.12it/s] 44%|████▍ | 164268/371472 [2:06:25<18:34:15, 3.10it/s] 44%|████▍ | 164269/371472 [2:06:26<18:50:53, 3.05it/s] 44%|████▍ | 164270/371472 [2:06:26<19:00:51, 3.03it/s] 44%|████▍ | 164271/371472 [2:06:26<19:50:33, 2.90it/s] 44%|████▍ | 164272/371472 [2:06:27<18:58:12, 3.03it/s] 44%|████▍ | 164273/371472 [2:06:27<18:05:37, 3.18it/s] 44%|████▍ | 164274/371472 [2:06:27<17:50:40, 3.23it/s] 44%|████▍ | 164275/371472 [2:06:28<18:07:01, 3.18it/s] 44%|████▍ | 164276/371472 [2:06:28<17:48:55, 3.23it/s] 44%|████▍ | 164277/371472 [2:06:28<18:05:00, 3.18it/s] 44%|████▍ | 164278/371472 [2:06:28<17:39:46, 3.26it/s] 44%|████▍ | 164279/371472 [2:06:29<17:09:42, 3.35it/s] 44%|████▍ | 164280/371472 [2:06:29<17:10:22, 3.35it/s] {'loss': 2.9088, 'learning_rate': 6.022538731711522e-07, 'epoch': 7.08} + 44%|████▍ | 164280/371472 [2:06:29<17:10:22, 3.35it/s] 44%|████▍ | 164281/371472 [2:06:29<18:16:11, 3.15it/s] 44%|████▍ | 164282/371472 [2:06:30<18:06:01, 3.18it/s] 44%|████▍ | 164283/371472 [2:06:30<17:35:51, 3.27it/s] 44%|████▍ | 164284/371472 [2:06:30<17:07:44, 3.36it/s] 44%|████▍ | 164285/371472 [2:06:31<16:55:33, 3.40it/s] 44%|████▍ | 164286/371472 [2:06:31<16:51:14, 3.41it/s] 44%|████▍ | 164287/371472 [2:06:31<17:13:49, 3.34it/s] 44%|████▍ | 164288/371472 [2:06:31<17:17:24, 3.33it/s] 44%|████▍ | 164289/371472 [2:06:32<17:07:25, 3.36it/s] 44%|████▍ | 164290/371472 [2:06:32<17:02:51, 3.38it/s] 44%|████▍ | 164291/371472 [2:06:32<17:41:57, 3.25it/s] 44%|████▍ | 164292/371472 [2:06:33<17:41:28, 3.25it/s] 44%|████▍ | 164293/371472 [2:06:33<17:10:33, 3.35it/s] 44%|████▍ | 164294/371472 [2:06:33<16:50:39, 3.42it/s] 44%|████▍ | 164295/371472 [2:06:34<18:41:41, 3.08it/s] 44%|████▍ | 164296/371472 [2:06:34<18:00:24, 3.20it/s] 44%|████▍ | 164297/371472 [2:06:34<18:36:55, 3.09it/s] 44%|████▍ | 164298/371472 [2:06:35<18:05:56, 3.18it/s] 44%|████▍ | 164299/371472 [2:06:35<17:48:11, 3.23it/s] 44%|████▍ | 164300/371472 [2:06:35<17:16:43, 3.33it/s] {'loss': 3.0312, 'learning_rate': 6.022053911956732e-07, 'epoch': 7.08} + 44%|████▍ | 164300/371472 [2:06:35<17:16:43, 3.33it/s] 44%|████▍ | 164301/371472 [2:06:35<17:10:01, 3.35it/s] 44%|████▍ | 164302/371472 [2:06:36<18:00:07, 3.20it/s] 44%|████▍ | 164303/371472 [2:06:36<19:12:26, 3.00it/s] 44%|████▍ | 164304/371472 [2:06:36<18:22:59, 3.13it/s] 44%|████▍ | 164305/371472 [2:06:37<18:09:38, 3.17it/s] 44%|████▍ | 164306/371472 [2:06:37<17:21:16, 3.32it/s] 44%|████▍ | 164307/371472 [2:06:37<17:32:56, 3.28it/s] 44%|████▍ | 164308/371472 [2:06:38<17:28:22, 3.29it/s] 44%|████▍ | 164309/371472 [2:06:38<17:06:52, 3.36it/s] 44%|████▍ | 164310/371472 [2:06:38<18:07:27, 3.18it/s] 44%|████▍ | 164311/371472 [2:06:39<17:37:51, 3.26it/s] 44%|████▍ | 164312/371472 [2:06:39<18:57:05, 3.04it/s] 44%|████▍ | 164313/371472 [2:06:39<18:26:37, 3.12it/s] 44%|████▍ | 164314/371472 [2:06:40<17:48:02, 3.23it/s] 44%|████▍ | 164315/371472 [2:06:40<17:16:20, 3.33it/s] 44%|████▍ | 164316/371472 [2:06:40<17:09:34, 3.35it/s] 44%|████▍ | 164317/371472 [2:06:40<17:29:25, 3.29it/s] 44%|████▍ | 164318/371472 [2:06:41<17:26:43, 3.30it/s] 44%|████▍ | 164319/371472 [2:06:41<17:36:30, 3.27it/s] 44%|████▍ | 164320/371472 [2:06:41<17:13:00, 3.34it/s] {'loss': 2.8864, 'learning_rate': 6.021569092201943e-07, 'epoch': 7.08} + 44%|████▍ | 164320/371472 [2:06:41<17:13:00, 3.34it/s] 44%|████▍ | 164321/371472 [2:06:42<16:54:34, 3.40it/s] 44%|████▍ | 164322/371472 [2:06:42<16:37:27, 3.46it/s] 44%|████▍ | 164323/371472 [2:06:42<16:39:27, 3.45it/s] 44%|████▍ | 164324/371472 [2:06:43<17:07:42, 3.36it/s] 44%|████▍ | 164325/371472 [2:06:43<17:00:30, 3.38it/s] 44%|████▍ | 164326/371472 [2:06:43<16:51:05, 3.41it/s] 44%|████▍ | 164327/371472 [2:06:43<17:52:14, 3.22it/s] 44%|████▍ | 164328/371472 [2:06:44<17:50:37, 3.22it/s] 44%|████▍ | 164329/371472 [2:06:44<17:35:02, 3.27it/s] 44%|████▍ | 164330/371472 [2:06:44<17:04:16, 3.37it/s] 44%|████▍ | 164331/371472 [2:06:45<17:07:07, 3.36it/s] 44%|████▍ | 164332/371472 [2:06:45<17:10:00, 3.35it/s] 44%|████▍ | 164333/371472 [2:06:45<17:43:40, 3.25it/s] 44%|████▍ | 164334/371472 [2:06:46<17:45:32, 3.24it/s] 44%|████▍ | 164335/371472 [2:06:46<17:26:35, 3.30it/s] 44%|████▍ | 164336/371472 [2:06:46<18:00:30, 3.20it/s] 44%|████▍ | 164337/371472 [2:06:46<17:22:31, 3.31it/s] 44%|████▍ | 164338/371472 [2:06:47<17:17:30, 3.33it/s] 44%|████▍ | 164339/371472 [2:06:47<17:22:15, 3.31it/s] 44%|████▍ | 164340/371472 [2:06:47<17:23:21, 3.31it/s] {'loss': 3.0425, 'learning_rate': 6.021084272447154e-07, 'epoch': 7.08} + 44%|████▍ | 164340/371472 [2:06:47<17:23:21, 3.31it/s] 44%|████▍ | 164341/371472 [2:06:48<17:11:23, 3.35it/s] 44%|████▍ | 164342/371472 [2:06:48<17:27:05, 3.30it/s] 44%|████▍ | 164343/371472 [2:06:48<18:41:04, 3.08it/s] 44%|████▍ | 164344/371472 [2:06:49<18:08:25, 3.17it/s] 44%|████▍ | 164345/371472 [2:06:49<17:44:11, 3.24it/s] 44%|████▍ | 164346/371472 [2:06:49<18:31:32, 3.11it/s] 44%|████▍ | 164347/371472 [2:06:50<18:23:42, 3.13it/s] 44%|████▍ | 164348/371472 [2:06:50<17:39:43, 3.26it/s] 44%|████▍ | 164349/371472 [2:06:50<17:10:43, 3.35it/s] 44%|████▍ | 164350/371472 [2:06:50<17:26:01, 3.30it/s] 44%|████▍ | 164351/371472 [2:06:51<17:08:39, 3.36it/s] 44%|████▍ | 164352/371472 [2:06:51<16:59:51, 3.38it/s] 44%|████▍ | 164353/371472 [2:06:51<17:14:33, 3.34it/s] 44%|████▍ | 164354/371472 [2:06:52<17:09:12, 3.35it/s] 44%|████▍ | 164355/371472 [2:06:52<17:12:18, 3.34it/s] 44%|████▍ | 164356/371472 [2:06:52<16:55:51, 3.40it/s] 44%|████▍ | 164357/371472 [2:06:53<16:54:41, 3.40it/s] 44%|████▍ | 164358/371472 [2:06:53<16:41:39, 3.45it/s] 44%|████▍ | 164359/371472 [2:06:53<16:59:11, 3.39it/s] 44%|████▍ | 164360/371472 [2:06:53<18:06:27, 3.18it/s] {'loss': 3.0696, 'learning_rate': 6.020599452692366e-07, 'epoch': 7.08} + 44%|████▍ | 164360/371472 [2:06:53<18:06:27, 3.18it/s] 44%|████▍ | 164361/371472 [2:06:54<17:44:28, 3.24it/s] 44%|████▍ | 164362/371472 [2:06:54<17:21:09, 3.32it/s] 44%|████▍ | 164363/371472 [2:06:54<16:50:37, 3.42it/s] 44%|████▍ | 164364/371472 [2:06:55<16:37:56, 3.46it/s] 44%|████▍ | 164365/371472 [2:06:55<16:57:35, 3.39it/s] 44%|████▍ | 164366/371472 [2:06:55<16:52:20, 3.41it/s] 44%|████▍ | 164367/371472 [2:06:56<16:49:55, 3.42it/s] 44%|████▍ | 164368/371472 [2:06:56<16:46:00, 3.43it/s] 44%|████▍ | 164369/371472 [2:06:56<18:12:11, 3.16it/s] 44%|████▍ | 164370/371472 [2:06:56<18:27:58, 3.12it/s] 44%|████▍ | 164371/371472 [2:06:57<18:15:14, 3.15it/s] 44%|████▍ | 164372/371472 [2:06:57<18:01:00, 3.19it/s] 44%|████▍ | 164373/371472 [2:06:57<17:38:26, 3.26it/s] 44%|████▍ | 164374/371472 [2:06:58<17:32:11, 3.28it/s] 44%|████▍ | 164375/371472 [2:06:58<17:02:31, 3.38it/s] 44%|████▍ | 164376/371472 [2:06:58<16:57:52, 3.39it/s] 44%|████▍ | 164377/371472 [2:06:59<17:06:07, 3.36it/s] 44%|████▍ | 164378/371472 [2:06:59<16:47:43, 3.43it/s] 44%|████▍ | 164379/371472 [2:06:59<16:50:16, 3.42it/s] 44%|████▍ | 164380/371472 [2:06:59<16:25:51, 3.50it/s] {'loss': 3.0198, 'learning_rate': 6.020114632937577e-07, 'epoch': 7.08} + 44%|████▍ | 164380/371472 [2:06:59<16:25:51, 3.50it/s] 44%|████▍ | 164381/371472 [2:07:00<16:34:36, 3.47it/s] 44%|████▍ | 164382/371472 [2:07:00<16:27:05, 3.50it/s] 44%|████▍ | 164383/371472 [2:07:00<17:35:23, 3.27it/s] 44%|████▍ | 164384/371472 [2:07:01<16:59:17, 3.39it/s] 44%|████▍ | 164385/371472 [2:07:01<17:02:23, 3.38it/s] 44%|████▍ | 164386/371472 [2:07:01<16:49:52, 3.42it/s] 44%|████▍ | 164387/371472 [2:07:01<16:49:01, 3.42it/s] 44%|████▍ | 164388/371472 [2:07:02<16:58:34, 3.39it/s] 44%|████▍ | 164389/371472 [2:07:02<16:58:17, 3.39it/s] 44%|████▍ | 164390/371472 [2:07:02<16:52:41, 3.41it/s] 44%|████▍ | 164391/371472 [2:07:03<16:43:43, 3.44it/s] 44%|████▍ | 164392/371472 [2:07:03<16:51:11, 3.41it/s] 44%|████▍ | 164393/371472 [2:07:03<17:01:01, 3.38it/s] 44%|████▍ | 164394/371472 [2:07:04<16:55:46, 3.40it/s] 44%|████▍ | 164395/371472 [2:07:04<17:50:09, 3.23it/s] 44%|████▍ | 164396/371472 [2:07:04<17:45:04, 3.24it/s] 44%|████▍ | 164397/371472 [2:07:05<18:02:32, 3.19it/s] 44%|████▍ | 164398/371472 [2:07:05<17:36:15, 3.27it/s] 44%|████▍ | 164399/371472 [2:07:05<18:11:18, 3.16it/s] 44%|████▍ | 164400/371472 [2:07:05<17:42:26, 3.25it/s] {'loss': 2.9285, 'learning_rate': 6.019629813182787e-07, 'epoch': 7.08} + 44%|████▍ | 164400/371472 [2:07:05<17:42:26, 3.25it/s] 44%|████▍ | 164401/371472 [2:07:06<17:41:34, 3.25it/s] 44%|████▍ | 164402/371472 [2:07:06<18:51:06, 3.05it/s] 44%|████▍ | 164403/371472 [2:07:06<18:13:00, 3.16it/s] 44%|████▍ | 164404/371472 [2:07:07<17:33:13, 3.28it/s] 44%|████▍ | 164405/371472 [2:07:07<17:18:37, 3.32it/s] 44%|████▍ | 164406/371472 [2:07:07<17:01:14, 3.38it/s] 44%|████▍ | 164407/371472 [2:07:08<17:03:27, 3.37it/s] 44%|████▍ | 164408/371472 [2:07:08<16:40:35, 3.45it/s] 44%|████▍ | 164409/371472 [2:07:08<16:47:32, 3.43it/s] 44%|████▍ | 164410/371472 [2:07:08<16:45:05, 3.43it/s] 44%|████▍ | 164411/371472 [2:07:09<16:34:01, 3.47it/s] 44%|████▍ | 164412/371472 [2:07:09<16:38:46, 3.46it/s] 44%|████▍ | 164413/371472 [2:07:09<17:41:20, 3.25it/s] 44%|████▍ | 164414/371472 [2:07:10<17:13:10, 3.34it/s] 44%|████▍ | 164415/371472 [2:07:10<17:12:01, 3.34it/s] 44%|████▍ | 164416/371472 [2:07:10<17:53:12, 3.22it/s] 44%|████▍ | 164417/371472 [2:07:11<17:44:35, 3.24it/s] 44%|████▍ | 164418/371472 [2:07:11<17:15:10, 3.33it/s] 44%|████▍ | 164419/371472 [2:07:11<17:37:00, 3.26it/s] 44%|████▍ | 164420/371472 [2:07:11<17:43:49, 3.24it/s] {'loss': 3.0015, 'learning_rate': 6.019144993427998e-07, 'epoch': 7.08} + 44%|████▍ | 164420/371472 [2:07:11<17:43:49, 3.24it/s] 44%|████▍ | 164421/371472 [2:07:12<17:43:50, 3.24it/s] 44%|████▍ | 164422/371472 [2:07:12<17:15:21, 3.33it/s] 44%|████▍ | 164423/371472 [2:07:12<16:41:23, 3.45it/s] 44%|████▍ | 164424/371472 [2:07:13<16:52:05, 3.41it/s] 44%|████▍ | 164425/371472 [2:07:13<16:33:49, 3.47it/s] 44%|████▍ | 164426/371472 [2:07:13<18:26:35, 3.12it/s] 44%|████▍ | 164427/371472 [2:07:14<18:48:13, 3.06it/s] 44%|████▍ | 164428/371472 [2:07:14<18:19:19, 3.14it/s] 44%|████▍ | 164429/371472 [2:07:14<17:49:19, 3.23it/s] 44%|████▍ | 164430/371472 [2:07:15<17:23:53, 3.31it/s] 44%|████▍ | 164431/371472 [2:07:15<17:33:45, 3.27it/s] 44%|████▍ | 164432/371472 [2:07:15<17:06:54, 3.36it/s] 44%|████▍ | 164433/371472 [2:07:15<17:23:18, 3.31it/s] 44%|████▍ | 164434/371472 [2:07:16<16:42:15, 3.44it/s] 44%|████▍ | 164435/371472 [2:07:16<17:19:00, 3.32it/s] 44%|████▍ | 164436/371472 [2:07:16<17:21:46, 3.31it/s] 44%|████▍ | 164437/371472 [2:07:17<18:01:09, 3.19it/s] 44%|████▍ | 164438/371472 [2:07:17<17:44:04, 3.24it/s] 44%|████▍ | 164439/371472 [2:07:17<17:29:13, 3.29it/s] 44%|████▍ | 164440/371472 [2:07:18<17:50:40, 3.22it/s] {'loss': 3.0201, 'learning_rate': 6.01866017367321e-07, 'epoch': 7.08} + 44%|████▍ | 164440/371472 [2:07:18<17:50:40, 3.22it/s] 44%|████▍ | 164441/371472 [2:07:18<17:48:30, 3.23it/s] 44%|████▍ | 164442/371472 [2:07:18<17:09:46, 3.35it/s] 44%|████▍ | 164443/371472 [2:07:18<16:54:14, 3.40it/s] 44%|████▍ | 164444/371472 [2:07:19<16:53:21, 3.40it/s] 44%|████▍ | 164445/371472 [2:07:19<16:55:44, 3.40it/s] 44%|████▍ | 164446/371472 [2:07:19<17:35:51, 3.27it/s] 44%|████▍ | 164447/371472 [2:07:20<17:25:49, 3.30it/s] 44%|████▍ | 164448/371472 [2:07:20<16:59:54, 3.38it/s] 44%|████▍ | 164449/371472 [2:07:20<16:45:01, 3.43it/s] 44%|████▍ | 164450/371472 [2:07:21<16:28:09, 3.49it/s] 44%|████▍ | 164451/371472 [2:07:21<16:24:35, 3.50it/s] 44%|████▍ | 164452/371472 [2:07:21<17:45:16, 3.24it/s] 44%|████▍ | 164453/371472 [2:07:21<16:51:42, 3.41it/s] 44%|████▍ | 164454/371472 [2:07:22<16:32:26, 3.48it/s] 44%|████▍ | 164455/371472 [2:07:22<16:53:58, 3.40it/s] 44%|████▍ | 164456/371472 [2:07:22<16:42:59, 3.44it/s] 44%|████▍ | 164457/371472 [2:07:23<16:14:36, 3.54it/s] 44%|████▍ | 164458/371472 [2:07:23<17:52:19, 3.22it/s] 44%|████▍ | 164459/371472 [2:07:23<17:25:30, 3.30it/s] 44%|████▍ | 164460/371472 [2:07:23<17:06:32, 3.36it/s] {'loss': 3.0112, 'learning_rate': 6.018175353918421e-07, 'epoch': 7.08} + 44%|████▍ | 164460/371472 [2:07:23<17:06:32, 3.36it/s] 44%|████▍ | 164461/371472 [2:07:24<18:07:25, 3.17it/s] 44%|████▍ | 164462/371472 [2:07:24<17:56:07, 3.21it/s] 44%|████▍ | 164463/371472 [2:07:24<17:40:52, 3.25it/s] 44%|████▍ | 164464/371472 [2:07:25<18:13:48, 3.15it/s] 44%|████▍ | 164465/371472 [2:07:25<17:59:38, 3.20it/s] 44%|████▍ | 164466/371472 [2:07:25<17:54:53, 3.21it/s] 44%|████▍ | 164467/371472 [2:07:26<18:04:07, 3.18it/s] 44%|████▍ | 164468/371472 [2:07:26<18:20:28, 3.14it/s] 44%|████▍ | 164469/371472 [2:07:26<18:05:21, 3.18it/s] 44%|████▍ | 164470/371472 [2:07:27<17:43:53, 3.24it/s] 44%|████▍ | 164471/371472 [2:07:27<17:33:17, 3.28it/s] 44%|████▍ | 164472/371472 [2:07:27<17:19:59, 3.32it/s] 44%|████▍ | 164473/371472 [2:07:28<18:48:14, 3.06it/s] 44%|████▍ | 164474/371472 [2:07:28<18:48:02, 3.06it/s] 44%|████▍ | 164475/371472 [2:07:28<19:35:25, 2.94it/s] 44%|████▍ | 164476/371472 [2:07:29<19:51:07, 2.90it/s] 44%|████▍ | 164477/371472 [2:07:29<18:55:21, 3.04it/s] 44%|████▍ | 164478/371472 [2:07:29<19:10:30, 3.00it/s] 44%|████▍ | 164479/371472 [2:07:30<18:57:28, 3.03it/s] 44%|████▍ | 164480/371472 [2:07:30<18:37:48, 3.09it/s] {'loss': 2.8393, 'learning_rate': 6.017690534163631e-07, 'epoch': 7.08} + 44%|████▍ | 164480/371472 [2:07:30<18:37:48, 3.09it/s] 44%|████▍ | 164481/371472 [2:07:30<18:22:26, 3.13it/s] 44%|████▍ | 164482/371472 [2:07:31<18:14:23, 3.15it/s] 44%|████▍ | 164483/371472 [2:07:31<18:49:49, 3.05it/s] 44%|████▍ | 164484/371472 [2:07:31<17:48:29, 3.23it/s] 44%|████▍ | 164485/371472 [2:07:31<17:32:21, 3.28it/s] 44%|████▍ | 164486/371472 [2:07:32<17:19:06, 3.32it/s] 44%|████▍ | 164487/371472 [2:07:32<17:23:20, 3.31it/s] 44%|████▍ | 164488/371472 [2:07:32<18:24:55, 3.12it/s] 44%|████▍ | 164489/371472 [2:07:33<17:56:53, 3.20it/s] 44%|████▍ | 164490/371472 [2:07:33<17:22:27, 3.31it/s] 44%|████▍ | 164491/371472 [2:07:33<17:24:05, 3.30it/s] 44%|████▍ | 164492/371472 [2:07:34<16:58:07, 3.39it/s] 44%|████▍ | 164493/371472 [2:07:34<18:07:24, 3.17it/s] 44%|████▍ | 164494/371472 [2:07:34<17:16:06, 3.33it/s] 44%|████▍ | 164495/371472 [2:07:35<17:48:54, 3.23it/s] 44%|████▍ | 164496/371472 [2:07:35<16:56:54, 3.39it/s] 44%|████▍ | 164497/371472 [2:07:35<17:30:00, 3.29it/s] 44%|████▍ | 164498/371472 [2:07:35<17:27:15, 3.29it/s] 44%|████▍ | 164499/371472 [2:07:36<17:00:09, 3.38it/s] 44%|████▍ | 164500/371472 [2:07:36<17:00:41, 3.38it/s] {'loss': 2.9475, 'learning_rate': 6.017205714408843e-07, 'epoch': 7.09} + 44%|████▍ | 164500/371472 [2:07:36<17:00:41, 3.38it/s] 44%|████▍ | 164501/371472 [2:07:36<17:12:49, 3.34it/s] 44%|████▍ | 164502/371472 [2:07:37<16:45:13, 3.43it/s] 44%|████▍ | 164503/371472 [2:07:37<16:31:42, 3.48it/s] 44%|████▍ | 164504/371472 [2:07:37<16:44:02, 3.44it/s] 44%|████▍ | 164505/371472 [2:07:38<17:56:41, 3.20it/s] 44%|████▍ | 164506/371472 [2:07:38<17:27:55, 3.29it/s] 44%|████▍ | 164507/371472 [2:07:38<17:11:07, 3.35it/s] 44%|████▍ | 164508/371472 [2:07:38<16:53:58, 3.40it/s] 44%|████▍ | 164509/371472 [2:07:39<17:05:20, 3.36it/s] 44%|████▍ | 164510/371472 [2:07:39<16:55:15, 3.40it/s] 44%|████▍ | 164511/371472 [2:07:39<18:32:15, 3.10it/s] 44%|████▍ | 164512/371472 [2:07:40<18:04:22, 3.18it/s] 44%|████▍ | 164513/371472 [2:07:40<18:53:21, 3.04it/s] 44%|████▍ | 164514/371472 [2:07:40<20:24:34, 2.82it/s] 44%|████▍ | 164515/371472 [2:07:41<18:59:05, 3.03it/s] 44%|████▍ | 164516/371472 [2:07:41<18:15:23, 3.15it/s] 44%|████▍ | 164517/371472 [2:07:41<17:36:26, 3.26it/s] 44%|████▍ | 164518/371472 [2:07:42<17:01:59, 3.38it/s] 44%|████▍ | 164519/371472 [2:07:42<17:04:54, 3.37it/s] 44%|████▍ | 164520/371472 [2:07:42<19:30:20, 2.95it/s] {'loss': 2.8907, 'learning_rate': 6.016720894654054e-07, 'epoch': 7.09} + 44%|████▍ | 164520/371472 [2:07:42<19:30:20, 2.95it/s] 44%|████▍ | 164521/371472 [2:07:43<19:43:06, 2.92it/s] 44%|████▍ | 164522/371472 [2:07:43<19:01:49, 3.02it/s] 44%|████▍ | 164523/371472 [2:07:43<19:27:41, 2.95it/s] 44%|████▍ | 164524/371472 [2:07:44<20:04:31, 2.86it/s] 44%|████▍ | 164525/371472 [2:07:44<19:02:51, 3.02it/s] 44%|████▍ | 164526/371472 [2:07:44<18:58:35, 3.03it/s] 44%|████▍ | 164527/371472 [2:07:45<17:51:25, 3.22it/s] 44%|████▍ | 164528/371472 [2:07:45<17:47:21, 3.23it/s] 44%|████▍ | 164529/371472 [2:07:45<17:47:24, 3.23it/s] 44%|████▍ | 164530/371472 [2:07:45<17:48:13, 3.23it/s] 44%|████▍ | 164531/371472 [2:07:46<18:42:05, 3.07it/s] 44%|████▍ | 164532/371472 [2:07:46<17:53:58, 3.21it/s] 44%|████▍ | 164533/371472 [2:07:46<17:29:18, 3.29it/s] 44%|████▍ | 164534/371472 [2:07:47<17:14:56, 3.33it/s] 44%|████▍ | 164535/371472 [2:07:47<16:52:40, 3.41it/s] 44%|████▍ | 164536/371472 [2:07:47<17:07:35, 3.36it/s] 44%|████▍ | 164537/371472 [2:07:48<18:31:35, 3.10it/s] 44%|████▍ | 164538/371472 [2:07:48<17:57:39, 3.20it/s] 44%|████▍ | 164539/371472 [2:07:48<17:17:13, 3.33it/s] 44%|████▍ | 164540/371472 [2:07:49<17:34:46, 3.27it/s] {'loss': 2.8161, 'learning_rate': 6.016236074899265e-07, 'epoch': 7.09} + 44%|████▍ | 164540/371472 [2:07:49<17:34:46, 3.27it/s] 44%|████▍ | 164541/371472 [2:07:49<17:03:01, 3.37it/s] 44%|████▍ | 164542/371472 [2:07:49<16:49:17, 3.42it/s] 44%|████▍ | 164543/371472 [2:07:49<17:16:01, 3.33it/s] 44%|████▍ | 164544/371472 [2:07:50<18:12:51, 3.16it/s] 44%|████▍ | 164545/371472 [2:07:50<17:56:59, 3.20it/s] 44%|████▍ | 164546/371472 [2:07:50<18:08:50, 3.17it/s] 44%|████▍ | 164547/371472 [2:07:51<18:19:56, 3.14it/s] 44%|████▍ | 164548/371472 [2:07:51<17:45:02, 3.24it/s] 44%|████▍ | 164549/371472 [2:07:51<17:46:46, 3.23it/s] 44%|████▍ | 164550/371472 [2:07:52<17:45:13, 3.24it/s] 44%|████▍ | 164551/371472 [2:07:52<17:40:35, 3.25it/s] 44%|████▍ | 164552/371472 [2:07:52<16:56:43, 3.39it/s] 44%|████▍ | 164553/371472 [2:07:53<17:17:47, 3.32it/s] 44%|████▍ | 164554/371472 [2:07:53<17:05:41, 3.36it/s] 44%|████▍ | 164555/371472 [2:07:53<17:12:13, 3.34it/s] 44%|████▍ | 164556/371472 [2:07:53<17:18:33, 3.32it/s] 44%|████▍ | 164557/371472 [2:07:54<17:08:01, 3.35it/s] 44%|████▍ | 164558/371472 [2:07:54<17:35:39, 3.27it/s] 44%|████▍ | 164559/371472 [2:07:54<17:44:18, 3.24it/s] 44%|████▍ | 164560/371472 [2:07:55<17:26:36, 3.29it/s] {'loss': 3.0204, 'learning_rate': 6.015751255144475e-07, 'epoch': 7.09} + 44%|████▍ | 164560/371472 [2:07:55<17:26:36, 3.29it/s] 44%|████▍ | 164561/371472 [2:07:55<17:23:27, 3.30it/s] 44%|████▍ | 164562/371472 [2:07:55<17:22:36, 3.31it/s] 44%|████▍ | 164563/371472 [2:07:56<17:24:58, 3.30it/s] 44%|████▍ | 164564/371472 [2:07:56<18:19:58, 3.14it/s] 44%|████▍ | 164565/371472 [2:07:56<17:43:16, 3.24it/s] 44%|████▍ | 164566/371472 [2:07:56<17:35:44, 3.27it/s] 44%|████▍ | 164567/371472 [2:07:57<17:58:25, 3.20it/s] 44%|████▍ | 164568/371472 [2:07:57<17:42:53, 3.24it/s] 44%|████▍ | 164569/371472 [2:07:57<17:24:05, 3.30it/s] 44%|████▍ | 164570/371472 [2:07:58<17:07:38, 3.36it/s] 44%|████▍ | 164571/371472 [2:07:58<16:34:36, 3.47it/s] 44%|████▍ | 164572/371472 [2:07:58<17:36:07, 3.27it/s] 44%|████▍ | 164573/371472 [2:07:59<17:34:15, 3.27it/s] 44%|████▍ | 164574/371472 [2:07:59<18:36:27, 3.09it/s] 44%|████▍ | 164575/371472 [2:07:59<18:31:27, 3.10it/s] 44%|████▍ | 164576/371472 [2:08:00<18:04:54, 3.18it/s] 44%|████▍ | 164577/371472 [2:08:00<18:57:59, 3.03it/s] 44%|████▍ | 164578/371472 [2:08:00<18:10:56, 3.16it/s] 44%|████▍ | 164579/371472 [2:08:01<17:39:12, 3.26it/s] 44%|████▍ | 164580/371472 [2:08:01<17:25:31, 3.30it/s] {'loss': 2.9281, 'learning_rate': 6.015266435389687e-07, 'epoch': 7.09} + 44%|████▍ | 164580/371472 [2:08:01<17:25:31, 3.30it/s] 44%|████▍ | 164581/371472 [2:08:01<17:14:33, 3.33it/s] 44%|████▍ | 164582/371472 [2:08:01<16:56:33, 3.39it/s] 44%|████▍ | 164583/371472 [2:08:02<16:43:02, 3.44it/s] 44%|████▍ | 164584/371472 [2:08:02<16:14:27, 3.54it/s] 44%|████▍ | 164585/371472 [2:08:02<16:01:12, 3.59it/s] 44%|████▍ | 164586/371472 [2:08:03<16:16:41, 3.53it/s] 44%|████▍ | 164587/371472 [2:08:03<16:26:31, 3.50it/s] 44%|████▍ | 164588/371472 [2:08:03<16:43:09, 3.44it/s] 44%|████▍ | 164589/371472 [2:08:03<16:14:21, 3.54it/s] 44%|████▍ | 164590/371472 [2:08:04<16:11:47, 3.55it/s] 44%|████▍ | 164591/371472 [2:08:04<15:56:04, 3.61it/s] 44%|████▍ | 164592/371472 [2:08:04<16:24:02, 3.50it/s] 44%|████▍ | 164593/371472 [2:08:04<16:25:00, 3.50it/s] 44%|████▍ | 164594/371472 [2:08:05<16:30:02, 3.48it/s] 44%|████▍ | 164595/371472 [2:08:05<16:38:46, 3.45it/s] 44%|████▍ | 164596/371472 [2:08:05<16:38:54, 3.45it/s] 44%|████▍ | 164597/371472 [2:08:06<17:00:37, 3.38it/s] 44%|████▍ | 164598/371472 [2:08:06<17:54:40, 3.21it/s] 44%|████▍ | 164599/371472 [2:08:07<24:00:23, 2.39it/s] 44%|████▍ | 164600/371472 [2:08:07<21:52:02, 2.63it/s] {'loss': 2.9017, 'learning_rate': 6.014781615634899e-07, 'epoch': 7.09} + 44%|████▍ | 164600/371472 [2:08:07<21:52:02, 2.63it/s] 44%|████▍ | 164601/371472 [2:08:07<20:36:13, 2.79it/s] 44%|████▍ | 164602/371472 [2:08:08<21:27:52, 2.68it/s] 44%|████▍ | 164603/371472 [2:08:08<20:31:21, 2.80it/s] 44%|████▍ | 164604/371472 [2:08:08<19:19:02, 2.97it/s] 44%|████▍ | 164605/371472 [2:08:09<18:24:25, 3.12it/s] 44%|████▍ | 164606/371472 [2:08:09<18:04:48, 3.18it/s] 44%|████▍ | 164607/371472 [2:08:09<17:32:32, 3.28it/s] 44%|████▍ | 164608/371472 [2:08:09<17:22:10, 3.31it/s] 44%|████▍ | 164609/371472 [2:08:10<16:54:25, 3.40it/s] 44%|████▍ | 164610/371472 [2:08:10<17:10:08, 3.35it/s] 44%|████▍ | 164611/371472 [2:08:10<17:42:22, 3.25it/s] 44%|████▍ | 164612/371472 [2:08:11<17:18:38, 3.32it/s] 44%|████▍ | 164613/371472 [2:08:11<16:54:09, 3.40it/s] 44%|████▍ | 164614/371472 [2:08:11<16:52:00, 3.41it/s] 44%|████▍ | 164615/371472 [2:08:12<17:01:44, 3.37it/s] 44%|████▍ | 164616/371472 [2:08:12<16:49:20, 3.42it/s] 44%|████▍ | 164617/371472 [2:08:12<16:41:47, 3.44it/s] 44%|████▍ | 164618/371472 [2:08:12<16:36:13, 3.46it/s] 44%|████▍ | 164619/371472 [2:08:13<16:31:29, 3.48it/s] 44%|████▍ | 164620/371472 [2:08:13<16:31:12, 3.48it/s] {'loss': 2.8945, 'learning_rate': 6.01429679588011e-07, 'epoch': 7.09} + 44%|████▍ | 164620/371472 [2:08:13<16:31:12, 3.48it/s] 44%|████▍ | 164621/371472 [2:08:13<16:16:00, 3.53it/s] 44%|████▍ | 164622/371472 [2:08:14<16:04:17, 3.58it/s] 44%|████▍ | 164623/371472 [2:08:14<16:33:05, 3.47it/s] 44%|████▍ | 164624/371472 [2:08:14<16:40:09, 3.45it/s] 44%|████▍ | 164625/371472 [2:08:14<16:31:31, 3.48it/s] 44%|████▍ | 164626/371472 [2:08:15<16:19:23, 3.52it/s] 44%|████▍ | 164627/371472 [2:08:15<16:34:53, 3.47it/s] 44%|████▍ | 164628/371472 [2:08:15<16:25:03, 3.50it/s] 44%|████▍ | 164629/371472 [2:08:16<16:27:03, 3.49it/s] 44%|████▍ | 164630/371472 [2:08:16<17:52:03, 3.22it/s] 44%|████▍ | 164631/371472 [2:08:16<17:17:10, 3.32it/s] 44%|████▍ | 164632/371472 [2:08:16<16:58:56, 3.38it/s] 44%|████▍ | 164633/371472 [2:08:17<17:41:06, 3.25it/s] 44%|████▍ | 164634/371472 [2:08:17<17:22:49, 3.31it/s] 44%|████▍ | 164635/371472 [2:08:17<17:19:42, 3.32it/s] 44%|████▍ | 164636/371472 [2:08:18<17:02:32, 3.37it/s] 44%|████▍ | 164637/371472 [2:08:18<16:57:54, 3.39it/s] 44%|████▍ | 164638/371472 [2:08:18<16:37:00, 3.46it/s] 44%|████▍ | 164639/371472 [2:08:19<16:50:08, 3.41it/s] 44%|████▍ | 164640/371472 [2:08:19<17:04:51, 3.36it/s] {'loss': 2.972, 'learning_rate': 6.01381197612532e-07, 'epoch': 7.09} + 44%|████▍ | 164640/371472 [2:08:19<17:04:51, 3.36it/s] 44%|████▍ | 164641/371472 [2:08:19<17:36:06, 3.26it/s] 44%|████▍ | 164642/371472 [2:08:19<16:54:27, 3.40it/s] 44%|████▍ | 164643/371472 [2:08:20<16:49:02, 3.42it/s] 44%|████▍ | 164644/371472 [2:08:20<16:43:17, 3.44it/s] 44%|████▍ | 164645/371472 [2:08:20<16:23:31, 3.50it/s] 44%|████▍ | 164646/371472 [2:08:21<16:50:08, 3.41it/s] 44%|████▍ | 164647/371472 [2:08:21<17:07:06, 3.36it/s] 44%|████▍ | 164648/371472 [2:08:21<17:01:06, 3.38it/s] 44%|████▍ | 164649/371472 [2:08:22<17:40:10, 3.25it/s] 44%|████▍ | 164650/371472 [2:08:22<17:48:31, 3.23it/s] 44%|████▍ | 164651/371472 [2:08:22<17:44:39, 3.24it/s] 44%|████▍ | 164652/371472 [2:08:22<17:26:56, 3.29it/s] 44%|████▍ | 164653/371472 [2:08:23<17:19:35, 3.32it/s] 44%|████▍ | 164654/371472 [2:08:23<17:21:49, 3.31it/s] 44%|████▍ | 164655/371472 [2:08:23<17:19:20, 3.32it/s] 44%|████▍ | 164656/371472 [2:08:24<17:32:12, 3.28it/s] 44%|████▍ | 164657/371472 [2:08:24<16:57:26, 3.39it/s] 44%|████▍ | 164658/371472 [2:08:24<17:21:58, 3.31it/s] 44%|████▍ | 164659/371472 [2:08:25<16:58:25, 3.38it/s] 44%|████▍ | 164660/371472 [2:08:25<17:18:48, 3.32it/s] {'loss': 2.8434, 'learning_rate': 6.013327156370531e-07, 'epoch': 7.09} + 44%|████▍ | 164660/371472 [2:08:25<17:18:48, 3.32it/s] 44%|████▍ | 164661/371472 [2:08:25<16:53:50, 3.40it/s] 44%|████▍ | 164662/371472 [2:08:25<16:51:01, 3.41it/s] 44%|████▍ | 164663/371472 [2:08:26<17:32:16, 3.28it/s] 44%|████▍ | 164664/371472 [2:08:26<17:14:21, 3.33it/s] 44%|████▍ | 164665/371472 [2:08:26<16:39:49, 3.45it/s] 44%|████▍ | 164666/371472 [2:08:27<18:00:47, 3.19it/s] 44%|████▍ | 164667/371472 [2:08:27<17:49:05, 3.22it/s] 44%|████▍ | 164668/371472 [2:08:27<19:08:21, 3.00it/s] 44%|████▍ | 164669/371472 [2:08:28<18:36:19, 3.09it/s] 44%|████▍ | 164670/371472 [2:08:28<17:40:33, 3.25it/s] 44%|████▍ | 164671/371472 [2:08:28<17:18:53, 3.32it/s] 44%|████▍ | 164672/371472 [2:08:29<17:56:59, 3.20it/s] 44%|████▍ | 164673/371472 [2:08:29<17:06:31, 3.36it/s] 44%|████▍ | 164674/371472 [2:08:29<16:57:49, 3.39it/s] 44%|████▍ | 164675/371472 [2:08:29<17:35:50, 3.26it/s] 44%|████▍ | 164676/371472 [2:08:30<17:20:59, 3.31it/s] 44%|████▍ | 164677/371472 [2:08:30<17:06:23, 3.36it/s] 44%|████▍ | 164678/371472 [2:08:30<17:03:56, 3.37it/s] 44%|████▍ | 164679/371472 [2:08:31<16:38:26, 3.45it/s] 44%|████▍ | 164680/371472 [2:08:31<17:06:08, 3.36it/s] {'loss': 2.9673, 'learning_rate': 6.012842336615743e-07, 'epoch': 7.09} + 44%|████▍ | 164680/371472 [2:08:31<17:06:08, 3.36it/s] 44%|████▍ | 164681/371472 [2:08:31<17:10:16, 3.35it/s] 44%|████▍ | 164682/371472 [2:08:32<18:16:52, 3.14it/s] 44%|████▍ | 164683/371472 [2:08:32<17:41:35, 3.25it/s] 44%|████▍ | 164684/371472 [2:08:32<17:20:39, 3.31it/s] 44%|████▍ | 164685/371472 [2:08:32<16:53:27, 3.40it/s] 44%|████▍ | 164686/371472 [2:08:33<16:35:59, 3.46it/s] 44%|████▍ | 164687/371472 [2:08:33<16:59:20, 3.38it/s] 44%|████▍ | 164688/371472 [2:08:33<16:32:11, 3.47it/s] 44%|████▍ | 164689/371472 [2:08:34<17:27:43, 3.29it/s] 44%|████▍ | 164690/371472 [2:08:34<17:21:12, 3.31it/s] 44%|████▍ | 164691/371472 [2:08:34<16:55:19, 3.39it/s] 44%|████▍ | 164692/371472 [2:08:35<16:48:55, 3.42it/s] 44%|████▍ | 164693/371472 [2:08:35<16:39:30, 3.45it/s] 44%|████▍ | 164694/371472 [2:08:35<17:01:57, 3.37it/s] 44%|████▍ | 164695/371472 [2:08:35<16:51:55, 3.41it/s] 44%|████▍ | 164696/371472 [2:08:36<17:56:39, 3.20it/s] 44%|████▍ | 164697/371472 [2:08:36<17:31:35, 3.28it/s] 44%|████▍ | 164698/371472 [2:08:36<17:20:59, 3.31it/s] 44%|████▍ | 164699/371472 [2:08:37<16:50:22, 3.41it/s] 44%|████▍ | 164700/371472 [2:08:37<16:41:16, 3.44it/s] {'loss': 2.9604, 'learning_rate': 6.012357516860953e-07, 'epoch': 7.09} + 44%|████▍ | 164700/371472 [2:08:37<16:41:16, 3.44it/s] 44%|████▍ | 164701/371472 [2:08:37<16:54:16, 3.40it/s] 44%|████▍ | 164702/371472 [2:08:38<17:48:24, 3.23it/s] 44%|████▍ | 164703/371472 [2:08:38<17:19:35, 3.31it/s] 44%|████▍ | 164704/371472 [2:08:38<16:56:33, 3.39it/s] 44%|████▍ | 164705/371472 [2:08:38<17:17:01, 3.32it/s] 44%|████▍ | 164706/371472 [2:08:39<17:23:18, 3.30it/s] 44%|████▍ | 164707/371472 [2:08:39<17:16:32, 3.32it/s] 44%|████▍ | 164708/371472 [2:08:39<17:14:26, 3.33it/s] 44%|████▍ | 164709/371472 [2:08:40<17:19:53, 3.31it/s] 44%|████▍ | 164710/371472 [2:08:40<18:08:48, 3.16it/s] 44%|████▍ | 164711/371472 [2:08:40<17:28:45, 3.29it/s] 44%|████▍ | 164712/371472 [2:08:41<17:26:59, 3.29it/s] 44%|████▍ | 164713/371472 [2:08:41<17:16:51, 3.32it/s] 44%|████▍ | 164714/371472 [2:08:41<16:48:09, 3.42it/s] 44%|████▍ | 164715/371472 [2:08:41<17:26:54, 3.29it/s] 44%|████▍ | 164716/371472 [2:08:42<17:10:56, 3.34it/s] 44%|████▍ | 164717/371472 [2:08:42<18:04:08, 3.18it/s] 44%|████▍ | 164718/371472 [2:08:42<17:18:41, 3.32it/s] 44%|████▍ | 164719/371472 [2:08:43<17:51:12, 3.22it/s] 44%|████▍ | 164720/371472 [2:08:43<17:56:54, 3.20it/s] {'loss': 3.1189, 'learning_rate': 6.011872697106164e-07, 'epoch': 7.09} + 44%|████▍ | 164720/371472 [2:08:43<17:56:54, 3.20it/s] 44%|████▍ | 164721/371472 [2:08:43<18:26:58, 3.11it/s] 44%|████▍ | 164722/371472 [2:08:44<18:53:11, 3.04it/s] 44%|████▍ | 164723/371472 [2:08:44<18:20:04, 3.13it/s] 44%|████▍ | 164724/371472 [2:08:44<17:32:39, 3.27it/s] 44%|████▍ | 164725/371472 [2:08:45<18:01:49, 3.19it/s] 44%|████▍ | 164726/371472 [2:08:45<18:54:11, 3.04it/s] 44%|████▍ | 164727/371472 [2:08:45<20:17:14, 2.83it/s] 44%|████▍ | 164728/371472 [2:08:46<19:00:41, 3.02it/s] 44%|████▍ | 164729/371472 [2:08:46<18:19:55, 3.13it/s] 44%|████▍ | 164730/371472 [2:08:46<18:44:29, 3.06it/s] 44%|████▍ | 164731/371472 [2:08:47<17:45:41, 3.23it/s] 44%|████▍ | 164732/371472 [2:08:47<18:25:54, 3.12it/s] 44%|████▍ | 164733/371472 [2:08:47<18:44:40, 3.06it/s] 44%|████▍ | 164734/371472 [2:08:48<18:37:41, 3.08it/s] 44%|████▍ | 164735/371472 [2:08:48<18:27:55, 3.11it/s] 44%|████▍ | 164736/371472 [2:08:48<17:49:05, 3.22it/s] 44%|████▍ | 164737/371472 [2:08:49<18:59:20, 3.02it/s] 44%|████▍ | 164738/371472 [2:08:49<18:14:04, 3.15it/s] 44%|████▍ | 164739/371472 [2:08:49<17:12:57, 3.34it/s] 44%|████▍ | 164740/371472 [2:08:49<17:27:37, 3.29it/s] {'loss': 3.0591, 'learning_rate': 6.011387877351376e-07, 'epoch': 7.1} + 44%|████▍ | 164740/371472 [2:08:49<17:27:37, 3.29it/s] 44%|████▍ | 164741/371472 [2:08:50<17:38:09, 3.26it/s] 44%|████▍ | 164742/371472 [2:08:50<19:28:34, 2.95it/s] 44%|████▍ | 164743/371472 [2:08:50<18:52:46, 3.04it/s] 44%|████▍ | 164744/371472 [2:08:51<18:15:11, 3.15it/s] 44%|████▍ | 164745/371472 [2:08:51<17:42:07, 3.24it/s] 44%|████▍ | 164746/371472 [2:08:51<17:15:18, 3.33it/s] 44%|████▍ | 164747/371472 [2:08:52<20:07:44, 2.85it/s] 44%|████▍ | 164748/371472 [2:08:52<20:22:18, 2.82it/s] 44%|████▍ | 164749/371472 [2:08:52<19:17:22, 2.98it/s] 44%|████▍ | 164750/371472 [2:08:53<18:35:50, 3.09it/s] 44%|████▍ | 164751/371472 [2:08:53<18:55:35, 3.03it/s] 44%|████▍ | 164752/371472 [2:08:53<17:58:22, 3.19it/s] 44%|████▍ | 164753/371472 [2:08:54<17:20:32, 3.31it/s] 44%|████▍ | 164754/371472 [2:08:54<17:01:22, 3.37it/s] 44%|████▍ | 164755/371472 [2:08:54<17:09:01, 3.35it/s] 44%|████▍ | 164756/371472 [2:08:54<16:57:19, 3.39it/s] 44%|████▍ | 164757/371472 [2:08:55<16:48:57, 3.41it/s] 44%|████▍ | 164758/371472 [2:08:55<16:56:28, 3.39it/s] 44%|████▍ | 164759/371472 [2:08:55<17:21:10, 3.31it/s] 44%|████▍ | 164760/371472 [2:08:56<16:55:08, 3.39it/s] {'loss': 3.0443, 'learning_rate': 6.010903057596588e-07, 'epoch': 7.1} + 44%|████▍ | 164760/371472 [2:08:56<16:55:08, 3.39it/s] 44%|████▍ | 164761/371472 [2:08:56<16:29:22, 3.48it/s] 44%|████▍ | 164762/371472 [2:08:56<16:09:04, 3.56it/s] 44%|████▍ | 164763/371472 [2:08:56<16:12:06, 3.54it/s] 44%|████▍ | 164764/371472 [2:08:57<16:47:19, 3.42it/s] 44%|████▍ | 164765/371472 [2:08:57<16:37:23, 3.45it/s] 44%|████▍ | 164766/371472 [2:08:57<16:42:15, 3.44it/s] 44%|████▍ | 164767/371472 [2:08:58<16:40:45, 3.44it/s] 44%|████▍ | 164768/371472 [2:08:58<16:30:08, 3.48it/s] 44%|████▍ | 164769/371472 [2:08:58<16:34:35, 3.46it/s] 44%|████▍ | 164770/371472 [2:08:59<17:11:18, 3.34it/s] 44%|████▍ | 164771/371472 [2:08:59<17:11:26, 3.34it/s] 44%|████▍ | 164772/371472 [2:08:59<17:11:33, 3.34it/s] 44%|████▍ | 164773/371472 [2:08:59<16:53:07, 3.40it/s] 44%|████▍ | 164774/371472 [2:09:00<17:11:48, 3.34it/s] 44%|████▍ | 164775/371472 [2:09:00<16:51:05, 3.41it/s] 44%|████▍ | 164776/371472 [2:09:00<17:52:03, 3.21it/s] 44%|████▍ | 164777/371472 [2:09:01<17:11:51, 3.34it/s] 44%|████▍ | 164778/371472 [2:09:01<17:02:46, 3.37it/s] 44%|████▍ | 164779/371472 [2:09:01<17:08:04, 3.35it/s] 44%|████▍ | 164780/371472 [2:09:02<18:16:59, 3.14it/s] {'loss': 3.0799, 'learning_rate': 6.010418237841796e-07, 'epoch': 7.1} + 44%|████▍ | 164780/371472 [2:09:02<18:16:59, 3.14it/s] 44%|████▍ | 164781/371472 [2:09:02<18:05:42, 3.17it/s] 44%|████▍ | 164782/371472 [2:09:02<17:34:56, 3.27it/s] 44%|████▍ | 164783/371472 [2:09:03<18:20:19, 3.13it/s] 44%|████▍ | 164784/371472 [2:09:03<18:13:08, 3.15it/s] 44%|████▍ | 164785/371472 [2:09:03<18:06:47, 3.17it/s] 44%|████▍ | 164786/371472 [2:09:04<18:18:26, 3.14it/s] 44%|████▍ | 164787/371472 [2:09:04<17:41:15, 3.25it/s] 44%|████▍ | 164788/371472 [2:09:04<17:10:41, 3.34it/s] 44%|████▍ | 164789/371472 [2:09:04<17:03:53, 3.36it/s] 44%|████▍ | 164790/371472 [2:09:05<16:46:09, 3.42it/s] 44%|████▍ | 164791/371472 [2:09:05<16:26:18, 3.49it/s] 44%|████▍ | 164792/371472 [2:09:05<16:25:23, 3.50it/s] 44%|████▍ | 164793/371472 [2:09:06<16:47:00, 3.42it/s] 44%|████▍ | 164794/371472 [2:09:06<16:56:31, 3.39it/s] 44%|████▍ | 164795/371472 [2:09:06<16:37:10, 3.45it/s] 44%|████▍ | 164796/371472 [2:09:07<19:01:21, 3.02it/s] 44%|████▍ | 164797/371472 [2:09:07<18:18:15, 3.14it/s] 44%|████▍ | 164798/371472 [2:09:07<17:37:29, 3.26it/s] 44%|████▍ | 164799/371472 [2:09:07<17:46:44, 3.23it/s] 44%|████▍ | 164800/371472 [2:09:08<17:26:02, 3.29it/s] {'loss': 3.0805, 'learning_rate': 6.009933418087008e-07, 'epoch': 7.1} + 44%|████▍ | 164800/371472 [2:09:08<17:26:02, 3.29it/s] 44%|████▍ | 164801/371472 [2:09:08<18:38:31, 3.08it/s] 44%|████▍ | 164802/371472 [2:09:08<18:08:54, 3.16it/s] 44%|████▍ | 164803/371472 [2:09:09<18:04:10, 3.18it/s] 44%|████▍ | 164804/371472 [2:09:09<17:46:33, 3.23it/s] 44%|████▍ | 164805/371472 [2:09:09<17:35:24, 3.26it/s] 44%|████▍ | 164806/371472 [2:09:10<17:46:37, 3.23it/s] 44%|████▍ | 164807/371472 [2:09:10<17:29:21, 3.28it/s] 44%|████▍ | 164808/371472 [2:09:10<17:49:51, 3.22it/s] 44%|████▍ | 164809/371472 [2:09:11<17:48:21, 3.22it/s] 44%|████▍ | 164810/371472 [2:09:11<17:12:48, 3.33it/s] 44%|████▍ | 164811/371472 [2:09:11<16:50:46, 3.41it/s] 44%|████▍ | 164812/371472 [2:09:11<16:53:41, 3.40it/s] 44%|████▍ | 164813/371472 [2:09:12<16:42:39, 3.44it/s] 44%|████▍ | 164814/371472 [2:09:12<17:41:37, 3.24it/s] 44%|████▍ | 164815/371472 [2:09:12<17:30:25, 3.28it/s] 44%|████▍ | 164816/371472 [2:09:13<17:32:39, 3.27it/s] 44%|████▍ | 164817/371472 [2:09:13<17:57:13, 3.20it/s] 44%|████▍ | 164818/371472 [2:09:13<17:32:09, 3.27it/s] 44%|████▍ | 164819/371472 [2:09:13<17:12:30, 3.34it/s] 44%|████▍ | 164820/371472 [2:09:14<17:13:29, 3.33it/s] {'loss': 3.0189, 'learning_rate': 6.00944859833222e-07, 'epoch': 7.1} + 44%|████▍ | 164820/371472 [2:09:14<17:13:29, 3.33it/s] 44%|████▍ | 164821/371472 [2:09:14<16:52:46, 3.40it/s] 44%|████▍ | 164822/371472 [2:09:14<18:02:56, 3.18it/s] 44%|████▍ | 164823/371472 [2:09:15<17:59:51, 3.19it/s] 44%|████▍ | 164824/371472 [2:09:15<17:17:55, 3.32it/s] 44%|████▍ | 164825/371472 [2:09:15<16:56:36, 3.39it/s] 44%|████▍ | 164826/371472 [2:09:16<16:32:27, 3.47it/s] 44%|████▍ | 164827/371472 [2:09:16<17:30:39, 3.28it/s] 44%|████▍ | 164828/371472 [2:09:16<17:13:58, 3.33it/s] 44%|████▍ | 164829/371472 [2:09:17<17:16:32, 3.32it/s] 44%|████▍ | 164830/371472 [2:09:17<17:35:53, 3.26it/s] 44%|████▍ | 164831/371472 [2:09:17<18:01:36, 3.18it/s] 44%|████▍ | 164832/371472 [2:09:17<17:49:06, 3.22it/s] 44%|████▍ | 164833/371472 [2:09:18<17:46:17, 3.23it/s] 44%|████▍ | 164834/371472 [2:09:18<17:33:32, 3.27it/s] 44%|████▍ | 164835/371472 [2:09:18<17:10:13, 3.34it/s] 44%|████▍ | 164836/371472 [2:09:19<17:08:29, 3.35it/s] 44%|████▍ | 164837/371472 [2:09:19<16:53:43, 3.40it/s] 44%|████▍ | 164838/371472 [2:09:19<16:37:49, 3.45it/s] 44%|████▍ | 164839/371472 [2:09:20<16:37:46, 3.45it/s] 44%|████▍ | 164840/371472 [2:09:20<17:30:08, 3.28it/s] {'loss': 2.9508, 'learning_rate': 6.008963778577431e-07, 'epoch': 7.1} + 44%|████▍ | 164840/371472 [2:09:20<17:30:08, 3.28it/s] 44%|████▍ | 164841/371472 [2:09:20<17:05:42, 3.36it/s] 44%|████▍ | 164842/371472 [2:09:20<16:47:45, 3.42it/s] 44%|████▍ | 164843/371472 [2:09:21<16:51:58, 3.40it/s] 44%|████▍ | 164844/371472 [2:09:21<17:23:47, 3.30it/s] 44%|████▍ | 164845/371472 [2:09:21<16:54:20, 3.40it/s] 44%|████▍ | 164846/371472 [2:09:22<16:46:01, 3.42it/s] 44%|████▍ | 164847/371472 [2:09:22<17:00:57, 3.37it/s] 44%|████▍ | 164848/371472 [2:09:22<16:40:59, 3.44it/s] 44%|████▍ | 164849/371472 [2:09:22<16:55:27, 3.39it/s] 44%|████▍ | 164850/371472 [2:09:23<16:34:58, 3.46it/s] 44%|████▍ | 164851/371472 [2:09:23<17:16:35, 3.32it/s] 44%|████▍ | 164852/371472 [2:09:23<17:48:07, 3.22it/s] 44%|████▍ | 164853/371472 [2:09:24<17:41:37, 3.24it/s] 44%|████▍ | 164854/371472 [2:09:24<17:24:08, 3.30it/s] 44%|████▍ | 164855/371472 [2:09:24<18:27:29, 3.11it/s] 44%|████▍ | 164856/371472 [2:09:25<17:56:44, 3.20it/s] 44%|████▍ | 164857/371472 [2:09:25<17:31:05, 3.28it/s] 44%|████▍ | 164858/371472 [2:09:25<17:15:16, 3.33it/s] 44%|████▍ | 164859/371472 [2:09:26<17:28:33, 3.28it/s] 44%|████▍ | 164860/371472 [2:09:26<18:17:53, 3.14it/s] {'loss': 2.7667, 'learning_rate': 6.008478958822641e-07, 'epoch': 7.1} + 44%|████▍ | 164860/371472 [2:09:26<18:17:53, 3.14it/s] 44%|████▍ | 164861/371472 [2:09:26<18:07:30, 3.17it/s] 44%|████▍ | 164862/371472 [2:09:27<18:22:29, 3.12it/s] 44%|████▍ | 164863/371472 [2:09:27<18:22:34, 3.12it/s] 44%|████▍ | 164864/371472 [2:09:27<17:37:33, 3.26it/s] 44%|████▍ | 164865/371472 [2:09:27<17:44:44, 3.23it/s] 44%|████▍ | 164866/371472 [2:09:28<17:31:52, 3.27it/s] 44%|████▍ | 164867/371472 [2:09:28<17:20:22, 3.31it/s] 44%|████▍ | 164868/371472 [2:09:28<17:09:14, 3.35it/s] 44%|████▍ | 164869/371472 [2:09:29<17:43:53, 3.24it/s] 44%|████▍ | 164870/371472 [2:09:29<17:34:09, 3.27it/s] 44%|████▍ | 164871/371472 [2:09:29<17:25:25, 3.29it/s] 44%|████▍ | 164872/371472 [2:09:30<18:01:38, 3.18it/s] 44%|████▍ | 164873/371472 [2:09:30<18:06:45, 3.17it/s] 44%|████▍ | 164874/371472 [2:09:30<17:56:59, 3.20it/s] 44%|████▍ | 164875/371472 [2:09:31<18:02:45, 3.18it/s] 44%|████▍ | 164876/371472 [2:09:31<17:28:31, 3.28it/s] 44%|████▍ | 164877/371472 [2:09:31<16:50:55, 3.41it/s] 44%|████▍ | 164878/371472 [2:09:31<18:06:35, 3.17it/s] 44%|████▍ | 164879/371472 [2:09:32<17:34:46, 3.26it/s] 44%|████▍ | 164880/371472 [2:09:32<17:58:56, 3.19it/s] {'loss': 2.8482, 'learning_rate': 6.007994139067853e-07, 'epoch': 7.1} + 44%|████▍ | 164880/371472 [2:09:32<17:58:56, 3.19it/s] 44%|████▍ | 164881/371472 [2:09:32<17:35:33, 3.26it/s] 44%|████▍ | 164882/371472 [2:09:33<17:31:40, 3.27it/s] 44%|████▍ | 164883/371472 [2:09:33<17:10:53, 3.34it/s] 44%|████▍ | 164884/371472 [2:09:33<16:59:17, 3.38it/s] 44%|████▍ | 164885/371472 [2:09:34<16:33:36, 3.47it/s] 44%|████▍ | 164886/371472 [2:09:34<16:47:30, 3.42it/s] 44%|████▍ | 164887/371472 [2:09:34<16:50:20, 3.41it/s] 44%|████▍ | 164888/371472 [2:09:34<17:30:26, 3.28it/s] 44%|████▍ | 164889/371472 [2:09:35<17:02:19, 3.37it/s] 44%|████▍ | 164890/371472 [2:09:35<16:51:43, 3.40it/s] 44%|████▍ | 164891/371472 [2:09:35<16:49:00, 3.41it/s] 44%|████▍ | 164892/371472 [2:09:36<18:56:37, 3.03it/s] 44%|████▍ | 164893/371472 [2:09:36<18:02:53, 3.18it/s] 44%|████▍ | 164894/371472 [2:09:36<17:37:42, 3.26it/s] 44%|████▍ | 164895/371472 [2:09:37<17:10:46, 3.34it/s] 44%|████▍ | 164896/371472 [2:09:37<17:27:49, 3.29it/s] 44%|████▍ | 164897/371472 [2:09:37<17:09:34, 3.34it/s] 44%|████▍ | 164898/371472 [2:09:37<17:01:38, 3.37it/s] 44%|████▍ | 164899/371472 [2:09:38<17:16:45, 3.32it/s] 44%|████▍ | 164900/371472 [2:09:38<17:04:19, 3.36it/s] {'loss': 2.8236, 'learning_rate': 6.007509319313064e-07, 'epoch': 7.1} + 44%|████▍ | 164900/371472 [2:09:38<17:04:19, 3.36it/s] 44%|████▍ | 164901/371472 [2:09:38<16:56:36, 3.39it/s] 44%|████▍ | 164902/371472 [2:09:39<18:13:25, 3.15it/s] 44%|████▍ | 164903/371472 [2:09:39<17:49:55, 3.22it/s] 44%|████▍ | 164904/371472 [2:09:39<17:44:36, 3.23it/s] 44%|████▍ | 164905/371472 [2:09:40<18:01:00, 3.18it/s] 44%|████▍ | 164906/371472 [2:09:40<17:27:52, 3.29it/s] 44%|████▍ | 164907/371472 [2:09:40<17:14:05, 3.33it/s] 44%|████▍ | 164908/371472 [2:09:41<17:23:11, 3.30it/s] 44%|████▍ | 164909/371472 [2:09:41<16:59:18, 3.38it/s] 44%|████▍ | 164910/371472 [2:09:41<17:50:34, 3.22it/s] 44%|████▍ | 164911/371472 [2:09:41<17:18:59, 3.31it/s] 44%|████▍ | 164912/371472 [2:09:42<17:33:59, 3.27it/s] 44%|████▍ | 164913/371472 [2:09:42<17:38:57, 3.25it/s] 44%|████▍ | 164914/371472 [2:09:42<17:47:05, 3.23it/s] 44%|████▍ | 164915/371472 [2:09:43<17:56:59, 3.20it/s] 44%|████▍ | 164916/371472 [2:09:43<17:20:18, 3.31it/s] 44%|████▍ | 164917/371472 [2:09:43<17:17:00, 3.32it/s] 44%|████▍ | 164918/371472 [2:09:44<16:59:00, 3.38it/s] 44%|████▍ | 164919/371472 [2:09:44<16:31:05, 3.47it/s] 44%|████▍ | 164920/371472 [2:09:44<16:16:56, 3.52it/s] {'loss': 2.962, 'learning_rate': 6.007024499558275e-07, 'epoch': 7.1} + 44%|████▍ | 164920/371472 [2:09:44<16:16:56, 3.52it/s] 44%|████▍ | 164921/371472 [2:09:44<15:52:35, 3.61it/s] 44%|████▍ | 164922/371472 [2:09:45<16:01:09, 3.58it/s] 44%|████▍ | 164923/371472 [2:09:45<15:44:36, 3.64it/s] 44%|████▍ | 164924/371472 [2:09:45<19:23:13, 2.96it/s] 44%|███���▍ | 164925/371472 [2:09:46<18:28:49, 3.10it/s] 44%|████▍ | 164926/371472 [2:09:46<17:29:18, 3.28it/s] 44%|████▍ | 164927/371472 [2:09:46<17:23:44, 3.30it/s] 44%|████▍ | 164928/371472 [2:09:47<17:26:47, 3.29it/s] 44%|████▍ | 164929/371472 [2:09:47<18:09:43, 3.16it/s] 44%|████▍ | 164930/371472 [2:09:47<17:41:49, 3.24it/s] 44%|████▍ | 164931/371472 [2:09:48<18:09:15, 3.16it/s] 44%|████▍ | 164932/371472 [2:09:48<18:06:36, 3.17it/s] 44%|████▍ | 164933/371472 [2:09:48<17:42:53, 3.24it/s] 44%|████▍ | 164934/371472 [2:09:49<19:04:50, 3.01it/s] 44%|████▍ | 164935/371472 [2:09:49<18:02:13, 3.18it/s] 44%|████▍ | 164936/371472 [2:09:49<17:01:34, 3.37it/s] 44%|████▍ | 164937/371472 [2:09:49<17:49:56, 3.22it/s] 44%|████▍ | 164938/371472 [2:09:50<18:00:06, 3.19it/s] 44%|████▍ | 164939/371472 [2:09:50<17:29:19, 3.28it/s] 44%|████▍ | 164940/371472 [2:09:50<17:27:42, 3.29it/s] {'loss': 3.0985, 'learning_rate': 6.006539679803485e-07, 'epoch': 7.1} + 44%|████▍ | 164940/371472 [2:09:50<17:27:42, 3.29it/s] 44%|████▍ | 164941/371472 [2:09:51<17:17:45, 3.32it/s] 44%|████▍ | 164942/371472 [2:09:51<17:27:21, 3.29it/s] 44%|████▍ | 164943/371472 [2:09:51<16:59:08, 3.38it/s] 44%|████▍ | 164944/371472 [2:09:51<16:46:06, 3.42it/s] 44%|████▍ | 164945/371472 [2:09:52<16:49:55, 3.41it/s] 44%|████▍ | 164946/371472 [2:09:52<16:45:11, 3.42it/s] 44%|████▍ | 164947/371472 [2:09:52<17:04:46, 3.36it/s] 44%|████▍ | 164948/371472 [2:09:53<17:12:40, 3.33it/s] 44%|████▍ | 164949/371472 [2:09:53<17:02:52, 3.37it/s] 44%|████▍ | 164950/371472 [2:09:53<17:24:54, 3.29it/s] 44%|████▍ | 164951/371472 [2:09:54<16:50:24, 3.41it/s] 44%|████▍ | 164952/371472 [2:09:54<16:41:43, 3.44it/s] 44%|████▍ | 164953/371472 [2:09:54<18:40:59, 3.07it/s] 44%|████▍ | 164954/371472 [2:09:55<18:02:27, 3.18it/s] 44%|████▍ | 164955/371472 [2:09:55<18:44:12, 3.06it/s] 44%|████▍ | 164956/371472 [2:09:55<18:00:26, 3.19it/s] 44%|████▍ | 164957/371472 [2:09:55<17:15:13, 3.32it/s] 44%|████▍ | 164958/371472 [2:09:56<17:19:35, 3.31it/s] 44%|████▍ | 164959/371472 [2:09:56<16:59:17, 3.38it/s] 44%|████▍ | 164960/371472 [2:09:56<16:52:26, 3.40it/s] {'loss': 3.0049, 'learning_rate': 6.006054860048697e-07, 'epoch': 7.11} + 44%|████▍ | 164960/371472 [2:09:56<16:52:26, 3.40it/s] 44%|████▍ | 164961/371472 [2:09:57<17:07:53, 3.35it/s] 44%|████▍ | 164962/371472 [2:09:57<16:51:25, 3.40it/s] 44%|████▍ | 164963/371472 [2:09:57<16:50:00, 3.41it/s] 44%|████▍ | 164964/371472 [2:09:58<17:58:15, 3.19it/s] 44%|████▍ | 164965/371472 [2:09:58<18:19:37, 3.13it/s] 44%|████▍ | 164966/371472 [2:09:58<17:41:46, 3.24it/s] 44%|████▍ | 164967/371472 [2:09:58<16:57:48, 3.38it/s] 44%|████▍ | 164968/371472 [2:09:59<17:23:46, 3.30it/s] 44%|████▍ | 164969/371472 [2:09:59<17:34:50, 3.26it/s] 44%|████▍ | 164970/371472 [2:09:59<16:53:22, 3.40it/s] 44%|████▍ | 164971/371472 [2:10:00<17:12:32, 3.33it/s] 44%|████▍ | 164972/371472 [2:10:00<18:37:42, 3.08it/s] 44%|████▍ | 164973/371472 [2:10:00<18:53:52, 3.04it/s] 44%|████▍ | 164974/371472 [2:10:01<19:24:47, 2.95it/s] 44%|████▍ | 164975/371472 [2:10:01<18:30:59, 3.10it/s] 44%|████▍ | 164976/371472 [2:10:01<19:37:35, 2.92it/s] 44%|████▍ | 164977/371472 [2:10:02<19:21:30, 2.96it/s] 44%|████▍ | 164978/371472 [2:10:02<18:57:39, 3.03it/s] 44%|████▍ | 164979/371472 [2:10:02<19:06:44, 3.00it/s] 44%|████▍ | 164980/371472 [2:10:03<18:31:04, 3.10it/s] {'loss': 2.7876, 'learning_rate': 6.005570040293909e-07, 'epoch': 7.11} + 44%|████▍ | 164980/371472 [2:10:03<18:31:04, 3.10it/s] 44%|████▍ | 164981/371472 [2:10:03<17:57:18, 3.19it/s] 44%|████▍ | 164982/371472 [2:10:03<17:30:56, 3.27it/s] 44%|████▍ | 164983/371472 [2:10:04<17:20:37, 3.31it/s] 44%|████▍ | 164984/371472 [2:10:04<17:13:32, 3.33it/s] 44%|████▍ | 164985/371472 [2:10:04<17:13:44, 3.33it/s] 44%|████▍ | 164986/371472 [2:10:04<17:08:56, 3.34it/s] 44%|████▍ | 164987/371472 [2:10:05<17:38:51, 3.25it/s] 44%|████▍ | 164988/371472 [2:10:05<17:40:19, 3.25it/s] 44%|████▍ | 164989/371472 [2:10:05<17:15:09, 3.32it/s] 44%|████▍ | 164990/371472 [2:10:06<18:19:57, 3.13it/s] 44%|████▍ | 164991/371472 [2:10:06<18:24:36, 3.12it/s] 44%|████▍ | 164992/371472 [2:10:06<18:07:57, 3.16it/s] 44%|████▍ | 164993/371472 [2:10:07<18:23:11, 3.12it/s] 44%|████▍ | 164994/371472 [2:10:07<18:22:41, 3.12it/s] 44%|████▍ | 164995/371472 [2:10:07<17:33:40, 3.27it/s] 44%|████▍ | 164996/371472 [2:10:08<17:41:24, 3.24it/s] 44%|████▍ | 164997/371472 [2:10:08<17:08:27, 3.35it/s] 44%|████▍ | 164998/371472 [2:10:08<16:51:18, 3.40it/s] 44%|████▍ | 164999/371472 [2:10:08<17:11:36, 3.34it/s] 44%|████▍ | 165000/371472 [2:10:09<17:01:49, 3.37it/s] {'loss': 2.6748, 'learning_rate': 6.00508522053912e-07, 'epoch': 7.11} + 44%|████▍ | 165000/371472 [2:10:09<17:01:49, 3.37it/s] 44%|████▍ | 165001/371472 [2:10:09<16:50:36, 3.41it/s] 44%|████▍ | 165002/371472 [2:10:09<17:25:07, 3.29it/s] 44%|████▍ | 165003/371472 [2:10:10<17:42:15, 3.24it/s] 44%|████▍ | 165004/371472 [2:10:10<18:12:10, 3.15it/s] 44%|████▍ | 165005/371472 [2:10:10<17:46:24, 3.23it/s] 44%|████▍ | 165006/371472 [2:10:11<17:34:23, 3.26it/s] 44%|████▍ | 165007/371472 [2:10:11<17:31:11, 3.27it/s] 44%|████▍ | 165008/371472 [2:10:11<16:48:08, 3.41it/s] 44%|████▍ | 165009/371472 [2:10:11<16:26:53, 3.49it/s] 44%|████▍ | 165010/371472 [2:10:12<16:42:48, 3.43it/s] 44%|████▍ | 165011/371472 [2:10:12<16:23:14, 3.50it/s] 44%|████▍ | 165012/371472 [2:10:12<16:26:15, 3.49it/s] 44%|████▍ | 165013/371472 [2:10:13<16:09:23, 3.55it/s] 44%|████▍ | 165014/371472 [2:10:13<16:45:51, 3.42it/s] 44%|████▍ | 165015/371472 [2:10:13<16:51:20, 3.40it/s] 44%|████▍ | 165016/371472 [2:10:13<16:26:01, 3.49it/s] 44%|████▍ | 165017/371472 [2:10:14<16:53:42, 3.39it/s] 44%|████▍ | 165018/371472 [2:10:14<19:00:48, 3.02it/s] 44%|████▍ | 165019/371472 [2:10:14<18:03:50, 3.17it/s] 44%|████▍ | 165020/371472 [2:10:15<18:00:37, 3.18it/s] {'loss': 2.9568, 'learning_rate': 6.00460040078433e-07, 'epoch': 7.11} + 44%|████▍ | 165020/371472 [2:10:15<18:00:37, 3.18it/s] 44%|████▍ | 165021/371472 [2:10:15<17:52:24, 3.21it/s] 44%|████▍ | 165022/371472 [2:10:15<17:18:58, 3.31it/s] 44%|████▍ | 165023/371472 [2:10:16<17:10:42, 3.34it/s] 44%|████▍ | 165024/371472 [2:10:16<17:08:45, 3.34it/s] 44%|████▍ | 165025/371472 [2:10:16<16:45:42, 3.42it/s] 44%|████▍ | 165026/371472 [2:10:17<16:45:27, 3.42it/s] 44%|████▍ | 165027/371472 [2:10:17<16:29:52, 3.48it/s] 44%|████▍ | 165028/371472 [2:10:17<16:32:29, 3.47it/s] 44%|████▍ | 165029/371472 [2:10:17<16:29:04, 3.48it/s] 44%|████▍ | 165030/371472 [2:10:18<15:56:07, 3.60it/s] 44%|████▍ | 165031/371472 [2:10:18<18:01:55, 3.18it/s] 44%|████▍ | 165032/371472 [2:10:18<17:43:35, 3.23it/s] 44%|████▍ | 165033/371472 [2:10:19<17:57:45, 3.19it/s] 44%|████▍ | 165034/371472 [2:10:19<18:07:14, 3.16it/s] 44%|████▍ | 165035/371472 [2:10:19<17:30:50, 3.27it/s] 44%|████▍ | 165036/371472 [2:10:20<17:03:37, 3.36it/s] 44%|████▍ | 165037/371472 [2:10:20<17:13:07, 3.33it/s] 44%|████▍ | 165038/371472 [2:10:20<17:13:09, 3.33it/s] 44%|████▍ | 165039/371472 [2:10:21<18:10:29, 3.16it/s] 44%|████▍ | 165040/371472 [2:10:21<18:09:13, 3.16it/s] {'loss': 2.9358, 'learning_rate': 6.004115581029541e-07, 'epoch': 7.11} + 44%|████▍ | 165040/371472 [2:10:21<18:09:13, 3.16it/s] 44%|████▍ | 165041/371472 [2:10:21<17:47:49, 3.22it/s] 44%|████▍ | 165042/371472 [2:10:21<17:39:27, 3.25it/s] 44%|████▍ | 165043/371472 [2:10:22<17:55:57, 3.20it/s] 44%|████▍ | 165044/371472 [2:10:22<17:52:05, 3.21it/s] 44%|████▍ | 165045/371472 [2:10:22<17:33:15, 3.27it/s] 44%|████▍ | 165046/371472 [2:10:23<17:08:35, 3.34it/s] 44%|████▍ | 165047/371472 [2:10:23<17:08:35, 3.34it/s] 44%|████▍ | 165048/371472 [2:10:23<16:49:16, 3.41it/s] 44%|████▍ | 165049/371472 [2:10:24<16:45:09, 3.42it/s] 44%|████▍ | 165050/371472 [2:10:24<17:06:16, 3.35it/s] 44%|████▍ | 165051/371472 [2:10:24<16:30:10, 3.47it/s] 44%|████▍ | 165052/371472 [2:10:24<17:56:46, 3.20it/s] 44%|████▍ | 165053/371472 [2:10:25<17:28:34, 3.28it/s] 44%|████▍ | 165054/371472 [2:10:25<16:43:42, 3.43it/s] 44%|████▍ | 165055/371472 [2:10:25<16:31:41, 3.47it/s] 44%|████▍ | 165056/371472 [2:10:26<16:32:25, 3.47it/s] 44%|████▍ | 165057/371472 [2:10:26<17:03:08, 3.36it/s] 44%|████▍ | 165058/371472 [2:10:26<17:25:27, 3.29it/s] 44%|████▍ | 165059/371472 [2:10:27<17:03:04, 3.36it/s] 44%|████▍ | 165060/371472 [2:10:27<16:24:30, 3.49it/s] {'loss': 3.0014, 'learning_rate': 6.003630761274753e-07, 'epoch': 7.11} + 44%|████▍ | 165060/371472 [2:10:27<16:24:30, 3.49it/s] 44%|████▍ | 165061/371472 [2:10:27<17:01:26, 3.37it/s] 44%|████▍ | 165062/371472 [2:10:27<17:04:58, 3.36it/s] 44%|████▍ | 165063/371472 [2:10:28<17:40:37, 3.24it/s] 44%|████▍ | 165064/371472 [2:10:28<17:19:13, 3.31it/s] 44%|████▍ | 165065/371472 [2:10:28<18:54:45, 3.03it/s] 44%|████▍ | 165066/371472 [2:10:29<18:43:28, 3.06it/s] 44%|████▍ | 165067/371472 [2:10:29<18:30:57, 3.10it/s] 44%|████▍ | 165068/371472 [2:10:29<18:54:57, 3.03it/s] 44%|████▍ | 165069/371472 [2:10:30<18:11:17, 3.15it/s] 44%|████▍ | 165070/371472 [2:10:30<17:50:26, 3.21it/s] 44%|████▍ | 165071/371472 [2:10:30<17:21:23, 3.30it/s] 44%|████▍ | 165072/371472 [2:10:31<17:17:59, 3.31it/s] 44%|████▍ | 165073/371472 [2:10:31<17:09:49, 3.34it/s] 44%|████▍ | 165074/371472 [2:10:31<16:50:23, 3.40it/s] 44%|████▍ | 165075/371472 [2:10:31<16:43:00, 3.43it/s] 44%|████▍ | 165076/371472 [2:10:32<16:39:42, 3.44it/s] 44%|████▍ | 165077/371472 [2:10:32<16:56:02, 3.39it/s] 44%|████▍ | 165078/371472 [2:10:32<17:16:54, 3.32it/s] 44%|████▍ | 165079/371472 [2:10:33<17:06:25, 3.35it/s] 44%|████▍ | 165080/371472 [2:10:33<17:30:56, 3.27it/s] {'loss': 3.124, 'learning_rate': 6.003145941519964e-07, 'epoch': 7.11} + 44%|████▍ | 165080/371472 [2:10:33<17:30:56, 3.27it/s] 44%|████▍ | 165081/371472 [2:10:33<17:06:00, 3.35it/s] 44%|████▍ | 165082/371472 [2:10:34<18:25:30, 3.11it/s] 44%|████▍ | 165083/371472 [2:10:34<17:27:40, 3.28it/s] 44%|████▍ | 165084/371472 [2:10:34<17:13:58, 3.33it/s] 44%|████▍ | 165085/371472 [2:10:34<17:42:26, 3.24it/s] 44%|████▍ | 165086/371472 [2:10:35<17:39:59, 3.25it/s] 44%|████▍ | 165087/371472 [2:10:35<17:58:05, 3.19it/s] 44%|████▍ | 165088/371472 [2:10:35<17:49:49, 3.22it/s] 44%|████▍ | 165089/371472 [2:10:36<17:20:48, 3.30it/s] 44%|████▍ | 165090/371472 [2:10:36<17:31:03, 3.27it/s] 44%|████▍ | 165091/371472 [2:10:36<17:23:35, 3.30it/s] 44%|████▍ | 165092/371472 [2:10:37<18:59:53, 3.02it/s] 44%|████▍ | 165093/371472 [2:10:37<18:37:07, 3.08it/s] 44%|████▍ | 165094/371472 [2:10:37<18:50:46, 3.04it/s] 44%|████▍ | 165095/371472 [2:10:38<18:32:24, 3.09it/s] 44%|████▍ | 165096/371472 [2:10:38<17:56:06, 3.20it/s] 44%|████▍ | 165097/371472 [2:10:38<17:48:31, 3.22it/s] 44%|████▍ | 165098/371472 [2:10:39<18:27:02, 3.11it/s] 44%|████▍ | 165099/371472 [2:10:39<17:29:45, 3.28it/s] 44%|████▍ | 165100/371472 [2:10:39<17:36:35, 3.26it/s] {'loss': 3.0466, 'learning_rate': 6.002661121765174e-07, 'epoch': 7.11} + 44%|████▍ | 165100/371472 [2:10:39<17:36:35, 3.26it/s] 44%|████▍ | 165101/371472 [2:10:40<18:11:21, 3.15it/s] 44%|████▍ | 165102/371472 [2:10:40<18:09:51, 3.16it/s] 44%|████▍ | 165103/371472 [2:10:40<17:58:12, 3.19it/s] 44%|████▍ | 165104/371472 [2:10:40<17:53:04, 3.21it/s] 44%|████▍ | 165105/371472 [2:10:41<18:04:14, 3.17it/s] 44%|████▍ | 165106/371472 [2:10:41<17:11:22, 3.33it/s] 44%|████▍ | 165107/371472 [2:10:41<18:36:31, 3.08it/s] 44%|████▍ | 165108/371472 [2:10:42<18:02:07, 3.18it/s] 44%|████▍ | 165109/371472 [2:10:42<17:10:33, 3.34it/s] 44%|████▍ | 165110/371472 [2:10:42<16:56:51, 3.38it/s] 44%|████▍ | 165111/371472 [2:10:43<16:54:17, 3.39it/s] 44%|████▍ | 165112/371472 [2:10:43<18:54:59, 3.03it/s] 44%|████▍ | 165113/371472 [2:10:43<18:37:07, 3.08it/s] 44%|████▍ | 165114/371472 [2:10:44<18:01:16, 3.18it/s] 44%|████▍ | 165115/371472 [2:10:44<17:59:06, 3.19it/s] 44%|████▍ | 165116/371472 [2:10:44<17:49:05, 3.22it/s] 44%|████▍ | 165117/371472 [2:10:45<18:06:27, 3.17it/s] 44%|████▍ | 165118/371472 [2:10:45<17:13:57, 3.33it/s] 44%|████▍ | 165119/371472 [2:10:45<17:16:18, 3.32it/s] 44%|████▍ | 165120/371472 [2:10:45<17:02:43, 3.36it/s] {'loss': 2.8176, 'learning_rate': 6.002176302010386e-07, 'epoch': 7.11} + 44%|████▍ | 165120/371472 [2:10:45<17:02:43, 3.36it/s] 44%|████▍ | 165121/371472 [2:10:46<16:43:58, 3.43it/s] 44%|████▍ | 165122/371472 [2:10:46<16:39:23, 3.44it/s] 44%|████▍ | 165123/371472 [2:10:46<16:28:51, 3.48it/s] 44%|████▍ | 165124/371472 [2:10:46<16:13:24, 3.53it/s] 44%|████▍ | 165125/371472 [2:10:47<16:21:29, 3.50it/s] 44%|████▍ | 165126/371472 [2:10:47<15:49:05, 3.62it/s] 44%|████▍ | 165127/371472 [2:10:47<15:46:42, 3.63it/s] 44%|████▍ | 165128/371472 [2:10:48<16:24:53, 3.49it/s] 44%|████▍ | 165129/371472 [2:10:48<16:20:42, 3.51it/s] 44%|████▍ | 165130/371472 [2:10:48<16:08:50, 3.55it/s] 44%|████▍ | 165131/371472 [2:10:49<17:13:31, 3.33it/s] 44%|████▍ | 165132/371472 [2:10:49<18:06:26, 3.17it/s] 44%|████▍ | 165133/371472 [2:10:49<18:05:29, 3.17it/s] 44%|████▍ | 165134/371472 [2:10:49<17:27:47, 3.28it/s] 44%|████▍ | 165135/371472 [2:10:50<17:45:25, 3.23it/s] 44%|████▍ | 165136/371472 [2:10:50<17:30:49, 3.27it/s] 44%|████▍ | 165137/371472 [2:10:50<17:54:59, 3.20it/s] 44%|████▍ | 165138/371472 [2:10:51<17:44:45, 3.23it/s] 44%|████▍ | 165139/371472 [2:10:51<16:59:01, 3.37it/s] 44%|████▍ | 165140/371472 [2:10:51<16:57:00, 3.38it/s] {'loss': 2.9513, 'learning_rate': 6.001691482255598e-07, 'epoch': 7.11} + 44%|████▍ | 165140/371472 [2:10:51<16:57:00, 3.38it/s] 44%|████▍ | 165141/371472 [2:10:52<17:13:24, 3.33it/s] 44%|████▍ | 165142/371472 [2:10:52<16:45:05, 3.42it/s] 44%|████▍ | 165143/371472 [2:10:52<16:32:25, 3.47it/s] 44%|████▍ | 165144/371472 [2:10:52<16:44:22, 3.42it/s] 44%|████▍ | 165145/371472 [2:10:53<16:40:00, 3.44it/s] 44%|████▍ | 165146/371472 [2:10:53<16:49:24, 3.41it/s] 44%|████▍ | 165147/371472 [2:10:53<16:26:17, 3.49it/s] 44%|████▍ | 165148/371472 [2:10:54<16:24:12, 3.49it/s] 44%|████▍ | 165149/371472 [2:10:54<16:10:16, 3.54it/s] 44%|████▍ | 165150/371472 [2:10:54<16:36:55, 3.45it/s] 44%|████▍ | 165151/371472 [2:10:54<16:31:00, 3.47it/s] 44%|████▍ | 165152/371472 [2:10:55<17:10:53, 3.34it/s] 44%|████▍ | 165153/371472 [2:10:55<16:37:18, 3.45it/s] 44%|████▍ | 165154/371472 [2:10:55<16:55:10, 3.39it/s] 44%|████▍ | 165155/371472 [2:10:56<17:03:50, 3.36it/s] 44%|████▍ | 165156/371472 [2:10:56<17:11:39, 3.33it/s] 44%|████▍ | 165157/371472 [2:10:56<17:06:02, 3.35it/s] 44%|████▍ | 165158/371472 [2:10:57<17:27:52, 3.28it/s] 44%|████▍ | 165159/371472 [2:10:57<17:05:22, 3.35it/s] 44%|████▍ | 165160/371472 [2:10:57<16:52:54, 3.39it/s] {'loss': 3.0868, 'learning_rate': 6.001206662500807e-07, 'epoch': 7.11} + 44%|████▍ | 165160/371472 [2:10:57<16:52:54, 3.39it/s] 44%|████▍ | 165161/371472 [2:10:57<16:22:20, 3.50it/s] 44%|████▍ | 165162/371472 [2:10:58<16:20:39, 3.51it/s] 44%|████▍ | 165163/371472 [2:10:58<16:09:27, 3.55it/s] 44%|████▍ | 165164/371472 [2:10:58<16:22:34, 3.50it/s] 44%|████▍ | 165165/371472 [2:10:59<17:15:34, 3.32it/s] 44%|████▍ | 165166/371472 [2:10:59<17:16:34, 3.32it/s] 44%|████▍ | 165167/371472 [2:10:59<17:10:39, 3.34it/s] 44%|████▍ | 165168/371472 [2:10:59<16:55:19, 3.39it/s] 44%|████▍ | 165169/371472 [2:11:00<16:43:13, 3.43it/s] 44%|████▍ | 165170/371472 [2:11:00<16:39:11, 3.44it/s] 44%|████▍ | 165171/371472 [2:11:00<17:50:11, 3.21it/s] 44%|████▍ | 165172/371472 [2:11:01<17:44:37, 3.23it/s] 44%|████▍ | 165173/371472 [2:11:01<17:52:17, 3.21it/s] 44%|████▍ | 165174/371472 [2:11:01<17:22:22, 3.30it/s] 44%|████▍ | 165175/371472 [2:11:02<17:52:27, 3.21it/s] 44%|████▍ | 165176/371472 [2:11:02<18:47:53, 3.05it/s] 44%|████▍ | 165177/371472 [2:11:02<18:51:22, 3.04it/s] 44%|████▍ | 165178/371472 [2:11:03<18:03:17, 3.17it/s] 44%|████▍ | 165179/371472 [2:11:03<18:02:37, 3.18it/s] 44%|████▍ | 165180/371472 [2:11:03<17:52:17, 3.21it/s] {'loss': 2.8789, 'learning_rate': 6.000721842746018e-07, 'epoch': 7.11} + 44%|████▍ | 165180/371472 [2:11:03<17:52:17, 3.21it/s] 44%|████▍ | 165181/371472 [2:11:04<17:28:32, 3.28it/s] 44%|████▍ | 165182/371472 [2:11:04<17:18:35, 3.31it/s] 44%|████▍ | 165183/371472 [2:11:04<17:46:25, 3.22it/s] 44%|████▍ | 165184/371472 [2:11:04<17:06:48, 3.35it/s] 44%|████▍ | 165185/371472 [2:11:05<16:52:09, 3.40it/s] 44%|████▍ | 165186/371472 [2:11:05<17:52:01, 3.21it/s] 44%|████▍ | 165187/371472 [2:11:05<17:40:03, 3.24it/s] 44%|████▍ | 165188/371472 [2:11:06<17:16:26, 3.32it/s] 44%|████▍ | 165189/371472 [2:11:06<16:58:25, 3.38it/s] 44%|████▍ | 165190/371472 [2:11:06<17:06:48, 3.35it/s] 44%|████▍ | 165191/371472 [2:11:07<17:08:28, 3.34it/s] 44%|████▍ | 165192/371472 [2:11:07<17:13:17, 3.33it/s] 44%|████▍ | 165193/371472 [2:11:07<17:10:35, 3.34it/s] 44%|████▍ | 165194/371472 [2:11:07<17:14:12, 3.32it/s] 44%|████▍ | 165195/371472 [2:11:08<16:49:31, 3.41it/s] 44%|████▍ | 165196/371472 [2:11:08<16:56:32, 3.38it/s] 44%|████▍ | 165197/371472 [2:11:08<17:45:59, 3.23it/s] 44%|████▍ | 165198/371472 [2:11:09<18:09:54, 3.15it/s] 44%|████▍ | 165199/371472 [2:11:09<18:06:17, 3.16it/s] 44%|████▍ | 165200/371472 [2:11:09<17:36:50, 3.25it/s] {'loss': 2.9039, 'learning_rate': 6.00023702299123e-07, 'epoch': 7.12} + 44%|████▍ | 165200/371472 [2:11:09<17:36:50, 3.25it/s] 44%|████▍ | 165201/371472 [2:11:10<17:54:55, 3.20it/s] 44%|████▍ | 165202/371472 [2:11:10<17:42:58, 3.23it/s] 44%|████▍ | 165203/371472 [2:11:10<17:21:30, 3.30it/s] 44%|████▍ | 165204/371472 [2:11:11<17:57:14, 3.19it/s] 44%|████▍ | 165205/371472 [2:11:11<18:01:35, 3.18it/s] 44%|████▍ | 165206/371472 [2:11:11<18:01:56, 3.18it/s] 44%|████▍ | 165207/371472 [2:11:11<17:08:52, 3.34it/s] 44%|████▍ | 165208/371472 [2:11:12<16:56:48, 3.38it/s] 44%|████▍ | 165209/371472 [2:11:12<16:48:47, 3.41it/s] 44%|████▍ | 165210/371472 [2:11:12<16:21:15, 3.50it/s] 44%|████▍ | 165211/371472 [2:11:13<16:10:25, 3.54it/s] 44%|████▍ | 165212/371472 [2:11:13<16:11:34, 3.54it/s] 44%|████▍ | 165213/371472 [2:11:13<16:22:21, 3.50it/s] 44%|████▍ | 165214/371472 [2:11:13<16:28:48, 3.48it/s] 44%|████▍ | 165215/371472 [2:11:14<16:34:29, 3.46it/s] 44%|████▍ | 165216/371472 [2:11:14<16:07:16, 3.55it/s] 44%|████▍ | 165217/371472 [2:11:14<17:24:29, 3.29it/s] 44%|████▍ | 165218/371472 [2:11:15<17:14:10, 3.32it/s] 44%|████▍ | 165219/371472 [2:11:15<17:18:19, 3.31it/s] 44%|████▍ | 165220/371472 [2:11:15<17:24:00, 3.29it/s] {'loss': 3.0421, 'learning_rate': 5.999752203236441e-07, 'epoch': 7.12} + 44%|████▍ | 165220/371472 [2:11:15<17:24:00, 3.29it/s] 44%|████▍ | 165221/371472 [2:11:16<17:21:30, 3.30it/s] 44%|████▍ | 165222/371472 [2:11:16<17:22:19, 3.30it/s] 44%|████▍ | 165223/371472 [2:11:16<17:10:38, 3.34it/s] 44%|████▍ | 165224/371472 [2:11:16<16:53:55, 3.39it/s] 44%|████▍ | 165225/371472 [2:11:17<17:45:55, 3.22it/s] 44%|████▍ | 165226/371472 [2:11:17<17:45:50, 3.23it/s] 44%|████▍ | 165227/371472 [2:11:17<17:27:42, 3.28it/s] 44%|████▍ | 165228/371472 [2:11:18<17:01:25, 3.37it/s] 44%|████▍ | 165229/371472 [2:11:18<16:48:58, 3.41it/s] 44%|████▍ | 165230/371472 [2:11:18<18:50:31, 3.04it/s] 44%|████▍ | 165231/371472 [2:11:19<19:24:04, 2.95it/s] 44%|████▍ | 165232/371472 [2:11:19<19:37:22, 2.92it/s] 44%|████▍ | 165233/371472 [2:11:19<18:38:54, 3.07it/s] 44%|████▍ | 165234/371472 [2:11:20<18:10:33, 3.15it/s] 44%|████▍ | 165235/371472 [2:11:20<17:29:29, 3.28it/s] 44%|████▍ | 165236/371472 [2:11:20<17:06:43, 3.35it/s] 44%|████▍ | 165237/371472 [2:11:21<17:17:59, 3.31it/s] 44%|████▍ | 165238/371472 [2:11:21<16:47:22, 3.41it/s] 44%|████▍ | 165239/371472 [2:11:21<16:58:03, 3.38it/s] 44%|████▍ | 165240/371472 [2:11:21<16:51:35, 3.40it/s] {'loss': 2.7671, 'learning_rate': 5.999267383481652e-07, 'epoch': 7.12} + 44%|████▍ | 165240/371472 [2:11:21<16:51:35, 3.40it/s] 44%|████▍ | 165241/371472 [2:11:22<18:03:40, 3.17it/s] 44%|████▍ | 165242/371472 [2:11:22<17:25:50, 3.29it/s] 44%|████▍ | 165243/371472 [2:11:22<17:38:44, 3.25it/s] 44%|████▍ | 165244/371472 [2:11:23<17:47:31, 3.22it/s] 44%|████▍ | 165245/371472 [2:11:23<18:38:16, 3.07it/s] 44%|████▍ | 165246/371472 [2:11:23<18:14:06, 3.14it/s] 44%|████▍ | 165247/371472 [2:11:24<18:35:13, 3.08it/s] 44%|████▍ | 165248/371472 [2:11:24<18:00:02, 3.18it/s] 44%|████▍ | 165249/371472 [2:11:24<17:35:07, 3.26it/s] 44%|████▍ | 165250/371472 [2:11:25<19:23:41, 2.95it/s] 44%|████▍ | 165251/371472 [2:11:25<19:06:51, 3.00it/s] 44%|████▍ | 165252/371472 [2:11:25<18:21:21, 3.12it/s] 44%|████▍ | 165253/371472 [2:11:26<17:58:38, 3.19it/s] 44%|████▍ | 165254/371472 [2:11:26<17:43:19, 3.23it/s] 44%|████▍ | 165255/371472 [2:11:26<17:25:34, 3.29it/s] 44%|████▍ | 165256/371472 [2:11:26<17:00:00, 3.37it/s] 44%|████▍ | 165257/371472 [2:11:27<16:45:17, 3.42it/s] 44%|████▍ | 165258/371472 [2:11:27<16:34:38, 3.46it/s] 44%|████▍ | 165259/371472 [2:11:27<17:48:43, 3.22it/s] 44%|████▍ | 165260/371472 [2:11:28<18:54:20, 3.03it/s] {'loss': 2.997, 'learning_rate': 5.998782563726863e-07, 'epoch': 7.12} + 44%|████▍ | 165260/371472 [2:11:28<18:54:20, 3.03it/s] 44%|████▍ | 165261/371472 [2:11:28<18:55:44, 3.03it/s] 44%|████▍ | 165262/371472 [2:11:28<18:30:54, 3.09it/s] 44%|████▍ | 165263/371472 [2:11:29<19:13:52, 2.98it/s] 44%|████▍ | 165264/371472 [2:11:29<17:55:44, 3.19it/s] 44%|████▍ | 165265/371472 [2:11:29<17:20:23, 3.30it/s] 44%|████▍ | 165266/371472 [2:11:30<17:15:54, 3.32it/s] 44%|████▍ | 165267/371472 [2:11:30<18:36:54, 3.08it/s] 44%|████▍ | 165268/371472 [2:11:30<19:05:21, 3.00it/s] 44%|████▍ | 165269/371472 [2:11:31<18:24:54, 3.11it/s] 44%|████▍ | 165270/371472 [2:11:31<17:46:28, 3.22it/s] 44%|████▍ | 165271/371472 [2:11:31<17:33:50, 3.26it/s] 44%|████▍ | 165272/371472 [2:11:31<17:24:19, 3.29it/s] 44%|████▍ | 165273/371472 [2:11:32<17:06:31, 3.35it/s] 44%|████▍ | 165274/371472 [2:11:32<16:47:37, 3.41it/s] 44%|████▍ | 165275/371472 [2:11:32<16:27:50, 3.48it/s] 44%|████▍ | 165276/371472 [2:11:33<16:53:07, 3.39it/s] 44%|████▍ | 165277/371472 [2:11:33<16:44:38, 3.42it/s] 44%|████▍ | 165278/371472 [2:11:33<16:54:44, 3.39it/s] 44%|████▍ | 165279/371472 [2:11:34<16:34:11, 3.46it/s] 44%|████▍ | 165280/371472 [2:11:34<16:57:17, 3.38it/s] {'loss': 2.8864, 'learning_rate': 5.998297743972074e-07, 'epoch': 7.12} + 44%|████▍ | 165280/371472 [2:11:34<16:57:17, 3.38it/s] 44%|████▍ | 165281/371472 [2:11:34<16:28:39, 3.48it/s] 44%|████▍ | 165282/371472 [2:11:34<17:10:54, 3.33it/s] 44%|████▍ | 165283/371472 [2:11:35<17:46:15, 3.22it/s] 44%|████▍ | 165284/371472 [2:11:35<17:29:25, 3.27it/s] 44%|████▍ | 165285/371472 [2:11:35<17:25:18, 3.29it/s] 44%|████▍ | 165286/371472 [2:11:36<18:13:10, 3.14it/s] 44%|████▍ | 165287/371472 [2:11:36<17:45:47, 3.22it/s] 44%|████▍ | 165288/371472 [2:11:36<17:22:08, 3.30it/s] 44%|████▍ | 165289/371472 [2:11:37<19:36:57, 2.92it/s] 44%|████▍ | 165290/371472 [2:11:37<19:42:41, 2.91it/s] 44%|████▍ | 165291/371472 [2:11:37<19:13:14, 2.98it/s] 44%|████▍ | 165292/371472 [2:11:38<18:48:51, 3.04it/s] 44%|████▍ | 165293/371472 [2:11:38<18:17:00, 3.13it/s] 44%|████▍ | 165294/371472 [2:11:38<18:00:40, 3.18it/s] 44%|████▍ | 165295/371472 [2:11:39<17:52:02, 3.21it/s] 44%|████▍ | 165296/371472 [2:11:39<17:30:00, 3.27it/s] 44%|████▍ | 165297/371472 [2:11:39<17:09:11, 3.34it/s] 44%|████▍ | 165298/371472 [2:11:39<16:58:17, 3.37it/s] 44%|████▍ | 165299/371472 [2:11:40<17:24:44, 3.29it/s] 44%|████▍ | 165300/371472 [2:11:40<18:13:30, 3.14it/s] {'loss': 3.011, 'learning_rate': 5.997812924217286e-07, 'epoch': 7.12} + 44%|████▍ | 165300/371472 [2:11:40<18:13:30, 3.14it/s] 44%|████▍ | 165301/371472 [2:11:41<19:29:00, 2.94it/s] 44%|████▍ | 165302/371472 [2:11:41<18:54:57, 3.03it/s] 44%|████▍ | 165303/371472 [2:11:41<18:33:37, 3.09it/s] 44%|████▍ | 165304/371472 [2:11:41<18:27:38, 3.10it/s] 44%|████▍ | 165305/371472 [2:11:42<19:09:25, 2.99it/s] 45%|████▍ | 165306/371472 [2:11:42<18:14:52, 3.14it/s] 45%|████▍ | 165307/371472 [2:11:42<17:38:10, 3.25it/s] 45%|████▍ | 165308/371472 [2:11:43<17:21:13, 3.30it/s] 45%|████▍ | 165309/371472 [2:11:43<17:12:18, 3.33it/s] 45%|████▍ | 165310/371472 [2:11:43<16:55:39, 3.38it/s] 45%|████▍ | 165311/371472 [2:11:44<17:55:41, 3.19it/s] 45%|████▍ | 165312/371472 [2:11:44<17:31:32, 3.27it/s] 45%|████▍ | 165313/371472 [2:11:44<17:49:29, 3.21it/s] 45%|████▍ | 165314/371472 [2:11:45<19:04:51, 3.00it/s] 45%|████▍ | 165315/371472 [2:11:45<17:57:40, 3.19it/s] 45%|████▍ | 165316/371472 [2:11:45<18:22:38, 3.12it/s] 45%|████▍ | 165317/371472 [2:11:46<18:03:02, 3.17it/s] 45%|████▍ | 165318/371472 [2:11:46<17:22:49, 3.29it/s] 45%|████▍ | 165319/371472 [2:11:46<17:02:49, 3.36it/s] 45%|████▍ | 165320/371472 [2:11:46<17:06:32, 3.35it/s] {'loss': 2.8793, 'learning_rate': 5.997328104462495e-07, 'epoch': 7.12} + 45%|████▍ | 165320/371472 [2:11:46<17:06:32, 3.35it/s] 45%|████▍ | 165321/371472 [2:11:47<17:13:03, 3.33it/s] 45%|████▍ | 165322/371472 [2:11:47<17:00:21, 3.37it/s] 45%|████▍ | 165323/371472 [2:11:47<17:03:37, 3.36it/s] 45%|████▍ | 165324/371472 [2:11:48<17:33:01, 3.26it/s] 45%|████▍ | 165325/371472 [2:11:48<16:54:01, 3.39it/s] 45%|████▍ | 165326/371472 [2:11:48<16:59:38, 3.37it/s] 45%|████▍ | 165327/371472 [2:11:48<16:44:45, 3.42it/s] 45%|████▍ | 165328/371472 [2:11:49<17:25:24, 3.29it/s] 45%|████▍ | 165329/371472 [2:11:49<16:50:21, 3.40it/s] 45%|████▍ | 165330/371472 [2:11:49<16:39:05, 3.44it/s] 45%|████▍ | 165331/371472 [2:11:50<16:13:47, 3.53it/s] 45%|████▍ | 165332/371472 [2:11:50<16:29:23, 3.47it/s] 45%|████▍ | 165333/371472 [2:11:50<17:03:38, 3.36it/s] 45%|████▍ | 165334/371472 [2:11:50<16:34:46, 3.45it/s] 45%|████▍ | 165335/371472 [2:11:51<16:42:25, 3.43it/s] 45%|████▍ | 165336/371472 [2:11:51<17:21:26, 3.30it/s] 45%|████▍ | 165337/371472 [2:11:51<17:30:33, 3.27it/s] 45%|████▍ | 165338/371472 [2:11:52<17:25:24, 3.29it/s] 45%|████▍ | 165339/371472 [2:11:52<17:09:38, 3.34it/s] 45%|████▍ | 165340/371472 [2:11:52<16:54:52, 3.39it/s] {'loss': 2.9767, 'learning_rate': 5.996843284707707e-07, 'epoch': 7.12} + 45%|████▍ | 165340/371472 [2:11:52<16:54:52, 3.39it/s] 45%|████▍ | 165341/371472 [2:11:53<16:50:58, 3.40it/s] 45%|████▍ | 165342/371472 [2:11:53<18:22:42, 3.12it/s] 45%|████▍ | 165343/371472 [2:11:53<18:17:40, 3.13it/s] 45%|████▍ | 165344/371472 [2:11:54<18:06:46, 3.16it/s] 45%|████▍ | 165345/371472 [2:11:54<18:32:42, 3.09it/s] 45%|████▍ | 165346/371472 [2:11:54<20:09:31, 2.84it/s] 45%|████▍ | 165347/371472 [2:11:55<19:20:28, 2.96it/s] 45%|████▍ | 165348/371472 [2:11:55<18:59:24, 3.02it/s] 45%|████▍ | 165349/371472 [2:11:55<19:13:29, 2.98it/s] 45%|████▍ | 165350/371472 [2:11:56<21:12:02, 2.70it/s] 45%|████▍ | 165351/371472 [2:11:56<20:43:53, 2.76it/s] 45%|████▍ | 165352/371472 [2:11:56<20:10:09, 2.84it/s] 45%|████▍ | 165353/371472 [2:11:57<19:00:36, 3.01it/s] 45%|████▍ | 165354/371472 [2:11:57<18:12:59, 3.14it/s] 45%|████▍ | 165355/371472 [2:11:57<17:44:49, 3.23it/s] 45%|████▍ | 165356/371472 [2:11:58<18:08:23, 3.16it/s] 45%|████▍ | 165357/371472 [2:11:58<17:39:25, 3.24it/s] 45%|████▍ | 165358/371472 [2:11:58<17:48:19, 3.22it/s] 45%|████▍ | 165359/371472 [2:11:59<19:35:17, 2.92it/s] 45%|████▍ | 165360/371472 [2:11:59<18:36:13, 3.08it/s] {'loss': 2.9329, 'learning_rate': 5.996358464952919e-07, 'epoch': 7.12} + 45%|████▍ | 165360/371472 [2:11:59<18:36:13, 3.08it/s] 45%|████▍ | 165361/371472 [2:11:59<18:03:06, 3.17it/s] 45%|████▍ | 165362/371472 [2:12:00<17:24:34, 3.29it/s] 45%|████▍ | 165363/371472 [2:12:00<17:13:05, 3.33it/s] 45%|████▍ | 165364/371472 [2:12:00<17:11:07, 3.33it/s] 45%|████▍ | 165365/371472 [2:12:00<17:07:47, 3.34it/s] 45%|████�� | 165366/371472 [2:12:01<17:13:43, 3.32it/s] 45%|████▍ | 165367/371472 [2:12:01<17:37:38, 3.25it/s] 45%|████▍ | 165368/371472 [2:12:01<18:19:56, 3.12it/s] 45%|████▍ | 165369/371472 [2:12:02<17:23:02, 3.29it/s] 45%|████▍ | 165370/371472 [2:12:02<16:37:04, 3.45it/s] 45%|████▍ | 165371/371472 [2:12:02<16:35:38, 3.45it/s] 45%|████▍ | 165372/371472 [2:12:03<16:44:36, 3.42it/s] 45%|████▍ | 165373/371472 [2:12:03<16:36:19, 3.45it/s] 45%|████▍ | 165374/371472 [2:12:03<16:16:47, 3.52it/s] 45%|████▍ | 165375/371472 [2:12:03<16:22:00, 3.50it/s] 45%|████▍ | 165376/371472 [2:12:04<17:43:15, 3.23it/s] 45%|████▍ | 165377/371472 [2:12:04<17:41:19, 3.24it/s] 45%|████▍ | 165378/371472 [2:12:04<17:16:25, 3.31it/s] 45%|████▍ | 165379/371472 [2:12:05<16:47:32, 3.41it/s] 45%|████▍ | 165380/371472 [2:12:05<19:12:53, 2.98it/s] {'loss': 2.949, 'learning_rate': 5.99587364519813e-07, 'epoch': 7.12} + 45%|████▍ | 165380/371472 [2:12:05<19:12:53, 2.98it/s] 45%|████▍ | 165381/371472 [2:12:05<18:09:50, 3.15it/s] 45%|████▍ | 165382/371472 [2:12:06<18:33:35, 3.08it/s] 45%|████▍ | 165383/371472 [2:12:06<17:52:32, 3.20it/s] 45%|████▍ | 165384/371472 [2:12:06<17:45:06, 3.22it/s] 45%|████▍ | 165385/371472 [2:12:06<17:03:37, 3.36it/s] 45%|████▍ | 165386/371472 [2:12:07<16:45:59, 3.41it/s] 45%|████▍ | 165387/371472 [2:12:07<17:21:26, 3.30it/s] 45%|████▍ | 165388/371472 [2:12:07<17:42:45, 3.23it/s] 45%|████▍ | 165389/371472 [2:12:08<17:13:50, 3.32it/s] 45%|████▍ | 165390/371472 [2:12:08<16:47:17, 3.41it/s] 45%|████▍ | 165391/371472 [2:12:08<16:50:00, 3.40it/s] 45%|████▍ | 165392/371472 [2:12:09<16:52:50, 3.39it/s] 45%|████▍ | 165393/371472 [2:12:09<17:04:01, 3.35it/s] 45%|████▍ | 165394/371472 [2:12:09<16:57:24, 3.38it/s] 45%|████▍ | 165395/371472 [2:12:09<16:55:10, 3.38it/s] 45%|████▍ | 165396/371472 [2:12:10<16:39:52, 3.44it/s] 45%|████▍ | 165397/371472 [2:12:10<16:31:16, 3.46it/s] 45%|████▍ | 165398/371472 [2:12:10<16:41:32, 3.43it/s] 45%|████▍ | 165399/371472 [2:12:11<18:10:05, 3.15it/s] 45%|████▍ | 165400/371472 [2:12:11<17:20:10, 3.30it/s] {'loss': 2.8001, 'learning_rate': 5.99538882544334e-07, 'epoch': 7.12} + 45%|████▍ | 165400/371472 [2:12:11<17:20:10, 3.30it/s] 45%|████▍ | 165401/371472 [2:12:11<16:34:11, 3.45it/s] 45%|████▍ | 165402/371472 [2:12:12<16:26:02, 3.48it/s] 45%|████▍ | 165403/371472 [2:12:12<16:42:49, 3.42it/s] 45%|████▍ | 165404/371472 [2:12:12<17:05:06, 3.35it/s] 45%|████▍ | 165405/371472 [2:12:12<17:14:08, 3.32it/s] 45%|████▍ | 165406/371472 [2:12:13<18:14:15, 3.14it/s] 45%|████▍ | 165407/371472 [2:12:13<19:01:09, 3.01it/s] 45%|████▍ | 165408/371472 [2:12:14<19:26:04, 2.95it/s] 45%|████▍ | 165409/371472 [2:12:14<18:16:55, 3.13it/s] 45%|████▍ | 165410/371472 [2:12:14<17:40:46, 3.24it/s] 45%|████▍ | 165411/371472 [2:12:14<17:27:37, 3.28it/s] 45%|████▍ | 165412/371472 [2:12:15<16:58:57, 3.37it/s] 45%|████▍ | 165413/371472 [2:12:15<16:54:47, 3.38it/s] 45%|████▍ | 165414/371472 [2:12:15<16:53:50, 3.39it/s] 45%|████▍ | 165415/371472 [2:12:16<16:45:39, 3.41it/s] 45%|████▍ | 165416/371472 [2:12:16<16:47:10, 3.41it/s] 45%|████▍ | 165417/371472 [2:12:16<16:42:08, 3.43it/s] 45%|████▍ | 165418/371472 [2:12:16<17:00:07, 3.37it/s] 45%|████▍ | 165419/371472 [2:12:17<17:04:06, 3.35it/s] 45%|████▍ | 165420/371472 [2:12:17<17:36:27, 3.25it/s] {'loss': 2.9253, 'learning_rate': 5.994904005688551e-07, 'epoch': 7.12} + 45%|████▍ | 165420/371472 [2:12:17<17:36:27, 3.25it/s] 45%|████▍ | 165421/371472 [2:12:17<17:24:20, 3.29it/s] 45%|████▍ | 165422/371472 [2:12:18<17:22:32, 3.29it/s] 45%|████▍ | 165423/371472 [2:12:18<17:08:11, 3.34it/s] 45%|████▍ | 165424/371472 [2:12:18<16:43:52, 3.42it/s] 45%|████▍ | 165425/371472 [2:12:19<17:28:45, 3.27it/s] 45%|████▍ | 165426/371472 [2:12:19<17:10:34, 3.33it/s] 45%|████▍ | 165427/371472 [2:12:19<16:48:54, 3.40it/s] 45%|████▍ | 165428/371472 [2:12:19<16:47:07, 3.41it/s] 45%|████▍ | 165429/371472 [2:12:20<16:30:55, 3.47it/s] 45%|████▍ | 165430/371472 [2:12:20<16:39:36, 3.44it/s] 45%|████▍ | 165431/371472 [2:12:20<18:14:25, 3.14it/s] 45%|████▍ | 165432/371472 [2:12:21<17:35:55, 3.25it/s] 45%|████▍ | 165433/371472 [2:12:21<17:45:21, 3.22it/s] 45%|████▍ | 165434/371472 [2:12:21<17:18:14, 3.31it/s] 45%|████▍ | 165435/371472 [2:12:22<17:16:48, 3.31it/s] 45%|████▍ | 165436/371472 [2:12:22<17:25:12, 3.29it/s] 45%|████▍ | 165437/371472 [2:12:22<16:59:23, 3.37it/s] 45%|████▍ | 165438/371472 [2:12:22<17:04:19, 3.35it/s] 45%|████▍ | 165439/371472 [2:12:23<16:44:14, 3.42it/s] 45%|████▍ | 165440/371472 [2:12:23<16:42:14, 3.43it/s] {'loss': 2.9064, 'learning_rate': 5.994419185933763e-07, 'epoch': 7.13} + 45%|████▍ | 165440/371472 [2:12:23<16:42:14, 3.43it/s] 45%|████▍ | 165441/371472 [2:12:23<17:07:51, 3.34it/s] 45%|████▍ | 165442/371472 [2:12:24<17:20:31, 3.30it/s] 45%|████▍ | 165443/371472 [2:12:24<17:14:13, 3.32it/s] 45%|████▍ | 165444/371472 [2:12:24<16:46:38, 3.41it/s] 45%|████▍ | 165445/371472 [2:12:24<16:38:38, 3.44it/s] 45%|████▍ | 165446/371472 [2:12:25<16:43:04, 3.42it/s] 45%|████▍ | 165447/371472 [2:12:25<16:28:09, 3.47it/s] 45%|████▍ | 165448/371472 [2:12:25<17:10:22, 3.33it/s] 45%|████▍ | 165449/371472 [2:12:26<17:15:50, 3.31it/s] 45%|████▍ | 165450/371472 [2:12:26<17:25:08, 3.29it/s] 45%|████▍ | 165451/371472 [2:12:26<17:31:24, 3.27it/s] 45%|████▍ | 165452/371472 [2:12:27<18:55:27, 3.02it/s] 45%|████▍ | 165453/371472 [2:12:27<17:49:34, 3.21it/s] 45%|████▍ | 165454/371472 [2:12:27<17:56:50, 3.19it/s] 45%|████▍ | 165455/371472 [2:12:28<18:26:13, 3.10it/s] 45%|████▍ | 165456/371472 [2:12:28<17:54:56, 3.19it/s] 45%|████▍ | 165457/371472 [2:12:28<17:16:52, 3.31it/s] 45%|████▍ | 165458/371472 [2:12:28<17:09:19, 3.34it/s] 45%|████▍ | 165459/371472 [2:12:29<17:15:11, 3.32it/s] 45%|████▍ | 165460/371472 [2:12:29<18:00:49, 3.18it/s] {'loss': 2.9482, 'learning_rate': 5.993934366178973e-07, 'epoch': 7.13} + 45%|████▍ | 165460/371472 [2:12:29<18:00:49, 3.18it/s] 45%|████▍ | 165461/371472 [2:12:29<18:38:30, 3.07it/s] 45%|████▍ | 165462/371472 [2:12:30<18:16:47, 3.13it/s] 45%|████▍ | 165463/371472 [2:12:30<18:58:12, 3.02it/s] 45%|████▍ | 165464/371472 [2:12:30<18:10:01, 3.15it/s] 45%|████▍ | 165465/371472 [2:12:31<17:14:12, 3.32it/s] 45%|████▍ | 165466/371472 [2:12:31<16:49:00, 3.40it/s] 45%|████▍ | 165467/371472 [2:12:31<16:42:08, 3.43it/s] 45%|████▍ | 165468/371472 [2:12:32<16:46:28, 3.41it/s] 45%|████▍ | 165469/371472 [2:12:32<17:10:27, 3.33it/s] 45%|████▍ | 165470/371472 [2:12:32<17:19:10, 3.30it/s] 45%|████▍ | 165471/371472 [2:12:32<17:09:01, 3.34it/s] 45%|████▍ | 165472/371472 [2:12:33<16:36:15, 3.45it/s] 45%|████▍ | 165473/371472 [2:12:33<16:30:21, 3.47it/s] 45%|████▍ | 165474/371472 [2:12:33<16:32:20, 3.46it/s] 45%|████▍ | 165475/371472 [2:12:34<18:20:49, 3.12it/s] 45%|████▍ | 165476/371472 [2:12:34<18:44:40, 3.05it/s] 45%|████▍ | 165477/371472 [2:12:34<18:36:05, 3.08it/s] 45%|████▍ | 165478/371472 [2:12:35<17:33:56, 3.26it/s] 45%|████▍ | 165479/371472 [2:12:35<17:12:37, 3.32it/s] 45%|████▍ | 165480/371472 [2:12:35<17:57:12, 3.19it/s] {'loss': 3.1369, 'learning_rate': 5.993449546424184e-07, 'epoch': 7.13} + 45%|████▍ | 165480/371472 [2:12:35<17:57:12, 3.19it/s] 45%|████▍ | 165481/371472 [2:12:36<18:32:28, 3.09it/s] 45%|████▍ | 165482/371472 [2:12:36<17:48:08, 3.21it/s] 45%|████▍ | 165483/371472 [2:12:36<18:08:29, 3.15it/s] 45%|████▍ | 165484/371472 [2:12:37<18:24:17, 3.11it/s] 45%|████▍ | 165485/371472 [2:12:37<18:47:25, 3.05it/s] 45%|████▍ | 165486/371472 [2:12:37<18:04:51, 3.16it/s] 45%|████▍ | 165487/371472 [2:12:38<17:59:25, 3.18it/s] 45%|████▍ | 165488/371472 [2:12:38<17:11:50, 3.33it/s] 45%|████▍ | 165489/371472 [2:12:38<16:44:53, 3.42it/s] 45%|████▍ | 165490/371472 [2:12:38<18:00:19, 3.18it/s] 45%|████▍ | 165491/371472 [2:12:39<18:21:57, 3.12it/s] 45%|████▍ | 165492/371472 [2:12:39<18:15:25, 3.13it/s] 45%|█���██▍ | 165493/371472 [2:12:39<17:44:40, 3.22it/s] 45%|████▍ | 165494/371472 [2:12:40<16:57:58, 3.37it/s] 45%|████▍ | 165495/371472 [2:12:40<16:35:27, 3.45it/s] 45%|████▍ | 165496/371472 [2:12:40<16:16:29, 3.52it/s] 45%|████▍ | 165497/371472 [2:12:40<16:36:40, 3.44it/s] 45%|████▍ | 165498/371472 [2:12:41<17:13:46, 3.32it/s] 45%|████▍ | 165499/371472 [2:12:41<17:07:03, 3.34it/s] 45%|████▍ | 165500/371472 [2:12:41<16:54:55, 3.38it/s] {'loss': 2.9048, 'learning_rate': 5.992964726669396e-07, 'epoch': 7.13} + 45%|████▍ | 165500/371472 [2:12:41<16:54:55, 3.38it/s] 45%|████▍ | 165501/371472 [2:12:42<16:32:08, 3.46it/s] 45%|████▍ | 165502/371472 [2:12:42<16:35:39, 3.45it/s] 45%|████▍ | 165503/371472 [2:12:42<17:45:57, 3.22it/s] 45%|████▍ | 165504/371472 [2:12:43<17:29:54, 3.27it/s] 45%|████▍ | 165505/371472 [2:12:43<17:23:56, 3.29it/s] 45%|████▍ | 165506/371472 [2:12:43<18:55:16, 3.02it/s] 45%|████▍ | 165507/371472 [2:12:44<18:38:27, 3.07it/s] 45%|████▍ | 165508/371472 [2:12:44<18:55:33, 3.02it/s] 45%|████▍ | 165509/371472 [2:12:44<18:30:24, 3.09it/s] 45%|████▍ | 165510/371472 [2:12:45<18:18:24, 3.13it/s] 45%|████▍ | 165511/371472 [2:12:45<19:51:05, 2.88it/s] 45%|████▍ | 165512/371472 [2:12:45<20:02:53, 2.85it/s] 45%|████▍ | 165513/371472 [2:12:46<19:54:27, 2.87it/s] 45%|████▍ | 165514/371472 [2:12:46<18:56:35, 3.02it/s] 45%|████▍ | 165515/371472 [2:12:46<18:58:12, 3.02it/s] 45%|████▍ | 165516/371472 [2:12:47<18:23:46, 3.11it/s] 45%|████▍ | 165517/371472 [2:12:47<18:25:04, 3.11it/s] 45%|████▍ | 165518/371472 [2:12:47<17:51:20, 3.20it/s] 45%|████▍ | 165519/371472 [2:12:48<18:04:30, 3.17it/s] 45%|████▍ | 165520/371472 [2:12:48<18:01:08, 3.17it/s] {'loss': 2.9847, 'learning_rate': 5.992479906914608e-07, 'epoch': 7.13} + 45%|████▍ | 165520/371472 [2:12:48<18:01:08, 3.17it/s] 45%|████▍ | 165521/371472 [2:12:48<17:33:48, 3.26it/s] 45%|████▍ | 165522/371472 [2:12:48<17:08:29, 3.34it/s] 45%|████▍ | 165523/371472 [2:12:49<17:14:39, 3.32it/s] 45%|████▍ | 165524/371472 [2:12:49<16:43:41, 3.42it/s] 45%|████▍ | 165525/371472 [2:12:49<16:47:05, 3.41it/s] 45%|████▍ | 165526/371472 [2:12:50<17:14:58, 3.32it/s] 45%|████▍ | 165527/371472 [2:12:50<18:14:25, 3.14it/s] 45%|████▍ | 165528/371472 [2:12:50<17:40:08, 3.24it/s] 45%|████▍ | 165529/371472 [2:12:51<17:42:58, 3.23it/s] 45%|████▍ | 165530/371472 [2:12:51<17:16:48, 3.31it/s] 45%|████▍ | 165531/371472 [2:12:51<16:47:16, 3.41it/s] 45%|████▍ | 165532/371472 [2:12:51<17:15:34, 3.31it/s] 45%|████▍ | 165533/371472 [2:12:52<16:52:36, 3.39it/s] 45%|████▍ | 165534/371472 [2:12:52<17:08:26, 3.34it/s] 45%|████▍ | 165535/371472 [2:12:52<17:13:09, 3.32it/s] 45%|████▍ | 165536/371472 [2:12:53<17:03:53, 3.35it/s] 45%|████▍ | 165537/371472 [2:12:53<17:07:29, 3.34it/s] 45%|████▍ | 165538/371472 [2:12:53<16:53:46, 3.39it/s] 45%|████▍ | 165539/371472 [2:12:53<16:31:35, 3.46it/s] 45%|████▍ | 165540/371472 [2:12:54<16:52:28, 3.39it/s] {'loss': 2.8901, 'learning_rate': 5.991995087159816e-07, 'epoch': 7.13} + 45%|████▍ | 165540/371472 [2:12:54<16:52:28, 3.39it/s] 45%|████▍ | 165541/371472 [2:12:54<16:49:55, 3.40it/s] 45%|████▍ | 165542/371472 [2:12:54<16:45:06, 3.41it/s] 45%|████▍ | 165543/371472 [2:12:55<16:28:49, 3.47it/s] 45%|████▍ | 165544/371472 [2:12:55<16:36:27, 3.44it/s] 45%|████▍ | 165545/371472 [2:12:55<16:19:36, 3.50it/s] 45%|████▍ | 165546/371472 [2:12:56<16:29:45, 3.47it/s] 45%|████▍ | 165547/371472 [2:12:56<16:27:02, 3.48it/s] 45%|████▍ | 165548/371472 [2:12:56<16:51:18, 3.39it/s] 45%|████▍ | 165549/371472 [2:12:56<17:01:27, 3.36it/s] 45%|████▍ | 165550/371472 [2:12:57<16:56:14, 3.38it/s] 45%|████▍ | 165551/371472 [2:12:57<18:57:39, 3.02it/s] 45%|████▍ | 165552/371472 [2:12:57<18:44:04, 3.05it/s] 45%|████▍ | 165553/371472 [2:12:58<18:02:08, 3.17it/s] 45%|████▍ | 165554/371472 [2:12:58<17:18:14, 3.31it/s] 45%|████▍ | 165555/371472 [2:12:58<17:19:56, 3.30it/s] 45%|████▍ | 165556/371472 [2:12:59<17:50:15, 3.21it/s] 45%|████▍ | 165557/371472 [2:12:59<17:46:30, 3.22it/s] 45%|████▍ | 165558/371472 [2:12:59<17:15:32, 3.31it/s] 45%|████▍ | 165559/371472 [2:13:00<17:18:22, 3.31it/s] 45%|████▍ | 165560/371472 [2:13:00<17:51:00, 3.20it/s] {'loss': 2.866, 'learning_rate': 5.991510267405028e-07, 'epoch': 7.13} + 45%|████▍ | 165560/371472 [2:13:00<17:51:00, 3.20it/s] 45%|████▍ | 165561/371472 [2:13:00<17:15:29, 3.31it/s] 45%|████▍ | 165562/371472 [2:13:00<17:02:51, 3.36it/s] 45%|████▍ | 165563/371472 [2:13:01<21:03:55, 2.72it/s] 45%|████▍ | 165564/371472 [2:13:01<19:56:28, 2.87it/s] 45%|████▍ | 165565/371472 [2:13:02<19:07:49, 2.99it/s] 45%|████▍ | 165566/371472 [2:13:02<18:33:05, 3.08it/s] 45%|████▍ | 165567/371472 [2:13:02<17:49:20, 3.21it/s] 45%|████▍ | 165568/371472 [2:13:02<17:49:07, 3.21it/s] 45%|████▍ | 165569/371472 [2:13:03<17:27:30, 3.28it/s] 45%|████▍ | 165570/371472 [2:13:03<17:08:23, 3.34it/s] 45%|████▍ | 165571/371472 [2:13:03<16:42:38, 3.42it/s] 45%|████▍ | 165572/371472 [2:13:04<16:49:59, 3.40it/s] 45%|████▍ | 165573/371472 [2:13:04<17:42:33, 3.23it/s] 45%|████▍ | 165574/371472 [2:13:04<17:09:09, 3.33it/s] 45%|████▍ | 165575/371472 [2:13:05<17:08:16, 3.34it/s] 45%|████▍ | 165576/371472 [2:13:05<16:48:41, 3.40it/s] 45%|████▍ | 165577/371472 [2:13:05<17:57:15, 3.19it/s] 45%|████▍ | 165578/371472 [2:13:05<17:48:00, 3.21it/s] 45%|████▍ | 165579/371472 [2:13:06<18:09:35, 3.15it/s] 45%|████▍ | 165580/371472 [2:13:06<18:02:37, 3.17it/s] {'loss': 2.9895, 'learning_rate': 5.99102544765024e-07, 'epoch': 7.13} + 45%|████▍ | 165580/371472 [2:13:06<18:02:37, 3.17it/s] 45%|████▍ | 165581/371472 [2:13:06<17:19:45, 3.30it/s] 45%|████▍ | 165582/371472 [2:13:07<16:49:37, 3.40it/s] 45%|████▍ | 165583/371472 [2:13:07<17:00:44, 3.36it/s] 45%|████▍ | 165584/371472 [2:13:07<17:30:37, 3.27it/s] 45%|████▍ | 165585/371472 [2:13:08<18:04:37, 3.16it/s] 45%|████▍ | 165586/371472 [2:13:08<17:39:33, 3.24it/s] 45%|████▍ | 165587/371472 [2:13:08<16:54:20, 3.38it/s] 45%|████▍ | 165588/371472 [2:13:09<17:55:03, 3.19it/s] 45%|████▍ | 165589/371472 [2:13:09<17:28:44, 3.27it/s] 45%|████▍ | 165590/371472 [2:13:09<17:20:09, 3.30it/s] 45%|████▍ | 165591/371472 [2:13:09<16:49:12, 3.40it/s] 45%|████▍ | 165592/371472 [2:13:10<17:31:04, 3.26it/s] 45%|████▍ | 165593/371472 [2:13:10<17:04:18, 3.35it/s] 45%|████▍ | 165594/371472 [2:13:10<17:23:48, 3.29it/s] 45%|████▍ | 165595/371472 [2:13:11<17:12:09, 3.32it/s] 45%|████▍ | 165596/371472 [2:13:11<17:48:50, 3.21it/s] 45%|████▍ | 165597/371472 [2:13:11<17:10:30, 3.33it/s] 45%|████▍ | 165598/371472 [2:13:12<17:00:26, 3.36it/s] 45%|████▍ | 165599/371472 [2:13:12<17:00:49, 3.36it/s] 45%|████▍ | 165600/371472 [2:13:12<16:52:40, 3.39it/s] {'loss': 2.8174, 'learning_rate': 5.990540627895452e-07, 'epoch': 7.13} + 45%|████▍ | 165600/371472 [2:13:12<16:52:40, 3.39it/s] 45%|████▍ | 165601/371472 [2:13:12<16:36:08, 3.44it/s] 45%|████▍ | 165602/371472 [2:13:13<17:12:05, 3.32it/s] 45%|████▍ | 165603/371472 [2:13:13<16:53:09, 3.39it/s] 45%|████▍ | 165604/371472 [2:13:13<16:38:14, 3.44it/s] 45%|████▍ | 165605/371472 [2:13:14<16:55:09, 3.38it/s] 45%|████▍ | 165606/371472 [2:13:14<17:30:38, 3.27it/s] 45%|████▍ | 165607/371472 [2:13:14<17:21:35, 3.29it/s] 45%|████▍ | 165608/371472 [2:13:15<17:18:49, 3.30it/s] 45%|████▍ | 165609/371472 [2:13:15<17:58:14, 3.18it/s] 45%|████▍ | 165610/371472 [2:13:15<17:47:31, 3.21it/s] 45%|████▍ | 165611/371472 [2:13:15<17:36:36, 3.25it/s] 45%|████▍ | 165612/371472 [2:13:16<17:41:17, 3.23it/s] 45%|████▍ | 165613/371472 [2:13:16<17:23:02, 3.29it/s] 45%|████▍ | 165614/371472 [2:13:16<17:48:26, 3.21it/s] 45%|████▍ | 165615/371472 [2:13:17<17:25:18, 3.28it/s] 45%|████▍ | 165616/371472 [2:13:17<17:04:04, 3.35it/s] 45%|████▍ | 165617/371472 [2:13:17<17:01:46, 3.36it/s] 45%|████▍ | 165618/371472 [2:13:18<17:50:23, 3.21it/s] 45%|████▍ | 165619/371472 [2:13:18<17:39:00, 3.24it/s] 45%|████▍ | 165620/371472 [2:13:18<17:40:34, 3.23it/s] {'loss': 2.9952, 'learning_rate': 5.990055808140662e-07, 'epoch': 7.13} + 45%|████▍ | 165620/371472 [2:13:18<17:40:34, 3.23it/s] 45%|████▍ | 165621/371472 [2:13:19<17:28:59, 3.27it/s] 45%|████▍ | 165622/371472 [2:13:19<17:18:07, 3.30it/s] 45%|████▍ | 165623/371472 [2:13:19<17:07:38, 3.34it/s] 45%|████▍ | 165624/371472 [2:13:19<16:44:48, 3.41it/s] 45%|████▍ | 165625/371472 [2:13:20<16:37:15, 3.44it/s] 45%|████▍ | 165626/371472 [2:13:20<16:46:15, 3.41it/s] 45%|████▍ | 165627/371472 [2:13:20<16:48:35, 3.40it/s] 45%|████▍ | 165628/371472 [2:13:21<17:00:07, 3.36it/s] 45%|████▍ | 165629/371472 [2:13:21<17:32:07, 3.26it/s] 45%|████▍ | 165630/371472 [2:13:21<18:03:53, 3.17it/s] 45%|████▍ | 165631/371472 [2:13:22<17:21:41, 3.29it/s] 45%|████▍ | 165632/371472 [2:13:22<17:23:57, 3.29it/s] 45%|████▍ | 165633/371472 [2:13:22<17:00:10, 3.36it/s] 45%|████▍ | 165634/371472 [2:13:22<16:52:27, 3.39it/s] 45%|████▍ | 165635/371472 [2:13:23<16:53:01, 3.39it/s] 45%|████▍ | 165636/371472 [2:13:23<16:40:49, 3.43it/s] 45%|████▍ | 165637/371472 [2:13:23<16:30:04, 3.46it/s] 45%|████▍ | 165638/371472 [2:13:24<16:36:43, 3.44it/s] 45%|████▍ | 165639/371472 [2:13:24<16:41:24, 3.43it/s] 45%|████▍ | 165640/371472 [2:13:24<16:26:20, 3.48it/s] {'loss': 2.8857, 'learning_rate': 5.989570988385874e-07, 'epoch': 7.13} + 45%|████▍ | 165640/371472 [2:13:24<16:26:20, 3.48it/s] 45%|████▍ | 165641/371472 [2:13:25<17:47:48, 3.21it/s] 45%|████▍ | 165642/371472 [2:13:25<17:38:39, 3.24it/s] 45%|████▍ | 165643/371472 [2:13:25<17:14:52, 3.31it/s] 45%|████▍ | 165644/371472 [2:13:25<17:00:50, 3.36it/s] 45%|████▍ | 165645/371472 [2:13:26<18:35:18, 3.08it/s] 45%|████▍ | 165646/371472 [2:13:26<17:49:54, 3.21it/s] 45%|████▍ | 165647/371472 [2:13:26<18:22:26, 3.11it/s] 45%|████▍ | 165648/371472 [2:13:27<18:01:45, 3.17it/s] 45%|████▍ | 165649/371472 [2:13:27<17:52:36, 3.20it/s] 45%|████▍ | 165650/371472 [2:13:27<17:15:43, 3.31it/s] 45%|████▍ | 165651/371472 [2:13:28<17:35:19, 3.25it/s] 45%|████▍ | 165652/371472 [2:13:28<17:07:46, 3.34it/s] 45%|████▍ | 165653/371472 [2:13:28<18:20:56, 3.12it/s] 45%|████▍ | 165654/371472 [2:13:29<18:24:31, 3.11it/s] 45%|████▍ | 165655/371472 [2:13:29<17:52:42, 3.20it/s] 45%|████▍ | 165656/371472 [2:13:29<17:41:42, 3.23it/s] 45%|████▍ | 165657/371472 [2:13:29<17:11:23, 3.33it/s] 45%|████▍ | 165658/371472 [2:13:30<17:23:09, 3.29it/s] 45%|████▍ | 165659/371472 [2:13:30<17:01:01, 3.36it/s] 45%|████▍ | 165660/371472 [2:13:30<18:38:29, 3.07it/s] {'loss': 2.9869, 'learning_rate': 5.989086168631084e-07, 'epoch': 7.14} + 45%|████▍ | 165660/371472 [2:13:30<18:38:29, 3.07it/s] 45%|████▍ | 165661/371472 [2:13:31<17:51:27, 3.20it/s] 45%|████▍ | 165662/371472 [2:13:31<17:57:30, 3.18it/s] 45%|████▍ | 165663/371472 [2:13:31<18:02:46, 3.17it/s] 45%|████▍ | 165664/371472 [2:13:32<17:22:15, 3.29it/s] 45%|████▍ | 165665/371472 [2:13:32<17:27:55, 3.27it/s] 45%|████▍ | 165666/371472 [2:13:32<18:13:10, 3.14it/s] 45%|████▍ | 165667/371472 [2:13:33<17:38:46, 3.24it/s] 45%|████▍ | 165668/371472 [2:13:33<18:37:35, 3.07it/s] 45%|████▍ | 165669/371472 [2:13:33<17:56:50, 3.19it/s] 45%|████▍ | 165670/371472 [2:13:34<18:10:54, 3.14it/s] 45%|████▍ | 165671/371472 [2:13:34<18:00:48, 3.17it/s] 45%|████▍ | 165672/371472 [2:13:34<18:08:12, 3.15it/s] 45%|████▍ | 165673/371472 [2:13:34<17:32:08, 3.26it/s] 45%|████▍ | 165674/371472 [2:13:35<17:16:18, 3.31it/s] 45%|████▍ | 165675/371472 [2:13:35<16:49:18, 3.40it/s] 45%|████▍ | 165676/371472 [2:13:35<17:43:44, 3.22it/s] 45%|████▍ | 165677/371472 [2:13:36<17:11:36, 3.32it/s] 45%|████▍ | 165678/371472 [2:13:36<16:59:56, 3.36it/s] 45%|████▍ | 165679/371472 [2:13:36<17:12:19, 3.32it/s] 45%|████▍ | 165680/371472 [2:13:37<17:07:39, 3.34it/s] {'loss': 2.816, 'learning_rate': 5.988601348876296e-07, 'epoch': 7.14} + 45%|████▍ | 165680/371472 [2:13:37<17:07:39, 3.34it/s] 45%|████▍ | 165681/371472 [2:13:37<16:58:40, 3.37it/s] 45%|████▍ | 165682/371472 [2:13:37<17:11:17, 3.33it/s] 45%|████▍ | 165683/371472 [2:13:37<17:06:17, 3.34it/s] 45%|████▍ | 165684/371472 [2:13:38<17:36:00, 3.25it/s] 45%|████▍ | 165685/371472 [2:13:38<17:28:46, 3.27it/s] 45%|████▍ | 165686/371472 [2:13:38<16:47:56, 3.40it/s] 45%|████▍ | 165687/371472 [2:13:39<16:45:03, 3.41it/s] 45%|████▍ | 165688/371472 [2:13:39<16:40:11, 3.43it/s] 45%|████▍ | 165689/371472 [2:13:39<16:22:07, 3.49it/s] 45%|████▍ | 165690/371472 [2:13:40<16:48:07, 3.40it/s] 45%|████▍ | 165691/371472 [2:13:40<16:55:14, 3.38it/s] 45%|████▍ | 165692/371472 [2:13:40<16:27:41, 3.47it/s] 45%|████▍ | 165693/371472 [2:13:40<16:40:10, 3.43it/s] 45%|████▍ | 165694/371472 [2:13:41<17:52:43, 3.20it/s] 45%|████▍ | 165695/371472 [2:13:41<17:40:08, 3.24it/s] 45%|████▍ | 165696/371472 [2:13:41<17:21:02, 3.29it/s] 45%|████▍ | 165697/371472 [2:13:42<18:16:04, 3.13it/s] 45%|████▍ | 165698/371472 [2:13:42<17:51:26, 3.20it/s] 45%|████▍ | 165699/371472 [2:13:42<17:21:50, 3.29it/s] 45%|████▍ | 165700/371472 [2:13:43<16:52:02, 3.39it/s] {'loss': 3.0321, 'learning_rate': 5.988116529121506e-07, 'epoch': 7.14} + 45%|████▍ | 165700/371472 [2:13:43<16:52:02, 3.39it/s] 45%|████▍ | 165701/371472 [2:13:43<17:30:54, 3.26it/s] 45%|████▍ | 165702/371472 [2:13:43<17:02:13, 3.35it/s] 45%|████▍ | 165703/371472 [2:13:43<16:33:06, 3.45it/s] 45%|████▍ | 165704/371472 [2:13:44<16:13:44, 3.52it/s] 45%|████▍ | 165705/371472 [2:13:44<16:23:19, 3.49it/s] 45%|████▍ | 165706/371472 [2:13:44<17:05:26, 3.34it/s] 45%|████▍ | 165707/371472 [2:13:45<16:45:40, 3.41it/s] 45%|████▍ | 165708/371472 [2:13:45<16:31:11, 3.46it/s] 45%|████▍ | 165709/371472 [2:13:45<17:52:47, 3.20it/s] 45%|████▍ | 165710/371472 [2:13:46<17:27:53, 3.27it/s] 45%|████▍ | 165711/371472 [2:13:46<18:13:57, 3.13it/s] 45%|████▍ | 165712/371472 [2:13:46<17:47:57, 3.21it/s] 45%|████▍ | 165713/371472 [2:13:46<17:18:55, 3.30it/s] 45%|████▍ | 165714/371472 [2:13:47<16:57:59, 3.37it/s] 45%|████▍ | 165715/371472 [2:13:47<16:58:00, 3.37it/s] 45%|████▍ | 165716/371472 [2:13:47<16:57:09, 3.37it/s] 45%|████▍ | 165717/371472 [2:13:48<17:12:13, 3.32it/s] 45%|████▍ | 165718/371472 [2:13:48<16:50:13, 3.39it/s] 45%|████▍ | 165719/371472 [2:13:48<16:51:54, 3.39it/s] 45%|████▍ | 165720/371472 [2:13:49<18:06:29, 3.16it/s] {'loss': 2.8562, 'learning_rate': 5.987631709366717e-07, 'epoch': 7.14} + 45%|████▍ | 165720/371472 [2:13:49<18:06:29, 3.16it/s] 45%|████▍ | 165721/371472 [2:13:49<17:42:50, 3.23it/s] 45%|████▍ | 165722/371472 [2:13:49<17:34:02, 3.25it/s] 45%|████▍ | 165723/371472 [2:13:50<17:47:47, 3.21it/s] 45%|████▍ | 165724/371472 [2:13:50<17:34:43, 3.25it/s] 45%|████▍ | 165725/371472 [2:13:50<17:10:57, 3.33it/s] 45%|████▍ | 165726/371472 [2:13:50<17:38:52, 3.24it/s] 45%|████▍ | 165727/371472 [2:13:51<17:46:40, 3.21it/s] 45%|████▍ | 165728/371472 [2:13:51<17:13:08, 3.32it/s] 45%|████▍ | 165729/371472 [2:13:51<17:24:12, 3.28it/s] 45%|████▍ | 165730/371472 [2:13:52<17:23:24, 3.29it/s] 45%|████▍ | 165731/371472 [2:13:52<16:58:29, 3.37it/s] 45%|████▍ | 165732/371472 [2:13:52<16:44:40, 3.41it/s] 45%|████▍ | 165733/371472 [2:13:53<16:59:19, 3.36it/s] 45%|████▍ | 165734/371472 [2:13:53<17:11:22, 3.32it/s] 45%|████▍ | 165735/371472 [2:13:53<16:54:45, 3.38it/s] 45%|████▍ | 165736/371472 [2:13:53<17:21:13, 3.29it/s] 45%|████▍ | 165737/371472 [2:13:54<16:56:49, 3.37it/s] 45%|████▍ | 165738/371472 [2:13:54<16:48:08, 3.40it/s] 45%|████▍ | 165739/371472 [2:13:54<16:46:33, 3.41it/s] 45%|████▍ | 165740/371472 [2:13:55<17:23:23, 3.29it/s] {'loss': 3.1286, 'learning_rate': 5.987146889611929e-07, 'epoch': 7.14} + 45%|████▍ | 165740/371472 [2:13:55<17:23:23, 3.29it/s] 45%|████▍ | 165741/371472 [2:13:55<16:58:34, 3.37it/s] 45%|████▍ | 165742/371472 [2:13:55<18:42:14, 3.06it/s] 45%|████▍ | 165743/371472 [2:13:56<19:01:53, 3.00it/s] 45%|████▍ | 165744/371472 [2:13:56<18:26:41, 3.10it/s] 45%|████▍ | 165745/371472 [2:13:56<17:50:26, 3.20it/s] 45%|████▍ | 165746/371472 [2:13:57<18:13:35, 3.14it/s] 45%|████▍ | 165747/371472 [2:13:57<17:29:55, 3.27it/s] 45%|████▍ | 165748/371472 [2:13:57<17:11:32, 3.32it/s] 45%|████▍ | 165749/371472 [2:13:57<17:15:15, 3.31it/s] 45%|████▍ | 165750/371472 [2:13:58<18:09:24, 3.15it/s] 45%|████▍ | 165751/371472 [2:13:58<17:26:42, 3.28it/s] 45%|████▍ | 165752/371472 [2:13:58<17:27:26, 3.27it/s] 45%|████▍ | 165753/371472 [2:13:59<16:51:52, 3.39it/s] 45%|████▍ | 165754/371472 [2:13:59<17:21:53, 3.29it/s] 45%|████▍ | 165755/371472 [2:13:59<18:08:26, 3.15it/s] 45%|████▍ | 165756/371472 [2:14:00<17:40:22, 3.23it/s] 45%|████▍ | 165757/371472 [2:14:00<18:22:08, 3.11it/s] 45%|████▍ | 165758/371472 [2:14:00<18:08:37, 3.15it/s] 45%|████▍ | 165759/371472 [2:14:01<17:20:06, 3.30it/s] 45%|████▍ | 165760/371472 [2:14:01<16:55:24, 3.38it/s] {'loss': 2.7627, 'learning_rate': 5.986662069857141e-07, 'epoch': 7.14} + 45%|████▍ | 165760/371472 [2:14:01<16:55:24, 3.38it/s] 45%|████▍ | 165761/371472 [2:14:01<16:40:30, 3.43it/s] 45%|████▍ | 165762/371472 [2:14:01<16:35:06, 3.45it/s] 45%|████▍ | 165763/371472 [2:14:02<17:04:36, 3.35it/s] 45%|████▍ | 165764/371472 [2:14:02<16:29:56, 3.46it/s] 45%|████▍ | 165765/371472 [2:14:02<16:39:39, 3.43it/s] 45%|████▍ | 165766/371472 [2:14:03<16:37:19, 3.44it/s] 45%|████▍ | 165767/371472 [2:14:03<17:51:16, 3.20it/s] 45%|████▍ | 165768/371472 [2:14:03<17:05:02, 3.34it/s] 45%|████▍ | 165769/371472 [2:14:03<17:21:08, 3.29it/s] 45%|████▍ | 165770/371472 [2:14:04<18:25:18, 3.10it/s] 45%|████▍ | 165771/371472 [2:14:04<17:51:55, 3.20it/s] 45%|████▍ | 165772/371472 [2:14:04<17:08:34, 3.33it/s] 45%|████▍ | 165773/371472 [2:14:05<17:02:22, 3.35it/s] 45%|████▍ | 165774/371472 [2:14:05<16:26:48, 3.47it/s] 45%|████▍ | 165775/371472 [2:14:05<16:47:22, 3.40it/s] 45%|████▍ | 165776/371472 [2:14:06<16:26:39, 3.47it/s] 45%|████▍ | 165777/371472 [2:14:06<17:45:49, 3.22it/s] 45%|████▍ | 165778/371472 [2:14:06<17:40:38, 3.23it/s] 45%|████▍ | 165779/371472 [2:14:07<17:23:55, 3.28it/s] 45%|████▍ | 165780/371472 [2:14:07<18:38:55, 3.06it/s] {'loss': 3.0709, 'learning_rate': 5.986177250102351e-07, 'epoch': 7.14} + 45%|████▍ | 165780/371472 [2:14:07<18:38:55, 3.06it/s] 45%|████▍ | 165781/371472 [2:14:07<18:06:38, 3.15it/s] 45%|████▍ | 165782/371472 [2:14:08<18:12:21, 3.14it/s] 45%|████▍ | 165783/371472 [2:14:08<17:57:00, 3.18it/s] 45%|████▍ | 165784/371472 [2:14:08<17:34:57, 3.25it/s] 45%|████▍ | 165785/371472 [2:14:08<17:26:27, 3.28it/s] 45%|████▍ | 165786/371472 [2:14:09<18:21:30, 3.11it/s] 45%|████▍ | 165787/371472 [2:14:09<18:37:23, 3.07it/s] 45%|████▍ | 165788/371472 [2:14:09<19:42:01, 2.90it/s] 45%|████▍ | 165789/371472 [2:14:10<18:44:28, 3.05it/s] 45%|████▍ | 165790/371472 [2:14:10<18:51:26, 3.03it/s] 45%|████▍ | 165791/371472 [2:14:10<18:42:44, 3.05it/s] 45%|████▍ | 165792/371472 [2:14:11<18:17:35, 3.12it/s] 45%|████▍ | 165793/371472 [2:14:11<18:17:40, 3.12it/s] 45%|████▍ | 165794/371472 [2:14:11<17:45:14, 3.22it/s] 45%|████▍ | 165795/371472 [2:14:12<18:18:11, 3.12it/s] 45%|████▍ | 165796/371472 [2:14:12<17:59:33, 3.18it/s] 45%|████▍ | 165797/371472 [2:14:12<17:21:02, 3.29it/s] 45%|████▍ | 165798/371472 [2:14:13<17:27:43, 3.27it/s] 45%|████▍ | 165799/371472 [2:14:13<18:10:59, 3.14it/s] 45%|████▍ | 165800/371472 [2:14:13<17:40:40, 3.23it/s] {'loss': 2.8484, 'learning_rate': 5.985692430347561e-07, 'epoch': 7.14} + 45%|████▍ | 165800/371472 [2:14:13<17:40:40, 3.23it/s] 45%|████▍ | 165801/371472 [2:14:14<17:30:15, 3.26it/s] 45%|████▍ | 165802/371472 [2:14:14<17:22:36, 3.29it/s] 45%|████▍ | 165803/371472 [2:14:14<17:00:13, 3.36it/s] 45%|████▍ | 165804/371472 [2:14:14<17:04:16, 3.35it/s] 45%|████▍ | 165805/371472 [2:14:15<16:31:44, 3.46it/s] 45%|████▍ | 165806/371472 [2:14:15<16:52:13, 3.39it/s] 45%|████▍ | 165807/371472 [2:14:15<17:20:51, 3.29it/s] 45%|████▍ | 165808/371472 [2:14:16<18:27:22, 3.10it/s] 45%|████▍ | 165809/371472 [2:14:16<18:17:20, 3.12it/s] 45%|████▍ | 165810/371472 [2:14:16<19:01:35, 3.00it/s] 45%|████▍ | 165811/371472 [2:14:17<18:29:26, 3.09it/s] 45%|████▍ | 165812/371472 [2:14:17<18:01:52, 3.17it/s] 45%|████▍ | 165813/371472 [2:14:17<17:43:53, 3.22it/s] 45%|████▍ | 165814/371472 [2:14:18<17:31:17, 3.26it/s] 45%|████▍ | 165815/371472 [2:14:18<17:31:32, 3.26it/s] 45%|████▍ | 165816/371472 [2:14:18<17:20:52, 3.29it/s] 45%|████▍ | 165817/371472 [2:14:18<16:59:12, 3.36it/s] 45%|████▍ | 165818/371472 [2:14:19<17:32:57, 3.26it/s] 45%|████▍ | 165819/371472 [2:14:19<17:31:04, 3.26it/s] 45%|████▍ | 165820/371472 [2:14:19<17:35:19, 3.25it/s] {'loss': 2.9155, 'learning_rate': 5.985207610592773e-07, 'epoch': 7.14} + 45%|████▍ | 165820/371472 [2:14:19<17:35:19, 3.25it/s] 45%|████▍ | 165821/371472 [2:14:20<17:19:51, 3.30it/s] 45%|████▍ | 165822/371472 [2:14:20<16:55:33, 3.37it/s] 45%|████▍ | 165823/371472 [2:14:20<16:37:05, 3.44it/s] 45%|████▍ | 165824/371472 [2:14:20<16:10:04, 3.53it/s] 45%|████▍ | 165825/371472 [2:14:21<16:19:38, 3.50it/s] 45%|████▍ | 165826/371472 [2:14:21<22:02:08, 2.59it/s] 45%|████▍ | 165827/371472 [2:14:22<20:40:55, 2.76it/s] 45%|████▍ | 165828/371472 [2:14:22<19:15:22, 2.97it/s] 45%|████▍ | 165829/371472 [2:14:22<18:46:51, 3.04it/s] 45%|████▍ | 165830/371472 [2:14:23<17:57:10, 3.18it/s] 45%|████▍ | 165831/371472 [2:14:23<18:16:34, 3.13it/s] 45%|████▍ | 165832/371472 [2:14:23<17:47:04, 3.21it/s] 45%|████▍ | 165833/371472 [2:14:24<18:03:59, 3.16it/s] 45%|████▍ | 165834/371472 [2:14:24<17:40:20, 3.23it/s] 45%|████▍ | 165835/371472 [2:14:24<17:38:16, 3.24it/s] 45%|████▍ | 165836/371472 [2:14:24<17:59:58, 3.17it/s] 45%|████▍ | 165837/371472 [2:14:25<17:27:27, 3.27it/s] 45%|████▍ | 165838/371472 [2:14:25<17:11:18, 3.32it/s] 45%|████▍ | 165839/371472 [2:14:25<17:48:44, 3.21it/s] 45%|████▍ | 165840/371472 [2:14:26<17:19:25, 3.30it/s] {'loss': 2.8336, 'learning_rate': 5.984722790837984e-07, 'epoch': 7.14} + 45%|████▍ | 165840/371472 [2:14:26<17:19:25, 3.30it/s] 45%|████▍ | 165841/371472 [2:14:26<16:52:41, 3.38it/s] 45%|████▍ | 165842/371472 [2:14:26<16:37:58, 3.43it/s] 45%|████▍ | 165843/371472 [2:14:26<16:21:41, 3.49it/s] 45%|████▍ | 165844/371472 [2:14:27<16:40:18, 3.43it/s] 45%|████▍ | 165845/371472 [2:14:27<16:17:26, 3.51it/s] 45%|████▍ | 165846/371472 [2:14:27<16:50:10, 3.39it/s] 45%|████▍ | 165847/371472 [2:14:28<17:09:16, 3.33it/s] 45%|████▍ | 165848/371472 [2:14:28<18:01:28, 3.17it/s] 45%|████▍ | 165849/371472 [2:14:28<17:14:09, 3.31it/s] 45%|████▍ | 165850/371472 [2:14:29<17:45:31, 3.22it/s] 45%|████▍ | 165851/371472 [2:14:29<17:31:52, 3.26it/s] 45%|████▍ | 165852/371472 [2:14:29<17:34:37, 3.25it/s] 45%|████▍ | 165853/371472 [2:14:30<16:55:32, 3.37it/s] 45%|████▍ | 165854/371472 [2:14:30<16:42:43, 3.42it/s] 45%|████▍ | 165855/371472 [2:14:30<16:30:59, 3.46it/s] 45%|████▍ | 165856/371472 [2:14:30<16:12:53, 3.52it/s] 45%|████▍ | 165857/371472 [2:14:31<16:18:14, 3.50it/s] 45%|████▍ | 165858/371472 [2:14:31<16:04:56, 3.55it/s] 45%|████▍ | 165859/371472 [2:14:31<16:19:37, 3.50it/s] 45%|████▍ | 165860/371472 [2:14:32<16:29:45, 3.46it/s] {'loss': 2.9144, 'learning_rate': 5.984237971083194e-07, 'epoch': 7.14} + 45%|████▍ | 165860/371472 [2:14:32<16:29:45, 3.46it/s] 45%|████▍ | 165861/371472 [2:14:32<16:30:24, 3.46it/s] 45%|████▍ | 165862/371472 [2:14:32<16:51:33, 3.39it/s] 45%|████▍ | 165863/371472 [2:14:32<16:37:05, 3.44it/s] 45%|████▍ | 165864/371472 [2:14:33<18:16:51, 3.12it/s] 45%|████▍ | 165865/371472 [2:14:33<17:39:31, 3.23it/s] 45%|████▍ | 165866/371472 [2:14:33<17:03:32, 3.35it/s] 45%|████▍ | 165867/371472 [2:14:34<16:51:52, 3.39it/s] 45%|████▍ | 165868/371472 [2:14:34<17:14:21, 3.31it/s] 45%|████▍ | 165869/371472 [2:14:34<17:00:02, 3.36it/s] 45%|████▍ | 165870/371472 [2:14:35<17:15:17, 3.31it/s] 45%|████▍ | 165871/371472 [2:14:35<17:28:35, 3.27it/s] 45%|████▍ | 165872/371472 [2:14:35<17:27:36, 3.27it/s] 45%|████▍ | 165873/371472 [2:14:35<17:04:40, 3.34it/s] 45%|████▍ | 165874/371472 [2:14:36<16:54:19, 3.38it/s] 45%|████▍ | 165875/371472 [2:14:36<17:27:04, 3.27it/s] 45%|████▍ | 165876/371472 [2:14:36<17:31:31, 3.26it/s] 45%|████▍ | 165877/371472 [2:14:37<17:05:35, 3.34it/s] 45%|████▍ | 165878/371472 [2:14:37<17:14:48, 3.31it/s] 45%|████▍ | 165879/371472 [2:14:37<17:22:13, 3.29it/s] 45%|████▍ | 165880/371472 [2:14:38<17:16:49, 3.30it/s] {'loss': 2.8718, 'learning_rate': 5.983753151328406e-07, 'epoch': 7.14} + 45%|████▍ | 165880/371472 [2:14:38<17:16:49, 3.30it/s] 45%|████▍ | 165881/371472 [2:14:38<17:12:58, 3.32it/s] 45%|████▍ | 165882/371472 [2:14:38<17:30:49, 3.26it/s] 45%|████▍ | 165883/371472 [2:14:38<17:20:36, 3.29it/s] 45%|████▍ | 165884/371472 [2:14:39<16:51:14, 3.39it/s] 45%|████▍ | 165885/371472 [2:14:39<17:07:29, 3.33it/s] 45%|████▍ | 165886/371472 [2:14:39<16:42:34, 3.42it/s] 45%|████▍ | 165887/371472 [2:14:40<16:36:17, 3.44it/s] 45%|████▍ | 165888/371472 [2:14:40<16:44:22, 3.41it/s] 45%|████▍ | 165889/371472 [2:14:40<16:56:33, 3.37it/s] 45%|████▍ | 165890/371472 [2:14:41<17:27:28, 3.27it/s] 45%|████▍ | 165891/371472 [2:14:41<17:59:09, 3.18it/s] 45%|████▍ | 165892/371472 [2:14:41<18:05:34, 3.16it/s] 45%|████▍ | 165893/371472 [2:14:42<17:43:17, 3.22it/s] 45%|████▍ | 165894/371472 [2:14:42<17:12:33, 3.32it/s] 45%|████▍ | 165895/371472 [2:14:42<17:07:22, 3.33it/s] 45%|████▍ | 165896/371472 [2:14:42<16:54:15, 3.38it/s] 45%|████▍ | 165897/371472 [2:14:43<16:52:21, 3.38it/s] 45%|████▍ | 165898/371472 [2:14:43<16:42:14, 3.42it/s] 45%|████▍ | 165899/371472 [2:14:43<17:25:41, 3.28it/s] 45%|████▍ | 165900/371472 [2:14:44<17:18:42, 3.30it/s] {'loss': 2.7754, 'learning_rate': 5.983268331573618e-07, 'epoch': 7.15} + 45%|████▍ | 165900/371472 [2:14:44<17:18:42, 3.30it/s] 45%|████▍ | 165901/371472 [2:14:44<17:46:20, 3.21it/s] 45%|████▍ | 165902/371472 [2:14:44<17:26:50, 3.27it/s] 45%|████▍ | 165903/371472 [2:14:45<17:19:09, 3.30it/s] 45%|████▍ | 165904/371472 [2:14:45<17:02:28, 3.35it/s] 45%|████▍ | 165905/371472 [2:14:45<16:56:01, 3.37it/s] 45%|████▍ | 165906/371472 [2:14:45<16:49:46, 3.39it/s] 45%|████▍ | 165907/371472 [2:14:46<16:49:46, 3.39it/s] 45%|████▍ | 165908/371472 [2:14:46<16:55:24, 3.37it/s] 45%|████▍ | 165909/371472 [2:14:46<16:40:34, 3.42it/s] 45%|████▍ | 165910/371472 [2:14:47<16:42:58, 3.42it/s] 45%|████▍ | 165911/371472 [2:14:47<16:41:24, 3.42it/s] 45%|████▍ | 165912/371472 [2:14:47<16:40:53, 3.42it/s] 45%|████▍ | 165913/371472 [2:14:48<17:52:07, 3.20it/s] 45%|████▍ | 165914/371472 [2:14:48<17:12:52, 3.32it/s] 45%|████▍ | 165915/371472 [2:14:48<17:47:57, 3.21it/s] 45%|████▍ | 165916/371472 [2:14:48<17:39:53, 3.23it/s] 45%|████▍ | 165917/371472 [2:14:49<17:26:02, 3.28it/s] 45%|████▍ | 165918/371472 [2:14:49<17:50:10, 3.20it/s] 45%|████▍ | 165919/371472 [2:14:49<17:39:16, 3.23it/s] 45%|████▍ | 165920/371472 [2:14:50<17:11:51, 3.32it/s] {'loss': 2.9541, 'learning_rate': 5.982783511818827e-07, 'epoch': 7.15} + 45%|████▍ | 165920/371472 [2:14:50<17:11:51, 3.32it/s] 45%|████▍ | 165921/371472 [2:14:50<17:32:11, 3.26it/s] 45%|████▍ | 165922/371472 [2:14:50<17:28:14, 3.27it/s] 45%|████▍ | 165923/371472 [2:14:51<17:57:43, 3.18it/s] 45%|████▍ | 165924/371472 [2:14:51<17:35:47, 3.24it/s] 45%|████▍ | 165925/371472 [2:14:51<17:09:56, 3.33it/s] 45%|████▍ | 165926/371472 [2:14:52<17:52:37, 3.19it/s] 45%|████▍ | 165927/371472 [2:14:52<17:39:55, 3.23it/s] 45%|████▍ | 165928/371472 [2:14:52<17:15:35, 3.31it/s] 45%|████▍ | 165929/371472 [2:14:52<17:11:08, 3.32it/s] 45%|████▍ | 165930/371472 [2:14:53<18:22:11, 3.11it/s] 45%|████▍ | 165931/371472 [2:14:53<18:40:55, 3.06it/s] 45%|████▍ | 165932/371472 [2:14:53<18:16:03, 3.13it/s] 45%|████▍ | 165933/371472 [2:14:54<18:26:43, 3.10it/s] 45%|█���██▍ | 165934/371472 [2:14:54<17:41:45, 3.23it/s] 45%|████▍ | 165935/371472 [2:14:54<17:07:09, 3.34it/s] 45%|████▍ | 165936/371472 [2:14:55<16:30:17, 3.46it/s] 45%|████▍ | 165937/371472 [2:14:55<16:50:41, 3.39it/s] 45%|████▍ | 165938/371472 [2:14:55<16:28:58, 3.46it/s] 45%|████▍ | 165939/371472 [2:14:55<16:20:06, 3.50it/s] 45%|████▍ | 165940/371472 [2:14:56<16:50:39, 3.39it/s] {'loss': 3.015, 'learning_rate': 5.982298692064038e-07, 'epoch': 7.15} + 45%|████▍ | 165940/371472 [2:14:56<16:50:39, 3.39it/s] 45%|████▍ | 165941/371472 [2:14:56<16:50:38, 3.39it/s] 45%|████▍ | 165942/371472 [2:14:56<18:16:49, 3.12it/s] 45%|████▍ | 165943/371472 [2:14:57<17:49:53, 3.20it/s] 45%|████▍ | 165944/371472 [2:14:57<17:36:27, 3.24it/s] 45%|████▍ | 165945/371472 [2:14:57<17:41:45, 3.23it/s] 45%|████▍ | 165946/371472 [2:14:58<17:51:19, 3.20it/s] 45%|████▍ | 165947/371472 [2:14:58<17:17:09, 3.30it/s] 45%|████▍ | 165948/371472 [2:14:58<16:43:21, 3.41it/s] 45%|████▍ | 165949/371472 [2:14:58<16:25:00, 3.48it/s] 45%|████▍ | 165950/371472 [2:14:59<17:42:03, 3.23it/s] 45%|████▍ | 165951/371472 [2:14:59<17:08:21, 3.33it/s] 45%|████▍ | 165952/371472 [2:14:59<18:54:00, 3.02it/s] 45%|████▍ | 165953/371472 [2:15:00<18:14:32, 3.13it/s] 45%|████▍ | 165954/371472 [2:15:00<17:50:04, 3.20it/s] 45%|████▍ | 165955/371472 [2:15:00<17:26:30, 3.27it/s] 45%|████▍ | 165956/371472 [2:15:01<17:41:28, 3.23it/s] 45%|████▍ | 165957/371472 [2:15:01<18:11:20, 3.14it/s] 45%|████▍ | 165958/371472 [2:15:01<18:05:32, 3.16it/s] 45%|████▍ | 165959/371472 [2:15:02<18:36:48, 3.07it/s] 45%|████▍ | 165960/371472 [2:15:02<18:06:18, 3.15it/s] {'loss': 2.849, 'learning_rate': 5.98181387230925e-07, 'epoch': 7.15} + 45%|████▍ | 165960/371472 [2:15:02<18:06:18, 3.15it/s] 45%|████▍ | 165961/371472 [2:15:02<17:43:49, 3.22it/s] 45%|████▍ | 165962/371472 [2:15:03<19:02:47, 3.00it/s] 45%|████▍ | 165963/371472 [2:15:03<18:40:06, 3.06it/s] 45%|████▍ | 165964/371472 [2:15:03<18:12:32, 3.13it/s] 45%|████▍ | 165965/371472 [2:15:04<17:37:06, 3.24it/s] 45%|████▍ | 165966/371472 [2:15:04<17:00:59, 3.35it/s] 45%|████▍ | 165967/371472 [2:15:04<16:37:48, 3.43it/s] 45%|████▍ | 165968/371472 [2:15:04<16:47:43, 3.40it/s] 45%|████▍ | 165969/371472 [2:15:05<16:18:09, 3.50it/s] 45%|████▍ | 165970/371472 [2:15:05<16:08:42, 3.54it/s] 45%|████▍ | 165971/371472 [2:15:05<16:50:37, 3.39it/s] 45%|████▍ | 165972/371472 [2:15:06<17:16:29, 3.30it/s] 45%|████▍ | 165973/371472 [2:15:06<17:07:22, 3.33it/s] 45%|████▍ | 165974/371472 [2:15:06<16:46:41, 3.40it/s] 45%|████▍ | 165975/371472 [2:15:06<16:27:44, 3.47it/s] 45%|████▍ | 165976/371472 [2:15:07<16:06:15, 3.54it/s] 45%|████▍ | 165977/371472 [2:15:07<16:21:48, 3.49it/s] 45%|████▍ | 165978/371472 [2:15:07<16:11:06, 3.53it/s] 45%|████▍ | 165979/371472 [2:15:08<16:34:45, 3.44it/s] 45%|████▍ | 165980/371472 [2:15:08<16:33:15, 3.45it/s] {'loss': 2.9698, 'learning_rate': 5.981329052554462e-07, 'epoch': 7.15} + 45%|████▍ | 165980/371472 [2:15:08<16:33:15, 3.45it/s] 45%|████▍ | 165981/371472 [2:15:08<16:26:53, 3.47it/s] 45%|████▍ | 165982/371472 [2:15:08<16:17:37, 3.50it/s] 45%|████▍ | 165983/371472 [2:15:09<16:26:16, 3.47it/s] 45%|████▍ | 165984/371472 [2:15:09<16:00:21, 3.57it/s] 45%|████▍ | 165985/371472 [2:15:09<17:18:53, 3.30it/s] 45%|████▍ | 165986/371472 [2:15:10<16:59:36, 3.36it/s] 45%|████▍ | 165987/371472 [2:15:10<16:39:07, 3.43it/s] 45%|████▍ | 165988/371472 [2:15:10<16:32:45, 3.45it/s] 45%|████▍ | 165989/371472 [2:15:11<16:39:28, 3.43it/s] 45%|████▍ | 165990/371472 [2:15:11<16:50:56, 3.39it/s] 45%|████▍ | 165991/371472 [2:15:11<16:54:03, 3.38it/s] 45%|████▍ | 165992/371472 [2:15:11<16:44:55, 3.41it/s] 45%|████▍ | 165993/371472 [2:15:12<16:38:30, 3.43it/s] 45%|████▍ | 165994/371472 [2:15:12<16:42:35, 3.42it/s] 45%|████▍ | 165995/371472 [2:15:12<16:46:04, 3.40it/s] 45%|████▍ | 165996/371472 [2:15:13<16:48:24, 3.40it/s] 45%|████▍ | 165997/371472 [2:15:13<16:36:11, 3.44it/s] 45%|████▍ | 165998/371472 [2:15:13<16:16:52, 3.51it/s] 45%|████▍ | 165999/371472 [2:15:13<16:02:30, 3.56it/s] 45%|████▍ | 166000/371472 [2:15:14<15:55:52, 3.58it/s] {'loss': 2.7705, 'learning_rate': 5.980844232799672e-07, 'epoch': 7.15} + 45%|████▍ | 166000/371472 [2:15:14<15:55:52, 3.58it/s] 45%|████▍ | 166001/371472 [2:15:14<17:54:36, 3.19it/s] 45%|████▍ | 166002/371472 [2:15:14<17:31:54, 3.26it/s] 45%|████▍ | 166003/371472 [2:15:15<17:12:02, 3.32it/s] 45%|████▍ | 166004/371472 [2:15:15<16:46:29, 3.40it/s] 45%|████▍ | 166005/371472 [2:15:15<17:50:04, 3.20it/s] 45%|████▍ | 166006/371472 [2:15:16<17:26:56, 3.27it/s] 45%|████▍ | 166007/371472 [2:15:16<17:36:22, 3.24it/s] 45%|████▍ | 166008/371472 [2:15:16<17:48:06, 3.21it/s] 45%|████▍ | 166009/371472 [2:15:16<16:57:51, 3.36it/s] 45%|████▍ | 166010/371472 [2:15:17<16:27:07, 3.47it/s] 45%|████▍ | 166011/371472 [2:15:17<16:53:24, 3.38it/s] 45%|████▍ | 166012/371472 [2:15:18<19:50:47, 2.88it/s] 45%|████▍ | 166013/371472 [2:15:18<19:05:08, 2.99it/s] 45%|████▍ | 166014/371472 [2:15:18<18:08:13, 3.15it/s] 45%|████▍ | 166015/371472 [2:15:18<17:23:44, 3.28it/s] 45%|████▍ | 166016/371472 [2:15:19<17:29:11, 3.26it/s] 45%|████▍ | 166017/371472 [2:15:19<16:52:46, 3.38it/s] 45%|████▍ | 166018/371472 [2:15:19<16:32:46, 3.45it/s] 45%|████▍ | 166019/371472 [2:15:20<16:22:16, 3.49it/s] 45%|████▍ | 166020/371472 [2:15:20<16:19:21, 3.50it/s] {'loss': 2.901, 'learning_rate': 5.980359413044883e-07, 'epoch': 7.15} + 45%|████▍ | 166020/371472 [2:15:20<16:19:21, 3.50it/s] 45%|████▍ | 166021/371472 [2:15:20<17:39:12, 3.23it/s] 45%|████▍ | 166022/371472 [2:15:20<18:05:56, 3.15it/s] 45%|████▍ | 166023/371472 [2:15:21<18:11:13, 3.14it/s] 45%|████▍ | 166024/371472 [2:15:21<17:45:41, 3.21it/s] 45%|████▍ | 166025/371472 [2:15:21<17:23:29, 3.28it/s] 45%|████▍ | 166026/371472 [2:15:22<17:26:22, 3.27it/s] 45%|████▍ | 166027/371472 [2:15:22<17:36:01, 3.24it/s] 45%|████▍ | 166028/371472 [2:15:22<17:36:48, 3.24it/s] 45%|████▍ | 166029/371472 [2:15:23<18:21:15, 3.11it/s] 45%|████▍ | 166030/371472 [2:15:23<18:06:34, 3.15it/s] 45%|████▍ | 166031/371472 [2:15:23<17:24:23, 3.28it/s] 45%|████▍ | 166032/371472 [2:15:24<17:03:24, 3.35it/s] 45%|████▍ | 166033/371472 [2:15:24<16:54:09, 3.38it/s] 45%|████▍ | 166034/371472 [2:15:24<17:00:16, 3.36it/s] 45%|████▍ | 166035/371472 [2:15:24<16:56:31, 3.37it/s] 45%|████▍ | 166036/371472 [2:15:25<17:06:23, 3.34it/s] 45%|████▍ | 166037/371472 [2:15:25<16:48:19, 3.40it/s] 45%|████▍ | 166038/371472 [2:15:25<16:27:03, 3.47it/s] 45%|████▍ | 166039/371472 [2:15:26<16:24:43, 3.48it/s] 45%|████▍ | 166040/371472 [2:15:26<18:01:49, 3.16it/s] {'loss': 2.876, 'learning_rate': 5.979874593290095e-07, 'epoch': 7.15} + 45%|████▍ | 166040/371472 [2:15:26<18:01:49, 3.16it/s] 45%|████▍ | 166041/371472 [2:15:26<17:36:10, 3.24it/s] 45%|████▍ | 166042/371472 [2:15:27<17:33:38, 3.25it/s] 45%|████▍ | 166043/371472 [2:15:27<17:05:31, 3.34it/s] 45%|████▍ | 166044/371472 [2:15:27<17:09:21, 3.33it/s] 45%|████▍ | 166045/371472 [2:15:27<17:00:02, 3.36it/s] 45%|████▍ | 166046/371472 [2:15:28<16:50:24, 3.39it/s] 45%|████▍ | 166047/371472 [2:15:28<16:39:11, 3.43it/s] 45%|████▍ | 166048/371472 [2:15:28<16:26:55, 3.47it/s] 45%|████▍ | 166049/371472 [2:15:29<16:27:34, 3.47it/s] 45%|████▍ | 166050/371472 [2:15:29<16:23:09, 3.48it/s] 45%|████▍ | 166051/371472 [2:15:29<16:27:46, 3.47it/s] 45%|████▍ | 166052/371472 [2:15:29<17:07:57, 3.33it/s] 45%|████▍ | 166053/371472 [2:15:30<17:31:18, 3.26it/s] 45%|████▍ | 166054/371472 [2:15:30<17:16:59, 3.30it/s] 45%|████▍ | 166055/371472 [2:15:30<16:36:01, 3.44it/s] 45%|████▍ | 166056/371472 [2:15:31<16:12:44, 3.52it/s] 45%|████▍ | 166057/371472 [2:15:31<15:54:52, 3.59it/s] 45%|████▍ | 166058/371472 [2:15:31<16:28:39, 3.46it/s] 45%|████▍ | 166059/371472 [2:15:32<16:46:16, 3.40it/s] 45%|████▍ | 166060/371472 [2:15:32<16:06:56, 3.54it/s] {'loss': 2.8266, 'learning_rate': 5.979389773535307e-07, 'epoch': 7.15} + 45%|████▍ | 166060/371472 [2:15:32<16:06:56, 3.54it/s] 45%|████▍ | 166061/371472 [2:15:32<16:59:11, 3.36it/s] 45%|████▍ | 166062/371472 [2:15:32<16:45:19, 3.41it/s] 45%|████▍ | 166063/371472 [2:15:33<16:26:21, 3.47it/s] 45%|████▍ | 166064/371472 [2:15:33<16:12:29, 3.52it/s] 45%|████▍ | 166065/371472 [2:15:33<16:02:23, 3.56it/s] 45%|████▍ | 166066/371472 [2:15:33<15:46:06, 3.62it/s] 45%|████▍ | 166067/371472 [2:15:34<15:41:37, 3.64it/s] 45%|████▍ | 166068/371472 [2:15:34<16:00:04, 3.57it/s] 45%|████▍ | 166069/371472 [2:15:34<15:56:11, 3.58it/s] 45%|████▍ | 166070/371472 [2:15:35<16:26:22, 3.47it/s] 45%|████▍ | 166071/371472 [2:15:35<17:10:47, 3.32it/s] 45%|████▍ | 166072/371472 [2:15:35<18:40:50, 3.05it/s] 45%|████▍ | 166073/371472 [2:15:36<18:02:24, 3.16it/s] 45%|████▍ | 166074/371472 [2:15:36<17:31:58, 3.25it/s] 45%|████▍ | 166075/371472 [2:15:36<17:50:41, 3.20it/s] 45%|████▍ | 166076/371472 [2:15:37<17:30:02, 3.26it/s] 45%|████▍ | 166077/371472 [2:15:37<17:12:22, 3.32it/s] 45%|████▍ | 166078/371472 [2:15:37<17:33:12, 3.25it/s] 45%|████▍ | 166079/371472 [2:15:37<17:47:46, 3.21it/s] 45%|████▍ | 166080/371472 [2:15:38<17:16:19, 3.30it/s] {'loss': 2.9199, 'learning_rate': 5.978904953780516e-07, 'epoch': 7.15} + 45%|████▍ | 166080/371472 [2:15:38<17:16:19, 3.30it/s] 45%|████▍ | 166081/371472 [2:15:38<17:02:02, 3.35it/s] 45%|████▍ | 166082/371472 [2:15:38<16:54:15, 3.38it/s] 45%|████▍ | 166083/371472 [2:15:39<17:11:19, 3.32it/s] 45%|████▍ | 166084/371472 [2:15:39<17:37:19, 3.24it/s] 45%|████▍ | 166085/371472 [2:15:39<17:38:39, 3.23it/s] 45%|████▍ | 166086/371472 [2:15:40<17:14:37, 3.31it/s] 45%|████▍ | 166087/371472 [2:15:40<16:53:01, 3.38it/s] 45%|████▍ | 166088/371472 [2:15:40<16:54:00, 3.38it/s] 45%|████▍ | 166089/371472 [2:15:40<16:59:57, 3.36it/s] 45%|████▍ | 166090/371472 [2:15:41<16:28:31, 3.46it/s] 45%|████▍ | 166091/371472 [2:15:41<16:42:12, 3.42it/s] 45%|████▍ | 166092/371472 [2:15:41<16:42:06, 3.42it/s] 45%|████▍ | 166093/371472 [2:15:42<16:48:14, 3.40it/s] 45%|████▍ | 166094/371472 [2:15:42<16:29:44, 3.46it/s] 45%|████▍ | 166095/371472 [2:15:42<16:22:58, 3.48it/s] 45%|████▍ | 166096/371472 [2:15:43<17:05:29, 3.34it/s] 45%|████▍ | 166097/371472 [2:15:43<17:24:49, 3.28it/s] 45%|████▍ | 166098/371472 [2:15:43<17:23:10, 3.28it/s] 45%|████▍ | 166099/371472 [2:15:43<17:36:40, 3.24it/s] 45%|████▍ | 166100/371472 [2:15:44<17:27:05, 3.27it/s] {'loss': 3.0151, 'learning_rate': 5.978420134025727e-07, 'epoch': 7.15} + 45%|████▍ | 166100/371472 [2:15:44<17:27:05, 3.27it/s] 45%|████▍ | 166101/371472 [2:15:44<18:10:36, 3.14it/s] 45%|████▍ | 166102/371472 [2:15:44<17:35:21, 3.24it/s] 45%|████▍ | 166103/371472 [2:15:45<17:55:32, 3.18it/s] 45%|████▍ | 166104/371472 [2:15:45<17:30:25, 3.26it/s] 45%|████▍ | 166105/371472 [2:15:45<17:06:57, 3.33it/s] 45%|████▍ | 166106/371472 [2:15:46<16:48:37, 3.39it/s] 45%|████▍ | 166107/371472 [2:15:46<18:05:07, 3.15it/s] 45%|████▍ | 166108/371472 [2:15:46<17:35:09, 3.24it/s] 45%|████▍ | 166109/371472 [2:15:47<17:08:13, 3.33it/s] 45%|████▍ | 166110/371472 [2:15:47<17:47:08, 3.21it/s] 45%|████▍ | 166111/371472 [2:15:47<17:13:37, 3.31it/s] 45%|████▍ | 166112/371472 [2:15:47<17:20:21, 3.29it/s] 45%|████▍ | 166113/371472 [2:15:48<17:28:28, 3.26it/s] 45%|████▍ | 166114/371472 [2:15:48<17:33:55, 3.25it/s] 45%|████▍ | 166115/371472 [2:15:48<17:15:24, 3.31it/s] 45%|████▍ | 166116/371472 [2:15:49<17:40:36, 3.23it/s] 45%|████▍ | 166117/371472 [2:15:49<17:34:08, 3.25it/s] 45%|████▍ | 166118/371472 [2:15:49<17:01:42, 3.35it/s] 45%|████▍ | 166119/371472 [2:15:50<16:59:49, 3.36it/s] 45%|████▍ | 166120/371472 [2:15:50<16:54:09, 3.37it/s] {'loss': 3.0024, 'learning_rate': 5.977935314270939e-07, 'epoch': 7.16} + 45%|████▍ | 166120/371472 [2:15:50<16:54:09, 3.37it/s] 45%|████▍ | 166121/371472 [2:15:50<18:03:31, 3.16it/s] 45%|████▍ | 166122/371472 [2:15:50<17:39:49, 3.23it/s] 45%|████▍ | 166123/371472 [2:15:51<17:04:31, 3.34it/s] 45%|████▍ | 166124/371472 [2:15:51<16:52:03, 3.38it/s] 45%|████▍ | 166125/371472 [2:15:51<17:49:11, 3.20it/s] 45%|████▍ | 166126/371472 [2:15:52<17:31:20, 3.26it/s] 45%|████▍ | 166127/371472 [2:15:52<17:01:51, 3.35it/s] 45%|████▍ | 166128/371472 [2:15:52<17:50:17, 3.20it/s] 45%|████▍ | 166129/371472 [2:15:53<17:36:30, 3.24it/s] 45%|████▍ | 166130/371472 [2:15:53<17:08:10, 3.33it/s] 45%|████▍ | 166131/371472 [2:15:53<17:13:00, 3.31it/s] 45%|████▍ | 166132/371472 [2:15:54<18:46:01, 3.04it/s] 45%|████▍ | 166133/371472 [2:15:54<17:54:32, 3.18it/s] 45%|████▍ | 166134/371472 [2:15:54<17:58:29, 3.17it/s] 45%|████▍ | 166135/371472 [2:15:55<17:39:41, 3.23it/s] 45%|████▍ | 166136/371472 [2:15:55<17:25:41, 3.27it/s] 45%|████▍ | 166137/371472 [2:15:55<18:00:17, 3.17it/s] 45%|████▍ | 166138/371472 [2:15:55<18:41:50, 3.05it/s] 45%|████▍ | 166139/371472 [2:15:56<17:43:17, 3.22it/s] 45%|████▍ | 166140/371472 [2:15:56<18:39:21, 3.06it/s] {'loss': 2.8695, 'learning_rate': 5.97745049451615e-07, 'epoch': 7.16} + 45%|████▍ | 166140/371472 [2:15:56<18:39:21, 3.06it/s] 45%|████▍ | 166141/371472 [2:15:56<17:52:13, 3.19it/s] 45%|████▍ | 166142/371472 [2:15:57<17:12:45, 3.31it/s] 45%|████▍ | 166143/371472 [2:15:57<16:38:13, 3.43it/s] 45%|████▍ | 166144/371472 [2:15:57<16:39:02, 3.43it/s] 45%|████▍ | 166145/371472 [2:15:58<18:12:22, 3.13it/s] 45%|████▍ | 166146/371472 [2:15:58<17:17:19, 3.30it/s] 45%|████▍ | 166147/371472 [2:15:58<17:05:25, 3.34it/s] 45%|████▍ | 166148/371472 [2:15:59<17:48:47, 3.20it/s] 45%|████▍ | 166149/371472 [2:15:59<17:06:09, 3.33it/s] 45%|████▍ | 166150/371472 [2:15:59<16:43:15, 3.41it/s] 45%|████▍ | 166151/371472 [2:15:59<16:13:26, 3.52it/s] 45%|████▍ | 166152/371472 [2:16:00<16:23:12, 3.48it/s] 45%|████▍ | 166153/371472 [2:16:00<16:30:17, 3.46it/s] 45%|████▍ | 166154/371472 [2:16:00<16:32:40, 3.45it/s] 45%|████▍ | 166155/371472 [2:16:01<17:24:11, 3.28it/s] 45%|████▍ | 166156/371472 [2:16:01<16:43:51, 3.41it/s] 45%|████▍ | 166157/371472 [2:16:01<17:09:47, 3.32it/s] 45%|████▍ | 166158/371472 [2:16:01<16:46:40, 3.40it/s] 45%|████▍ | 166159/371472 [2:16:02<17:07:28, 3.33it/s] 45%|████▍ | 166160/371472 [2:16:02<17:36:08, 3.24it/s] {'loss': 3.1322, 'learning_rate': 5.976965674761361e-07, 'epoch': 7.16} + 45%|████▍ | 166160/371472 [2:16:02<17:36:08, 3.24it/s] 45%|████▍ | 166161/371472 [2:16:02<17:34:49, 3.24it/s] 45%|████▍ | 166162/371472 [2:16:03<17:27:07, 3.27it/s] 45%|████▍ | 166163/371472 [2:16:03<17:04:49, 3.34it/s] 45%|████▍ | 166164/371472 [2:16:03<18:17:38, 3.12it/s] 45%|████▍ | 166165/371472 [2:16:04<17:42:37, 3.22it/s] 45%|████▍ | 166166/371472 [2:16:04<17:19:22, 3.29it/s] 45%|████▍ | 166167/371472 [2:16:04<17:32:50, 3.25it/s] 45%|████▍ | 166168/371472 [2:16:05<17:07:14, 3.33it/s] 45%|████▍ | 166169/371472 [2:16:05<16:56:40, 3.37it/s] 45%|████▍ | 166170/371472 [2:16:05<16:31:17, 3.45it/s] 45%|████▍ | 166171/371472 [2:16:05<16:52:30, 3.38it/s] 45%|████▍ | 166172/371472 [2:16:06<16:49:36, 3.39it/s] 45%|████▍ | 166173/371472 [2:16:06<16:41:32, 3.42it/s] 45%|████▍ | 166174/371472 [2:16:06<17:36:27, 3.24it/s] 45%|████▍ | 166175/371472 [2:16:07<17:01:13, 3.35it/s] 45%|████▍ | 166176/371472 [2:16:07<16:56:39, 3.37it/s] 45%|████▍ | 166177/371472 [2:16:07<18:01:21, 3.16it/s] 45%|████▍ | 166178/371472 [2:16:08<17:36:54, 3.24it/s] 45%|████▍ | 166179/371472 [2:16:08<17:59:36, 3.17it/s] 45%|████▍ | 166180/371472 [2:16:08<17:26:09, 3.27it/s] {'loss': 3.1076, 'learning_rate': 5.976480855006571e-07, 'epoch': 7.16} + 45%|████▍ | 166180/371472 [2:16:08<17:26:09, 3.27it/s] 45%|████▍ | 166181/371472 [2:16:08<17:22:18, 3.28it/s] 45%|████▍ | 166182/371472 [2:16:09<18:58:07, 3.01it/s] 45%|████▍ | 166183/371472 [2:16:09<18:03:18, 3.16it/s] 45%|████▍ | 166184/371472 [2:16:09<17:40:34, 3.23it/s] 45%|████▍ | 166185/371472 [2:16:10<17:47:36, 3.20it/s] 45%|████▍ | 166186/371472 [2:16:10<17:30:01, 3.26it/s] 45%|████▍ | 166187/371472 [2:16:10<17:24:56, 3.27it/s] 45%|████▍ | 166188/371472 [2:16:11<17:08:21, 3.33it/s] 45%|████▍ | 166189/371472 [2:16:11<16:29:32, 3.46it/s] 45%|████▍ | 166190/371472 [2:16:11<16:58:09, 3.36it/s] 45%|████▍ | 166191/371472 [2:16:12<18:32:20, 3.08it/s] 45%|████▍ | 166192/371472 [2:16:12<17:23:28, 3.28it/s] 45%|████▍ | 166193/371472 [2:16:12<16:53:22, 3.38it/s] 45%|████▍ | 166194/371472 [2:16:12<16:53:59, 3.37it/s] 45%|████▍ | 166195/371472 [2:16:13<16:54:01, 3.37it/s] 45%|████▍ | 166196/371472 [2:16:13<16:47:48, 3.39it/s] 45%|████▍ | 166197/371472 [2:16:13<16:33:20, 3.44it/s] 45%|████▍ | 166198/371472 [2:16:14<16:43:30, 3.41it/s] 45%|████▍ | 166199/371472 [2:16:14<16:36:58, 3.43it/s] 45%|████▍ | 166200/371472 [2:16:14<16:33:50, 3.44it/s] {'loss': 3.0057, 'learning_rate': 5.975996035251783e-07, 'epoch': 7.16} + 45%|████▍ | 166200/371472 [2:16:14<16:33:50, 3.44it/s] 45%|████▍ | 166201/371472 [2:16:15<17:40:59, 3.22it/s] 45%|████▍ | 166202/371472 [2:16:15<16:59:56, 3.35it/s] 45%|████▍ | 166203/371472 [2:16:15<17:12:48, 3.31it/s] 45%|████▍ | 166204/371472 [2:16:15<17:40:38, 3.23it/s] 45%|████▍ | 166205/371472 [2:16:16<17:01:09, 3.35it/s] 45%|████▍ | 166206/371472 [2:16:16<16:39:34, 3.42it/s] 45%|████▍ | 166207/371472 [2:16:16<16:34:32, 3.44it/s] 45%|████▍ | 166208/371472 [2:16:17<16:44:18, 3.41it/s] 45%|████▍ | 166209/371472 [2:16:17<16:38:02, 3.43it/s] 45%|████▍ | 166210/371472 [2:16:17<17:54:11, 3.18it/s] 45%|████▍ | 166211/371472 [2:16:18<17:51:23, 3.19it/s] 45%|████▍ | 166212/371472 [2:16:18<18:00:43, 3.17it/s] 45%|████▍ | 166213/371472 [2:16:18<17:45:57, 3.21it/s] 45%|████▍ | 166214/371472 [2:16:18<17:38:41, 3.23it/s] 45%|████▍ | 166215/371472 [2:16:19<18:19:56, 3.11it/s] 45%|████▍ | 166216/371472 [2:16:19<18:16:12, 3.12it/s] 45%|████▍ | 166217/371472 [2:16:19<17:47:37, 3.20it/s] 45%|████▍ | 166218/371472 [2:16:20<17:50:57, 3.19it/s] 45%|████▍ | 166219/371472 [2:16:20<17:15:30, 3.30it/s] 45%|████▍ | 166220/371472 [2:16:20<17:23:39, 3.28it/s] {'loss': 2.7869, 'learning_rate': 5.975511215496994e-07, 'epoch': 7.16} + 45%|████▍ | 166220/371472 [2:16:20<17:23:39, 3.28it/s] 45%|████▍ | 166221/371472 [2:16:21<17:04:55, 3.34it/s] 45%|████▍ | 166222/371472 [2:16:21<17:35:50, 3.24it/s] 45%|████▍ | 166223/371472 [2:16:21<18:33:01, 3.07it/s] 45%|████▍ | 166224/371472 [2:16:22<18:23:03, 3.10it/s] 45%|████▍ | 166225/371472 [2:16:22<18:49:21, 3.03it/s] 45%|████▍ | 166226/371472 [2:16:22<18:12:49, 3.13it/s] 45%|████▍ | 166227/371472 [2:16:23<17:58:08, 3.17it/s] 45%|████▍ | 166228/371472 [2:16:23<17:20:58, 3.29it/s] 45%|████▍ | 166229/371472 [2:16:23<17:36:22, 3.24it/s] 45%|████▍ | 166230/371472 [2:16:23<17:34:19, 3.24it/s] 45%|████▍ | 166231/371472 [2:16:24<18:23:40, 3.10it/s] 45%|████▍ | 166232/371472 [2:16:24<17:53:09, 3.19it/s] 45%|████▍ | 166233/371472 [2:16:24<17:53:14, 3.19it/s] 45%|████▍ | 166234/371472 [2:16:25<17:44:46, 3.21it/s] 45%|████▍ | 166235/371472 [2:16:25<18:33:40, 3.07it/s] 45%|████▍ | 166236/371472 [2:16:25<18:37:17, 3.06it/s] 45%|████▍ | 166237/371472 [2:16:26<18:10:08, 3.14it/s] 45%|████▍ | 166238/371472 [2:16:26<19:07:43, 2.98it/s] 45%|████▍ | 166239/371472 [2:16:26<19:07:32, 2.98it/s] 45%|████▍ | 166240/371472 [2:16:27<18:22:00, 3.10it/s] {'loss': 2.9718, 'learning_rate': 5.975026395742205e-07, 'epoch': 7.16} + 45%|████▍ | 166240/371472 [2:16:27<18:22:00, 3.10it/s] 45%|████▍ | 166241/371472 [2:16:27<18:55:47, 3.01it/s] 45%|████▍ | 166242/371472 [2:16:27<18:48:07, 3.03it/s] 45%|████▍ | 166243/371472 [2:16:28<19:11:45, 2.97it/s] 45%|████▍ | 166244/371472 [2:16:28<18:54:14, 3.02it/s] 45%|████▍ | 166245/371472 [2:16:28<17:37:37, 3.23it/s] 45%|████▍ | 166246/371472 [2:16:29<16:58:21, 3.36it/s] 45%|████▍ | 166247/371472 [2:16:29<16:57:59, 3.36it/s] 45%|████▍ | 166248/371472 [2:16:29<18:04:22, 3.15it/s] 45%|████▍ | 166249/371472 [2:16:30<19:11:53, 2.97it/s] 45%|████▍ | 166250/371472 [2:16:30<18:56:15, 3.01it/s] 45%|████▍ | 166251/371472 [2:16:30<18:43:25, 3.04it/s] 45%|████▍ | 166252/371472 [2:16:31<18:36:35, 3.06it/s] 45%|████▍ | 166253/371472 [2:16:31<18:25:39, 3.09it/s] 45%|████▍ | 166254/371472 [2:16:31<18:01:23, 3.16it/s] 45%|████▍ | 166255/371472 [2:16:32<17:55:18, 3.18it/s] 45%|████▍ | 166256/371472 [2:16:32<17:38:25, 3.23it/s] 45%|████▍ | 166257/371472 [2:16:32<17:37:27, 3.23it/s] 45%|████▍ | 166258/371472 [2:16:32<18:06:21, 3.15it/s] 45%|████▍ | 166259/371472 [2:16:33<19:20:27, 2.95it/s] 45%|████▍ | 166260/371472 [2:16:33<18:32:49, 3.07it/s] {'loss': 2.8379, 'learning_rate': 5.974541575987416e-07, 'epoch': 7.16} + 45%|████▍ | 166260/371472 [2:16:33<18:32:49, 3.07it/s] 45%|████▍ | 166261/371472 [2:16:33<18:28:05, 3.09it/s] 45%|████▍ | 166262/371472 [2:16:34<18:07:12, 3.15it/s] 45%|████▍ | 166263/371472 [2:16:34<17:46:32, 3.21it/s] 45%|████▍ | 166264/371472 [2:16:34<18:01:39, 3.16it/s] 45%|████▍ | 166265/371472 [2:16:35<17:13:16, 3.31it/s] 45%|████▍ | 166266/371472 [2:16:35<16:45:51, 3.40it/s] 45%|████▍ | 166267/371472 [2:16:35<16:58:05, 3.36it/s] 45%|████▍ | 166268/371472 [2:16:36<17:11:46, 3.31it/s] 45%|████▍ | 166269/371472 [2:16:36<17:22:56, 3.28it/s] 45%|████▍ | 166270/371472 [2:16:36<17:22:59, 3.28it/s] 45%|████▍ | 166271/371472 [2:16:36<17:23:50, 3.28it/s] 45%|████▍ | 166272/371472 [2:16:37<17:17:00, 3.30it/s] 45%|████▍ | 166273/371472 [2:16:37<17:27:41, 3.26it/s] 45%|████▍ | 166274/371472 [2:16:37<18:07:51, 3.14it/s] 45%|████▍ | 166275/371472 [2:16:38<17:31:10, 3.25it/s] 45%|████▍ | 166276/371472 [2:16:38<17:14:31, 3.31it/s] 45%|████▍ | 166277/371472 [2:16:38<16:53:42, 3.37it/s] 45%|████▍ | 166278/371472 [2:16:39<16:56:00, 3.37it/s] 45%|████▍ | 166279/371472 [2:16:39<16:44:35, 3.40it/s] 45%|████▍ | 166280/371472 [2:16:39<17:12:47, 3.31it/s] {'loss': 3.0159, 'learning_rate': 5.974056756232628e-07, 'epoch': 7.16} + 45%|████▍ | 166280/371472 [2:16:39<17:12:47, 3.31it/s] 45%|████▍ | 166281/371472 [2:16:40<17:46:00, 3.21it/s] 45%|████▍ | 166282/371472 [2:16:40<17:17:35, 3.30it/s] 45%|████▍ | 166283/371472 [2:16:40<17:10:23, 3.32it/s] 45%|████▍ | 166284/371472 [2:16:40<17:52:03, 3.19it/s] 45%|████▍ | 166285/371472 [2:16:41<17:35:46, 3.24it/s] 45%|████▍ | 166286/371472 [2:16:41<17:22:15, 3.28it/s] 45%|████▍ | 166287/371472 [2:16:41<17:35:04, 3.24it/s] 45%|████▍ | 166288/371472 [2:16:42<16:53:08, 3.38it/s] 45%|████▍ | 166289/371472 [2:16:42<16:53:17, 3.37it/s] 45%|████▍ | 166290/371472 [2:16:42<16:52:58, 3.38it/s] 45%|████▍ | 166291/371472 [2:16:43<16:50:29, 3.38it/s] 45%|████▍ | 166292/371472 [2:16:43<16:09:30, 3.53it/s] 45%|████▍ | 166293/371472 [2:16:43<15:41:55, 3.63it/s] 45%|████▍ | 166294/371472 [2:16:43<16:09:12, 3.53it/s] 45%|████▍ | 166295/371472 [2:16:44<15:51:42, 3.59it/s] 45%|████▍ | 166296/371472 [2:16:44<18:23:32, 3.10it/s] 45%|████▍ | 166297/371472 [2:16:44<17:55:38, 3.18it/s] 45%|████▍ | 166298/371472 [2:16:45<17:52:19, 3.19it/s] 45%|████▍ | 166299/371472 [2:16:45<17:47:11, 3.20it/s] 45%|████▍ | 166300/371472 [2:16:45<17:24:24, 3.27it/s] {'loss': 2.9229, 'learning_rate': 5.973571936477838e-07, 'epoch': 7.16} + 45%|████▍ | 166300/371472 [2:16:45<17:24:24, 3.27it/s] 45%|████▍ | 166301/371472 [2:16:46<17:19:17, 3.29it/s] 45%|████▍ | 166302/371472 [2:16:46<18:12:02, 3.13it/s] 45%|████▍ | 166303/371472 [2:16:46<17:47:06, 3.20it/s] 45%|████▍ | 166304/371472 [2:16:47<17:49:25, 3.20it/s] 45%|████▍ | 166305/371472 [2:16:47<17:21:05, 3.28it/s] 45%|████▍ | 166306/371472 [2:16:47<17:18:59, 3.29it/s] 45%|████▍ | 166307/371472 [2:16:47<17:29:45, 3.26it/s] 45%|████▍ | 166308/371472 [2:16:48<16:44:07, 3.41it/s] 45%|████▍ | 166309/371472 [2:16:48<17:13:57, 3.31it/s] 45%|████▍ | 166310/371472 [2:16:48<16:44:02, 3.41it/s] 45%|████▍ | 166311/371472 [2:16:49<16:42:00, 3.41it/s] 45%|████▍ | 166312/371472 [2:16:49<16:53:54, 3.37it/s] 45%|████▍ | 166313/371472 [2:16:49<16:37:06, 3.43it/s] 45%|████▍ | 166314/371472 [2:16:49<16:41:51, 3.41it/s] 45%|████▍ | 166315/371472 [2:16:50<16:33:12, 3.44it/s] 45%|████▍ | 166316/371472 [2:16:50<16:31:06, 3.45it/s] 45%|████▍ | 166317/371472 [2:16:50<16:11:36, 3.52it/s] 45%|████▍ | 166318/371472 [2:16:51<17:33:06, 3.25it/s] 45%|████▍ | 166319/371472 [2:16:51<17:09:30, 3.32it/s] 45%|████▍ | 166320/371472 [2:16:51<17:01:30, 3.35it/s] {'loss': 2.9966, 'learning_rate': 5.973087116723049e-07, 'epoch': 7.16} + 45%|████▍ | 166320/371472 [2:16:51<17:01:30, 3.35it/s] 45%|████▍ | 166321/371472 [2:16:52<17:54:12, 3.18it/s] 45%|████▍ | 166322/371472 [2:16:52<17:21:10, 3.28it/s] 45%|████▍ | 166323/371472 [2:16:52<17:15:37, 3.30it/s] 45%|████▍ | 166324/371472 [2:16:52<17:12:11, 3.31it/s] 45%|████▍ | 166325/371472 [2:16:53<16:48:20, 3.39it/s] 45%|████▍ | 166326/371472 [2:16:53<16:50:39, 3.38it/s] 45%|████▍ | 166327/371472 [2:16:53<16:41:30, 3.41it/s] 45%|████▍ | 166328/371472 [2:16:54<18:00:36, 3.16it/s] 45%|████▍ | 166329/371472 [2:16:54<18:18:18, 3.11it/s] 45%|████▍ | 166330/371472 [2:16:54<18:05:52, 3.15it/s] 45%|████▍ | 166331/371472 [2:16:55<17:49:32, 3.20it/s] 45%|████▍ | 166332/371472 [2:16:55<18:01:58, 3.16it/s] 45%|████▍ | 166333/371472 [2:16:55<17:32:07, 3.25it/s] 45%|████▍ | 166334/371472 [2:16:56<17:16:11, 3.30it/s] 45%|████▍ | 166335/371472 [2:16:56<17:00:06, 3.35it/s] 45%|████▍ | 166336/371472 [2:16:56<18:08:01, 3.14it/s] 45%|████▍ | 166337/371472 [2:16:57<18:49:23, 3.03it/s] 45%|████▍ | 166338/371472 [2:16:57<18:49:21, 3.03it/s] 45%|████▍ | 166339/371472 [2:16:57<17:43:04, 3.22it/s] 45%|████▍ | 166340/371472 [2:16:57<17:28:56, 3.26it/s] {'loss': 3.0938, 'learning_rate': 5.97260229696826e-07, 'epoch': 7.16} + 45%|████▍ | 166340/371472 [2:16:57<17:28:56, 3.26it/s] 45%|████▍ | 166341/371472 [2:16:58<17:10:02, 3.32it/s] 45%|████▍ | 166342/371472 [2:16:58<16:37:35, 3.43it/s] 45%|████▍ | 166343/371472 [2:16:58<16:42:12, 3.41it/s] 45%|████▍ | 166344/371472 [2:16:59<18:06:55, 3.15it/s] 45%|████▍ | 166345/371472 [2:16:59<17:51:02, 3.19it/s] 45%|████▍ | 166346/371472 [2:16:59<17:52:12, 3.19it/s] 45%|████▍ | 166347/371472 [2:17:00<17:37:57, 3.23it/s] 45%|████▍ | 166348/371472 [2:17:00<17:08:35, 3.32it/s] 45%|████▍ | 166349/371472 [2:17:00<17:53:04, 3.19it/s] 45%|████▍ | 166350/371472 [2:17:01<17:36:48, 3.23it/s] 45%|████▍ | 166351/371472 [2:17:01<17:58:51, 3.17it/s] 45%|████▍ | 166352/371472 [2:17:01<17:17:15, 3.30it/s] 45%|████▍ | 166353/371472 [2:17:01<16:53:33, 3.37it/s] 45%|████▍ | 166354/371472 [2:17:02<16:58:38, 3.36it/s] 45%|████▍ | 166355/371472 [2:17:02<16:59:33, 3.35it/s] 45%|████▍ | 166356/371472 [2:17:02<16:48:57, 3.39it/s] 45%|████▍ | 166357/371472 [2:17:03<16:40:55, 3.42it/s] 45%|████▍ | 166358/371472 [2:17:03<17:45:23, 3.21it/s] 45%|████▍ | 166359/371472 [2:17:03<17:11:14, 3.31it/s] 45%|████▍ | 166360/371472 [2:17:04<16:59:57, 3.35it/s] {'loss': 2.8535, 'learning_rate': 5.972117477213472e-07, 'epoch': 7.17} + 45%|████▍ | 166360/371472 [2:17:04<16:59:57, 3.35it/s] 45%|████▍ | 166361/371472 [2:17:04<16:24:31, 3.47it/s] 45%|████▍ | 166362/371472 [2:17:04<16:33:59, 3.44it/s] 45%|████▍ | 166363/371472 [2:17:04<16:45:19, 3.40it/s] 45%|████▍ | 166364/371472 [2:17:05<16:37:07, 3.43it/s] 45%|████▍ | 166365/371472 [2:17:05<16:37:20, 3.43it/s] 45%|████▍ | 166366/371472 [2:17:05<16:21:33, 3.48it/s] 45%|████▍ | 166367/371472 [2:17:06<16:15:32, 3.50it/s] 45%|████▍ | 166368/371472 [2:17:06<16:19:28, 3.49it/s] 45%|████▍ | 166369/371472 [2:17:06<16:17:27, 3.50it/s] 45%|████▍ | 166370/371472 [2:17:06<17:25:44, 3.27it/s] 45%|████▍ | 166371/371472 [2:17:07<17:07:30, 3.33it/s] 45%|████▍ | 166372/371472 [2:17:07<16:59:53, 3.35it/s] 45%|████▍ | 166373/371472 [2:17:07<17:13:47, 3.31it/s] 45%|████▍ | 166374/371472 [2:17:08<18:32:40, 3.07it/s] 45%|██��█▍ | 166375/371472 [2:17:08<18:29:52, 3.08it/s] 45%|████▍ | 166376/371472 [2:17:08<17:52:21, 3.19it/s] 45%|████▍ | 166377/371472 [2:17:09<17:30:21, 3.25it/s] 45%|████▍ | 166378/371472 [2:17:09<17:06:49, 3.33it/s] 45%|████▍ | 166379/371472 [2:17:09<18:16:47, 3.12it/s] 45%|████▍ | 166380/371472 [2:17:10<17:49:51, 3.19it/s] {'loss': 2.8759, 'learning_rate': 5.971632657458683e-07, 'epoch': 7.17} + 45%|████▍ | 166380/371472 [2:17:10<17:49:51, 3.19it/s] 45%|████▍ | 166381/371472 [2:17:10<17:31:53, 3.25it/s] 45%|████▍ | 166382/371472 [2:17:10<17:29:30, 3.26it/s] 45%|████▍ | 166383/371472 [2:17:10<17:12:22, 3.31it/s] 45%|████▍ | 166384/371472 [2:17:11<17:04:33, 3.34it/s] 45%|████▍ | 166385/371472 [2:17:11<17:18:11, 3.29it/s] 45%|████▍ | 166386/371472 [2:17:11<17:21:58, 3.28it/s] 45%|████▍ | 166387/371472 [2:17:12<17:04:50, 3.34it/s] 45%|████▍ | 166388/371472 [2:17:12<16:46:24, 3.40it/s] 45%|████▍ | 166389/371472 [2:17:12<17:16:52, 3.30it/s] 45%|████▍ | 166390/371472 [2:17:13<18:05:47, 3.15it/s] 45%|████▍ | 166391/371472 [2:17:13<17:37:29, 3.23it/s] 45%|████▍ | 166392/371472 [2:17:13<17:09:58, 3.32it/s] 45%|████▍ | 166393/371472 [2:17:14<19:41:52, 2.89it/s] 45%|████▍ | 166394/371472 [2:17:14<20:04:00, 2.84it/s] 45%|████▍ | 166395/371472 [2:17:14<18:54:28, 3.01it/s] 45%|████▍ | 166396/371472 [2:17:15<19:54:45, 2.86it/s] 45%|████▍ | 166397/371472 [2:17:15<19:25:01, 2.93it/s] 45%|████▍ | 166398/371472 [2:17:15<18:47:39, 3.03it/s] 45%|████▍ | 166399/371472 [2:17:16<18:49:05, 3.03it/s] 45%|████▍ | 166400/371472 [2:17:16<17:49:09, 3.20it/s] {'loss': 2.9628, 'learning_rate': 5.971147837703893e-07, 'epoch': 7.17} + 45%|████▍ | 166400/371472 [2:17:16<17:49:09, 3.20it/s] 45%|████▍ | 166401/371472 [2:17:16<17:18:46, 3.29it/s] 45%|████▍ | 166402/371472 [2:17:16<16:49:05, 3.39it/s] 45%|████▍ | 166403/371472 [2:17:17<17:17:19, 3.29it/s] 45%|████▍ | 166404/371472 [2:17:17<16:59:31, 3.35it/s] 45%|████▍ | 166405/371472 [2:17:17<16:59:30, 3.35it/s] 45%|████▍ | 166406/371472 [2:17:18<18:29:41, 3.08it/s] 45%|████▍ | 166407/371472 [2:17:18<17:32:30, 3.25it/s] 45%|████▍ | 166408/371472 [2:17:18<17:52:41, 3.19it/s] 45%|████▍ | 166409/371472 [2:17:19<17:23:20, 3.28it/s] 45%|████▍ | 166410/371472 [2:17:19<16:54:55, 3.37it/s] 45%|████▍ | 166411/371472 [2:17:19<17:00:25, 3.35it/s] 45%|████▍ | 166412/371472 [2:17:19<16:40:31, 3.42it/s] 45%|████▍ | 166413/371472 [2:17:20<16:43:52, 3.40it/s] 45%|████▍ | 166414/371472 [2:17:20<16:43:47, 3.40it/s] 45%|████▍ | 166415/371472 [2:17:20<17:26:12, 3.27it/s] 45%|████▍ | 166416/371472 [2:17:21<17:14:05, 3.30it/s] 45%|████▍ | 166417/371472 [2:17:21<16:51:51, 3.38it/s] 45%|████▍ | 166418/371472 [2:17:21<16:38:01, 3.42it/s] 45%|████▍ | 166419/371472 [2:17:22<16:32:32, 3.44it/s] 45%|████▍ | 166420/371472 [2:17:22<16:14:36, 3.51it/s] {'loss': 2.9814, 'learning_rate': 5.970663017949105e-07, 'epoch': 7.17} + 45%|████▍ | 166420/371472 [2:17:22<16:14:36, 3.51it/s] 45%|████▍ | 166421/371472 [2:17:22<16:23:58, 3.47it/s] 45%|████▍ | 166422/371472 [2:17:23<19:35:43, 2.91it/s] 45%|████▍ | 166423/371472 [2:17:23<19:21:29, 2.94it/s] 45%|████▍ | 166424/371472 [2:17:23<18:42:14, 3.05it/s] 45%|████▍ | 166425/371472 [2:17:24<18:01:43, 3.16it/s] 45%|████▍ | 166426/371472 [2:17:24<18:19:12, 3.11it/s] 45%|████▍ | 166427/371472 [2:17:24<17:25:19, 3.27it/s] 45%|████▍ | 166428/371472 [2:17:24<16:58:29, 3.36it/s] 45%|████▍ | 166429/371472 [2:17:25<16:43:45, 3.40it/s] 45%|████▍ | 166430/371472 [2:17:25<16:42:47, 3.41it/s] 45%|████▍ | 166431/371472 [2:17:25<16:38:14, 3.42it/s] 45%|████▍ | 166432/371472 [2:17:26<16:13:47, 3.51it/s] 45%|████▍ | 166433/371472 [2:17:26<16:18:58, 3.49it/s] 45%|████▍ | 166434/371472 [2:17:26<17:37:40, 3.23it/s] 45%|████▍ | 166435/371472 [2:17:27<17:38:18, 3.23it/s] 45%|████▍ | 166436/371472 [2:17:27<16:57:14, 3.36it/s] 45%|████▍ | 166437/371472 [2:17:27<16:38:53, 3.42it/s] 45%|████▍ | 166438/371472 [2:17:27<17:06:12, 3.33it/s] 45%|████▍ | 166439/371472 [2:17:28<17:15:16, 3.30it/s] 45%|████▍ | 166440/371472 [2:17:28<16:48:39, 3.39it/s] {'loss': 2.8651, 'learning_rate': 5.970178198194315e-07, 'epoch': 7.17} + 45%|████▍ | 166440/371472 [2:17:28<16:48:39, 3.39it/s] 45%|████▍ | 166441/371472 [2:17:28<17:11:35, 3.31it/s] 45%|████▍ | 166442/371472 [2:17:29<16:36:24, 3.43it/s] 45%|████▍ | 166443/371472 [2:17:29<17:41:48, 3.22it/s] 45%|████▍ | 166444/371472 [2:17:29<17:28:44, 3.26it/s] 45%|████▍ | 166445/371472 [2:17:29<17:12:56, 3.31it/s] 45%|████▍ | 166446/371472 [2:17:30<17:14:27, 3.30it/s] 45%|████▍ | 166447/371472 [2:17:30<17:01:13, 3.35it/s] 45%|████▍ | 166448/371472 [2:17:30<17:46:11, 3.20it/s] 45%|████▍ | 166449/371472 [2:17:31<17:32:11, 3.25it/s] 45%|████▍ | 166450/371472 [2:17:31<18:03:49, 3.15it/s] 45%|████▍ | 166451/371472 [2:17:31<17:10:01, 3.32it/s] 45%|████▍ | 166452/371472 [2:17:32<16:50:55, 3.38it/s] 45%|████▍ | 166453/371472 [2:17:32<17:58:24, 3.17it/s] 45%|████▍ | 166454/371472 [2:17:32<17:15:13, 3.30it/s] 45%|████▍ | 166455/371472 [2:17:33<17:15:50, 3.30it/s] 45%|████▍ | 166456/371472 [2:17:33<17:17:42, 3.29it/s] 45%|████▍ | 166457/371472 [2:17:33<17:43:35, 3.21it/s] 45%|████▍ | 166458/371472 [2:17:33<17:45:17, 3.21it/s] 45%|████▍ | 166459/371472 [2:17:34<17:06:53, 3.33it/s] 45%|████▍ | 166460/371472 [2:17:34<16:35:11, 3.43it/s] {'loss': 2.8922, 'learning_rate': 5.969693378439526e-07, 'epoch': 7.17} + 45%|████▍ | 166460/371472 [2:17:34<16:35:11, 3.43it/s] 45%|████▍ | 166461/371472 [2:17:34<17:18:33, 3.29it/s] 45%|████▍ | 166462/371472 [2:17:35<16:52:46, 3.37it/s] 45%|████▍ | 166463/371472 [2:17:35<16:42:44, 3.41it/s] 45%|████▍ | 166464/371472 [2:17:35<16:55:01, 3.37it/s] 45%|████▍ | 166465/371472 [2:17:36<16:55:41, 3.36it/s] 45%|████▍ | 166466/371472 [2:17:36<16:57:50, 3.36it/s] 45%|████▍ | 166467/371472 [2:17:36<16:50:25, 3.38it/s] 45%|████▍ | 166468/371472 [2:17:36<16:49:23, 3.38it/s] 45%|████▍ | 166469/371472 [2:17:37<16:40:05, 3.42it/s] 45%|████▍ | 166470/371472 [2:17:37<17:47:48, 3.20it/s] 45%|████▍ | 166471/371472 [2:17:37<18:02:33, 3.16it/s] 45%|████▍ | 166472/371472 [2:17:38<17:19:41, 3.29it/s] 45%|████▍ | 166473/371472 [2:17:38<17:17:17, 3.29it/s] 45%|████▍ | 166474/371472 [2:17:38<16:53:56, 3.37it/s] 45%|████▍ | 166475/371472 [2:17:39<16:50:14, 3.38it/s] 45%|████▍ | 166476/371472 [2:17:39<17:56:02, 3.18it/s] 45%|████▍ | 166477/371472 [2:17:39<17:26:06, 3.27it/s] 45%|████▍ | 166478/371472 [2:17:39<16:58:04, 3.36it/s] 45%|████▍ | 166479/371472 [2:17:40<17:44:10, 3.21it/s] 45%|████▍ | 166480/371472 [2:17:40<17:18:06, 3.29it/s] {'loss': 2.9063, 'learning_rate': 5.969208558684737e-07, 'epoch': 7.17} + 45%|████▍ | 166480/371472 [2:17:40<17:18:06, 3.29it/s] 45%|████▍ | 166481/371472 [2:17:40<16:56:30, 3.36it/s] 45%|████▍ | 166482/371472 [2:17:41<16:52:40, 3.37it/s] 45%|████▍ | 166483/371472 [2:17:41<17:10:55, 3.31it/s] 45%|████▍ | 166484/371472 [2:17:41<17:09:08, 3.32it/s] 45%|████▍ | 166485/371472 [2:17:42<16:44:00, 3.40it/s] 45%|████▍ | 166486/371472 [2:17:42<17:17:14, 3.29it/s] 45%|████▍ | 166487/371472 [2:17:42<17:59:08, 3.17it/s] 45%|████▍ | 166488/371472 [2:17:43<17:34:26, 3.24it/s] 45%|████▍ | 166489/371472 [2:17:43<17:15:34, 3.30it/s] 45%|████▍ | 166490/371472 [2:17:43<18:12:23, 3.13it/s] 45%|████▍ | 166491/371472 [2:17:43<17:33:07, 3.24it/s] 45%|████▍ | 166492/371472 [2:17:44<17:10:33, 3.32it/s] 45%|████▍ | 166493/371472 [2:17:44<16:52:07, 3.38it/s] 45%|████▍ | 166494/371472 [2:17:44<16:45:14, 3.40it/s] 45%|████▍ | 166495/371472 [2:17:45<16:33:29, 3.44it/s] 45%|████▍ | 166496/371472 [2:17:45<16:09:46, 3.52it/s] 45%|████▍ | 166497/371472 [2:17:45<16:14:38, 3.51it/s] 45%|████▍ | 166498/371472 [2:17:45<16:21:25, 3.48it/s] 45%|████▍ | 166499/371472 [2:17:46<16:28:49, 3.45it/s] 45%|████▍ | 166500/371472 [2:17:46<16:20:28, 3.48it/s] {'loss': 2.9269, 'learning_rate': 5.968723738929949e-07, 'epoch': 7.17} + 45%|████▍ | 166500/371472 [2:17:46<16:20:28, 3.48it/s] 45%|████▍ | 166501/371472 [2:17:46<16:14:24, 3.51it/s] 45%|████▍ | 166502/371472 [2:17:47<16:55:16, 3.36it/s] 45%|████▍ | 166503/371472 [2:17:47<16:37:53, 3.42it/s] 45%|████▍ | 166504/371472 [2:17:47<16:38:41, 3.42it/s] 45%|████▍ | 166505/371472 [2:17:48<18:03:29, 3.15it/s] 45%|████▍ | 166506/371472 [2:17:48<17:26:51, 3.26it/s] 45%|████▍ | 166507/371472 [2:17:48<16:54:30, 3.37it/s] 45%|████▍ | 166508/371472 [2:17:48<18:01:16, 3.16it/s] 45%|████▍ | 166509/371472 [2:17:49<19:08:34, 2.97it/s] 45%|████▍ | 166510/371472 [2:17:49<17:59:49, 3.16it/s] 45%|████▍ | 166511/371472 [2:17:49<17:36:51, 3.23it/s] 45%|████▍ | 166512/371472 [2:17:50<18:11:36, 3.13it/s] 45%|████▍ | 166513/371472 [2:17:50<17:26:00, 3.27it/s] 45%|████▍ | 166514/371472 [2:17:50<17:16:58, 3.29it/s] 45%|████▍ | 166515/371472 [2:17:51<17:12:26, 3.31it/s] 45%|████▍ | 166516/371472 [2:17:51<17:35:03, 3.24it/s] 45%|████▍ | 166517/371472 [2:17:51<17:05:10, 3.33it/s] 45%|████▍ | 166518/371472 [2:17:52<16:40:49, 3.41it/s] 45%|████▍ | 166519/371472 [2:17:52<17:21:23, 3.28it/s] 45%|████▍ | 166520/371472 [2:17:52<17:12:46, 3.31it/s] {'loss': 2.7926, 'learning_rate': 5.96823891917516e-07, 'epoch': 7.17} + 45%|████▍ | 166520/371472 [2:17:52<17:12:46, 3.31it/s] 45%|████▍ | 166521/371472 [2:17:52<16:52:22, 3.37it/s] 45%|████▍ | 166522/371472 [2:17:53<17:20:13, 3.28it/s] 45%|████▍ | 166523/371472 [2:17:53<17:40:57, 3.22it/s] 45%|████▍ | 166524/371472 [2:17:53<16:58:09, 3.35it/s] 45%|████▍ | 166525/371472 [2:17:54<16:56:21, 3.36it/s] 45%|████▍ | 166526/371472 [2:17:54<17:13:10, 3.31it/s] 45%|████▍ | 166527/371472 [2:17:54<18:12:00, 3.13it/s] 45%|████▍ | 166528/371472 [2:17:55<17:32:15, 3.25it/s] 45%|████▍ | 166529/371472 [2:17:55<16:48:49, 3.39it/s] 45%|████▍ | 166530/371472 [2:17:55<17:34:18, 3.24it/s] 45%|████▍ | 166531/371472 [2:17:56<17:32:19, 3.25it/s] 45%|████▍ | 166532/371472 [2:17:56<17:17:04, 3.29it/s] 45%|████▍ | 166533/371472 [2:17:56<16:56:12, 3.36it/s] 45%|████▍ | 166534/371472 [2:17:56<17:05:13, 3.33it/s] 45%|████▍ | 166535/371472 [2:17:57<17:20:58, 3.28it/s] 45%|████▍ | 166536/371472 [2:17:57<17:10:13, 3.32it/s] 45%|████▍ | 166537/371472 [2:17:57<17:00:17, 3.35it/s] 45%|████▍ | 166538/371472 [2:17:58<17:32:40, 3.24it/s] 45%|████▍ | 166539/371472 [2:17:58<17:15:33, 3.30it/s] 45%|████▍ | 166540/371472 [2:17:58<17:57:40, 3.17it/s] {'loss': 2.9786, 'learning_rate': 5.967754099420371e-07, 'epoch': 7.17} + 45%|████▍ | 166540/371472 [2:17:58<17:57:40, 3.17it/s] 45%|████▍ | 166541/371472 [2:17:59<17:29:02, 3.26it/s] 45%|████▍ | 166542/371472 [2:17:59<17:38:57, 3.23it/s] 45%|████▍ | 166543/371472 [2:17:59<17:52:46, 3.18it/s] 45%|████▍ | 166544/371472 [2:18:00<18:10:28, 3.13it/s] 45%|████▍ | 166545/371472 [2:18:00<17:50:10, 3.19it/s] 45%|████▍ | 166546/371472 [2:18:00<17:56:47, 3.17it/s] 45%|████▍ | 166547/371472 [2:18:00<17:27:43, 3.26it/s] 45%|████▍ | 166548/371472 [2:18:01<17:23:32, 3.27it/s] 45%|████▍ | 166549/371472 [2:18:01<17:11:08, 3.31it/s] 45%|████▍ | 166550/371472 [2:18:01<18:07:57, 3.14it/s] 45%|████▍ | 166551/371472 [2:18:02<18:07:48, 3.14it/s] 45%|████▍ | 166552/371472 [2:18:02<18:36:30, 3.06it/s] 45%|████▍ | 166553/371472 [2:18:02<18:13:24, 3.12it/s] 45%|████▍ | 166554/371472 [2:18:03<17:59:16, 3.16it/s] 45%|████▍ | 166555/371472 [2:18:03<18:21:00, 3.10it/s] 45%|████▍ | 166556/371472 [2:18:03<17:37:09, 3.23it/s] 45%|████▍ | 166557/371472 [2:18:04<17:32:33, 3.24it/s] 45%|████▍ | 166558/371472 [2:18:04<17:07:18, 3.32it/s] 45%|████▍ | 166559/371472 [2:18:04<19:14:39, 2.96it/s] 45%|████▍ | 166560/371472 [2:18:05<18:29:30, 3.08it/s] {'loss': 2.8454, 'learning_rate': 5.967269279665581e-07, 'epoch': 7.17} + 45%|████▍ | 166560/371472 [2:18:05<18:29:30, 3.08it/s] 45%|████▍ | 166561/371472 [2:18:05<18:00:17, 3.16it/s] 45%|████▍ | 166562/371472 [2:18:05<17:53:18, 3.18it/s] 45%|████▍ | 166563/371472 [2:18:06<18:01:01, 3.16it/s] 45%|████▍ | 166564/371472 [2:18:06<17:50:47, 3.19it/s] 45%|████▍ | 166565/371472 [2:18:06<18:11:33, 3.13it/s] 45%|████▍ | 166566/371472 [2:18:06<17:33:01, 3.24it/s] 45%|████▍ | 166567/371472 [2:18:07<17:16:20, 3.30it/s] 45%|████▍ | 166568/371472 [2:18:07<16:54:38, 3.37it/s] 45%|████▍ | 166569/371472 [2:18:07<17:03:46, 3.34it/s] 45%|████▍ | 166570/371472 [2:18:08<17:20:04, 3.28it/s] 45%|████▍ | 166571/371472 [2:18:08<17:38:44, 3.23it/s] 45%|████▍ | 166572/371472 [2:18:08<17:24:56, 3.27it/s] 45%|████▍ | 166573/371472 [2:18:09<17:06:58, 3.33it/s] 45%|████▍ | 166574/371472 [2:18:09<17:35:40, 3.23it/s] 45%|████▍ | 166575/371472 [2:18:09<17:06:46, 3.33it/s] 45%|████▍ | 166576/371472 [2:18:09<17:06:30, 3.33it/s] 45%|████▍ | 166577/371472 [2:18:10<16:43:02, 3.40it/s] 45%|████▍ | 166578/371472 [2:18:10<16:56:16, 3.36it/s] 45%|████▍ | 166579/371472 [2:18:10<17:10:14, 3.31it/s] 45%|████▍ | 166580/371472 [2:18:11<18:10:55, 3.13it/s] {'loss': 2.7862, 'learning_rate': 5.966784459910793e-07, 'epoch': 7.17} + 45%|████▍ | 166580/371472 [2:18:11<18:10:55, 3.13it/s] 45%|████▍ | 166581/371472 [2:18:11<18:01:48, 3.16it/s] 45%|████▍ | 166582/371472 [2:18:11<17:05:54, 3.33it/s] 45%|████▍ | 166583/371472 [2:18:12<16:49:16, 3.38it/s] 45%|████▍ | 166584/371472 [2:18:12<16:40:58, 3.41it/s] 45%|████▍ | 166585/371472 [2:18:12<17:25:34, 3.27it/s] 45%|████▍ | 166586/371472 [2:18:12<16:57:10, 3.36it/s] 45%|████▍ | 166587/371472 [2:18:13<17:19:05, 3.29it/s] 45%|████▍ | 166588/371472 [2:18:13<20:52:14, 2.73it/s] 45%|████▍ | 166589/371472 [2:18:14<19:31:33, 2.91it/s] 45%|████▍ | 166590/371472 [2:18:14<18:25:25, 3.09it/s] 45%|████▍ | 166591/371472 [2:18:14<17:49:17, 3.19it/s] 45%|████▍ | 166592/371472 [2:18:14<17:57:15, 3.17it/s] 45%|████▍ | 166593/371472 [2:18:15<18:23:23, 3.09it/s] 45%|████▍ | 166594/371472 [2:18:15<20:16:01, 2.81it/s] 45%|████▍ | 166595/371472 [2:18:16<19:06:28, 2.98it/s] 45%|████▍ | 166596/371472 [2:18:16<18:24:19, 3.09it/s] 45%|████▍ | 166597/371472 [2:18:16<19:38:03, 2.90it/s] 45%|████▍ | 166598/371472 [2:18:17<18:51:16, 3.02it/s] 45%|████▍ | 166599/371472 [2:18:17<18:49:59, 3.02it/s] 45%|████▍ | 166600/371472 [2:18:17<18:04:22, 3.15it/s] {'loss': 3.1183, 'learning_rate': 5.966299640156004e-07, 'epoch': 7.18} + 45%|████▍ | 166600/371472 [2:18:17<18:04:22, 3.15it/s] 45%|████▍ | 166601/371472 [2:18:17<18:05:02, 3.15it/s] 45%|████▍ | 166602/371472 [2:18:18<17:56:30, 3.17it/s] 45%|████▍ | 166603/371472 [2:18:18<17:34:11, 3.24it/s] 45%|████▍ | 166604/371472 [2:18:18<17:19:44, 3.28it/s] 45%|████▍ | 166605/371472 [2:18:19<16:52:44, 3.37it/s] 45%|████▍ | 166606/371472 [2:18:19<17:50:51, 3.19it/s] 45%|████▍ | 166607/371472 [2:18:19<17:21:24, 3.28it/s] 45%|████▍ | 166608/371472 [2:18:20<17:21:38, 3.28it/s] 45%|████▍ | 166609/371472 [2:18:20<17:07:55, 3.32it/s] 45%|████▍ | 166610/371472 [2:18:20<17:00:01, 3.35it/s] 45%|████▍ | 166611/371472 [2:18:21<19:01:42, 2.99it/s] 45%|████▍ | 166612/371472 [2:18:21<18:28:57, 3.08it/s] 45%|████▍ | 166613/371472 [2:18:21<17:49:22, 3.19it/s] 45%|████▍ | 166614/371472 [2:18:22<18:15:59, 3.12it/s] 45%|████▍ | 166615/371472 [2:18:22<17:49:03, 3.19it/s] 45%|████▍ | 166616/371472 [2:18:22<17:32:23, 3.24it/s] 45%|████▍ | 166617/371472 [2:18:22<17:11:21, 3.31it/s] 45%|████▍ | 166618/371472 [2:18:23<16:41:01, 3.41it/s] 45%|████▍ | 166619/371472 [2:18:23<17:00:55, 3.34it/s] 45%|████▍ | 166620/371472 [2:18:23<17:57:10, 3.17it/s] {'loss': 2.8224, 'learning_rate': 5.965814820401215e-07, 'epoch': 7.18} + 45%|████▍ | 166620/371472 [2:18:23<17:57:10, 3.17it/s] 45%|████▍ | 166621/371472 [2:18:24<19:08:48, 2.97it/s] 45%|████▍ | 166622/371472 [2:18:24<18:22:03, 3.10it/s] 45%|████▍ | 166623/371472 [2:18:24<17:21:41, 3.28it/s] 45%|████▍ | 166624/371472 [2:18:25<16:56:38, 3.36it/s] 45%|████▍ | 166625/371472 [2:18:25<16:46:46, 3.39it/s] 45%|████▍ | 166626/371472 [2:18:25<17:31:34, 3.25it/s] 45%|████▍ | 166627/371472 [2:18:26<17:51:49, 3.19it/s] 45%|████▍ | 166628/371472 [2:18:26<17:25:25, 3.27it/s] 45%|████▍ | 166629/371472 [2:18:26<17:25:39, 3.26it/s] 45%|████▍ | 166630/371472 [2:18:26<17:06:50, 3.32it/s] 45%|████▍ | 166631/371472 [2:18:27<16:48:54, 3.38it/s] 45%|████▍ | 166632/371472 [2:18:27<16:41:47, 3.41it/s] 45%|████▍ | 166633/371472 [2:18:27<16:40:57, 3.41it/s] 45%|████▍ | 166634/371472 [2:18:28<17:02:23, 3.34it/s] 45%|████▍ | 166635/371472 [2:18:28<17:12:13, 3.31it/s] 45%|████▍ | 166636/371472 [2:18:28<17:06:00, 3.33it/s] 45%|████▍ | 166637/371472 [2:18:28<17:14:08, 3.30it/s] 45%|████▍ | 166638/371472 [2:18:29<16:52:33, 3.37it/s] 45%|████▍ | 166639/371472 [2:18:29<16:51:52, 3.37it/s] 45%|████▍ | 166640/371472 [2:18:29<16:30:12, 3.45it/s] {'loss': 2.9662, 'learning_rate': 5.965330000646426e-07, 'epoch': 7.18} + 45%|████▍ | 166640/371472 [2:18:29<16:30:12, 3.45it/s] 45%|████▍ | 166641/371472 [2:18:30<16:30:57, 3.44it/s] 45%|████▍ | 166642/371472 [2:18:30<16:39:34, 3.42it/s] 45%|████▍ | 166643/371472 [2:18:30<17:16:14, 3.29it/s] 45%|████▍ | 166644/371472 [2:18:31<16:49:01, 3.38it/s] 45%|████▍ | 166645/371472 [2:18:31<16:53:52, 3.37it/s] 45%|████▍ | 166646/371472 [2:18:31<16:47:57, 3.39it/s] 45%|████▍ | 166647/371472 [2:18:31<16:35:02, 3.43it/s] 45%|████▍ | 166648/371472 [2:18:32<17:35:32, 3.23it/s] 45%|████▍ | 166649/371472 [2:18:32<17:16:52, 3.29it/s] 45%|████▍ | 166650/371472 [2:18:32<17:07:05, 3.32it/s] 45%|████▍ | 166651/371472 [2:18:33<16:39:39, 3.41it/s] 45%|████▍ | 166652/371472 [2:18:33<16:41:40, 3.41it/s] 45%|████▍ | 166653/371472 [2:18:33<16:47:27, 3.39it/s] 45%|████▍ | 166654/371472 [2:18:34<18:06:03, 3.14it/s] 45%|████▍ | 166655/371472 [2:18:34<17:34:02, 3.24it/s] 45%|████▍ | 166656/371472 [2:18:34<17:23:25, 3.27it/s] 45%|████▍ | 166657/371472 [2:18:34<16:48:26, 3.38it/s] 45%|████▍ | 166658/371472 [2:18:35<17:20:35, 3.28it/s] 45%|████▍ | 166659/371472 [2:18:35<21:01:57, 2.70it/s] 45%|████▍ | 166660/371472 [2:18:36<19:23:39, 2.93it/s] {'loss': 2.7401, 'learning_rate': 5.964845180891638e-07, 'epoch': 7.18} + 45%|████▍ | 166660/371472 [2:18:36<19:23:39, 2.93it/s] 45%|████▍ | 166661/371472 [2:18:36<18:37:46, 3.05it/s] 45%|████▍ | 166662/371472 [2:18:36<18:01:32, 3.16it/s] 45%|████▍ | 166663/371472 [2:18:36<17:38:47, 3.22it/s] 45%|████▍ | 166664/371472 [2:18:37<17:45:10, 3.20it/s] 45%|████▍ | 166665/371472 [2:18:37<17:28:21, 3.26it/s] 45%|████▍ | 166666/371472 [2:18:37<18:01:00, 3.16it/s] 45%|████▍ | 166667/371472 [2:18:38<17:31:26, 3.25it/s] 45%|████▍ | 166668/371472 [2:18:38<17:48:49, 3.19it/s] 45%|████▍ | 166669/371472 [2:18:38<17:19:25, 3.28it/s] 45%|████▍ | 166670/371472 [2:18:39<18:04:35, 3.15it/s] 45%|████▍ | 166671/371472 [2:18:39<17:30:05, 3.25it/s] 45%|████▍ | 166672/371472 [2:18:39<16:56:07, 3.36it/s] 45%|████▍ | 166673/371472 [2:18:40<17:02:44, 3.34it/s] 45%|████▍ | 166674/371472 [2:18:40<16:44:34, 3.40it/s] 45%|████▍ | 166675/371472 [2:18:40<16:20:33, 3.48it/s] 45%|████▍ | 166676/371472 [2:18:40<16:57:07, 3.36it/s] 45%|████▍ | 166677/371472 [2:18:41<16:48:12, 3.39it/s] 45%|████▍ | 166678/371472 [2:18:41<17:26:07, 3.26it/s] 45%|████▍ | 166679/371472 [2:18:41<16:58:56, 3.35it/s] 45%|████▍ | 166680/371472 [2:18:42<16:41:08, 3.41it/s] {'loss': 2.9522, 'learning_rate': 5.964360361136848e-07, 'epoch': 7.18} + 45%|████▍ | 166680/371472 [2:18:42<16:41:08, 3.41it/s] 45%|████▍ | 166681/371472 [2:18:42<17:12:25, 3.31it/s] 45%|████▍ | 166682/371472 [2:18:42<16:57:46, 3.35it/s] 45%|████▍ | 166683/371472 [2:18:42<16:49:05, 3.38it/s] 45%|████▍ | 166684/371472 [2:18:43<16:56:28, 3.36it/s] 45%|████▍ | 166685/371472 [2:18:43<17:02:44, 3.34it/s] 45%|████▍ | 166686/371472 [2:18:43<17:10:22, 3.31it/s] 45%|████▍ | 166687/371472 [2:18:44<16:52:53, 3.37it/s] 45%|████▍ | 166688/371472 [2:18:44<16:54:31, 3.36it/s] 45%|████▍ | 166689/371472 [2:18:44<17:31:23, 3.25it/s] 45%|████▍ | 166690/371472 [2:18:45<17:44:52, 3.21it/s] 45%|████▍ | 166691/371472 [2:18:45<17:01:42, 3.34it/s] 45%|████▍ | 166692/371472 [2:18:45<16:49:52, 3.38it/s] 45%|████▍ | 166693/371472 [2:18:45<16:51:18, 3.37it/s] 45%|████▍ | 166694/371472 [2:18:46<16:42:00, 3.41it/s] 45%|████▍ | 166695/371472 [2:18:46<16:27:15, 3.46it/s] 45%|████▍ | 166696/371472 [2:18:46<16:53:36, 3.37it/s] 45%|████▍ | 166697/371472 [2:18:47<16:50:43, 3.38it/s] 45%|████▍ | 166698/371472 [2:18:47<17:16:21, 3.29it/s] 45%|████▍ | 166699/371472 [2:18:47<17:56:25, 3.17it/s] 45%|████▍ | 166700/371472 [2:18:48<17:57:33, 3.17it/s] {'loss': 3.0052, 'learning_rate': 5.963875541382059e-07, 'epoch': 7.18} + 45%|████▍ | 166700/371472 [2:18:48<17:57:33, 3.17it/s] 45%|████▍ | 166701/371472 [2:18:48<17:45:08, 3.20it/s] 45%|████▍ | 166702/371472 [2:18:48<17:13:10, 3.30it/s] 45%|████▍ | 166703/371472 [2:18:48<16:39:33, 3.41it/s] 45%|████▍ | 166704/371472 [2:18:49<16:35:13, 3.43it/s] 45%|████▍ | 166705/371472 [2:18:49<17:38:17, 3.22it/s] 45%|████▍ | 166706/371472 [2:18:49<17:16:58, 3.29it/s] 45%|████▍ | 166707/371472 [2:18:50<16:44:55, 3.40it/s] 45%|████▍ | 166708/371472 [2:18:50<16:28:11, 3.45it/s] 45%|████▍ | 166709/371472 [2:18:50<16:26:28, 3.46it/s] 45%|████▍ | 166710/371472 [2:18:51<16:38:16, 3.42it/s] 45%|████▍ | 166711/371472 [2:18:51<16:21:43, 3.48it/s] 45%|████▍ | 166712/371472 [2:18:51<17:11:28, 3.31it/s] 45%|████▍ | 166713/371472 [2:18:51<17:03:17, 3.33it/s] 45%|████▍ | 166714/371472 [2:18:52<17:25:54, 3.26it/s] 45%|████▍ | 166715/371472 [2:18:52<16:59:24, 3.35it/s] 45%|████▍ | 166716/371472 [2:18:52<18:03:34, 3.15it/s] 45%|████▍ | 166717/371472 [2:18:53<17:33:44, 3.24it/s] 45%|████▍ | 166718/371472 [2:18:53<17:01:25, 3.34it/s] 45%|████▍ | 166719/371472 [2:18:53<16:57:23, 3.35it/s] 45%|████▍ | 166720/371472 [2:18:54<16:46:29, 3.39it/s] {'loss': 2.8316, 'learning_rate': 5.96339072162727e-07, 'epoch': 7.18} + 45%|████▍ | 166720/371472 [2:18:54<16:46:29, 3.39it/s] 45%|████▍ | 166721/371472 [2:18:54<16:14:31, 3.50it/s] 45%|████▍ | 166722/371472 [2:18:54<16:38:14, 3.42it/s] 45%|████▍ | 166723/371472 [2:18:54<16:39:58, 3.41it/s] 45%|████▍ | 166724/371472 [2:18:55<16:17:52, 3.49it/s] 45%|████▍ | 166725/371472 [2:18:55<15:58:00, 3.56it/s] 45%|████▍ | 166726/371472 [2:18:55<16:23:16, 3.47it/s] 45%|████▍ | 166727/371472 [2:18:56<17:10:54, 3.31it/s] 45%|████▍ | 166728/371472 [2:18:56<16:43:57, 3.40it/s] 45%|████▍ | 166729/371472 [2:18:56<16:45:47, 3.39it/s] 45%|████▍ | 166730/371472 [2:18:57<17:00:31, 3.34it/s] 45%|████▍ | 166731/371472 [2:18:57<16:57:08, 3.35it/s] 45%|████▍ | 166732/371472 [2:18:57<17:00:01, 3.35it/s] 45%|████▍ | 166733/371472 [2:18:57<17:05:13, 3.33it/s] 45%|████▍ | 166734/371472 [2:18:58<16:59:46, 3.35it/s] 45%|████▍ | 166735/371472 [2:18:58<17:44:34, 3.21it/s] 45%|████▍ | 166736/371472 [2:18:58<17:01:48, 3.34it/s] 45%|████▍ | 166737/371472 [2:18:59<17:37:20, 3.23it/s] 45%|████▍ | 166738/371472 [2:18:59<18:27:34, 3.08it/s] 45%|████▍ | 166739/371472 [2:18:59<17:34:39, 3.24it/s] 45%|████▍ | 166740/371472 [2:19:00<17:52:01, 3.18it/s] {'loss': 2.9772, 'learning_rate': 5.962905901872481e-07, 'epoch': 7.18} + 45%|████▍ | 166740/371472 [2:19:00<17:52:01, 3.18it/s] 45%|████▍ | 166741/371472 [2:19:00<17:40:47, 3.22it/s] 45%|████▍ | 166742/371472 [2:19:00<18:24:04, 3.09it/s] 45%|████▍ | 166743/371472 [2:19:01<18:25:35, 3.09it/s] 45%|████▍ | 166744/371472 [2:19:01<18:00:57, 3.16it/s] 45%|████▍ | 166745/371472 [2:19:01<17:55:49, 3.17it/s] 45%|████▍ | 166746/371472 [2:19:02<17:42:28, 3.21it/s] 45%|████▍ | 166747/371472 [2:19:02<16:49:15, 3.38it/s] 45%|████▍ | 166748/371472 [2:19:02<16:55:20, 3.36it/s] 45%|████▍ | 166749/371472 [2:19:02<16:25:27, 3.46it/s] 45%|████▍ | 166750/371472 [2:19:03<15:54:44, 3.57it/s] 45%|████▍ | 166751/371472 [2:19:03<16:23:38, 3.47it/s] 45%|████▍ | 166752/371472 [2:19:03<16:49:06, 3.38it/s] 45%|████▍ | 166753/371472 [2:19:04<16:44:38, 3.40it/s] 45%|████▍ | 166754/371472 [2:19:04<16:41:56, 3.41it/s] 45%|████▍ | 166755/371472 [2:19:04<16:33:07, 3.44it/s] 45%|████▍ | 166756/371472 [2:19:04<16:18:30, 3.49it/s] 45%|████▍ | 166757/371472 [2:19:05<16:35:16, 3.43it/s] 45%|████▍ | 166758/371472 [2:19:05<16:26:20, 3.46it/s] 45%|████▍ | 166759/371472 [2:19:05<17:29:53, 3.25it/s] 45%|████▍ | 166760/371472 [2:19:06<16:52:40, 3.37it/s] {'loss': 3.0082, 'learning_rate': 5.962421082117693e-07, 'epoch': 7.18} + 45%|████▍ | 166760/371472 [2:19:06<16:52:40, 3.37it/s] 45%|████▍ | 166761/371472 [2:19:06<16:48:47, 3.38it/s] 45%|████▍ | 166762/371472 [2:19:06<16:44:33, 3.40it/s] 45%|████▍ | 166763/371472 [2:19:06<16:27:47, 3.45it/s] 45%|████▍ | 166764/371472 [2:19:07<16:31:15, 3.44it/s] 45%|████▍ | 166765/371472 [2:19:07<16:21:53, 3.47it/s] 45%|████▍ | 166766/371472 [2:19:07<16:33:29, 3.43it/s] 45%|████▍ | 166767/371472 [2:19:08<17:05:24, 3.33it/s] 45%|████▍ | 166768/371472 [2:19:08<16:51:05, 3.37it/s] 45%|████▍ | 166769/371472 [2:19:08<16:31:17, 3.44it/s] 45%|████▍ | 166770/371472 [2:19:08<16:33:23, 3.43it/s] 45%|████▍ | 166771/371472 [2:19:09<17:13:43, 3.30it/s] 45%|████▍ | 166772/371472 [2:19:09<17:13:19, 3.30it/s] 45%|████▍ | 166773/371472 [2:19:09<17:56:37, 3.17it/s] 45%|████▍ | 166774/371472 [2:19:10<17:42:52, 3.21it/s] 45%|████▍ | 166775/371472 [2:19:10<17:27:53, 3.26it/s] 45%|████▍ | 166776/371472 [2:19:10<17:20:21, 3.28it/s] 45%|████▍ | 166777/371472 [2:19:11<16:56:03, 3.36it/s] 45%|████▍ | 166778/371472 [2:19:11<16:41:15, 3.41it/s] 45%|████▍ | 166779/371472 [2:19:11<16:29:13, 3.45it/s] 45%|████▍ | 166780/371472 [2:19:11<16:22:53, 3.47it/s] {'loss': 2.9295, 'learning_rate': 5.961936262362904e-07, 'epoch': 7.18} + 45%|████▍ | 166780/371472 [2:19:11<16:22:53, 3.47it/s] 45%|████▍ | 166781/371472 [2:19:12<17:00:36, 3.34it/s] 45%|████▍ | 166782/371472 [2:19:12<17:35:04, 3.23it/s] 45%|████▍ | 166783/371472 [2:19:12<17:12:49, 3.30it/s] 45%|████▍ | 166784/371472 [2:19:13<17:28:37, 3.25it/s] 45%|████▍ | 166785/371472 [2:19:13<17:03:05, 3.33it/s] 45%|████▍ | 166786/371472 [2:19:13<17:12:39, 3.30it/s] 45%|████▍ | 166787/371472 [2:19:14<16:41:25, 3.41it/s] 45%|████▍ | 166788/371472 [2:19:14<16:21:53, 3.47it/s] 45%|████▍ | 166789/371472 [2:19:14<16:46:23, 3.39it/s] 45%|████▍ | 166790/371472 [2:19:15<17:00:48, 3.34it/s] 45%|████▍ | 166791/371472 [2:19:15<16:47:56, 3.38it/s] 45%|████▍ | 166792/371472 [2:19:15<16:58:42, 3.35it/s] 45%|████▍ | 166793/371472 [2:19:15<17:15:59, 3.29it/s] 45%|████▍ | 166794/371472 [2:19:16<16:56:28, 3.36it/s] 45%|████▍ | 166795/371472 [2:19:16<16:35:41, 3.43it/s] 45%|████▍ | 166796/371472 [2:19:16<16:32:44, 3.44it/s] 45%|████▍ | 166797/371472 [2:19:17<19:17:38, 2.95it/s] 45%|████▍ | 166798/371472 [2:19:17<18:27:14, 3.08it/s] 45%|████▍ | 166799/371472 [2:19:17<18:05:01, 3.14it/s] 45%|████▍ | 166800/371472 [2:19:18<18:00:14, 3.16it/s] {'loss': 2.9893, 'learning_rate': 5.961451442608115e-07, 'epoch': 7.18} + 45%|████▍ | 166800/371472 [2:19:18<18:00:14, 3.16it/s] 45%|████▍ | 166801/371472 [2:19:18<17:12:16, 3.30it/s] 45%|████▍ | 166802/371472 [2:19:18<18:10:43, 3.13it/s] 45%|████▍ | 166803/371472 [2:19:19<17:35:48, 3.23it/s] 45%|████▍ | 166804/371472 [2:19:19<17:15:45, 3.29it/s] 45%|████▍ | 166805/371472 [2:19:19<16:41:22, 3.41it/s] 45%|████▍ | 166806/371472 [2:19:19<16:49:44, 3.38it/s] 45%|████▍ | 166807/371472 [2:19:20<16:49:48, 3.38it/s] 45%|████▍ | 166808/371472 [2:19:20<16:42:03, 3.40it/s] 45%|████▍ | 166809/371472 [2:19:20<16:28:01, 3.45it/s] 45%|████▍ | 166810/371472 [2:19:21<16:05:10, 3.53it/s] 45%|████▍ | 166811/371472 [2:19:21<16:04:21, 3.54it/s] 45%|████▍ | 166812/371472 [2:19:21<17:10:15, 3.31it/s] 45%|████▍ | 166813/371472 [2:19:21<17:14:05, 3.30it/s] 45%|████▍ | 166814/371472 [2:19:22<16:45:44, 3.39it/s] 45%|████▍ | 166815/371472 [2:19:22<16:27:41, 3.45it/s] 45%|██���█▍ | 166816/371472 [2:19:22<16:38:27, 3.42it/s] 45%|████▍ | 166817/371472 [2:19:23<16:34:31, 3.43it/s] 45%|████▍ | 166818/371472 [2:19:23<16:16:58, 3.49it/s] 45%|████▍ | 166819/371472 [2:19:23<16:15:31, 3.50it/s] 45%|████▍ | 166820/371472 [2:19:23<16:27:32, 3.45it/s] {'loss': 2.9769, 'learning_rate': 5.960966622853325e-07, 'epoch': 7.19} + 45%|████▍ | 166820/371472 [2:19:23<16:27:32, 3.45it/s] 45%|████▍ | 166821/371472 [2:19:24<16:24:41, 3.46it/s] 45%|████▍ | 166822/371472 [2:19:24<16:17:05, 3.49it/s] 45%|████▍ | 166823/371472 [2:19:24<16:04:25, 3.54it/s] 45%|████▍ | 166824/371472 [2:19:25<16:05:38, 3.53it/s] 45%|████▍ | 166825/371472 [2:19:25<16:18:01, 3.49it/s] 45%|████▍ | 166826/371472 [2:19:25<17:07:23, 3.32it/s] 45%|████▍ | 166827/371472 [2:19:26<17:08:41, 3.32it/s] 45%|████▍ | 166828/371472 [2:19:26<16:33:42, 3.43it/s] 45%|████▍ | 166829/371472 [2:19:26<16:38:33, 3.42it/s] 45%|████▍ | 166830/371472 [2:19:26<16:29:51, 3.45it/s] 45%|████▍ | 166831/371472 [2:19:27<16:46:44, 3.39it/s] 45%|████▍ | 166832/371472 [2:19:27<16:56:28, 3.36it/s] 45%|████▍ | 166833/371472 [2:19:27<17:01:59, 3.34it/s] 45%|████▍ | 166834/371472 [2:19:28<17:00:55, 3.34it/s] 45%|████▍ | 166835/371472 [2:19:28<16:39:35, 3.41it/s] 45%|████▍ | 166836/371472 [2:19:28<16:17:07, 3.49it/s] 45%|████▍ | 166837/371472 [2:19:28<17:08:36, 3.32it/s] 45%|████▍ | 166838/371472 [2:19:29<16:58:02, 3.35it/s] 45%|████▍ | 166839/371472 [2:19:29<17:00:24, 3.34it/s] 45%|████▍ | 166840/371472 [2:19:29<17:03:04, 3.33it/s] {'loss': 2.9779, 'learning_rate': 5.960481803098537e-07, 'epoch': 7.19} + 45%|████▍ | 166840/371472 [2:19:29<17:03:04, 3.33it/s] 45%|████▍ | 166841/371472 [2:19:30<16:37:09, 3.42it/s] 45%|████▍ | 166842/371472 [2:19:30<17:19:54, 3.28it/s] 45%|████▍ | 166843/371472 [2:19:30<18:16:10, 3.11it/s] 45%|████▍ | 166844/371472 [2:19:31<17:43:26, 3.21it/s] 45%|████▍ | 166845/371472 [2:19:31<17:08:42, 3.32it/s] 45%|████▍ | 166846/371472 [2:19:31<16:40:23, 3.41it/s] 45%|████▍ | 166847/371472 [2:19:31<16:47:17, 3.39it/s] 45%|████▍ | 166848/371472 [2:19:32<18:10:22, 3.13it/s] 45%|████▍ | 166849/371472 [2:19:32<17:58:04, 3.16it/s] 45%|████▍ | 166850/371472 [2:19:32<17:08:46, 3.31it/s] 45%|████▍ | 166851/371472 [2:19:33<16:59:29, 3.35it/s] 45%|████▍ | 166852/371472 [2:19:33<16:57:17, 3.35it/s] 45%|████▍ | 166853/371472 [2:19:33<18:28:12, 3.08it/s] 45%|████▍ | 166854/371472 [2:19:34<18:19:31, 3.10it/s] 45%|████▍ | 166855/371472 [2:19:34<17:54:36, 3.17it/s] 45%|████▍ | 166856/371472 [2:19:34<17:13:23, 3.30it/s] 45%|████▍ | 166857/371472 [2:19:35<18:43:19, 3.04it/s] 45%|████▍ | 166858/371472 [2:19:35<18:35:37, 3.06it/s] 45%|████▍ | 166859/371472 [2:19:35<18:25:50, 3.08it/s] 45%|████▍ | 166860/371472 [2:19:36<17:49:56, 3.19it/s] {'loss': 3.0604, 'learning_rate': 5.959996983343748e-07, 'epoch': 7.19} + 45%|████▍ | 166860/371472 [2:19:36<17:49:56, 3.19it/s] 45%|████▍ | 166861/371472 [2:19:36<18:36:46, 3.05it/s] 45%|████▍ | 166862/371472 [2:19:36<19:02:00, 2.99it/s] 45%|████▍ | 166863/371472 [2:19:37<18:19:15, 3.10it/s] 45%|████▍ | 166864/371472 [2:19:37<19:02:31, 2.98it/s] 45%|████▍ | 166865/371472 [2:19:37<19:08:47, 2.97it/s] 45%|████▍ | 166866/371472 [2:19:38<18:37:12, 3.05it/s] 45%|████▍ | 166867/371472 [2:19:38<18:55:50, 3.00it/s] 45%|████▍ | 166868/371472 [2:19:38<18:58:15, 3.00it/s] 45%|████▍ | 166869/371472 [2:19:39<19:01:04, 2.99it/s] 45%|████▍ | 166870/371472 [2:19:39<18:15:30, 3.11it/s] 45%|████▍ | 166871/371472 [2:19:39<17:38:20, 3.22it/s] 45%|████▍ | 166872/371472 [2:19:40<17:08:48, 3.31it/s] 45%|████▍ | 166873/371472 [2:19:40<16:48:02, 3.38it/s] 45%|████▍ | 166874/371472 [2:19:40<17:09:40, 3.31it/s] 45%|████▍ | 166875/371472 [2:19:40<16:33:50, 3.43it/s] 45%|████▍ | 166876/371472 [2:19:41<17:04:51, 3.33it/s] 45%|████▍ | 166877/371472 [2:19:41<16:44:26, 3.39it/s] 45%|████▍ | 166878/371472 [2:19:41<16:39:00, 3.41it/s] 45%|████▍ | 166879/371472 [2:19:42<18:15:22, 3.11it/s] 45%|████▍ | 166880/371472 [2:19:42<17:18:54, 3.28it/s] {'loss': 2.8288, 'learning_rate': 5.959512163588959e-07, 'epoch': 7.19} + 45%|████▍ | 166880/371472 [2:19:42<17:18:54, 3.28it/s] 45%|████▍ | 166881/371472 [2:19:42<17:50:31, 3.19it/s] 45%|████▍ | 166882/371472 [2:19:43<17:21:06, 3.28it/s] 45%|████▍ | 166883/371472 [2:19:43<17:06:36, 3.32it/s] 45%|████▍ | 166884/371472 [2:19:43<17:10:52, 3.31it/s] 45%|████▍ | 166885/371472 [2:19:43<17:08:21, 3.32it/s] 45%|████▍ | 166886/371472 [2:19:44<17:11:17, 3.31it/s] 45%|████▍ | 166887/371472 [2:19:44<16:59:35, 3.34it/s] 45%|████▍ | 166888/371472 [2:19:44<17:07:17, 3.32it/s] 45%|████▍ | 166889/371472 [2:19:45<17:58:02, 3.16it/s] 45%|████▍ | 166890/371472 [2:19:45<17:44:33, 3.20it/s] 45%|████▍ | 166891/371472 [2:19:45<17:12:40, 3.30it/s] 45%|████▍ | 166892/371472 [2:19:46<16:56:24, 3.35it/s] 45%|████▍ | 166893/371472 [2:19:46<16:25:17, 3.46it/s] 45%|████▍ | 166894/371472 [2:19:46<15:53:38, 3.58it/s] 45%|████▍ | 166895/371472 [2:19:46<15:57:13, 3.56it/s] 45%|████▍ | 166896/371472 [2:19:47<16:53:57, 3.36it/s] 45%|████▍ | 166897/371472 [2:19:47<16:53:39, 3.36it/s] 45%|████▍ | 166898/371472 [2:19:47<16:44:03, 3.40it/s] 45%|████▍ | 166899/371472 [2:19:48<17:24:33, 3.26it/s] 45%|████▍ | 166900/371472 [2:19:48<17:04:41, 3.33it/s] {'loss': 2.9687, 'learning_rate': 5.95902734383417e-07, 'epoch': 7.19} + 45%|████▍ | 166900/371472 [2:19:48<17:04:41, 3.33it/s] 45%|████▍ | 166901/371472 [2:19:48<16:35:27, 3.43it/s] 45%|████▍ | 166902/371472 [2:19:48<16:25:51, 3.46it/s] 45%|████▍ | 166903/371472 [2:19:49<17:32:30, 3.24it/s] 45%|████▍ | 166904/371472 [2:19:49<17:10:20, 3.31it/s] 45%|████▍ | 166905/371472 [2:19:49<17:38:45, 3.22it/s] 45%|████▍ | 166906/371472 [2:19:50<17:34:18, 3.23it/s] 45%|████▍ | 166907/371472 [2:19:50<17:25:27, 3.26it/s] 45%|████▍ | 166908/371472 [2:19:50<17:15:10, 3.29it/s] 45%|████▍ | 166909/371472 [2:19:51<16:43:25, 3.40it/s] 45%|████▍ | 166910/371472 [2:19:51<17:02:26, 3.33it/s] 45%|████▍ | 166911/371472 [2:19:51<17:14:21, 3.30it/s] 45%|████▍ | 166912/371472 [2:19:52<17:03:54, 3.33it/s] 45%|████▍ | 166913/371472 [2:19:52<17:01:30, 3.34it/s] 45%|████▍ | 166914/371472 [2:19:52<16:35:38, 3.42it/s] 45%|████▍ | 166915/371472 [2:19:52<16:48:25, 3.38it/s] 45%|████▍ | 166916/371472 [2:19:53<17:02:42, 3.33it/s] 45%|████▍ | 166917/371472 [2:19:53<16:50:08, 3.38it/s] 45%|████▍ | 166918/371472 [2:19:53<17:10:27, 3.31it/s] 45%|████▍ | 166919/371472 [2:19:54<18:43:26, 3.03it/s] 45%|████▍ | 166920/371472 [2:19:54<19:25:05, 2.93it/s] {'loss': 3.0262, 'learning_rate': 5.958542524079382e-07, 'epoch': 7.19} + 45%|████▍ | 166920/371472 [2:19:54<19:25:05, 2.93it/s] 45%|████▍ | 166921/371472 [2:19:54<19:43:30, 2.88it/s] 45%|████▍ | 166922/371472 [2:19:55<19:41:54, 2.88it/s] 45%|████▍ | 166923/371472 [2:19:55<19:04:30, 2.98it/s] 45%|████▍ | 166924/371472 [2:19:55<19:10:48, 2.96it/s] 45%|████▍ | 166925/371472 [2:19:56<19:32:39, 2.91it/s] 45%|████▍ | 166926/371472 [2:19:56<19:08:36, 2.97it/s] 45%|████▍ | 166927/371472 [2:19:56<18:36:54, 3.05it/s] 45%|████▍ | 166928/371472 [2:19:57<17:46:28, 3.20it/s] 45%|████▍ | 166929/371472 [2:19:57<17:47:58, 3.19it/s] 45%|████▍ | 166930/371472 [2:19:57<17:56:10, 3.17it/s] 45%|████▍ | 166931/371472 [2:19:58<17:54:49, 3.17it/s] 45%|████▍ | 166932/371472 [2:19:58<17:55:21, 3.17it/s] 45%|████▍ | 166933/371472 [2:19:58<17:38:33, 3.22it/s] 45%|████▍ | 166934/371472 [2:19:59<17:23:59, 3.27it/s] 45%|████▍ | 166935/371472 [2:19:59<17:13:50, 3.30it/s] 45%|████▍ | 166936/371472 [2:19:59<16:54:01, 3.36it/s] 45%|████▍ | 166937/371472 [2:19:59<16:41:38, 3.40it/s] 45%|████▍ | 166938/371472 [2:20:00<16:57:08, 3.35it/s] 45%|████▍ | 166939/371472 [2:20:00<18:36:36, 3.05it/s] 45%|████▍ | 166940/371472 [2:20:00<17:48:10, 3.19it/s] {'loss': 2.9214, 'learning_rate': 5.958057704324591e-07, 'epoch': 7.19} + 45%|��███▍ | 166940/371472 [2:20:00<17:48:10, 3.19it/s] 45%|████▍ | 166941/371472 [2:20:01<17:59:47, 3.16it/s] 45%|████▍ | 166942/371472 [2:20:01<18:47:16, 3.02it/s] 45%|████▍ | 166943/371472 [2:20:01<18:24:38, 3.09it/s] 45%|████▍ | 166944/371472 [2:20:02<17:29:17, 3.25it/s] 45%|████▍ | 166945/371472 [2:20:02<17:03:21, 3.33it/s] 45%|████▍ | 166946/371472 [2:20:02<17:26:22, 3.26it/s] 45%|████▍ | 166947/371472 [2:20:03<16:46:50, 3.39it/s] 45%|████▍ | 166948/371472 [2:20:03<17:33:12, 3.24it/s] 45%|████▍ | 166949/371472 [2:20:03<17:27:41, 3.25it/s] 45%|████▍ | 166950/371472 [2:20:03<17:06:35, 3.32it/s] 45%|████▍ | 166951/371472 [2:20:04<17:36:33, 3.23it/s] 45%|████▍ | 166952/371472 [2:20:04<17:15:53, 3.29it/s] 45%|████▍ | 166953/371472 [2:20:04<17:04:53, 3.33it/s] 45%|████▍ | 166954/371472 [2:20:05<17:04:18, 3.33it/s] 45%|████▍ | 166955/371472 [2:20:05<16:57:08, 3.35it/s] 45%|████▍ | 166956/371472 [2:20:05<16:57:34, 3.35it/s] 45%|████▍ | 166957/371472 [2:20:06<18:46:38, 3.03it/s] 45%|████▍ | 166958/371472 [2:20:06<18:06:11, 3.14it/s] 45%|████▍ | 166959/371472 [2:20:06<17:47:06, 3.19it/s] 45%|████▍ | 166960/371472 [2:20:07<18:04:05, 3.14it/s] {'loss': 2.9494, 'learning_rate': 5.957572884569802e-07, 'epoch': 7.19} + 45%|████▍ | 166960/371472 [2:20:07<18:04:05, 3.14it/s] 45%|████▍ | 166961/371472 [2:20:07<17:26:13, 3.26it/s] 45%|████▍ | 166962/371472 [2:20:07<16:52:37, 3.37it/s] 45%|████▍ | 166963/371472 [2:20:07<16:53:54, 3.36it/s] 45%|████▍ | 166964/371472 [2:20:08<16:55:49, 3.36it/s] 45%|████▍ | 166965/371472 [2:20:08<16:50:03, 3.37it/s] 45%|████▍ | 166966/371472 [2:20:08<17:54:16, 3.17it/s] 45%|████▍ | 166967/371472 [2:20:09<17:26:23, 3.26it/s] 45%|████▍ | 166968/371472 [2:20:09<17:07:15, 3.32it/s] 45%|████▍ | 166969/371472 [2:20:09<16:45:17, 3.39it/s] 45%|████▍ | 166970/371472 [2:20:10<16:27:24, 3.45it/s] 45%|████▍ | 166971/371472 [2:20:10<16:04:19, 3.53it/s] 45%|████▍ | 166972/371472 [2:20:10<15:52:50, 3.58it/s] 45%|████▍ | 166973/371472 [2:20:10<16:09:06, 3.52it/s] 45%|████▍ | 166974/371472 [2:20:11<16:49:21, 3.38it/s] 45%|████▍ | 166975/371472 [2:20:11<17:45:22, 3.20it/s] 45%|████▍ | 166976/371472 [2:20:11<17:00:38, 3.34it/s] 45%|████▍ | 166977/371472 [2:20:12<17:17:32, 3.28it/s] 45%|████▍ | 166978/371472 [2:20:12<17:34:05, 3.23it/s] 45%|████▍ | 166979/371472 [2:20:12<18:24:13, 3.09it/s] 45%|████▍ | 166980/371472 [2:20:13<17:40:53, 3.21it/s] {'loss': 2.7909, 'learning_rate': 5.957088064815014e-07, 'epoch': 7.19} + 45%|████▍ | 166980/371472 [2:20:13<17:40:53, 3.21it/s] 45%|████▍ | 166981/371472 [2:20:13<17:23:27, 3.27it/s] 45%|████▍ | 166982/371472 [2:20:13<17:14:52, 3.29it/s] 45%|████▍ | 166983/371472 [2:20:13<16:59:58, 3.34it/s] 45%|████▍ | 166984/371472 [2:20:14<17:37:42, 3.22it/s] 45%|████▍ | 166985/371472 [2:20:14<17:54:45, 3.17it/s] 45%|████▍ | 166986/371472 [2:20:14<17:28:13, 3.25it/s] 45%|████▍ | 166987/371472 [2:20:15<16:41:35, 3.40it/s] 45%|████▍ | 166988/371472 [2:20:15<17:18:26, 3.28it/s] 45%|████▍ | 166989/371472 [2:20:15<17:13:24, 3.30it/s] 45%|████▍ | 166990/371472 [2:20:16<16:40:09, 3.41it/s] 45%|████▍ | 166991/371472 [2:20:16<16:24:32, 3.46it/s] 45%|████▍ | 166992/371472 [2:20:16<16:28:06, 3.45it/s] 45%|████▍ | 166993/371472 [2:20:17<18:21:05, 3.10it/s] 45%|████▍ | 166994/371472 [2:20:17<17:23:08, 3.27it/s] 45%|████▍ | 166995/371472 [2:20:17<17:16:11, 3.29it/s] 45%|████▍ | 166996/371472 [2:20:17<16:43:32, 3.40it/s] 45%|████▍ | 166997/371472 [2:20:18<16:13:56, 3.50it/s] 45%|████▍ | 166998/371472 [2:20:18<16:33:33, 3.43it/s] 45%|████▍ | 166999/371472 [2:20:18<16:21:17, 3.47it/s] 45%|████▍ | 167000/371472 [2:20:19<16:44:51, 3.39it/s] {'loss': 2.9268, 'learning_rate': 5.956603245060225e-07, 'epoch': 7.19} + 45%|████▍ | 167000/371472 [2:20:19<16:44:51, 3.39it/s] 45%|████▍ | 167001/371472 [2:20:19<16:42:30, 3.40it/s] 45%|████▍ | 167002/371472 [2:20:19<16:44:37, 3.39it/s] 45%|████▍ | 167003/371472 [2:20:19<17:19:05, 3.28it/s] 45%|████▍ | 167004/371472 [2:20:20<17:11:32, 3.30it/s] 45%|████▍ | 167005/371472 [2:20:20<17:11:19, 3.30it/s] 45%|████▍ | 167006/371472 [2:20:20<17:36:57, 3.22it/s] 45%|████▍ | 167007/371472 [2:20:21<17:37:37, 3.22it/s] 45%|████▍ | 167008/371472 [2:20:21<18:11:44, 3.12it/s] 45%|████▍ | 167009/371472 [2:20:21<17:32:20, 3.24it/s] 45%|████▍ | 167010/371472 [2:20:22<17:24:58, 3.26it/s] 45%|████▍ | 167011/371472 [2:20:22<19:47:00, 2.87it/s] 45%|████▍ | 167012/371472 [2:20:22<18:42:37, 3.04it/s] 45%|████▍ | 167013/371472 [2:20:23<17:51:51, 3.18it/s] 45%|████▍ | 167014/371472 [2:20:23<17:08:30, 3.31it/s] 45%|████▍ | 167015/371472 [2:20:23<18:15:40, 3.11it/s] 45%|████▍ | 167016/371472 [2:20:24<17:27:26, 3.25it/s] 45%|████▍ | 167017/371472 [2:20:24<18:04:50, 3.14it/s] 45%|████▍ | 167018/371472 [2:20:24<18:43:26, 3.03it/s] 45%|████▍ | 167019/371472 [2:20:25<18:29:31, 3.07it/s] 45%|████▍ | 167020/371472 [2:20:25<18:44:09, 3.03it/s] {'loss': 2.8481, 'learning_rate': 5.956118425305436e-07, 'epoch': 7.19} + 45%|████▍ | 167020/371472 [2:20:25<18:44:09, 3.03it/s] 45%|████▍ | 167021/371472 [2:20:25<18:06:30, 3.14it/s] 45%|████▍ | 167022/371472 [2:20:26<18:59:04, 2.99it/s] 45%|████▍ | 167023/371472 [2:20:26<18:43:02, 3.03it/s] 45%|████▍ | 167024/371472 [2:20:26<18:21:42, 3.09it/s] 45%|████▍ | 167025/371472 [2:20:27<18:09:04, 3.13it/s] 45%|████▍ | 167026/371472 [2:20:27<18:34:21, 3.06it/s] 45%|████▍ | 167027/371472 [2:20:27<17:49:33, 3.19it/s] 45%|████▍ | 167028/371472 [2:20:27<18:00:45, 3.15it/s] 45%|████▍ | 167029/371472 [2:20:28<17:54:24, 3.17it/s] 45%|████▍ | 167030/371472 [2:20:28<18:04:29, 3.14it/s] 45%|████▍ | 167031/371472 [2:20:28<17:38:49, 3.22it/s] 45%|████▍ | 167032/371472 [2:20:29<17:01:52, 3.33it/s] 45%|████▍ | 167033/371472 [2:20:29<16:56:01, 3.35it/s] 45%|████▍ | 167034/371472 [2:20:29<16:50:55, 3.37it/s] 45%|████▍ | 167035/371472 [2:20:30<17:33:07, 3.24it/s] 45%|████▍ | 167036/371472 [2:20:30<17:18:10, 3.28it/s] 45%|████▍ | 167037/371472 [2:20:30<18:51:42, 3.01it/s] 45%|████▍ | 167038/371472 [2:20:31<17:52:46, 3.18it/s] 45%|████▍ | 167039/371472 [2:20:31<18:09:26, 3.13it/s] 45%|████▍ | 167040/371472 [2:20:31<17:31:57, 3.24it/s] {'loss': 3.02, 'learning_rate': 5.955633605550647e-07, 'epoch': 7.19} + 45%|████▍ | 167040/371472 [2:20:31<17:31:57, 3.24it/s] 45%|████▍ | 167041/371472 [2:20:31<17:05:40, 3.32it/s] 45%|████▍ | 167042/371472 [2:20:32<17:02:41, 3.33it/s] 45%|████▍ | 167043/371472 [2:20:32<17:02:11, 3.33it/s] 45%|████▍ | 167044/371472 [2:20:32<16:38:56, 3.41it/s] 45%|████▍ | 167045/371472 [2:20:33<17:25:03, 3.26it/s] 45%|████▍ | 167046/371472 [2:20:33<17:00:40, 3.34it/s] 45%|████▍ | 167047/371472 [2:20:33<16:47:24, 3.38it/s] 45%|████▍ | 167048/371472 [2:20:34<16:30:04, 3.44it/s] 45%|████▍ | 167049/371472 [2:20:34<17:24:10, 3.26it/s] 45%|████▍ | 167050/371472 [2:20:34<17:23:15, 3.27it/s] 45%|████▍ | 167051/371472 [2:20:35<18:27:40, 3.08it/s] 45%|████▍ | 167052/371472 [2:20:35<18:16:59, 3.11it/s] 45%|████▍ | 167053/371472 [2:20:35<18:51:03, 3.01it/s] 45%|████▍ | 167054/371472 [2:20:36<18:34:14, 3.06it/s] 45%|████▍ | 167055/371472 [2:20:36<18:17:52, 3.10it/s] 45%|████▍ | 167056/371472 [2:20:36<19:14:13, 2.95it/s] 45%|████▍ | 167057/371472 [2:20:37<18:35:38, 3.05it/s] 45%|████▍ | 167058/371472 [2:20:37<21:08:33, 2.69it/s] 45%|████▍ | 167059/371472 [2:20:37<21:11:37, 2.68it/s] 45%|████▍ | 167060/371472 [2:20:38<19:26:53, 2.92it/s] {'loss': 2.9193, 'learning_rate': 5.955148785795858e-07, 'epoch': 7.2} + 45%|████▍ | 167060/371472 [2:20:38<19:26:53, 2.92it/s] 45%|████▍ | 167061/371472 [2:20:38<18:50:26, 3.01it/s] 45%|████▍ | 167062/371472 [2:20:38<17:56:27, 3.16it/s] 45%|████▍ | 167063/371472 [2:20:39<17:28:27, 3.25it/s] 45%|████▍ | 167064/371472 [2:20:39<17:01:57, 3.33it/s] 45%|████▍ | 167065/371472 [2:20:39<17:10:17, 3.31it/s] 45%|████▍ | 167066/371472 [2:20:39<17:43:31, 3.20it/s] 45%|████▍ | 167067/371472 [2:20:40<17:46:04, 3.20it/s] 45%|████▍ | 167068/371472 [2:20:40<17:21:11, 3.27it/s] 45%|████▍ | 167069/371472 [2:20:40<17:53:21, 3.17it/s] 45%|████▍ | 167070/371472 [2:20:41<17:49:29, 3.19it/s] 45%|████▍ | 167071/371472 [2:20:41<17:40:34, 3.21it/s] 45%|████▍ | 167072/371472 [2:20:41<17:13:43, 3.30it/s] 45%|████▍ | 167073/371472 [2:20:42<17:09:28, 3.31it/s] 45%|████▍ | 167074/371472 [2:20:42<18:37:02, 3.05it/s] 45%|████▍ | 167075/371472 [2:20:42<19:06:47, 2.97it/s] 45%|████▍ | 167076/371472 [2:20:43<18:24:16, 3.08it/s] 45%|████▍ | 167077/371472 [2:20:43<17:49:57, 3.18it/s] 45%|████▍ | 167078/371472 [2:20:43<17:25:45, 3.26it/s] 45%|████▍ | 167079/371472 [2:20:44<17:20:03, 3.28it/s] 45%|████▍ | 167080/371472 [2:20:44<17:28:18, 3.25it/s] {'loss': 2.93, 'learning_rate': 5.954663966041069e-07, 'epoch': 7.2} + 45%|████▍ | 167080/371472 [2:20:44<17:28:18, 3.25it/s] 45%|████▍ | 167081/371472 [2:20:44<18:05:49, 3.14it/s] 45%|████▍ | 167082/371472 [2:20:45<18:14:22, 3.11it/s] 45%|████▍ | 167083/371472 [2:20:45<18:36:54, 3.05it/s] 45%|████▍ | 167084/371472 [2:20:45<17:51:29, 3.18it/s] 45%|████▍ | 167085/371472 [2:20:45<17:32:15, 3.24it/s] 45%|████▍ | 167086/371472 [2:20:46<17:17:21, 3.28it/s] 45%|████▍ | 167087/371472 [2:20:46<16:48:24, 3.38it/s] 45%|████▍ | 167088/371472 [2:20:46<17:03:59, 3.33it/s] 45%|████▍ | 167089/371472 [2:20:47<17:03:33, 3.33it/s] 45%|████▍ | 167090/371472 [2:20:47<16:56:45, 3.35it/s] 45%|████▍ | 167091/371472 [2:20:47<17:08:46, 3.31it/s] 45%|████▍ | 167092/371472 [2:20:48<17:38:25, 3.22it/s] 45%|████▍ | 167093/371472 [2:20:48<17:15:23, 3.29it/s] 45%|████▍ | 167094/371472 [2:20:48<17:07:53, 3.31it/s] 45%|████▍ | 167095/371472 [2:20:48<17:54:14, 3.17it/s] 45%|████▍ | 167096/371472 [2:20:49<18:11:07, 3.12it/s] 45%|████▍ | 167097/371472 [2:20:49<17:53:27, 3.17it/s] 45%|████▍ | 167098/371472 [2:20:49<17:41:44, 3.21it/s] 45%|████▍ | 167099/371472 [2:20:50<17:27:35, 3.25it/s] 45%|████▍ | 167100/371472 [2:20:50<17:05:34, 3.32it/s] {'loss': 2.9868, 'learning_rate': 5.95417914628628e-07, 'epoch': 7.2} + 45%|████▍ | 167100/371472 [2:20:50<17:05:34, 3.32it/s] 45%|████▍ | 167101/371472 [2:20:50<17:01:47, 3.33it/s] 45%|████▍ | 167102/371472 [2:20:51<17:33:51, 3.23it/s] 45%|████▍ | 167103/371472 [2:20:51<17:02:01, 3.33it/s] 45%|████▍ | 167104/371472 [2:20:51<17:48:28, 3.19it/s] 45%|████▍ | 167105/371472 [2:20:52<18:43:30, 3.03it/s] 45%|████▍ | 167106/371472 [2:20:52<18:55:12, 3.00it/s] 45%|████▍ | 167107/371472 [2:20:52<17:58:46, 3.16it/s] 45%|████▍ | 167108/371472 [2:20:53<17:33:58, 3.23it/s] 45%|████▍ | 167109/371472 [2:20:53<17:17:59, 3.28it/s] 45%|████▍ | 167110/371472 [2:20:53<17:41:08, 3.21it/s] 45%|████▍ | 167111/371472 [2:20:53<17:15:49, 3.29it/s] 45%|████▍ | 167112/371472 [2:20:54<17:13:02, 3.30it/s] 45%|████▍ | 167113/371472 [2:20:54<17:53:29, 3.17it/s] 45%|████▍ | 167114/371472 [2:20:54<17:44:26, 3.20it/s] 45%|████▍ | 167115/371472 [2:20:55<17:35:03, 3.23it/s] 45%|████▍ | 167116/371472 [2:20:55<18:18:01, 3.10it/s] 45%|████▍ | 167117/371472 [2:20:55<17:54:05, 3.17it/s] 45%|████▍ | 167118/371472 [2:20:56<17:33:09, 3.23it/s] 45%|████▍ | 167119/371472 [2:20:56<17:00:23, 3.34it/s] 45%|████▍ | 167120/371472 [2:20:56<16:35:45, 3.42it/s] {'loss': 2.8993, 'learning_rate': 5.953694326531491e-07, 'epoch': 7.2} + 45%|████▍ | 167120/371472 [2:20:56<16:35:45, 3.42it/s] 45%|████▍ | 167121/371472 [2:20:57<16:51:59, 3.37it/s] 45%|████▍ | 167122/371472 [2:20:57<16:49:17, 3.37it/s] 45%|████▍ | 167123/371472 [2:20:57<16:41:29, 3.40it/s] 45%|████▍ | 167124/371472 [2:20:57<16:35:27, 3.42it/s] 45%|████▍ | 167125/371472 [2:20:58<18:53:44, 3.00it/s] 45%|████▍ | 167126/371472 [2:20:58<18:20:26, 3.09it/s] 45%|████▍ | 167127/371472 [2:20:58<17:38:20, 3.22it/s] 45%|████▍ | 167128/371472 [2:20:59<17:12:00, 3.30it/s] 45%|████▍ | 167129/371472 [2:20:59<17:51:21, 3.18it/s] 45%|████▍ | 167130/371472 [2:20:59<17:15:52, 3.29it/s] 45%|████▍ | 167131/371472 [2:21:00<16:40:25, 3.40it/s] 45%|████▍ | 167132/371472 [2:21:00<16:56:41, 3.35it/s] 45%|████▍ | 167133/371472 [2:21:00<19:38:12, 2.89it/s] 45%|████▍ | 167134/371472 [2:21:01<18:53:52, 3.00it/s] 45%|████▍ | 167135/371472 [2:21:01<18:23:54, 3.09it/s] 45%|████▍ | 167136/371472 [2:21:01<17:54:09, 3.17it/s] 45%|████▍ | 167137/371472 [2:21:02<17:51:22, 3.18it/s] 45%|████▍ | 167138/371472 [2:21:02<17:42:06, 3.21it/s] 45%|████▍ | 167139/371472 [2:21:02<17:58:07, 3.16it/s] 45%|████▍ | 167140/371472 [2:21:02<17:57:16, 3.16it/s] {'loss': 2.9262, 'learning_rate': 5.953209506776703e-07, 'epoch': 7.2} + 45%|████▍ | 167140/371472 [2:21:02<17:57:16, 3.16it/s] 45%|████▍ | 167141/371472 [2:21:03<17:29:39, 3.24it/s] 45%|████▍ | 167142/371472 [2:21:03<18:07:14, 3.13it/s] 45%|████▍ | 167143/371472 [2:21:03<17:40:02, 3.21it/s] 45%|████▍ | 167144/371472 [2:21:04<17:28:01, 3.25it/s] 45%|████▍ | 167145/371472 [2:21:04<17:07:48, 3.31it/s] 45%|████▍ | 167146/371472 [2:21:04<16:53:21, 3.36it/s] 45%|████▍ | 167147/371472 [2:21:05<16:51:10, 3.37it/s] 45%|████▍ | 167148/371472 [2:21:05<17:11:15, 3.30it/s] 45%|████▍ | 167149/371472 [2:21:05<16:46:14, 3.38it/s] 45%|████▍ | 167150/371472 [2:21:05<16:54:13, 3.36it/s] 45%|████▍ | 167151/371472 [2:21:06<16:39:28, 3.41it/s] 45%|████▍ | 167152/371472 [2:21:06<16:53:28, 3.36it/s] 45%|████▍ | 167153/371472 [2:21:06<16:54:55, 3.36it/s] 45%|████▍ | 167154/371472 [2:21:07<16:25:19, 3.46it/s] 45%|████▍ | 167155/371472 [2:21:07<16:27:06, 3.45it/s] 45%|████▍ | 167156/371472 [2:21:07<16:33:48, 3.43it/s] 45%|████▍ | 167157/371472 [2:21:08<19:12:48, 2.95it/s] 45%|████▍ | 167158/371472 [2:21:08<18:34:05, 3.06it/s] 45%|████▍ | 167159/371472 [2:21:08<18:23:02, 3.09it/s] 45%|████▍ | 167160/371472 [2:21:09<17:43:43, 3.20it/s] {'loss': 3.0902, 'learning_rate': 5.952724687021914e-07, 'epoch': 7.2} + 45%|████▍ | 167160/371472 [2:21:09<17:43:43, 3.20it/s] 45%|████▍ | 167161/371472 [2:21:09<17:34:22, 3.23it/s] 45%|████▍ | 167162/371472 [2:21:09<17:16:34, 3.29it/s] 45%|████▌ | 167163/371472 [2:21:09<17:14:36, 3.29it/s] 45%|████▌ | 167164/371472 [2:21:10<18:08:18, 3.13it/s] 45%|████▌ | 167165/371472 [2:21:10<17:34:53, 3.23it/s] 45%|████▌ | 167166/371472 [2:21:10<17:06:47, 3.32it/s] 45%|████▌ | 167167/371472 [2:21:11<16:31:19, 3.43it/s] 45%|████▌ | 167168/371472 [2:21:11<16:32:48, 3.43it/s] 45%|████▌ | 167169/371472 [2:21:11<16:44:52, 3.39it/s] 45%|████▌ | 167170/371472 [2:21:12<16:41:00, 3.40it/s] 45%|████▌ | 167171/371472 [2:21:12<16:31:04, 3.44it/s] 45%|████▌ | 167172/371472 [2:21:12<16:37:26, 3.41it/s] 45%|████▌ | 167173/371472 [2:21:12<16:06:19, 3.52it/s] 45%|████▌ | 167174/371472 [2:21:13<16:05:20, 3.53it/s] 45%|████▌ | 167175/371472 [2:21:13<15:40:41, 3.62it/s] 45%|████▌ | 167176/371472 [2:21:13<16:38:45, 3.41it/s] 45%|████▌ | 167177/371472 [2:21:14<16:34:16, 3.42it/s] 45%|████▌ | 167178/371472 [2:21:14<16:37:49, 3.41it/s] 45%|████▌ | 167179/371472 [2:21:14<16:24:51, 3.46it/s] 45%|████▌ | 167180/371472 [2:21:14<16:18:02, 3.48it/s] {'loss': 3.0595, 'learning_rate': 5.952239867267125e-07, 'epoch': 7.2} + 45%|████▌ | 167180/371472 [2:21:14<16:18:02, 3.48it/s] 45%|████▌ | 167181/371472 [2:21:15<17:26:47, 3.25it/s] 45%|████▌ | 167182/371472 [2:21:15<16:55:34, 3.35it/s] 45%|████▌ | 167183/371472 [2:21:15<17:18:49, 3.28it/s] 45%|████▌ | 167184/371472 [2:21:16<17:36:21, 3.22it/s] 45%|████▌ | 167185/371472 [2:21:16<17:13:59, 3.29it/s] 45%|████▌ | 167186/371472 [2:21:16<17:38:02, 3.22it/s] 45%|████▌ | 167187/371472 [2:21:17<17:20:18, 3.27it/s] 45%|████▌ | 167188/371472 [2:21:17<17:02:34, 3.33it/s] 45%|████▌ | 167189/371472 [2:21:17<16:54:57, 3.35it/s] 45%|████▌ | 167190/371472 [2:21:18<17:43:05, 3.20it/s] 45%|████▌ | 167191/371472 [2:21:18<17:15:22, 3.29it/s] 45%|████▌ | 167192/371472 [2:21:18<17:00:48, 3.34it/s] 45%|████▌ | 167193/371472 [2:21:18<17:14:13, 3.29it/s] 45%|████▌ | 167194/371472 [2:21:19<17:02:56, 3.33it/s] 45%|████▌ | 167195/371472 [2:21:19<17:05:12, 3.32it/s] 45%|████▌ | 167196/371472 [2:21:19<16:57:14, 3.35it/s] 45%|████▌ | 167197/371472 [2:21:20<17:05:39, 3.32it/s] 45%|████▌ | 167198/371472 [2:21:20<17:25:09, 3.26it/s] 45%|████▌ | 167199/371472 [2:21:20<16:59:31, 3.34it/s] 45%|████▌ | 167200/371472 [2:21:21<17:00:41, 3.34it/s] {'loss': 2.8887, 'learning_rate': 5.951755047512335e-07, 'epoch': 7.2} + 45%|████▌ | 167200/371472 [2:21:21<17:00:41, 3.34it/s] 45%|████▌ | 167201/371472 [2:21:21<17:13:16, 3.29it/s] 45%|████▌ | 167202/371472 [2:21:21<18:01:43, 3.15it/s] 45%|████▌ | 167203/371472 [2:21:21<17:31:02, 3.24it/s] 45%|████▌ | 167204/371472 [2:21:22<18:16:33, 3.10it/s] 45%|████▌ | 167205/371472 [2:21:22<18:42:04, 3.03it/s] 45%|████▌ | 167206/371472 [2:21:23<18:38:31, 3.04it/s] 45%|████▌ | 167207/371472 [2:21:23<17:54:21, 3.17it/s] 45%|████▌ | 167208/371472 [2:21:23<17:28:26, 3.25it/s] 45%|████▌ | 167209/371472 [2:21:23<17:25:50, 3.26it/s] 45%|████▌ | 167210/371472 [2:21:24<17:31:55, 3.24it/s] 45%|████▌ | 167211/371472 [2:21:24<17:34:44, 3.23it/s] 45%|████▌ | 167212/371472 [2:21:24<17:24:26, 3.26it/s] 45%|████▌ | 167213/371472 [2:21:25<17:14:06, 3.29it/s] 45%|████▌ | 167214/371472 [2:21:25<16:52:15, 3.36it/s] 45%|████▌ | 167215/371472 [2:21:25<17:19:59, 3.27it/s] 45%|████▌ | 167216/371472 [2:21:26<17:23:16, 3.26it/s] 45%|████▌ | 167217/371472 [2:21:26<17:06:48, 3.32it/s] 45%|████▌ | 167218/371472 [2:21:26<16:53:10, 3.36it/s] 45%|████▌ | 167219/371472 [2:21:26<17:54:21, 3.17it/s] 45%|████▌ | 167220/371472 [2:21:27<17:45:46, 3.19it/s] {'loss': 2.8772, 'learning_rate': 5.951270227757547e-07, 'epoch': 7.2} + 45%|████▌ | 167220/371472 [2:21:27<17:45:46, 3.19it/s] 45%|████▌ | 167221/371472 [2:21:27<17:12:14, 3.30it/s] 45%|████▌ | 167222/371472 [2:21:27<16:52:26, 3.36it/s] 45%|████▌ | 167223/371472 [2:21:28<17:14:33, 3.29it/s] 45%|████▌ | 167224/371472 [2:21:28<17:07:20, 3.31it/s] 45%|████▌ | 167225/371472 [2:21:28<17:01:55, 3.33it/s] 45%|████▌ | 167226/371472 [2:21:29<16:39:08, 3.41it/s] 45%|████▌ | 167227/371472 [2:21:29<16:35:57, 3.42it/s] 45%|████▌ | 167228/371472 [2:21:29<16:29:20, 3.44it/s] 45%|████▌ | 167229/371472 [2:21:29<16:05:10, 3.53it/s] 45%|████▌ | 167230/371472 [2:21:30<16:06:20, 3.52it/s] 45%|████▌ | 167231/371472 [2:21:30<16:24:24, 3.46it/s] 45%|████▌ | 167232/371472 [2:21:30<16:44:05, 3.39it/s] 45%|████▌ | 167233/371472 [2:21:31<17:27:56, 3.25it/s] 45%|████▌ | 167234/371472 [2:21:31<17:16:09, 3.29it/s] 45%|████▌ | 167235/371472 [2:21:31<17:51:40, 3.18it/s] 45%|████▌ | 167236/371472 [2:21:32<17:34:19, 3.23it/s] 45%|████▌ | 167237/371472 [2:21:32<17:41:48, 3.21it/s] 45%|████▌ | 167238/371472 [2:21:32<17:20:53, 3.27it/s] 45%|████▌ | 167239/371472 [2:21:33<18:17:49, 3.10it/s] 45%|████▌ | 167240/371472 [2:21:33<18:31:42, 3.06it/s] {'loss': 3.1009, 'learning_rate': 5.950785408002758e-07, 'epoch': 7.2} + 45%|████▌ | 167240/371472 [2:21:33<18:31:42, 3.06it/s] 45%|████▌ | 167241/371472 [2:21:33<19:03:07, 2.98it/s] 45%|████▌ | 167242/371472 [2:21:34<18:40:25, 3.04it/s] 45%|████▌ | 167243/371472 [2:21:34<19:21:20, 2.93it/s] 45%|████▌ | 167244/371472 [2:21:34<19:08:08, 2.96it/s] 45%|████▌ | 167245/371472 [2:21:35<19:27:45, 2.91it/s] 45%|████▌ | 167246/371472 [2:21:35<18:23:03, 3.09it/s] 45%|████▌ | 167247/371472 [2:21:35<17:55:36, 3.16it/s] 45%|████▌ | 167248/371472 [2:21:35<17:42:59, 3.20it/s] 45%|████▌ | 167249/371472 [2:21:36<17:17:48, 3.28it/s] 45%|████▌ | 167250/371472 [2:21:36<16:59:38, 3.34it/s] 45%|████▌ | 167251/371472 [2:21:36<17:05:55, 3.32it/s] 45%|████▌ | 167252/371472 [2:21:37<16:54:51, 3.35it/s] 45%|████▌ | 167253/371472 [2:21:37<16:44:03, 3.39it/s] 45%|████▌ | 167254/371472 [2:21:37<16:53:13, 3.36it/s] 45%|████▌ | 167255/371472 [2:21:38<17:16:27, 3.28it/s] 45%|████▌ | 167256/371472 [2:21:38<17:23:13, 3.26it/s] 45%|████▌ | 167257/371472 [2:21:38<17:29:50, 3.24it/s] 45%|████▌ | 167258/371472 [2:21:38<17:22:01, 3.27it/s] 45%|████▌ | 167259/371472 [2:21:39<18:19:13, 3.10it/s] 45%|████▌ | 167260/371472 [2:21:39<17:43:05, 3.20it/s] {'loss': 2.9769, 'learning_rate': 5.950300588247969e-07, 'epoch': 7.2} + 45%|████▌ | 167260/371472 [2:21:39<17:43:05, 3.20it/s] 45%|████▌ | 167261/371472 [2:21:39<17:09:03, 3.31it/s] 45%|████▌ | 167262/371472 [2:21:40<17:02:09, 3.33it/s] 45%|████▌ | 167263/371472 [2:21:40<17:31:45, 3.24it/s] 45%|████▌ | 167264/371472 [2:21:40<17:29:35, 3.24it/s] 45%|████▌ | 167265/371472 [2:21:41<17:16:38, 3.28it/s] 45%|████▌ | 167266/371472 [2:21:41<16:37:41, 3.41it/s] 45%|████▌ | 167267/371472 [2:21:41<16:43:01, 3.39it/s] 45%|████▌ | 167268/371472 [2:21:41<16:40:32, 3.40it/s] 45%|████▌ | 167269/371472 [2:21:42<16:56:10, 3.35it/s] 45%|████▌ | 167270/371472 [2:21:42<17:35:18, 3.23it/s] 45%|████▌ | 167271/371472 [2:21:42<17:00:27, 3.34it/s] 45%|████▌ | 167272/371472 [2:21:43<17:13:01, 3.29it/s] 45%|████▌ | 167273/371472 [2:21:43<16:54:12, 3.36it/s] 45%|████▌ | 167274/371472 [2:21:43<17:36:58, 3.22it/s] 45%|████▌ | 167275/371472 [2:21:44<18:32:27, 3.06it/s] 45%|████▌ | 167276/371472 [2:21:44<18:51:40, 3.01it/s] 45%|████▌ | 167277/371472 [2:21:44<19:42:47, 2.88it/s] 45%|████▌ | 167278/371472 [2:21:45<18:51:30, 3.01it/s] 45%|████▌ | 167279/371472 [2:21:45<18:01:25, 3.15it/s] 45%|████▌ | 167280/371472 [2:21:45<18:58:17, 2.99it/s] {'loss': 2.7755, 'learning_rate': 5.94981576849318e-07, 'epoch': 7.21} + 45%|████▌ | 167280/371472 [2:21:45<18:58:17, 2.99it/s] 45%|████▌ | 167281/371472 [2:21:46<18:52:53, 3.00it/s] 45%|████▌ | 167282/371472 [2:21:46<18:10:27, 3.12it/s] 45%|████▌ | 167283/371472 [2:21:46<17:54:16, 3.17it/s] 45%|████▌ | 167284/371472 [2:21:47<17:28:48, 3.24it/s] 45%|████▌ | 167285/371472 [2:21:47<17:34:00, 3.23it/s] 45%|████▌ | 167286/371472 [2:21:47<18:10:10, 3.12it/s] 45%|████▌ | 167287/371472 [2:21:48<17:56:39, 3.16it/s] 45%|████▌ | 167288/371472 [2:21:48<17:18:52, 3.28it/s] 45%|████▌ | 167289/371472 [2:21:48<16:50:18, 3.37it/s] 45%|████▌ | 167290/371472 [2:21:48<16:37:21, 3.41it/s] 45%|████▌ | 167291/371472 [2:21:49<16:36:18, 3.42it/s] 45%|████▌ | 167292/371472 [2:21:49<16:23:01, 3.46it/s] 45%|████▌ | 167293/371472 [2:21:49<17:52:18, 3.17it/s] 45%|████▌ | 167294/371472 [2:21:50<18:14:40, 3.11it/s] 45%|████▌ | 167295/371472 [2:21:50<17:57:23, 3.16it/s] 45%|████▌ | 167296/371472 [2:21:50<17:36:17, 3.22it/s] 45%|████▌ | 167297/371472 [2:21:51<18:09:33, 3.12it/s] 45%|████▌ | 167298/371472 [2:21:51<17:58:27, 3.16it/s] 45%|████▌ | 167299/371472 [2:21:51<17:45:20, 3.19it/s] 45%|████▌ | 167300/371472 [2:21:52<17:23:51, 3.26it/s] {'loss': 2.9528, 'learning_rate': 5.949330948738392e-07, 'epoch': 7.21} + 45%|████▌ | 167300/371472 [2:21:52<17:23:51, 3.26it/s] 45%|████▌ | 167301/371472 [2:21:52<17:50:09, 3.18it/s] 45%|████▌ | 167302/371472 [2:21:52<17:05:09, 3.32it/s] 45%|████▌ | 167303/371472 [2:21:52<17:36:40, 3.22it/s] 45%|████▌ | 167304/371472 [2:21:53<17:50:51, 3.18it/s] 45%|████▌ | 167305/371472 [2:21:53<17:24:01, 3.26it/s] 45%|████▌ | 167306/371472 [2:21:53<17:02:43, 3.33it/s] 45%|████▌ | 167307/371472 [2:21:54<16:47:54, 3.38it/s] 45%|████▌ | 167308/371472 [2:21:54<16:27:16, 3.45it/s] 45%|████▌ | 167309/371472 [2:21:54<17:10:02, 3.30it/s] 45%|████▌ | 167310/371472 [2:21:55<16:56:52, 3.35it/s] 45%|████▌ | 167311/371472 [2:21:55<16:41:45, 3.40it/s] 45%|████▌ | 167312/371472 [2:21:55<17:54:47, 3.17it/s] 45%|████▌ | 167313/371472 [2:21:55<17:31:19, 3.24it/s] 45%|████▌ | 167314/371472 [2:21:56<16:58:31, 3.34it/s] 45%|████▌ | 167315/371472 [2:21:56<17:20:47, 3.27it/s] 45%|████▌ | 167316/371472 [2:21:56<17:10:48, 3.30it/s] 45%|████▌ | 167317/371472 [2:21:57<17:07:42, 3.31it/s] 45%|████▌ | 167318/371472 [2:21:57<17:24:31, 3.26it/s] 45%|████▌ | 167319/371472 [2:21:57<17:16:07, 3.28it/s] 45%|████▌ | 167320/371472 [2:21:58<17:54:17, 3.17it/s] {'loss': 3.1157, 'learning_rate': 5.948846128983601e-07, 'epoch': 7.21} + 45%|████▌ | 167320/371472 [2:21:58<17:54:17, 3.17it/s] 45%|████▌ | 167321/371472 [2:21:58<17:15:52, 3.28it/s] 45%|████▌ | 167322/371472 [2:21:58<17:17:24, 3.28it/s] 45%|████▌ | 167323/371472 [2:21:59<16:57:13, 3.34it/s] 45%|████▌ | 167324/371472 [2:21:59<17:03:58, 3.32it/s] 45%|████▌ | 167325/371472 [2:21:59<18:54:55, 3.00it/s] 45%|████▌ | 167326/371472 [2:22:00<18:04:23, 3.14it/s] 45%|████▌ | 167327/371472 [2:22:00<19:06:19, 2.97it/s] 45%|████▌ | 167328/371472 [2:22:00<18:22:45, 3.09it/s] 45%|████▌ | 167329/371472 [2:22:01<18:50:40, 3.01it/s] 45%|████▌ | 167330/371472 [2:22:01<18:59:06, 2.99it/s] 45%|████▌ | 167331/371472 [2:22:01<18:46:02, 3.02it/s] 45%|████▌ | 167332/371472 [2:22:01<17:57:42, 3.16it/s] 45%|████▌ | 167333/371472 [2:22:02<17:40:19, 3.21it/s] 45%|████▌ | 167334/371472 [2:22:02<17:13:50, 3.29it/s] 45%|████▌ | 167335/371472 [2:22:02<17:01:46, 3.33it/s] 45%|████▌ | 167336/371472 [2:22:03<16:42:06, 3.40it/s] 45%|████▌ | 167337/371472 [2:22:03<16:31:02, 3.43it/s] 45%|████▌ | 167338/371472 [2:22:03<17:01:33, 3.33it/s] 45%|████▌ | 167339/371472 [2:22:04<17:30:28, 3.24it/s] 45%|████▌ | 167340/371472 [2:22:04<17:11:32, 3.30it/s] {'loss': 2.7264, 'learning_rate': 5.948361309228812e-07, 'epoch': 7.21} + 45%|████▌ | 167340/371472 [2:22:04<17:11:32, 3.30it/s] 45%|████▌ | 167341/371472 [2:22:04<17:22:43, 3.26it/s] 45%|████▌ | 167342/371472 [2:22:04<17:17:41, 3.28it/s] 45%|████▌ | 167343/371472 [2:22:05<17:00:01, 3.34it/s] 45%|████▌ | 167344/371472 [2:22:05<17:26:55, 3.25it/s] 45%|████▌ | 167345/371472 [2:22:05<17:13:36, 3.29it/s] 45%|████▌ | 167346/371472 [2:22:06<20:25:26, 2.78it/s] 45%|████▌ | 167347/371472 [2:22:06<19:46:02, 2.87it/s] 45%|████▌ | 167348/371472 [2:22:07<20:52:32, 2.72it/s] 45%|████▌ | 167349/371472 [2:22:07<20:18:59, 2.79it/s] 45%|████▌ | 167350/371472 [2:22:07<20:54:26, 2.71it/s] 45%|████▌ | 167351/371472 [2:22:08<20:58:07, 2.70it/s] 45%|████▌ | 167352/371472 [2:22:08<19:43:30, 2.87it/s] 45%|████▌ | 167353/371472 [2:22:08<19:02:02, 2.98it/s] 45%|████▌ | 167354/371472 [2:22:09<18:35:54, 3.05it/s] 45%|████▌ | 167355/371472 [2:22:09<18:09:08, 3.12it/s] 45%|████▌ | 167356/371472 [2:22:09<18:17:33, 3.10it/s] 45%|████▌ | 167357/371472 [2:22:10<17:47:24, 3.19it/s] 45%|████▌ | 167358/371472 [2:22:10<17:47:15, 3.19it/s] 45%|████▌ | 167359/371472 [2:22:10<18:40:37, 3.04it/s] 45%|████▌ | 167360/371472 [2:22:11<17:51:48, 3.17it/s] {'loss': 2.9063, 'learning_rate': 5.947876489474024e-07, 'epoch': 7.21} + 45%|████▌ | 167360/371472 [2:22:11<17:51:48, 3.17it/s] 45%|████▌ | 167361/371472 [2:22:11<17:35:05, 3.22it/s] 45%|████▌ | 167362/371472 [2:22:11<17:11:56, 3.30it/s] 45%|████▌ | 167363/371472 [2:22:11<17:00:18, 3.33it/s] 45%|████▌ | 167364/371472 [2:22:12<17:15:39, 3.28it/s] 45%|████▌ | 167365/371472 [2:22:12<17:19:28, 3.27it/s] 45%|████▌ | 167366/371472 [2:22:12<16:57:59, 3.34it/s] 45%|████▌ | 167367/371472 [2:22:13<17:02:05, 3.33it/s] 45%|████▌ | 167368/371472 [2:22:13<16:56:06, 3.35it/s] 45%|████▌ | 167369/371472 [2:22:13<17:01:00, 3.33it/s] 45%|████▌ | 167370/371472 [2:22:14<17:03:30, 3.32it/s] 45%|████▌ | 167371/371472 [2:22:14<17:11:24, 3.30it/s] 45%|████▌ | 167372/371472 [2:22:14<16:49:52, 3.37it/s] 45%|████▌ | 167373/371472 [2:22:14<16:29:51, 3.44it/s] 45%|████▌ | 167374/371472 [2:22:15<16:51:50, 3.36it/s] 45%|████▌ | 167375/371472 [2:22:15<16:33:11, 3.42it/s] 45%|████▌ | 167376/371472 [2:22:15<16:47:15, 3.38it/s] 45%|████▌ | 167377/371472 [2:22:16<16:50:19, 3.37it/s] 45%|████▌ | 167378/371472 [2:22:16<17:46:10, 3.19it/s] 45%|████▌ | 167379/371472 [2:22:16<17:31:49, 3.23it/s] 45%|████▌ | 167380/371472 [2:22:17<17:19:18, 3.27it/s] {'loss': 2.9303, 'learning_rate': 5.947391669719236e-07, 'epoch': 7.21} + 45%|████▌ | 167380/371472 [2:22:17<17:19:18, 3.27it/s] 45%|████▌ | 167381/371472 [2:22:17<17:04:27, 3.32it/s] 45%|████▌ | 167382/371472 [2:22:17<17:49:08, 3.18it/s] 45%|████▌ | 167383/371472 [2:22:17<17:09:10, 3.31it/s] 45%|████▌ | 167384/371472 [2:22:18<17:07:44, 3.31it/s] 45%|████▌ | 167385/371472 [2:22:18<16:52:03, 3.36it/s] 45%|████▌ | 167386/371472 [2:22:18<16:47:04, 3.38it/s] 45%|████▌ | 167387/371472 [2:22:19<17:27:48, 3.25it/s] 45%|████▌ | 167388/371472 [2:22:19<17:11:54, 3.30it/s] 45%|████▌ | 167389/371472 [2:22:19<17:05:26, 3.32it/s] 45%|████▌ | 167390/371472 [2:22:20<17:36:45, 3.22it/s] 45%|████▌ | 167391/371472 [2:22:20<17:07:21, 3.31it/s] 45%|████▌ | 167392/371472 [2:22:20<17:07:53, 3.31it/s] 45%|████▌ | 167393/371472 [2:22:20<16:50:02, 3.37it/s] 45%|████▌ | 167394/371472 [2:22:21<16:48:50, 3.37it/s] 45%|████▌ | 167395/371472 [2:22:21<17:19:32, 3.27it/s] 45%|████▌ | 167396/371472 [2:22:21<17:01:02, 3.33it/s] 45%|████▌ | 167397/371472 [2:22:22<17:31:01, 3.24it/s] 45%|████▌ | 167398/371472 [2:22:22<17:41:11, 3.21it/s] 45%|████▌ | 167399/371472 [2:22:22<17:42:03, 3.20it/s] 45%|████▌ | 167400/371472 [2:22:23<18:20:13, 3.09it/s] {'loss': 2.9421, 'learning_rate': 5.946906849964447e-07, 'epoch': 7.21} + 45%|████▌ | 167400/371472 [2:22:23<18:20:13, 3.09it/s] 45%|████▌ | 167401/371472 [2:22:23<18:14:03, 3.11it/s] 45%|████▌ | 167402/371472 [2:22:23<17:36:12, 3.22it/s] 45%|████▌ | 167403/371472 [2:22:24<17:14:14, 3.29it/s] 45%|████▌ | 167404/371472 [2:22:24<17:25:24, 3.25it/s] 45%|████▌ | 167405/371472 [2:22:24<17:15:08, 3.29it/s] 45%|████▌ | 167406/371472 [2:22:24<16:59:21, 3.34it/s] 45%|████▌ | 167407/371472 [2:22:25<17:04:55, 3.32it/s] 45%|████▌ | 167408/371472 [2:22:25<17:06:52, 3.31it/s] 45%|████▌ | 167409/371472 [2:22:25<16:59:21, 3.34it/s] 45%|████▌ | 167410/371472 [2:22:26<16:19:57, 3.47it/s] 45%|████▌ | 167411/371472 [2:22:26<16:22:22, 3.46it/s] 45%|████▌ | 167412/371472 [2:22:26<18:00:02, 3.15it/s] 45%|████▌ | 167413/371472 [2:22:27<17:22:14, 3.26it/s] 45%|████▌ | 167414/371472 [2:22:27<18:25:25, 3.08it/s] 45%|████▌ | 167415/371472 [2:22:27<17:35:19, 3.22it/s] 45%|████▌ | 167416/371472 [2:22:28<17:55:10, 3.16it/s] 45%|████▌ | 167417/371472 [2:22:28<17:45:26, 3.19it/s] 45%|████▌ | 167418/371472 [2:22:28<17:43:15, 3.20it/s] 45%|████▌ | 167419/371472 [2:22:28<17:43:09, 3.20it/s] 45%|████▌ | 167420/371472 [2:22:29<17:41:25, 3.20it/s] {'loss': 2.8847, 'learning_rate': 5.946422030209658e-07, 'epoch': 7.21} + 45%|████▌ | 167420/371472 [2:22:29<17:41:25, 3.20it/s] 45%|████▌ | 167421/371472 [2:22:29<18:16:38, 3.10it/s] 45%|████▌ | 167422/371472 [2:22:29<17:43:47, 3.20it/s] 45%|████▌ | 167423/371472 [2:22:30<17:27:45, 3.25it/s] 45%|████▌ | 167424/371472 [2:22:30<17:12:59, 3.29it/s] 45%|████▌ | 167425/371472 [2:22:30<17:31:42, 3.23it/s] 45%|████▌ | 167426/371472 [2:22:31<17:03:47, 3.32it/s] 45%|████▌ | 167427/371472 [2:22:31<17:05:34, 3.32it/s] 45%|████▌ | 167428/371472 [2:22:31<17:04:08, 3.32it/s] 45%|████▌ | 167429/371472 [2:22:32<16:55:14, 3.35it/s] 45%|████▌ | 167430/371472 [2:22:32<18:25:23, 3.08it/s] 45%|████▌ | 167431/371472 [2:22:32<17:49:38, 3.18it/s] 45%|████▌ | 167432/371472 [2:22:32<17:28:34, 3.24it/s] 45%|████▌ | 167433/371472 [2:22:33<16:58:04, 3.34it/s] 45%|████▌ | 167434/371472 [2:22:33<16:59:36, 3.34it/s] 45%|████▌ | 167435/371472 [2:22:33<16:53:17, 3.36it/s] 45%|████▌ | 167436/371472 [2:22:34<18:45:36, 3.02it/s] 45%|████▌ | 167437/371472 [2:22:34<17:55:03, 3.16it/s] 45%|████▌ | 167438/371472 [2:22:34<18:10:59, 3.12it/s] 45%|████▌ | 167439/371472 [2:22:35<17:30:59, 3.24it/s] 45%|████▌ | 167440/371472 [2:22:35<18:10:52, 3.12it/s] {'loss': 2.8596, 'learning_rate': 5.945937210454868e-07, 'epoch': 7.21} + 45%|████▌ | 167440/371472 [2:22:35<18:10:52, 3.12it/s] 45%|████▌ | 167441/371472 [2:22:35<19:18:01, 2.94it/s] 45%|████▌ | 167442/371472 [2:22:36<18:38:51, 3.04it/s] 45%|████▌ | 167443/371472 [2:22:36<17:46:58, 3.19it/s] 45%|████▌ | 167444/371472 [2:22:36<18:17:54, 3.10it/s] 45%|████▌ | 167445/371472 [2:22:37<17:55:31, 3.16it/s] 45%|████▌ | 167446/371472 [2:22:37<17:21:27, 3.27it/s] 45%|████▌ | 167447/371472 [2:22:37<17:17:04, 3.28it/s] 45%|████▌ | 167448/371472 [2:22:38<17:36:31, 3.22it/s] 45%|████▌ | 167449/371472 [2:22:38<17:42:02, 3.20it/s] 45%|████▌ | 167450/371472 [2:22:38<16:53:16, 3.36it/s] 45%|████▌ | 167451/371472 [2:22:38<16:54:52, 3.35it/s] 45%|████▌ | 167452/371472 [2:22:39<18:38:59, 3.04it/s] 45%|████▌ | 167453/371472 [2:22:39<19:45:01, 2.87it/s] 45%|████▌ | 167454/371472 [2:22:40<20:36:32, 2.75it/s] 45%|████▌ | 167455/371472 [2:22:40<19:57:54, 2.84it/s] 45%|████▌ | 167456/371472 [2:22:40<19:06:57, 2.96it/s] 45%|████▌ | 167457/371472 [2:22:41<18:18:53, 3.09it/s] 45%|████▌ | 167458/371472 [2:22:41<17:48:48, 3.18it/s] 45%|████▌ | 167459/371472 [2:22:41<17:54:58, 3.16it/s] 45%|████▌ | 167460/371472 [2:22:42<18:52:30, 3.00it/s] {'loss': 2.9099, 'learning_rate': 5.94545239070008e-07, 'epoch': 7.21} + 45%|████▌ | 167460/371472 [2:22:42<18:52:30, 3.00it/s] 45%|████▌ | 167461/371472 [2:22:42<18:06:46, 3.13it/s] 45%|████▌ | 167462/371472 [2:22:42<17:23:40, 3.26it/s] 45%|████▌ | 167463/371472 [2:22:42<17:22:54, 3.26it/s] 45%|████▌ | 167464/371472 [2:22:43<17:00:28, 3.33it/s] 45%|████▌ | 167465/371472 [2:22:43<16:38:37, 3.40it/s] 45%|████▌ | 167466/371472 [2:22:43<16:28:17, 3.44it/s] 45%|████▌ | 167467/371472 [2:22:44<16:49:24, 3.37it/s] 45%|████▌ | 167468/371472 [2:22:44<16:51:28, 3.36it/s] 45%|████▌ | 167469/371472 [2:22:44<16:56:09, 3.35it/s] 45%|████▌ | 167470/371472 [2:22:44<17:35:58, 3.22it/s] 45%|████▌ | 167471/371472 [2:22:45<17:35:41, 3.22it/s] 45%|████▌ | 167472/371472 [2:22:45<17:05:55, 3.31it/s] 45%|████▌ | 167473/371472 [2:22:45<17:53:40, 3.17it/s] 45%|████▌ | 167474/371472 [2:22:46<17:20:31, 3.27it/s] 45%|████▌ | 167475/371472 [2:22:46<17:23:45, 3.26it/s] 45%|████▌ | 167476/371472 [2:22:46<17:01:48, 3.33it/s] 45%|████▌ | 167477/371472 [2:22:47<17:15:23, 3.28it/s] 45%|████▌ | 167478/371472 [2:22:47<18:40:52, 3.03it/s] 45%|████▌ | 167479/371472 [2:22:47<18:36:12, 3.05it/s] 45%|████▌ | 167480/371472 [2:22:48<18:15:51, 3.10it/s] {'loss': 2.8965, 'learning_rate': 5.94496757094529e-07, 'epoch': 7.21} + 45%|████▌ | 167480/371472 [2:22:48<18:15:51, 3.10it/s] 45%|████▌ | 167481/371472 [2:22:48<17:37:53, 3.21it/s] 45%|████▌ | 167482/371472 [2:22:48<17:12:08, 3.29it/s] 45%|████▌ | 167483/371472 [2:22:49<17:47:43, 3.18it/s] 45%|████▌ | 167484/371472 [2:22:49<17:13:14, 3.29it/s] 45%|████▌ | 167485/371472 [2:22:49<16:33:28, 3.42it/s] 45%|████▌ | 167486/371472 [2:22:49<17:15:40, 3.28it/s] 45%|████▌ | 167487/371472 [2:22:50<17:12:35, 3.29it/s] 45%|████▌ | 167488/371472 [2:22:50<17:03:50, 3.32it/s] 45%|████▌ | 167489/371472 [2:22:50<16:47:24, 3.37it/s] 45%|████▌ | 167490/371472 [2:22:51<17:45:31, 3.19it/s] 45%|████▌ | 167491/371472 [2:22:51<17:00:13, 3.33it/s] 45%|████▌ | 167492/371472 [2:22:51<16:40:38, 3.40it/s] 45%|████▌ | 167493/371472 [2:22:51<16:26:10, 3.45it/s] 45%|████▌ | 167494/371472 [2:22:52<16:38:22, 3.41it/s] 45%|████▌ | 167495/371472 [2:22:52<16:36:06, 3.41it/s] 45%|████▌ | 167496/371472 [2:22:52<16:57:37, 3.34it/s] 45%|████▌ | 167497/371472 [2:22:53<16:58:19, 3.34it/s] 45%|████▌ | 167498/371472 [2:22:53<16:37:23, 3.41it/s] 45%|████▌ | 167499/371472 [2:22:53<17:29:09, 3.24it/s] 45%|████▌ | 167500/371472 [2:22:54<18:19:32, 3.09it/s] {'loss': 2.7551, 'learning_rate': 5.944482751190501e-07, 'epoch': 7.21} + 45%|████▌ | 167500/371472 [2:22:54<18:19:32, 3.09it/s] 45%|████▌ | 167501/371472 [2:22:54<18:08:05, 3.12it/s] 45%|████▌ | 167502/371472 [2:22:54<17:53:42, 3.17it/s] 45%|████▌ | 167503/371472 [2:22:55<17:48:06, 3.18it/s] 45%|████▌ | 167504/371472 [2:22:55<18:03:46, 3.14it/s] 45%|████▌ | 167505/371472 [2:22:55<17:54:13, 3.16it/s] 45%|████▌ | 167506/371472 [2:22:56<18:39:15, 3.04it/s] 45%|████▌ | 167507/371472 [2:22:56<17:56:30, 3.16it/s] 45%|█��██▌ | 167508/371472 [2:22:56<17:23:10, 3.26it/s] 45%|████▌ | 167509/371472 [2:22:56<17:03:02, 3.32it/s] 45%|████▌ | 167510/371472 [2:22:57<16:49:26, 3.37it/s] 45%|████▌ | 167511/371472 [2:22:57<16:35:16, 3.42it/s] 45%|████▌ | 167512/371472 [2:22:57<16:58:04, 3.34it/s] 45%|████▌ | 167513/371472 [2:22:58<17:07:25, 3.31it/s] 45%|████▌ | 167514/371472 [2:22:58<17:01:21, 3.33it/s] 45%|████▌ | 167515/371472 [2:22:58<17:00:05, 3.33it/s] 45%|████▌ | 167516/371472 [2:22:59<16:57:09, 3.34it/s] 45%|████▌ | 167517/371472 [2:22:59<16:36:48, 3.41it/s] 45%|████▌ | 167518/371472 [2:22:59<16:53:23, 3.35it/s] 45%|████▌ | 167519/371472 [2:22:59<17:06:58, 3.31it/s] 45%|████▌ | 167520/371472 [2:23:00<17:57:55, 3.15it/s] {'loss': 2.9461, 'learning_rate': 5.943997931435713e-07, 'epoch': 7.22} + 45%|████▌ | 167520/371472 [2:23:00<17:57:55, 3.15it/s] 45%|████▌ | 167521/371472 [2:23:00<17:47:26, 3.18it/s] 45%|████▌ | 167522/371472 [2:23:00<17:46:41, 3.19it/s] 45%|████▌ | 167523/371472 [2:23:01<18:55:36, 2.99it/s] 45%|████▌ | 167524/371472 [2:23:01<18:17:06, 3.10it/s] 45%|████▌ | 167525/371472 [2:23:01<18:17:52, 3.10it/s] 45%|████▌ | 167526/371472 [2:23:02<18:19:25, 3.09it/s] 45%|████▌ | 167527/371472 [2:23:02<17:51:54, 3.17it/s] 45%|████▌ | 167528/371472 [2:23:02<17:11:48, 3.29it/s] 45%|████▌ | 167529/371472 [2:23:03<17:02:29, 3.32it/s] 45%|████▌ | 167530/371472 [2:23:03<16:49:44, 3.37it/s] 45%|████▌ | 167531/371472 [2:23:03<17:08:14, 3.31it/s] 45%|████▌ | 167532/371472 [2:23:04<17:06:37, 3.31it/s] 45%|████▌ | 167533/371472 [2:23:04<17:21:26, 3.26it/s] 45%|████▌ | 167534/371472 [2:23:04<16:56:21, 3.34it/s] 45%|████▌ | 167535/371472 [2:23:04<16:26:21, 3.45it/s] 45%|████▌ | 167536/371472 [2:23:05<16:36:12, 3.41it/s] 45%|████▌ | 167537/371472 [2:23:05<17:14:30, 3.29it/s] 45%|████▌ | 167538/371472 [2:23:05<17:25:08, 3.25it/s] 45%|████▌ | 167539/371472 [2:23:06<17:50:03, 3.18it/s] 45%|████▌ | 167540/371472 [2:23:06<17:26:19, 3.25it/s] {'loss': 2.8199, 'learning_rate': 5.943513111680924e-07, 'epoch': 7.22} + 45%|████▌ | 167540/371472 [2:23:06<17:26:19, 3.25it/s] 45%|████▌ | 167541/371472 [2:23:06<17:22:16, 3.26it/s] 45%|████▌ | 167542/371472 [2:23:07<16:29:07, 3.44it/s] 45%|████▌ | 167543/371472 [2:23:07<16:55:59, 3.35it/s] 45%|████▌ | 167544/371472 [2:23:07<16:47:27, 3.37it/s] 45%|████▌ | 167545/371472 [2:23:07<18:14:06, 3.11it/s] 45%|████▌ | 167546/371472 [2:23:08<17:55:26, 3.16it/s] 45%|████▌ | 167547/371472 [2:23:08<17:30:45, 3.23it/s] 45%|████▌ | 167548/371472 [2:23:08<17:17:19, 3.28it/s] 45%|████▌ | 167549/371472 [2:23:09<16:50:46, 3.36it/s] 45%|████▌ | 167550/371472 [2:23:09<16:44:13, 3.38it/s] 45%|████▌ | 167551/371472 [2:23:09<16:35:40, 3.41it/s] 45%|████▌ | 167552/371472 [2:23:10<16:45:11, 3.38it/s] 45%|████▌ | 167553/371472 [2:23:10<16:35:08, 3.42it/s] 45%|████▌ | 167554/371472 [2:23:10<17:31:02, 3.23it/s] 45%|████▌ | 167555/371472 [2:23:10<17:31:09, 3.23it/s] 45%|████▌ | 167556/371472 [2:23:11<17:09:05, 3.30it/s] 45%|████▌ | 167557/371472 [2:23:11<17:33:24, 3.23it/s] 45%|████▌ | 167558/371472 [2:23:11<17:15:03, 3.28it/s] 45%|████▌ | 167559/371472 [2:23:12<17:04:11, 3.32it/s] 45%|████▌ | 167560/371472 [2:23:12<17:36:35, 3.22it/s] {'loss': 3.1303, 'learning_rate': 5.943028291926135e-07, 'epoch': 7.22} + 45%|████▌ | 167560/371472 [2:23:12<17:36:35, 3.22it/s] 45%|████▌ | 167561/371472 [2:23:12<17:48:23, 3.18it/s] 45%|████▌ | 167562/371472 [2:23:13<18:03:27, 3.14it/s] 45%|████▌ | 167563/371472 [2:23:13<17:53:22, 3.17it/s] 45%|████▌ | 167564/371472 [2:23:13<17:07:57, 3.31it/s] 45%|████▌ | 167565/371472 [2:23:14<16:48:12, 3.37it/s] 45%|████▌ | 167566/371472 [2:23:14<17:06:24, 3.31it/s] 45%|████▌ | 167567/371472 [2:23:14<18:42:41, 3.03it/s] 45%|████▌ | 167568/371472 [2:23:15<17:59:31, 3.15it/s] 45%|████▌ | 167569/371472 [2:23:15<17:31:05, 3.23it/s] 45%|████▌ | 167570/371472 [2:23:15<17:17:18, 3.28it/s] 45%|████▌ | 167571/371472 [2:23:15<17:02:42, 3.32it/s] 45%|████▌ | 167572/371472 [2:23:16<17:01:04, 3.33it/s] 45%|████▌ | 167573/371472 [2:23:16<17:00:37, 3.33it/s] 45%|████▌ | 167574/371472 [2:23:16<17:14:05, 3.29it/s] 45%|████▌ | 167575/371472 [2:23:17<17:10:42, 3.30it/s] 45%|████▌ | 167576/371472 [2:23:17<17:03:12, 3.32it/s] 45%|████▌ | 167577/371472 [2:23:17<17:49:14, 3.18it/s] 45%|████▌ | 167578/371472 [2:23:18<18:04:32, 3.13it/s] 45%|████▌ | 167579/371472 [2:23:18<18:24:44, 3.08it/s] 45%|████▌ | 167580/371472 [2:23:18<17:52:57, 3.17it/s] {'loss': 3.0348, 'learning_rate': 5.942543472171345e-07, 'epoch': 7.22} + 45%|████▌ | 167580/371472 [2:23:18<17:52:57, 3.17it/s] 45%|████▌ | 167581/371472 [2:23:19<18:22:43, 3.08it/s] 45%|████▌ | 167582/371472 [2:23:19<17:51:36, 3.17it/s] 45%|████▌ | 167583/371472 [2:23:19<17:08:40, 3.30it/s] 45%|████▌ | 167584/371472 [2:23:19<17:23:03, 3.26it/s] 45%|████▌ | 167585/371472 [2:23:20<17:12:47, 3.29it/s] 45%|████▌ | 167586/371472 [2:23:20<16:48:08, 3.37it/s] 45%|████▌ | 167587/371472 [2:23:20<16:44:27, 3.38it/s] 45%|████▌ | 167588/371472 [2:23:21<17:18:26, 3.27it/s] 45%|████▌ | 167589/371472 [2:23:21<18:16:10, 3.10it/s] 45%|████▌ | 167590/371472 [2:23:21<17:50:52, 3.17it/s] 45%|████▌ | 167591/371472 [2:23:22<17:13:28, 3.29it/s] 45%|████▌ | 167592/371472 [2:23:22<17:04:53, 3.32it/s] 45%|████▌ | 167593/371472 [2:23:22<16:56:59, 3.34it/s] 45%|████▌ | 167594/371472 [2:23:22<16:45:32, 3.38it/s] 45%|████▌ | 167595/371472 [2:23:23<16:31:54, 3.43it/s] 45%|████▌ | 167596/371472 [2:23:23<16:35:30, 3.41it/s] 45%|████▌ | 167597/371472 [2:23:23<16:20:15, 3.47it/s] 45%|████▌ | 167598/371472 [2:23:24<16:12:22, 3.49it/s] 45%|████▌ | 167599/371472 [2:23:24<16:39:56, 3.40it/s] 45%|████▌ | 167600/371472 [2:23:24<17:05:55, 3.31it/s] {'loss': 2.9456, 'learning_rate': 5.942058652416557e-07, 'epoch': 7.22} + 45%|████▌ | 167600/371472 [2:23:24<17:05:55, 3.31it/s] 45%|████▌ | 167601/371472 [2:23:25<17:01:31, 3.33it/s] 45%|████▌ | 167602/371472 [2:23:25<17:00:31, 3.33it/s] 45%|████▌ | 167603/371472 [2:23:25<17:14:15, 3.29it/s] 45%|████▌ | 167604/371472 [2:23:25<16:58:18, 3.34it/s] 45%|████▌ | 167605/371472 [2:23:26<16:50:14, 3.36it/s] 45%|████▌ | 167606/371472 [2:23:26<17:05:52, 3.31it/s] 45%|████▌ | 167607/371472 [2:23:26<16:38:27, 3.40it/s] 45%|████▌ | 167608/371472 [2:23:27<16:45:55, 3.38it/s] 45%|████▌ | 167609/371472 [2:23:27<16:29:28, 3.43it/s] 45%|████▌ | 167610/371472 [2:23:27<16:43:14, 3.39it/s] 45%|████▌ | 167611/371472 [2:23:28<16:59:53, 3.33it/s] 45%|████▌ | 167612/371472 [2:23:28<16:36:42, 3.41it/s] 45%|████▌ | 167613/371472 [2:23:28<16:32:52, 3.42it/s] 45%|████▌ | 167614/371472 [2:23:28<16:51:56, 3.36it/s] 45%|████▌ | 167615/371472 [2:23:29<17:51:09, 3.17it/s] 45%|████▌ | 167616/371472 [2:23:29<17:55:01, 3.16it/s] 45%|████▌ | 167617/371472 [2:23:29<17:28:11, 3.24it/s] 45%|████▌ | 167618/371472 [2:23:30<17:49:27, 3.18it/s] 45%|████▌ | 167619/371472 [2:23:30<18:26:06, 3.07it/s] 45%|████▌ | 167620/371472 [2:23:30<17:55:16, 3.16it/s] {'loss': 2.7533, 'learning_rate': 5.941573832661768e-07, 'epoch': 7.22} + 45%|████▌ | 167620/371472 [2:23:30<17:55:16, 3.16it/s] 45%|████▌ | 167621/371472 [2:23:31<17:16:38, 3.28it/s] 45%|████▌ | 167622/371472 [2:23:31<17:32:29, 3.23it/s] 45%|████▌ | 167623/371472 [2:23:31<17:03:35, 3.32it/s] 45%|████▌ | 167624/371472 [2:23:32<16:46:45, 3.37it/s] 45%|████▌ | 167625/371472 [2:23:32<17:02:36, 3.32it/s] 45%|████▌ | 167626/371472 [2:23:32<17:22:13, 3.26it/s] 45%|████▌ | 167627/371472 [2:23:32<16:41:31, 3.39it/s] 45%|████▌ | 167628/371472 [2:23:33<17:07:29, 3.31it/s] 45%|████▌ | 167629/371472 [2:23:33<17:48:39, 3.18it/s] 45%|████▌ | 167630/371472 [2:23:33<18:30:02, 3.06it/s] 45%|████▌ | 167631/371472 [2:23:34<18:01:39, 3.14it/s] 45%|████▌ | 167632/371472 [2:23:34<18:04:26, 3.13it/s] 45%|████▌ | 167633/371472 [2:23:34<18:14:28, 3.10it/s] 45%|████▌ | 167634/371472 [2:23:35<17:51:21, 3.17it/s] 45%|████▌ | 167635/371472 [2:23:35<17:25:43, 3.25it/s] 45%|████▌ | 167636/371472 [2:23:35<16:53:12, 3.35it/s] 45%|████▌ | 167637/371472 [2:23:36<16:47:23, 3.37it/s] 45%|████▌ | 167638/371472 [2:23:36<16:47:57, 3.37it/s] 45%|████▌ | 167639/371472 [2:23:36<16:39:37, 3.40it/s] 45%|████▌ | 167640/371472 [2:23:36<16:24:44, 3.45it/s] {'loss': 2.9833, 'learning_rate': 5.941089012906978e-07, 'epoch': 7.22} + 45%|████▌ | 167640/371472 [2:23:36<16:24:44, 3.45it/s] 45%|████▌ | 167641/371472 [2:23:37<16:43:51, 3.38it/s] 45%|████▌ | 167642/371472 [2:23:37<17:17:21, 3.27it/s] 45%|████▌ | 167643/371472 [2:23:37<17:25:18, 3.25it/s] 45%|████▌ | 167644/371472 [2:23:38<17:20:32, 3.26it/s] 45%|████▌ | 167645/371472 [2:23:38<17:24:29, 3.25it/s] 45%|████▌ | 167646/371472 [2:23:38<16:53:11, 3.35it/s] 45%|████▌ | 167647/371472 [2:23:39<17:26:03, 3.25it/s] 45%|████▌ | 167648/371472 [2:23:39<17:04:27, 3.32it/s] 45%|████▌ | 167649/371472 [2:23:39<16:38:51, 3.40it/s] 45%|████▌ | 167650/371472 [2:23:39<16:43:25, 3.39it/s] 45%|████▌ | 167651/371472 [2:23:40<16:50:35, 3.36it/s] 45%|████▌ | 167652/371472 [2:23:40<16:46:00, 3.38it/s] 45%|████▌ | 167653/371472 [2:23:40<17:13:54, 3.29it/s] 45%|████▌ | 167654/371472 [2:23:41<17:13:02, 3.29it/s] 45%|████▌ | 167655/371472 [2:23:41<16:49:29, 3.37it/s] 45%|████▌ | 167656/371472 [2:23:41<16:44:26, 3.38it/s] 45%|████▌ | 167657/371472 [2:23:42<16:58:08, 3.34it/s] 45%|████▌ | 167658/371472 [2:23:42<17:47:41, 3.18it/s] 45%|████▌ | 167659/371472 [2:23:42<17:23:11, 3.26it/s] 45%|████▌ | 167660/371472 [2:23:43<18:30:24, 3.06it/s] {'loss': 2.7963, 'learning_rate': 5.94060419315219e-07, 'epoch': 7.22} + 45%|████▌ | 167660/371472 [2:23:43<18:30:24, 3.06it/s] 45%|████▌ | 167661/371472 [2:23:43<18:42:04, 3.03it/s] 45%|████▌ | 167662/371472 [2:23:43<19:21:43, 2.92it/s] 45%|████▌ | 167663/371472 [2:23:44<18:18:06, 3.09it/s] 45%|████▌ | 167664/371472 [2:23:44<19:50:57, 2.85it/s] 45%|████▌ | 167665/371472 [2:23:44<19:08:20, 2.96it/s] 45%|████▌ | 167666/371472 [2:23:45<19:13:56, 2.94it/s] 45%|████▌ | 167667/371472 [2:23:45<19:12:51, 2.95it/s] 45%|████▌ | 167668/371472 [2:23:45<18:35:10, 3.05it/s] 45%|████▌ | 167669/371472 [2:23:46<18:28:14, 3.06it/s] 45%|████▌ | 167670/371472 [2:23:46<17:37:04, 3.21it/s] 45%|████▌ | 167671/371472 [2:23:46<17:16:15, 3.28it/s] 45%|████▌ | 167672/371472 [2:23:46<16:32:23, 3.42it/s] 45%|████▌ | 167673/371472 [2:23:47<16:16:38, 3.48it/s] 45%|████▌ | 167674/371472 [2:23:47<17:26:50, 3.24it/s] 45%|████▌ | 167675/371472 [2:23:47<18:10:56, 3.11it/s] 45%|████▌ | 167676/371472 [2:23:48<18:06:17, 3.13it/s] 45%|████▌ | 167677/371472 [2:23:48<18:27:34, 3.07it/s] 45%|████▌ | 167678/371472 [2:23:48<18:11:24, 3.11it/s] 45%|████▌ | 167679/371472 [2:23:49<17:28:13, 3.24it/s] 45%|████▌ | 167680/371472 [2:23:49<18:28:32, 3.06it/s] {'loss': 2.9361, 'learning_rate': 5.940119373397402e-07, 'epoch': 7.22} + 45%|████▌ | 167680/371472 [2:23:49<18:28:32, 3.06it/s] 45%|████▌ | 167681/371472 [2:23:49<17:56:30, 3.16it/s] 45%|████▌ | 167682/371472 [2:23:50<18:32:54, 3.05it/s] 45%|████▌ | 167683/371472 [2:23:50<18:20:12, 3.09it/s] 45%|████▌ | 167684/371472 [2:23:50<17:30:34, 3.23it/s] 45%|████▌ | 167685/371472 [2:23:51<18:01:28, 3.14it/s] 45%|████▌ | 167686/371472 [2:23:51<17:59:41, 3.15it/s] 45%|████▌ | 167687/371472 [2:23:51<17:32:39, 3.23it/s] 45%|████▌ | 167688/371472 [2:23:51<17:30:54, 3.23it/s] 45%|████▌ | 167689/371472 [2:23:52<17:16:52, 3.28it/s] 45%|████▌ | 167690/371472 [2:23:52<16:57:36, 3.34it/s] 45%|████▌ | 167691/371472 [2:23:52<17:09:04, 3.30it/s] 45%|████▌ | 167692/371472 [2:23:53<16:39:39, 3.40it/s] 45%|████▌ | 167693/371472 [2:23:53<16:53:24, 3.35it/s] 45%|████▌ | 167694/371472 [2:23:53<17:11:19, 3.29it/s] 45%|████▌ | 167695/371472 [2:23:54<16:53:11, 3.35it/s] 45%|████▌ | 167696/371472 [2:23:54<18:33:22, 3.05it/s] 45%|████▌ | 167697/371472 [2:23:54<17:55:41, 3.16it/s] 45%|████▌ | 167698/371472 [2:23:55<17:46:00, 3.19it/s] 45%|████▌ | 167699/371472 [2:23:55<17:43:38, 3.19it/s] 45%|████▌ | 167700/371472 [2:23:55<17:55:10, 3.16it/s] {'loss': 3.0236, 'learning_rate': 5.939634553642612e-07, 'epoch': 7.22} + 45%|████▌ | 167700/371472 [2:23:55<17:55:10, 3.16it/s] 45%|████▌ | 167701/371472 [2:23:55<17:35:14, 3.22it/s] 45%|████▌ | 167702/371472 [2:23:56<18:15:47, 3.10it/s] 45%|████▌ | 167703/371472 [2:23:56<17:28:20, 3.24it/s] 45%|████▌ | 167704/371472 [2:23:56<17:16:10, 3.28it/s] 45%|████▌ | 167705/371472 [2:23:57<16:57:35, 3.34it/s] 45%|████▌ | 167706/371472 [2:23:57<16:30:09, 3.43it/s] 45%|████▌ | 167707/371472 [2:23:57<17:11:53, 3.29it/s] 45%|████▌ | 167708/371472 [2:23:58<17:29:00, 3.24it/s] 45%|████▌ | 167709/371472 [2:23:58<16:51:27, 3.36it/s] 45%|████▌ | 167710/371472 [2:23:58<18:35:06, 3.05it/s] 45%|████▌ | 167711/371472 [2:23:59<17:41:08, 3.20it/s] 45%|████▌ | 167712/371472 [2:23:59<17:40:01, 3.20it/s] 45%|████▌ | 167713/371472 [2:23:59<17:16:25, 3.28it/s] 45%|████▌ | 167714/371472 [2:24:00<17:51:05, 3.17it/s] 45%|████▌ | 167715/371472 [2:24:00<17:27:54, 3.24it/s] 45%|████▌ | 167716/371472 [2:24:00<17:17:14, 3.27it/s] 45%|████▌ | 167717/371472 [2:24:00<17:11:58, 3.29it/s] 45%|████▌ | 167718/371472 [2:24:01<19:28:11, 2.91it/s] 45%|████▌ | 167719/371472 [2:24:01<18:27:48, 3.07it/s] 45%|████▌ | 167720/371472 [2:24:01<17:57:17, 3.15it/s] {'loss': 3.0724, 'learning_rate': 5.939149733887822e-07, 'epoch': 7.22} + 45%|████▌ | 167720/371472 [2:24:01<17:57:17, 3.15it/s] 45%|████▌ | 167721/371472 [2:24:02<17:04:33, 3.31it/s] 45%|████▌ | 167722/371472 [2:24:02<17:07:52, 3.30it/s] 45%|████▌ | 167723/371472 [2:24:02<17:06:18, 3.31it/s] 45%|████▌ | 167724/371472 [2:24:03<16:54:36, 3.35it/s] 45%|████▌ | 167725/371472 [2:24:03<17:45:47, 3.19it/s] 45%|████▌ | 167726/371472 [2:24:03<18:32:34, 3.05it/s] 45%|████▌ | 167727/371472 [2:24:04<18:06:30, 3.13it/s] 45%|████▌ | 167728/371472 [2:24:04<17:55:15, 3.16it/s] 45%|████▌ | 167729/371472 [2:24:04<17:16:03, 3.28it/s] 45%|████▌ | 167730/371472 [2:24:05<17:28:26, 3.24it/s] 45%|████▌ | 167731/371472 [2:24:05<16:59:31, 3.33it/s] 45%|████▌ | 167732/371472 [2:24:05<17:16:43, 3.28it/s] 45%|████▌ | 167733/371472 [2:24:05<17:23:40, 3.25it/s] 45%|████▌ | 167734/371472 [2:24:06<16:54:15, 3.35it/s] 45%|████▌ | 167735/371472 [2:24:06<17:02:16, 3.32it/s] 45%|████▌ | 167736/371472 [2:24:06<17:01:42, 3.32it/s] 45%|████▌ | 167737/371472 [2:24:07<16:51:35, 3.36it/s] 45%|████▌ | 167738/371472 [2:24:07<16:45:35, 3.38it/s] 45%|████▌ | 167739/371472 [2:24:07<16:24:27, 3.45it/s] 45%|████▌ | 167740/371472 [2:24:07<16:47:33, 3.37it/s] {'loss': 2.9369, 'learning_rate': 5.938664914133034e-07, 'epoch': 7.22} + 45%|████▌ | 167740/371472 [2:24:07<16:47:33, 3.37it/s] 45%|████▌ | 167741/371472 [2:24:08<16:48:17, 3.37it/s] 45%|████▌ | 167742/371472 [2:24:08<17:01:50, 3.32it/s] 45%|████▌ | 167743/371472 [2:24:08<16:51:39, 3.36it/s] 45%|████▌ | 167744/371472 [2:24:09<16:32:03, 3.42it/s] 45%|████▌ | 167745/371472 [2:24:09<16:50:22, 3.36it/s] 45%|████▌ | 167746/371472 [2:24:09<16:39:11, 3.40it/s] 45%|████▌ | 167747/371472 [2:24:10<16:35:04, 3.41it/s] 45%|████▌ | 167748/371472 [2:24:10<16:22:23, 3.46it/s] 45%|████▌ | 167749/371472 [2:24:10<16:31:56, 3.42it/s] 45%|████▌ | 167750/371472 [2:24:10<16:17:23, 3.47it/s] 45%|████▌ | 167751/371472 [2:24:11<16:27:59, 3.44it/s] 45%|████▌ | 167752/371472 [2:24:11<16:15:21, 3.48it/s] 45%|████▌ | 167753/371472 [2:24:11<16:28:04, 3.44it/s] 45%|████▌ | 167754/371472 [2:24:12<16:06:08, 3.51it/s] 45%|████▌ | 167755/371472 [2:24:12<16:17:38, 3.47it/s] 45%|████▌ | 167756/371472 [2:24:12<16:51:32, 3.36it/s] 45%|████▌ | 167757/371472 [2:24:12<17:06:02, 3.31it/s] 45%|████▌ | 167758/371472 [2:24:13<17:43:12, 3.19it/s] 45%|████▌ | 167759/371472 [2:24:13<19:31:19, 2.90it/s] 45%|████▌ | 167760/371472 [2:24:14<18:47:15, 3.01it/s] {'loss': 3.022, 'learning_rate': 5.938180094378246e-07, 'epoch': 7.23} + 45%|████▌ | 167760/371472 [2:24:14<18:47:15, 3.01it/s] 45%|████▌ | 167761/371472 [2:24:14<18:07:37, 3.12it/s] 45%|████▌ | 167762/371472 [2:24:14<17:23:00, 3.26it/s] 45%|████▌ | 167763/371472 [2:24:14<16:59:35, 3.33it/s] 45%|████▌ | 167764/371472 [2:24:15<17:31:26, 3.23it/s] 45%|████▌ | 167765/371472 [2:24:15<17:08:20, 3.30it/s] 45%|████▌ | 167766/371472 [2:24:15<16:41:15, 3.39it/s] 45%|████▌ | 167767/371472 [2:24:16<18:42:28, 3.02it/s] 45%|████▌ | 167768/371472 [2:24:16<17:47:06, 3.18it/s] 45%|████▌ | 167769/371472 [2:24:16<17:20:46, 3.26it/s] 45%|████▌ | 167770/371472 [2:24:17<17:16:28, 3.28it/s] 45%|████▌ | 167771/371472 [2:24:17<17:54:17, 3.16it/s] 45%|████▌ | 167772/371472 [2:24:17<17:30:53, 3.23it/s] 45%|████▌ | 167773/371472 [2:24:18<17:44:12, 3.19it/s] 45%|████▌ | 167774/371472 [2:24:18<17:01:36, 3.32it/s] 45%|████▌ | 167775/371472 [2:24:18<17:13:32, 3.28it/s] 45%|████▌ | 167776/371472 [2:24:18<18:10:59, 3.11it/s] 45%|████▌ | 167777/371472 [2:24:19<18:00:48, 3.14it/s] 45%|████▌ | 167778/371472 [2:24:19<17:49:53, 3.17it/s] 45%|████▌ | 167779/371472 [2:24:19<17:44:45, 3.19it/s] 45%|████▌ | 167780/371472 [2:24:20<18:00:27, 3.14it/s] {'loss': 2.9464, 'learning_rate': 5.937695274623457e-07, 'epoch': 7.23} + 45%|████▌ | 167780/371472 [2:24:20<18:00:27, 3.14it/s] 45%|████▌ | 167781/371472 [2:24:20<17:25:10, 3.25it/s] 45%|████▌ | 167782/371472 [2:24:20<17:13:11, 3.29it/s] 45%|████▌ | 167783/371472 [2:24:21<18:21:41, 3.08it/s] 45%|████▌ | 167784/371472 [2:24:21<18:03:07, 3.13it/s] 45%|████▌ | 167785/371472 [2:24:21<18:21:43, 3.08it/s] 45%|████▌ | 167786/371472 [2:24:22<18:34:11, 3.05it/s] 45%|████▌ | 167787/371472 [2:24:22<18:28:53, 3.06it/s] 45%|████▌ | 167788/371472 [2:24:22<17:25:38, 3.25it/s] 45%|████▌ | 167789/371472 [2:24:23<17:39:29, 3.20it/s] 45%|████▌ | 167790/371472 [2:24:23<17:09:06, 3.30it/s] 45%|████▌ | 167791/371472 [2:24:23<17:23:22, 3.25it/s] 45%|████▌ | 167792/371472 [2:24:23<17:08:37, 3.30it/s] 45%|████▌ | 167793/371472 [2:24:24<16:48:26, 3.37it/s] 45%|████▌ | 167794/371472 [2:24:24<16:40:24, 3.39it/s] 45%|████▌ | 167795/371472 [2:24:24<16:30:45, 3.43it/s] 45%|████▌ | 167796/371472 [2:24:25<16:42:13, 3.39it/s] 45%|████▌ | 167797/371472 [2:24:25<16:39:26, 3.40it/s] 45%|████▌ | 167798/371472 [2:24:25<16:27:08, 3.44it/s] 45%|████▌ | 167799/371472 [2:24:26<17:20:21, 3.26it/s] 45%|████▌ | 167800/371472 [2:24:26<17:21:02, 3.26it/s] {'loss': 2.8952, 'learning_rate': 5.937210454868667e-07, 'epoch': 7.23} + 45%|████▌ | 167800/371472 [2:24:26<17:21:02, 3.26it/s] 45%|████▌ | 167801/371472 [2:24:26<17:05:35, 3.31it/s] 45%|████▌ | 167802/371472 [2:24:26<17:03:29, 3.32it/s] 45%|████▌ | 167803/371472 [2:24:27<16:59:56, 3.33it/s] 45%|████▌ | 167804/371472 [2:24:27<17:19:01, 3.27it/s] 45%|████▌ | 167805/371472 [2:24:27<17:30:55, 3.23it/s] 45%|████▌ | 167806/371472 [2:24:28<17:27:20, 3.24it/s] 45%|████▌ | 167807/371472 [2:24:28<17:12:25, 3.29it/s] 45%|████▌ | 167808/371472 [2:24:28<17:35:12, 3.22it/s] 45%|████▌ | 167809/371472 [2:24:29<17:07:22, 3.30it/s] 45%|████▌ | 167810/371472 [2:24:29<17:14:03, 3.28it/s] 45%|████▌ | 167811/371472 [2:24:29<17:15:27, 3.28it/s] 45%|████▌ | 167812/371472 [2:24:29<17:00:16, 3.33it/s] 45%|████▌ | 167813/371472 [2:24:30<16:45:23, 3.38it/s] 45%|████▌ | 167814/371472 [2:24:30<16:54:53, 3.34it/s] 45%|████▌ | 167815/371472 [2:24:30<16:57:40, 3.34it/s] 45%|████▌ | 167816/371472 [2:24:31<16:37:04, 3.40it/s] 45%|████▌ | 167817/371472 [2:24:31<16:41:29, 3.39it/s] 45%|████▌ | 167818/371472 [2:24:31<17:24:10, 3.25it/s] 45%|████▌ | 167819/371472 [2:24:32<17:04:59, 3.31it/s] 45%|████▌ | 167820/371472 [2:24:32<16:46:41, 3.37it/s] {'loss': 2.9995, 'learning_rate': 5.936725635113879e-07, 'epoch': 7.23} + 45%|████▌ | 167820/371472 [2:24:32<16:46:41, 3.37it/s] 45%|████▌ | 167821/371472 [2:24:32<17:26:14, 3.24it/s] 45%|████▌ | 167822/371472 [2:24:33<18:52:42, 3.00it/s] 45%|████▌ | 167823/371472 [2:24:33<20:12:12, 2.80it/s] 45%|████▌ | 167824/371472 [2:24:33<19:31:47, 2.90it/s] 45%|████▌ | 167825/371472 [2:24:34<19:11:34, 2.95it/s] 45%|████▌ | 167826/371472 [2:24:34<18:17:35, 3.09it/s] 45%|████▌ | 167827/371472 [2:24:34<18:25:55, 3.07it/s] 45%|████▌ | 167828/371472 [2:24:35<17:55:29, 3.16it/s] 45%|████▌ | 167829/371472 [2:24:35<17:55:26, 3.16it/s] 45%|████▌ | 167830/371472 [2:24:35<17:12:50, 3.29it/s] 45%|████▌ | 167831/371472 [2:24:35<16:48:46, 3.36it/s] 45%|████▌ | 167832/371472 [2:24:36<17:11:01, 3.29it/s] 45%|████▌ | 167833/371472 [2:24:36<16:34:39, 3.41it/s] 45%|████▌ | 167834/371472 [2:24:36<16:44:30, 3.38it/s] 45%|████▌ | 167835/371472 [2:24:37<19:25:50, 2.91it/s] 45%|████▌ | 167836/371472 [2:24:37<18:43:03, 3.02it/s] 45%|████▌ | 167837/371472 [2:24:37<18:23:32, 3.08it/s] 45%|████▌ | 167838/371472 [2:24:38<17:50:29, 3.17it/s] 45%|████▌ | 167839/371472 [2:24:38<17:14:32, 3.28it/s] 45%|████▌ | 167840/371472 [2:24:38<17:27:22, 3.24it/s] {'loss': 3.0927, 'learning_rate': 5.936240815359089e-07, 'epoch': 7.23} + 45%|████▌ | 167840/371472 [2:24:38<17:27:22, 3.24it/s] 45%|████▌ | 167841/371472 [2:24:39<17:17:18, 3.27it/s] 45%|████▌ | 167842/371472 [2:24:39<17:07:39, 3.30it/s] 45%|████▌ | 167843/371472 [2:24:39<17:08:33, 3.30it/s] 45%|████▌ | 167844/371472 [2:24:39<16:55:08, 3.34it/s] 45%|████▌ | 167845/371472 [2:24:40<18:09:04, 3.12it/s] 45%|████▌ | 167846/371472 [2:24:40<17:49:53, 3.17it/s] 45%|████▌ | 167847/371472 [2:24:40<17:24:05, 3.25it/s] 45%|████▌ | 167848/371472 [2:24:41<16:56:10, 3.34it/s] 45%|████▌ | 167849/371472 [2:24:41<18:46:50, 3.01it/s] 45%|████▌ | 167850/371472 [2:24:41<18:02:09, 3.14it/s] 45%|████▌ | 167851/371472 [2:24:42<17:40:02, 3.20it/s] 45%|████▌ | 167852/371472 [2:24:42<17:18:58, 3.27it/s] 45%|████▌ | 167853/371472 [2:24:42<18:22:17, 3.08it/s] 45%|████▌ | 167854/371472 [2:24:43<18:14:22, 3.10it/s] 45%|████▌ | 167855/371472 [2:24:43<18:25:24, 3.07it/s] 45%|████▌ | 167856/371472 [2:24:43<17:45:11, 3.19it/s] 45%|████▌ | 167857/371472 [2:24:44<17:46:25, 3.18it/s] 45%|████▌ | 167858/371472 [2:24:44<18:03:00, 3.13it/s] 45%|████▌ | 167859/371472 [2:24:44<18:27:32, 3.06it/s] 45%|████▌ | 167860/371472 [2:24:45<18:19:22, 3.09it/s] {'loss': 2.8791, 'learning_rate': 5.935755995604301e-07, 'epoch': 7.23} + 45%|████▌ | 167860/371472 [2:24:45<18:19:22, 3.09it/s] 45%|████▌ | 167861/371472 [2:24:45<18:29:50, 3.06it/s] 45%|████▌ | 167862/371472 [2:24:45<17:45:07, 3.19it/s] 45%|████▌ | 167863/371472 [2:24:46<17:09:26, 3.30it/s] 45%|████▌ | 167864/371472 [2:24:46<17:10:18, 3.29it/s] 45%|████▌ | 167865/371472 [2:24:46<19:13:51, 2.94it/s] 45%|████▌ | 167866/371472 [2:24:47<18:35:09, 3.04it/s] 45%|████▌ | 167867/371472 [2:24:47<17:47:01, 3.18it/s] 45%|████▌ | 167868/371472 [2:24:47<17:05:28, 3.31it/s] 45%|████▌ | 167869/371472 [2:24:47<16:40:24, 3.39it/s] 45%|████▌ | 167870/371472 [2:24:48<17:01:39, 3.32it/s] 45%|████▌ | 167871/371472 [2:24:48<17:13:19, 3.28it/s] 45%|████▌ | 167872/371472 [2:24:48<18:11:42, 3.11it/s] 45%|████▌ | 167873/371472 [2:24:49<17:32:48, 3.22it/s] 45%|████▌ | 167874/371472 [2:24:49<17:22:00, 3.26it/s] 45%|████▌ | 167875/371472 [2:24:49<17:22:10, 3.26it/s] 45%|████▌ | 167876/371472 [2:24:50<17:06:47, 3.30it/s] 45%|████▌ | 167877/371472 [2:24:50<17:51:59, 3.17it/s] 45%|████▌ | 167878/371472 [2:24:50<17:23:44, 3.25it/s] 45%|████▌ | 167879/371472 [2:24:51<18:10:51, 3.11it/s] 45%|████▌ | 167880/371472 [2:24:51<17:38:05, 3.21it/s] {'loss': 3.0313, 'learning_rate': 5.935271175849511e-07, 'epoch': 7.23} + 45%|████▌ | 167880/371472 [2:24:51<17:38:05, 3.21it/s] 45%|████▌ | 167881/371472 [2:24:51<17:48:32, 3.18it/s] 45%|████▌ | 167882/371472 [2:24:51<17:32:20, 3.22it/s] 45%|████▌ | 167883/371472 [2:24:52<17:36:51, 3.21it/s] 45%|████▌ | 167884/371472 [2:24:52<17:22:21, 3.26it/s] 45%|████▌ | 167885/371472 [2:24:52<17:10:16, 3.29it/s] 45%|████▌ | 167886/371472 [2:24:53<18:41:42, 3.02it/s] 45%|████▌ | 167887/371472 [2:24:53<18:47:55, 3.01it/s] 45%|████▌ | 167888/371472 [2:24:53<18:21:02, 3.08it/s] 45%|████▌ | 167889/371472 [2:24:54<18:38:13, 3.03it/s] 45%|████▌ | 167890/371472 [2:24:54<17:59:51, 3.14it/s] 45%|████▌ | 167891/371472 [2:24:54<17:49:35, 3.17it/s] 45%|████▌ | 167892/371472 [2:24:55<17:30:02, 3.23it/s] 45%|████▌ | 167893/371472 [2:24:55<17:04:51, 3.31it/s] 45%|████▌ | 167894/371472 [2:24:55<16:45:54, 3.37it/s] 45%|████▌ | 167895/371472 [2:24:55<17:01:49, 3.32it/s] 45%|████▌ | 167896/371472 [2:24:56<16:44:33, 3.38it/s] 45%|████▌ | 167897/371472 [2:24:56<16:34:17, 3.41it/s] 45%|████▌ | 167898/371472 [2:24:56<16:36:10, 3.41it/s] 45%|████▌ | 167899/371472 [2:24:57<17:26:33, 3.24it/s] 45%|████▌ | 167900/371472 [2:24:57<16:50:08, 3.36it/s] {'loss': 2.9859, 'learning_rate': 5.934786356094723e-07, 'epoch': 7.23} + 45%|████▌ | 167900/371472 [2:24:57<16:50:08, 3.36it/s] 45%|████▌ | 167901/371472 [2:24:57<17:42:45, 3.19it/s] 45%|████▌ | 167902/371472 [2:24:58<17:09:18, 3.30it/s] 45%|████▌ | 167903/371472 [2:24:58<17:13:01, 3.28it/s] 45%|████▌ | 167904/371472 [2:24:58<17:16:50, 3.27it/s] 45%|████▌ | 167905/371472 [2:24:59<17:07:35, 3.30it/s] 45%|████▌ | 167906/371472 [2:24:59<17:19:00, 3.27it/s] 45%|████▌ | 167907/371472 [2:24:59<17:06:35, 3.30it/s] 45%|████▌ | 167908/371472 [2:24:59<17:17:05, 3.27it/s] 45%|████▌ | 167909/371472 [2:25:00<16:47:10, 3.37it/s] 45%|████▌ | 167910/371472 [2:25:00<16:46:20, 3.37it/s] 45%|████▌ | 167911/371472 [2:25:00<17:04:23, 3.31it/s] 45%|████▌ | 167912/371472 [2:25:01<17:02:01, 3.32it/s] 45%|████▌ | 167913/371472 [2:25:01<17:01:56, 3.32it/s] 45%|████▌ | 167914/371472 [2:25:01<17:17:27, 3.27it/s] 45%|████▌ | 167915/371472 [2:25:02<17:04:45, 3.31it/s] 45%|████▌ | 167916/371472 [2:25:02<16:37:16, 3.40it/s] 45%|████▌ | 167917/371472 [2:25:02<16:17:12, 3.47it/s] 45%|████▌ | 167918/371472 [2:25:02<16:33:02, 3.42it/s] 45%|████▌ | 167919/371472 [2:25:03<16:12:24, 3.49it/s] 45%|████▌ | 167920/371472 [2:25:03<16:07:48, 3.51it/s] {'loss': 3.0214, 'learning_rate': 5.934301536339935e-07, 'epoch': 7.23} + 45%|████▌ | 167920/371472 [2:25:03<16:07:48, 3.51it/s] 45%|████▌ | 167921/371472 [2:25:03<16:32:37, 3.42it/s] 45%|████▌ | 167922/371472 [2:25:04<17:15:42, 3.28it/s] 45%|████▌ | 167923/371472 [2:25:04<16:57:10, 3.34it/s] 45%|████▌ | 167924/371472 [2:25:04<16:52:26, 3.35it/s] 45%|████▌ | 167925/371472 [2:25:04<17:03:43, 3.31it/s] 45%|████▌ | 167926/371472 [2:25:05<16:55:12, 3.34it/s] 45%|████▌ | 167927/371472 [2:25:05<17:38:22, 3.21it/s] 45%|████▌ | 167928/371472 [2:25:05<17:24:12, 3.25it/s] 45%|████▌ | 167929/371472 [2:25:06<17:02:40, 3.32it/s] 45%|████▌ | 167930/371472 [2:25:06<17:14:06, 3.28it/s] 45%|████▌ | 167931/371472 [2:25:06<16:51:19, 3.35it/s] 45%|████▌ | 167932/371472 [2:25:07<16:54:52, 3.34it/s] 45%|████▌ | 167933/371472 [2:25:07<16:58:31, 3.33it/s] 45%|████▌ | 167934/371472 [2:25:07<16:42:27, 3.38it/s] 45%|████▌ | 167935/371472 [2:25:07<16:47:06, 3.37it/s] 45%|████▌ | 167936/371472 [2:25:08<16:28:08, 3.43it/s] 45%|████▌ | 167937/371472 [2:25:08<16:37:27, 3.40it/s] 45%|████▌ | 167938/371472 [2:25:08<17:22:59, 3.25it/s] 45%|████▌ | 167939/371472 [2:25:09<16:48:29, 3.36it/s] 45%|████▌ | 167940/371472 [2:25:09<16:19:33, 3.46it/s] {'loss': 2.8827, 'learning_rate': 5.933816716585146e-07, 'epoch': 7.23} + 45%|████▌ | 167940/371472 [2:25:09<16:19:33, 3.46it/s] 45%|████▌ | 167941/371472 [2:25:09<17:02:46, 3.32it/s] 45%|████▌ | 167942/371472 [2:25:10<16:38:43, 3.40it/s] 45%|████▌ | 167943/371472 [2:25:10<16:26:55, 3.44it/s] 45%|████▌ | 167944/371472 [2:25:10<16:07:36, 3.51it/s] 45%|████▌ | 167945/371472 [2:25:10<16:55:11, 3.34it/s] 45%|████▌ | 167946/371472 [2:25:11<16:40:56, 3.39it/s] 45%|████▌ | 167947/371472 [2:25:11<17:13:00, 3.28it/s] 45%|████▌ | 167948/371472 [2:25:11<17:16:00, 3.27it/s] 45%|█���██▌ | 167949/371472 [2:25:12<16:32:28, 3.42it/s] 45%|████▌ | 167950/371472 [2:25:12<16:58:39, 3.33it/s] 45%|████▌ | 167951/371472 [2:25:12<16:37:31, 3.40it/s] 45%|████▌ | 167952/371472 [2:25:13<17:11:53, 3.29it/s] 45%|████▌ | 167953/371472 [2:25:13<17:17:51, 3.27it/s] 45%|████▌ | 167954/371472 [2:25:13<16:43:38, 3.38it/s] 45%|████▌ | 167955/371472 [2:25:13<16:42:32, 3.38it/s] 45%|████▌ | 167956/371472 [2:25:14<16:29:24, 3.43it/s] 45%|████▌ | 167957/371472 [2:25:14<16:53:46, 3.35it/s] 45%|████▌ | 167958/371472 [2:25:14<17:20:10, 3.26it/s] 45%|████▌ | 167959/371472 [2:25:15<16:50:05, 3.36it/s] 45%|████▌ | 167960/371472 [2:25:15<17:27:02, 3.24it/s] {'loss': 3.0012, 'learning_rate': 5.933331896830355e-07, 'epoch': 7.23} + 45%|████▌ | 167960/371472 [2:25:15<17:27:02, 3.24it/s] 45%|████▌ | 167961/371472 [2:25:15<17:27:12, 3.24it/s] 45%|████▌ | 167962/371472 [2:25:16<17:23:06, 3.25it/s] 45%|████▌ | 167963/371472 [2:25:16<18:40:37, 3.03it/s] 45%|████▌ | 167964/371472 [2:25:16<18:18:34, 3.09it/s] 45%|████▌ | 167965/371472 [2:25:17<17:47:44, 3.18it/s] 45%|████▌ | 167966/371472 [2:25:17<17:37:17, 3.21it/s] 45%|████▌ | 167967/371472 [2:25:17<17:21:52, 3.26it/s] 45%|████▌ | 167968/371472 [2:25:17<17:28:43, 3.23it/s] 45%|████▌ | 167969/371472 [2:25:18<17:13:09, 3.28it/s] 45%|████▌ | 167970/371472 [2:25:18<16:39:23, 3.39it/s] 45%|████▌ | 167971/371472 [2:25:18<16:15:34, 3.48it/s] 45%|████▌ | 167972/371472 [2:25:19<16:33:43, 3.41it/s] 45%|████▌ | 167973/371472 [2:25:19<16:37:20, 3.40it/s] 45%|████▌ | 167974/371472 [2:25:19<17:40:13, 3.20it/s] 45%|████▌ | 167975/371472 [2:25:20<19:11:54, 2.94it/s] 45%|████▌ | 167976/371472 [2:25:20<18:55:09, 2.99it/s] 45%|████▌ | 167977/371472 [2:25:20<18:16:22, 3.09it/s] 45%|████▌ | 167978/371472 [2:25:21<17:43:21, 3.19it/s] 45%|████▌ | 167979/371472 [2:25:21<17:32:08, 3.22it/s] 45%|████▌ | 167980/371472 [2:25:21<17:46:07, 3.18it/s] {'loss': 2.9237, 'learning_rate': 5.932847077075567e-07, 'epoch': 7.24} + 45%|████▌ | 167980/371472 [2:25:21<17:46:07, 3.18it/s] 45%|████▌ | 167981/371472 [2:25:22<17:30:32, 3.23it/s] 45%|████▌ | 167982/371472 [2:25:22<16:42:08, 3.38it/s] 45%|████▌ | 167983/371472 [2:25:22<16:25:26, 3.44it/s] 45%|████▌ | 167984/371472 [2:25:22<17:58:41, 3.14it/s] 45%|████▌ | 167985/371472 [2:25:23<17:58:05, 3.15it/s] 45%|████▌ | 167986/371472 [2:25:23<17:46:57, 3.18it/s] 45%|████▌ | 167987/371472 [2:25:23<17:16:59, 3.27it/s] 45%|████▌ | 167988/371472 [2:25:24<17:11:30, 3.29it/s] 45%|████▌ | 167989/371472 [2:25:24<16:57:06, 3.33it/s] 45%|████▌ | 167990/371472 [2:25:24<16:42:38, 3.38it/s] 45%|████▌ | 167991/371472 [2:25:25<16:33:19, 3.41it/s] 45%|████▌ | 167992/371472 [2:25:25<16:17:36, 3.47it/s] 45%|████▌ | 167993/371472 [2:25:25<17:35:51, 3.21it/s] 45%|████▌ | 167994/371472 [2:25:25<17:38:52, 3.20it/s] 45%|████▌ | 167995/371472 [2:25:26<17:49:50, 3.17it/s] 45%|████▌ | 167996/371472 [2:25:26<17:19:46, 3.26it/s] 45%|████▌ | 167997/371472 [2:25:26<17:23:43, 3.25it/s] 45%|████▌ | 167998/371472 [2:25:27<17:29:54, 3.23it/s] 45%|████▌ | 167999/371472 [2:25:27<16:47:06, 3.37it/s] 45%|████▌ | 168000/371472 [2:25:27<18:33:01, 3.05it/s] {'loss': 2.9389, 'learning_rate': 5.932362257320779e-07, 'epoch': 7.24} + 45%|████▌ | 168000/371472 [2:25:27<18:33:01, 3.05it/s] 45%|████▌ | 168001/371472 [2:25:28<18:02:54, 3.13it/s] 45%|████▌ | 168002/371472 [2:25:28<17:42:38, 3.19it/s] 45%|████▌ | 168003/371472 [2:25:28<17:06:46, 3.30it/s] 45%|████▌ | 168004/371472 [2:25:29<17:12:01, 3.29it/s] 45%|████▌ | 168005/371472 [2:25:29<16:51:53, 3.35it/s] 45%|████▌ | 168006/371472 [2:25:29<18:17:28, 3.09it/s] 45%|████▌ | 168007/371472 [2:25:29<17:31:18, 3.23it/s] 45%|████▌ | 168008/371472 [2:25:30<17:08:40, 3.30it/s] 45%|████▌ | 168009/371472 [2:25:30<16:39:01, 3.39it/s] 45%|████▌ | 168010/371472 [2:25:30<17:26:08, 3.24it/s] 45%|████▌ | 168011/371472 [2:25:31<16:56:02, 3.34it/s] 45%|████▌ | 168012/371472 [2:25:31<16:40:04, 3.39it/s] 45%|████▌ | 168013/371472 [2:25:31<17:58:52, 3.14it/s] 45%|████▌ | 168014/371472 [2:25:32<18:13:37, 3.10it/s] 45%|████▌ | 168015/371472 [2:25:32<17:36:18, 3.21it/s] 45%|████▌ | 168016/371472 [2:25:32<16:57:34, 3.33it/s] 45%|████▌ | 168017/371472 [2:25:33<16:33:50, 3.41it/s] 45%|████▌ | 168018/371472 [2:25:33<16:45:04, 3.37it/s] 45%|████▌ | 168019/371472 [2:25:33<16:19:57, 3.46it/s] 45%|████▌ | 168020/371472 [2:25:33<17:22:30, 3.25it/s] {'loss': 3.1977, 'learning_rate': 5.931877437565988e-07, 'epoch': 7.24} + 45%|████▌ | 168020/371472 [2:25:33<17:22:30, 3.25it/s] 45%|████▌ | 168021/371472 [2:25:34<16:54:52, 3.34it/s] 45%|████▌ | 168022/371472 [2:25:34<17:52:43, 3.16it/s] 45%|████▌ | 168023/371472 [2:25:34<17:39:17, 3.20it/s] 45%|████▌ | 168024/371472 [2:25:35<17:08:32, 3.30it/s] 45%|████▌ | 168025/371472 [2:25:35<16:37:41, 3.40it/s] 45%|████▌ | 168026/371472 [2:25:35<16:54:41, 3.34it/s] 45%|████▌ | 168027/371472 [2:25:36<17:19:05, 3.26it/s] 45%|████▌ | 168028/371472 [2:25:36<17:24:42, 3.25it/s] 45%|████▌ | 168029/371472 [2:25:36<17:02:52, 3.31it/s] 45%|████▌ | 168030/371472 [2:25:36<16:45:02, 3.37it/s] 45%|████▌ | 168031/371472 [2:25:37<16:53:15, 3.35it/s] 45%|████▌ | 168032/371472 [2:25:37<16:35:24, 3.41it/s] 45%|████▌ | 168033/371472 [2:25:37<16:36:30, 3.40it/s] 45%|████▌ | 168034/371472 [2:25:38<19:34:23, 2.89it/s] 45%|████▌ | 168035/371472 [2:25:38<18:41:00, 3.02it/s] 45%|████▌ | 168036/371472 [2:25:38<18:13:47, 3.10it/s] 45%|████▌ | 168037/371472 [2:25:39<17:54:13, 3.16it/s] 45%|████▌ | 168038/371472 [2:25:39<17:23:02, 3.25it/s] 45%|████▌ | 168039/371472 [2:25:39<17:11:07, 3.29it/s] 45%|████▌ | 168040/371472 [2:25:40<16:35:04, 3.41it/s] {'loss': 3.0234, 'learning_rate': 5.9313926178112e-07, 'epoch': 7.24} + 45%|████▌ | 168040/371472 [2:25:40<16:35:04, 3.41it/s] 45%|████▌ | 168041/371472 [2:25:40<16:55:47, 3.34it/s] 45%|████▌ | 168042/371472 [2:25:40<16:20:33, 3.46it/s] 45%|████▌ | 168043/371472 [2:25:40<17:30:56, 3.23it/s] 45%|████▌ | 168044/371472 [2:25:41<17:01:31, 3.32it/s] 45%|████▌ | 168045/371472 [2:25:41<17:49:50, 3.17it/s] 45%|████▌ | 168046/371472 [2:25:41<17:22:48, 3.25it/s] 45%|████▌ | 168047/371472 [2:25:42<18:16:55, 3.09it/s] 45%|████▌ | 168048/371472 [2:25:42<18:51:11, 3.00it/s] 45%|████▌ | 168049/371472 [2:25:42<17:59:44, 3.14it/s] 45%|████▌ | 168050/371472 [2:25:43<17:38:41, 3.20it/s] 45%|████▌ | 168051/371472 [2:25:43<17:20:28, 3.26it/s] 45%|████▌ | 168052/371472 [2:25:43<16:55:23, 3.34it/s] 45%|████▌ | 168053/371472 [2:25:44<16:54:24, 3.34it/s] 45%|████▌ | 168054/371472 [2:25:44<16:34:02, 3.41it/s] 45%|████▌ | 168055/371472 [2:25:44<16:53:10, 3.35it/s] 45%|████▌ | 168056/371472 [2:25:44<16:39:06, 3.39it/s] 45%|████▌ | 168057/371472 [2:25:45<16:43:53, 3.38it/s] 45%|████▌ | 168058/371472 [2:25:45<16:33:53, 3.41it/s] 45%|████▌ | 168059/371472 [2:25:45<18:17:05, 3.09it/s] 45%|████▌ | 168060/371472 [2:25:46<17:33:47, 3.22it/s] {'loss': 2.8896, 'learning_rate': 5.930907798056412e-07, 'epoch': 7.24} + 45%|████▌ | 168060/371472 [2:25:46<17:33:47, 3.22it/s] 45%|████▌ | 168061/371472 [2:25:46<17:17:59, 3.27it/s] 45%|████▌ | 168062/371472 [2:25:46<17:13:20, 3.28it/s] 45%|████▌ | 168063/371472 [2:25:47<16:41:43, 3.38it/s] 45%|████▌ | 168064/371472 [2:25:47<16:33:46, 3.41it/s] 45%|████▌ | 168065/371472 [2:25:47<16:57:50, 3.33it/s] 45%|████▌ | 168066/371472 [2:25:48<18:54:32, 2.99it/s] 45%|████▌ | 168067/371472 [2:25:48<18:13:58, 3.10it/s] 45%|████▌ | 168068/371472 [2:25:48<17:59:42, 3.14it/s] 45%|████▌ | 168069/371472 [2:25:48<17:20:01, 3.26it/s] 45%|████▌ | 168070/371472 [2:25:49<18:22:12, 3.08it/s] 45%|████▌ | 168071/371472 [2:25:49<17:38:34, 3.20it/s] 45%|████▌ | 168072/371472 [2:25:49<16:55:42, 3.34it/s] 45%|████▌ | 168073/371472 [2:25:50<16:26:19, 3.44it/s] 45%|████▌ | 168074/371472 [2:25:50<16:12:36, 3.49it/s] 45%|████▌ | 168075/371472 [2:25:50<16:00:56, 3.53it/s] 45%|████▌ | 168076/371472 [2:25:51<16:02:58, 3.52it/s] 45%|████▌ | 168077/371472 [2:25:51<16:08:34, 3.50it/s] 45%|████▌ | 168078/371472 [2:25:51<16:36:34, 3.40it/s] 45%|████▌ | 168079/371472 [2:25:51<16:53:00, 3.35it/s] 45%|████▌ | 168080/371472 [2:25:52<16:24:55, 3.44it/s] {'loss': 2.9428, 'learning_rate': 5.930422978301622e-07, 'epoch': 7.24} + 45%|████▌ | 168080/371472 [2:25:52<16:24:55, 3.44it/s] 45%|████▌ | 168081/371472 [2:25:52<16:15:14, 3.48it/s] 45%|████▌ | 168082/371472 [2:25:52<16:59:19, 3.33it/s] 45%|████▌ | 168083/371472 [2:25:53<16:51:04, 3.35it/s] 45%|████▌ | 168084/371472 [2:25:53<16:37:49, 3.40it/s] 45%|████▌ | 168085/371472 [2:25:53<16:36:55, 3.40it/s] 45%|████▌ | 168086/371472 [2:25:53<16:31:58, 3.42it/s] 45%|████▌ | 168087/371472 [2:25:54<16:32:01, 3.42it/s] 45%|████▌ | 168088/371472 [2:25:54<16:37:22, 3.40it/s] 45%|████▌ | 168089/371472 [2:25:54<16:28:06, 3.43it/s] 45%|████▌ | 168090/371472 [2:25:55<16:32:08, 3.42it/s] 45%|████▌ | 168091/371472 [2:25:55<16:24:44, 3.44it/s] 45%|████▌ | 168092/371472 [2:25:55<16:32:48, 3.41it/s] 45%|████▌ | 168093/371472 [2:25:56<16:24:01, 3.44it/s] 45%|████▌ | 168094/371472 [2:25:56<16:20:23, 3.46it/s] 45%|████▌ | 168095/371472 [2:25:56<16:15:25, 3.48it/s] 45%|████▌ | 168096/371472 [2:25:56<16:12:25, 3.49it/s] 45%|████▌ | 168097/371472 [2:25:57<16:20:56, 3.46it/s] 45%|████▌ | 168098/371472 [2:25:57<16:41:02, 3.39it/s] 45%|████▌ | 168099/371472 [2:25:57<16:44:40, 3.37it/s] 45%|████▌ | 168100/371472 [2:25:58<17:13:58, 3.28it/s] {'loss': 2.9208, 'learning_rate': 5.929938158546832e-07, 'epoch': 7.24} + 45%|████▌ | 168100/371472 [2:25:58<17:13:58, 3.28it/s] 45%|████▌ | 168101/371472 [2:25:58<17:21:53, 3.25it/s] 45%|████▌ | 168102/371472 [2:25:58<17:02:47, 3.31it/s] 45%|████▌ | 168103/371472 [2:25:59<17:15:40, 3.27it/s] 45%|████▌ | 168104/371472 [2:25:59<18:43:51, 3.02it/s] 45%|████▌ | 168105/371472 [2:25:59<18:43:03, 3.02it/s] 45%|████▌ | 168106/371472 [2:26:00<17:53:20, 3.16it/s] 45%|████▌ | 168107/371472 [2:26:00<17:53:05, 3.16it/s] 45%|████▌ | 168108/371472 [2:26:00<17:23:14, 3.25it/s] 45%|████▌ | 168109/371472 [2:26:00<17:10:52, 3.29it/s] 45%|████▌ | 168110/371472 [2:26:01<17:12:14, 3.28it/s] 45%|████▌ | 168111/371472 [2:26:01<16:42:57, 3.38it/s] 45%|████▌ | 168112/371472 [2:26:01<16:32:23, 3.42it/s] 45%|████▌ | 168113/371472 [2:26:02<16:26:50, 3.43it/s] 45%|████▌ | 168114/371472 [2:26:02<16:23:25, 3.45it/s] 45%|████▌ | 168115/371472 [2:26:02<16:26:02, 3.44it/s] 45%|████▌ | 168116/371472 [2:26:02<16:28:43, 3.43it/s] 45%|████▌ | 168117/371472 [2:26:03<16:10:01, 3.49it/s] 45%|████▌ | 168118/371472 [2:26:03<16:15:34, 3.47it/s] 45%|████▌ | 168119/371472 [2:26:03<17:25:26, 3.24it/s] 45%|████▌ | 168120/371472 [2:26:04<16:55:52, 3.34it/s] {'loss': 3.0968, 'learning_rate': 5.929453338792044e-07, 'epoch': 7.24} + 45%|████▌ | 168120/371472 [2:26:04<16:55:52, 3.34it/s] 45%|████▌ | 168121/371472 [2:26:04<18:02:53, 3.13it/s] 45%|████▌ | 168122/371472 [2:26:04<17:50:51, 3.16it/s] 45%|████▌ | 168123/371472 [2:26:05<16:54:24, 3.34it/s] 45%|████▌ | 168124/371472 [2:26:05<16:32:21, 3.42it/s] 45%|████▌ | 168125/371472 [2:26:05<16:20:18, 3.46it/s] 45%|████▌ | 168126/371472 [2:26:05<16:32:32, 3.41it/s] 45%|████▌ | 168127/371472 [2:26:06<16:31:53, 3.42it/s] 45%|████▌ | 168128/371472 [2:26:06<16:08:21, 3.50it/s] 45%|████▌ | 168129/371472 [2:26:06<16:51:01, 3.35it/s] 45%|████▌ | 168130/371472 [2:26:07<17:57:57, 3.14it/s] 45%|████▌ | 168131/371472 [2:26:07<20:03:14, 2.82it/s] 45%|████▌ | 168132/371472 [2:26:07<18:53:10, 2.99it/s] 45%|████▌ | 168133/371472 [2:26:08<18:31:36, 3.05it/s] 45%|████▌ | 168134/371472 [2:26:08<18:09:07, 3.11it/s] 45%|████▌ | 168135/371472 [2:26:08<17:43:40, 3.19it/s] 45%|████▌ | 168136/371472 [2:26:09<17:16:40, 3.27it/s] 45%|████▌ | 168137/371472 [2:26:09<17:05:41, 3.30it/s] 45%|████▌ | 168138/371472 [2:26:09<17:43:56, 3.19it/s] 45%|████▌ | 168139/371472 [2:26:10<17:07:22, 3.30it/s] 45%|████▌ | 168140/371472 [2:26:10<17:15:27, 3.27it/s] {'loss': 2.8931, 'learning_rate': 5.928968519037256e-07, 'epoch': 7.24} + 45%|████▌ | 168140/371472 [2:26:10<17:15:27, 3.27it/s] 45%|████▌ | 168141/371472 [2:26:10<16:43:51, 3.38it/s] 45%|████▌ | 168142/371472 [2:26:10<16:42:48, 3.38it/s] 45%|████▌ | 168143/371472 [2:26:11<16:42:35, 3.38it/s] 45%|████▌ | 168144/371472 [2:26:11<16:38:21, 3.39it/s] 45%|████▌ | 168145/371472 [2:26:11<16:23:11, 3.45it/s] 45%|████▌ | 168146/371472 [2:26:12<16:14:00, 3.48it/s] 45%|████▌ | 168147/371472 [2:26:12<16:10:41, 3.49it/s] 45%|████▌ | 168148/371472 [2:26:12<16:08:48, 3.50it/s] 45%|████▌ | 168149/371472 [2:26:12<15:54:10, 3.55it/s] 45%|████▌ | 168150/371472 [2:26:13<15:56:27, 3.54it/s] 45%|████▌ | 168151/371472 [2:26:13<15:57:09, 3.54it/s] 45%|████▌ | 168152/371472 [2:26:13<16:21:21, 3.45it/s] 45%|████▌ | 168153/371472 [2:26:14<16:20:58, 3.45it/s] 45%|████▌ | 168154/371472 [2:26:14<18:07:58, 3.11it/s] 45%|████▌ | 168155/371472 [2:26:14<17:40:45, 3.19it/s] 45%|████▌ | 168156/371472 [2:26:15<17:15:16, 3.27it/s] 45%|████▌ | 168157/371472 [2:26:15<17:04:21, 3.31it/s] 45%|████▌ | 168158/371472 [2:26:15<17:39:10, 3.20it/s] 45%|████▌ | 168159/371472 [2:26:15<17:15:52, 3.27it/s] 45%|████▌ | 168160/371472 [2:26:16<16:56:27, 3.33it/s] {'loss': 2.9136, 'learning_rate': 5.928483699282467e-07, 'epoch': 7.24} + 45%|████▌ | 168160/371472 [2:26:16<16:56:27, 3.33it/s] 45%|████▌ | 168161/371472 [2:26:16<17:00:01, 3.32it/s] 45%|████▌ | 168162/371472 [2:26:16<17:10:09, 3.29it/s] 45%|████▌ | 168163/371472 [2:26:17<16:40:00, 3.39it/s] 45%|████▌ | 168164/371472 [2:26:17<16:34:55, 3.41it/s] 45%|████▌ | 168165/371472 [2:26:17<16:29:34, 3.42it/s] 45%|████▌ | 168166/371472 [2:26:18<16:35:28, 3.40it/s] 45%|████▌ | 168167/371472 [2:26:18<16:36:15, 3.40it/s] 45%|████▌ | 168168/371472 [2:26:18<16:28:27, 3.43it/s] 45%|████▌ | 168169/371472 [2:26:18<17:13:57, 3.28it/s] 45%|████▌ | 168170/371472 [2:26:19<17:34:07, 3.21it/s] 45%|████▌ | 168171/371472 [2:26:19<17:14:08, 3.28it/s] 45%|████▌ | 168172/371472 [2:26:19<16:53:46, 3.34it/s] 45%|████▌ | 168173/371472 [2:26:20<16:26:17, 3.44it/s] 45%|████▌ | 168174/371472 [2:26:20<16:46:19, 3.37it/s] 45%|████▌ | 168175/371472 [2:26:20<17:11:34, 3.28it/s] 45%|████▌ | 168176/371472 [2:26:21<16:37:53, 3.40it/s] 45%|████▌ | 168177/371472 [2:26:21<17:08:18, 3.29it/s] 45%|████▌ | 168178/371472 [2:26:21<16:52:08, 3.35it/s] 45%|████▌ | 168179/371472 [2:26:21<16:27:02, 3.43it/s] 45%|████▌ | 168180/371472 [2:26:22<16:24:15, 3.44it/s] {'loss': 3.1429, 'learning_rate': 5.927998879527677e-07, 'epoch': 7.24} + 45%|████▌ | 168180/371472 [2:26:22<16:24:15, 3.44it/s] 45%|████▌ | 168181/371472 [2:26:22<16:40:27, 3.39it/s] 45%|████▌ | 168182/371472 [2:26:22<16:45:31, 3.37it/s] 45%|████▌ | 168183/371472 [2:26:23<16:51:48, 3.35it/s] 45%|████▌ | 168184/371472 [2:26:23<16:24:08, 3.44it/s] 45%|████▌ | 168185/371472 [2:26:23<17:07:04, 3.30it/s] 45%|████▌ | 168186/371472 [2:26:23<17:00:52, 3.32it/s] 45%|████▌ | 168187/371472 [2:26:24<17:05:16, 3.30it/s] 45%|████▌ | 168188/371472 [2:26:24<17:18:10, 3.26it/s] 45%|████▌ | 168189/371472 [2:26:24<17:12:57, 3.28it/s] 45%|████▌ | 168190/371472 [2:26:25<17:59:36, 3.14it/s] 45%|████▌ | 168191/371472 [2:26:25<19:25:18, 2.91it/s] 45%|████▌ | 168192/371472 [2:26:26<19:37:05, 2.88it/s] 45%|████▌ | 168193/371472 [2:26:26<18:56:39, 2.98it/s] 45%|████▌ | 168194/371472 [2:26:26<18:59:17, 2.97it/s] 45%|████▌ | 168195/371472 [2:26:27<19:20:44, 2.92it/s] 45%|████▌ | 168196/371472 [2:26:27<19:09:51, 2.95it/s] 45%|████▌ | 168197/371472 [2:26:27<18:18:02, 3.09it/s] 45%|████▌ | 168198/371472 [2:26:27<17:15:56, 3.27it/s] 45%|████▌ | 168199/371472 [2:26:28<17:27:25, 3.23it/s] 45%|████▌ | 168200/371472 [2:26:28<17:08:51, 3.29it/s] {'loss': 3.007, 'learning_rate': 5.927514059772889e-07, 'epoch': 7.24} + 45%|████▌ | 168200/371472 [2:26:28<17:08:51, 3.29it/s] 45%|████▌ | 168201/371472 [2:26:28<16:54:20, 3.34it/s] 45%|████▌ | 168202/371472 [2:26:29<17:05:49, 3.30it/s] 45%|████▌ | 168203/371472 [2:26:29<17:40:55, 3.19it/s] 45%|████▌ | 168204/371472 [2:26:29<17:22:37, 3.25it/s] 45%|████▌ | 168205/371472 [2:26:30<17:19:10, 3.26it/s] 45%|████▌ | 168206/371472 [2:26:30<17:07:10, 3.30it/s] 45%|████▌ | 168207/371472 [2:26:30<16:58:13, 3.33it/s] 45%|████▌ | 168208/371472 [2:26:30<16:50:30, 3.35it/s] 45%|████▌ | 168209/371472 [2:26:31<16:28:41, 3.43it/s] 45%|████▌ | 168210/371472 [2:26:31<16:23:46, 3.44it/s] 45%|████▌ | 168211/371472 [2:26:31<19:16:41, 2.93it/s] 45%|████▌ | 168212/371472 [2:26:32<18:27:13, 3.06it/s] 45%|████▌ | 168213/371472 [2:26:32<18:16:00, 3.09it/s] 45%|████▌ | 168214/371472 [2:26:32<18:43:26, 3.02it/s] 45%|████▌ | 168215/371472 [2:26:33<18:00:41, 3.13it/s] 45%|████▌ | 168216/371472 [2:26:33<17:18:09, 3.26it/s] 45%|████▌ | 168217/371472 [2:26:33<17:52:39, 3.16it/s] 45%|████▌ | 168218/371472 [2:26:34<17:41:00, 3.19it/s] 45%|████▌ | 168219/371472 [2:26:34<17:10:01, 3.29it/s] 45%|████▌ | 168220/371472 [2:26:34<17:38:45, 3.20it/s] {'loss': 2.9629, 'learning_rate': 5.9270292400181e-07, 'epoch': 7.25} + 45%|████▌ | 168220/371472 [2:26:34<17:38:45, 3.20it/s] 45%|████▌ | 168221/371472 [2:26:35<17:13:37, 3.28it/s] 45%|████▌ | 168222/371472 [2:26:35<16:55:13, 3.34it/s] 45%|████▌ | 168223/371472 [2:26:35<16:53:11, 3.34it/s] 45%|████▌ | 168224/371472 [2:26:35<17:23:00, 3.25it/s] 45%|████▌ | 168225/371472 [2:26:36<18:27:58, 3.06it/s] 45%|████▌ | 168226/371472 [2:26:36<18:07:37, 3.11it/s] 45%|████▌ | 168227/371472 [2:26:36<17:26:16, 3.24it/s] 45%|████▌ | 168228/371472 [2:26:37<17:02:47, 3.31it/s] 45%|████▌ | 168229/371472 [2:26:37<16:29:24, 3.42it/s] 45%|████▌ | 168230/371472 [2:26:37<18:40:25, 3.02it/s] 45%|████▌ | 168231/371472 [2:26:38<18:10:45, 3.11it/s] 45%|████▌ | 168232/371472 [2:26:38<17:43:25, 3.19it/s] 45%|████▌ | 168233/371472 [2:26:38<17:21:32, 3.25it/s] 45%|████▌ | 168234/371472 [2:26:39<18:23:59, 3.07it/s] 45%|████▌ | 168235/371472 [2:26:39<17:45:15, 3.18it/s] 45%|████▌ | 168236/371472 [2:26:39<17:53:24, 3.16it/s] 45%|████▌ | 168237/371472 [2:26:40<17:59:06, 3.14it/s] 45%|████▌ | 168238/371472 [2:26:40<17:37:37, 3.20it/s] 45%|████▌ | 168239/371472 [2:26:40<17:11:07, 3.28it/s] 45%|████▌ | 168240/371472 [2:26:40<16:51:01, 3.35it/s] {'loss': 2.9683, 'learning_rate': 5.92654442026331e-07, 'epoch': 7.25} + 45%|████▌ | 168240/371472 [2:26:40<16:51:01, 3.35it/s] 45%|████▌ | 168241/371472 [2:26:41<16:29:05, 3.42it/s] 45%|████▌ | 168242/371472 [2:26:41<17:02:35, 3.31it/s] 45%|████▌ | 168243/371472 [2:26:41<17:18:48, 3.26it/s] 45%|████▌ | 168244/371472 [2:26:42<16:58:42, 3.32it/s] 45%|████▌ | 168245/371472 [2:26:42<16:56:54, 3.33it/s] 45%|████▌ | 168246/371472 [2:26:42<16:45:20, 3.37it/s] 45%|████▌ | 168247/371472 [2:26:43<17:02:06, 3.31it/s] 45%|████▌ | 168248/371472 [2:26:43<16:56:41, 3.33it/s] 45%|████▌ | 168249/371472 [2:26:43<17:29:02, 3.23it/s] 45%|████▌ | 168250/371472 [2:26:44<17:53:47, 3.15it/s] 45%|████▌ | 168251/371472 [2:26:44<17:45:02, 3.18it/s] 45%|████▌ | 168252/371472 [2:26:44<17:05:48, 3.30it/s] 45%|████▌ | 168253/371472 [2:26:44<17:02:29, 3.31it/s] 45%|████▌ | 168254/371472 [2:26:45<16:48:08, 3.36it/s] 45%|████▌ | 168255/371472 [2:26:45<16:44:50, 3.37it/s] 45%|████▌ | 168256/371472 [2:26:45<16:14:26, 3.48it/s] 45%|████▌ | 168257/371472 [2:26:46<16:09:10, 3.49it/s] 45%|████▌ | 168258/371472 [2:26:46<16:09:35, 3.49it/s] 45%|████▌ | 168259/371472 [2:26:46<15:55:55, 3.54it/s] 45%|████▌ | 168260/371472 [2:26:46<16:45:58, 3.37it/s] {'loss': 3.0316, 'learning_rate': 5.926059600508521e-07, 'epoch': 7.25} + 45%|████▌ | 168260/371472 [2:26:46<16:45:58, 3.37it/s] 45%|████▌ | 168261/371472 [2:26:47<16:25:00, 3.44it/s] 45%|████▌ | 168262/371472 [2:26:47<17:15:23, 3.27it/s] 45%|████▌ | 168263/371472 [2:26:47<18:14:47, 3.09it/s] 45%|████▌ | 168264/371472 [2:26:48<17:21:12, 3.25it/s] 45%|████▌ | 168265/371472 [2:26:48<18:20:47, 3.08it/s] 45%|████▌ | 168266/371472 [2:26:48<18:21:17, 3.08it/s] 45%|████▌ | 168267/371472 [2:26:49<18:58:15, 2.98it/s] 45%|████▌ | 168268/371472 [2:26:49<17:48:41, 3.17it/s] 45%|████▌ | 168269/371472 [2:26:49<17:18:15, 3.26it/s] 45%|████▌ | 168270/371472 [2:26:50<17:42:23, 3.19it/s] 45%|████▌ | 168271/371472 [2:26:50<17:38:51, 3.20it/s] 45%|████▌ | 168272/371472 [2:26:50<17:41:25, 3.19it/s] 45%|████▌ | 168273/371472 [2:26:51<17:30:43, 3.22it/s] 45%|████▌ | 168274/371472 [2:26:51<18:00:31, 3.13it/s] 45%|████▌ | 168275/371472 [2:26:51<18:21:28, 3.07it/s] 45%|████▌ | 168276/371472 [2:26:51<17:29:23, 3.23it/s] 45%|████▌ | 168277/371472 [2:26:52<17:22:41, 3.25it/s] 45%|████▌ | 168278/371472 [2:26:52<17:01:08, 3.32it/s] 45%|████▌ | 168279/371472 [2:26:52<16:49:27, 3.35it/s] 45%|████▌ | 168280/371472 [2:26:53<16:22:24, 3.45it/s] {'loss': 2.954, 'learning_rate': 5.925574780753733e-07, 'epoch': 7.25} + 45%|████▌ | 168280/371472 [2:26:53<16:22:24, 3.45it/s] 45%|████▌ | 168281/371472 [2:26:53<16:22:08, 3.45it/s] 45%|████▌ | 168282/371472 [2:26:53<18:01:53, 3.13it/s] 45%|████▌ | 168283/371472 [2:26:54<17:00:26, 3.32it/s] 45%|████▌ | 168284/371472 [2:26:54<16:34:00, 3.41it/s] 45%|████▌ | 168285/371472 [2:26:54<16:31:43, 3.41it/s] 45%|████▌ | 168286/371472 [2:26:54<16:01:20, 3.52it/s] 45%|████▌ | 168287/371472 [2:26:55<15:40:52, 3.60it/s] 45%|████▌ | 168288/371472 [2:26:55<15:32:41, 3.63it/s] 45%|████▌ | 168289/371472 [2:26:55<15:16:15, 3.70it/s] 45%|████▌ | 168290/371472 [2:26:56<16:11:07, 3.49it/s] 45%|████▌ | 168291/371472 [2:26:56<16:52:32, 3.34it/s] 45%|████▌ | 168292/371472 [2:26:56<16:56:21, 3.33it/s] 45%|████▌ | 168293/371472 [2:26:56<17:10:21, 3.29it/s] 45%|████▌ | 168294/371472 [2:26:57<17:10:43, 3.29it/s] 45%|████▌ | 168295/371472 [2:26:57<17:02:25, 3.31it/s] 45%|████▌ | 168296/371472 [2:26:57<16:51:13, 3.35it/s] 45%|████▌ | 168297/371472 [2:26:58<16:56:23, 3.33it/s] 45%|████▌ | 168298/371472 [2:26:58<16:39:03, 3.39it/s] 45%|████▌ | 168299/371472 [2:26:58<16:35:58, 3.40it/s] 45%|████▌ | 168300/371472 [2:26:59<16:32:33, 3.41it/s] {'loss': 2.9693, 'learning_rate': 5.925089960998945e-07, 'epoch': 7.25} + 45%|████▌ | 168300/371472 [2:26:59<16:32:33, 3.41it/s] 45%|████▌ | 168301/371472 [2:26:59<16:25:31, 3.44it/s] 45%|████▌ | 168302/371472 [2:26:59<16:35:26, 3.40it/s] 45%|████▌ | 168303/371472 [2:26:59<16:11:46, 3.48it/s] 45%|████▌ | 168304/371472 [2:27:00<15:59:30, 3.53it/s] 45%|████▌ | 168305/371472 [2:27:00<15:52:11, 3.56it/s] 45%|████▌ | 168306/371472 [2:27:00<15:45:47, 3.58it/s] 45%|████▌ | 168307/371472 [2:27:00<15:45:53, 3.58it/s] 45%|████▌ | 168308/371472 [2:27:01<15:44:26, 3.59it/s] 45%|████▌ | 168309/371472 [2:27:01<15:33:08, 3.63it/s] 45%|████▌ | 168310/371472 [2:27:01<15:46:28, 3.58it/s] 45%|████▌ | 168311/371472 [2:27:02<15:46:07, 3.58it/s] 45%|████▌ | 168312/371472 [2:27:02<15:58:21, 3.53it/s] 45%|████▌ | 168313/371472 [2:27:02<19:29:04, 2.90it/s] 45%|████▌ | 168314/371472 [2:27:03<18:15:38, 3.09it/s] 45%|████▌ | 168315/371472 [2:27:03<17:54:17, 3.15it/s] 45%|████▌ | 168316/371472 [2:27:03<17:30:51, 3.22it/s] 45%|████▌ | 168317/371472 [2:27:04<16:57:15, 3.33it/s] 45%|████▌ | 168318/371472 [2:27:04<17:29:10, 3.23it/s] 45%|████▌ | 168319/371472 [2:27:04<16:48:11, 3.36it/s] 45%|████▌ | 168320/371472 [2:27:04<16:59:46, 3.32it/s] {'loss': 2.9614, 'learning_rate': 5.924605141244155e-07, 'epoch': 7.25} + 45%|████▌ | 168320/371472 [2:27:04<16:59:46, 3.32it/s] 45%|████▌ | 168321/371472 [2:27:05<16:33:30, 3.41it/s] 45%|████▌ | 168322/371472 [2:27:05<16:15:57, 3.47it/s] 45%|████▌ | 168323/371472 [2:27:05<16:13:20, 3.48it/s] 45%|████▌ | 168324/371472 [2:27:06<16:33:42, 3.41it/s] 45%|████▌ | 168325/371472 [2:27:06<16:39:30, 3.39it/s] 45%|████▌ | 168326/371472 [2:27:06<16:49:22, 3.35it/s] 45%|████▌ | 168327/371472 [2:27:06<16:40:21, 3.38it/s] 45%|████▌ | 168328/371472 [2:27:07<16:24:13, 3.44it/s] 45%|████▌ | 168329/371472 [2:27:07<16:56:48, 3.33it/s] 45%|████▌ | 168330/371472 [2:27:07<16:45:39, 3.37it/s] 45%|████▌ | 168331/371472 [2:27:08<16:45:03, 3.37it/s] 45%|████▌ | 168332/371472 [2:27:08<17:19:44, 3.26it/s] 45%|████▌ | 168333/371472 [2:27:08<17:23:14, 3.25it/s] 45%|████▌ | 168334/371472 [2:27:09<17:12:26, 3.28it/s] 45%|████▌ | 168335/371472 [2:27:09<16:45:59, 3.37it/s] 45%|████▌ | 168336/371472 [2:27:09<16:19:48, 3.46it/s] 45%|████▌ | 168337/371472 [2:27:09<16:31:03, 3.42it/s] 45%|████▌ | 168338/371472 [2:27:10<16:06:28, 3.50it/s] 45%|████▌ | 168339/371472 [2:27:10<16:19:43, 3.46it/s] 45%|████▌ | 168340/371472 [2:27:10<16:16:11, 3.47it/s] {'loss': 3.064, 'learning_rate': 5.924120321489365e-07, 'epoch': 7.25} + 45%|████▌ | 168340/371472 [2:27:10<16:16:11, 3.47it/s] 45%|████▌ | 168341/371472 [2:27:11<16:05:01, 3.51it/s] 45%|████▌ | 168342/371472 [2:27:11<16:03:37, 3.51it/s] 45%|████▌ | 168343/371472 [2:27:11<16:13:51, 3.48it/s] 45%|████▌ | 168344/371472 [2:27:12<16:56:00, 3.33it/s] 45%|████▌ | 168345/371472 [2:27:12<17:30:41, 3.22it/s] 45%|████▌ | 168346/371472 [2:27:12<17:19:01, 3.26it/s] 45%|████▌ | 168347/371472 [2:27:12<16:46:44, 3.36it/s] 45%|████▌ | 168348/371472 [2:27:13<16:28:17, 3.43it/s] 45%|████▌ | 168349/371472 [2:27:13<16:40:17, 3.38it/s] 45%|████▌ | 168350/371472 [2:27:13<16:41:27, 3.38it/s] 45%|████▌ | 168351/371472 [2:27:14<17:28:51, 3.23it/s] 45%|████▌ | 168352/371472 [2:27:14<16:59:26, 3.32it/s] 45%|████▌ | 168353/371472 [2:27:14<16:32:10, 3.41it/s] 45%|████▌ | 168354/371472 [2:27:14<16:33:34, 3.41it/s] 45%|████▌ | 168355/371472 [2:27:15<17:56:08, 3.15it/s] 45%|████▌ | 168356/371472 [2:27:15<17:24:48, 3.24it/s] 45%|████▌ | 168357/371472 [2:27:15<17:34:37, 3.21it/s] 45%|████▌ | 168358/371472 [2:27:16<17:24:18, 3.24it/s] 45%|████▌ | 168359/371472 [2:27:16<17:13:45, 3.27it/s] 45%|████▌ | 168360/371472 [2:27:16<18:10:54, 3.10it/s] {'loss': 3.0012, 'learning_rate': 5.923635501734577e-07, 'epoch': 7.25} + 45%|████▌ | 168360/371472 [2:27:16<18:10:54, 3.10it/s] 45%|████▌ | 168361/371472 [2:27:17<18:06:46, 3.11it/s] 45%|████▌ | 168362/371472 [2:27:17<17:19:03, 3.26it/s] 45%|████▌ | 168363/371472 [2:27:17<17:08:48, 3.29it/s] 45%|████▌ | 168364/371472 [2:27:18<20:19:58, 2.77it/s] 45%|████▌ | 168365/371472 [2:27:18<20:09:12, 2.80it/s] 45%|████▌ | 168366/371472 [2:27:18<19:13:13, 2.94it/s] 45%|████▌ | 168367/371472 [2:27:19<18:49:03, 3.00it/s] 45%|████▌ | 168368/371472 [2:27:19<18:19:48, 3.08it/s] 45%|████▌ | 168369/371472 [2:27:19<17:45:25, 3.18it/s] 45%|████▌ | 168370/371472 [2:27:20<17:18:07, 3.26it/s] 45%|████▌ | 168371/371472 [2:27:20<16:46:35, 3.36it/s] 45%|████▌ | 168372/371472 [2:27:20<16:41:27, 3.38it/s] 45%|████▌ | 168373/371472 [2:27:21<17:22:39, 3.25it/s] 45%|████▌ | 168374/371472 [2:27:21<17:25:44, 3.24it/s] 45%|████▌ | 168375/371472 [2:27:21<17:12:25, 3.28it/s] 45%|████▌ | 168376/371472 [2:27:21<17:28:50, 3.23it/s] 45%|████▌ | 168377/371472 [2:27:22<17:19:57, 3.25it/s] 45%|████▌ | 168378/371472 [2:27:22<17:23:06, 3.25it/s] 45%|████▌ | 168379/371472 [2:27:22<17:11:17, 3.28it/s] 45%|████▌ | 168380/371472 [2:27:23<17:16:32, 3.27it/s] {'loss': 2.952, 'learning_rate': 5.923150681979789e-07, 'epoch': 7.25} + 45%|████▌ | 168380/371472 [2:27:23<17:16:32, 3.27it/s] 45%|████▌ | 168381/371472 [2:27:23<18:24:48, 3.06it/s] 45%|████▌ | 168382/371472 [2:27:23<17:33:31, 3.21it/s] 45%|████▌ | 168383/371472 [2:27:24<16:56:29, 3.33it/s] 45%|████▌ | 168384/371472 [2:27:24<17:44:54, 3.18it/s] 45%|████▌ | 168385/371472 [2:27:24<18:31:30, 3.05it/s] 45%|████▌ | 168386/371472 [2:27:25<19:18:41, 2.92it/s] 45%|████▌ | 168387/371472 [2:27:25<18:36:41, 3.03it/s] 45%|████▌ | 168388/371472 [2:27:25<17:53:25, 3.15it/s] 45%|████▌ | 168389/371472 [2:27:26<17:34:54, 3.21it/s] 45%|███���▌ | 168390/371472 [2:27:26<16:51:25, 3.35it/s] 45%|████▌ | 168391/371472 [2:27:26<17:09:09, 3.29it/s] 45%|████▌ | 168392/371472 [2:27:26<16:56:27, 3.33it/s] 45%|████▌ | 168393/371472 [2:27:27<17:34:34, 3.21it/s] 45%|████▌ | 168394/371472 [2:27:27<18:30:36, 3.05it/s] 45%|████▌ | 168395/371472 [2:27:27<17:58:40, 3.14it/s] 45%|████▌ | 168396/371472 [2:27:28<18:28:41, 3.05it/s] 45%|████▌ | 168397/371472 [2:27:28<18:06:30, 3.12it/s] 45%|████▌ | 168398/371472 [2:27:28<17:39:48, 3.19it/s] 45%|████▌ | 168399/371472 [2:27:29<17:27:35, 3.23it/s] 45%|████▌ | 168400/371472 [2:27:29<16:57:28, 3.33it/s] {'loss': 2.9328, 'learning_rate': 5.922665862224999e-07, 'epoch': 7.25} + 45%|████▌ | 168400/371472 [2:27:29<16:57:28, 3.33it/s] 45%|████▌ | 168401/371472 [2:27:29<18:48:51, 3.00it/s] 45%|████▌ | 168402/371472 [2:27:30<18:07:11, 3.11it/s] 45%|████▌ | 168403/371472 [2:27:30<19:04:08, 2.96it/s] 45%|████▌ | 168404/371472 [2:27:30<18:04:23, 3.12it/s] 45%|████▌ | 168405/371472 [2:27:31<17:42:35, 3.19it/s] 45%|████▌ | 168406/371472 [2:27:31<17:41:49, 3.19it/s] 45%|████▌ | 168407/371472 [2:27:31<17:35:12, 3.21it/s] 45%|████▌ | 168408/371472 [2:27:32<17:26:30, 3.23it/s] 45%|████▌ | 168409/371472 [2:27:32<16:40:26, 3.38it/s] 45%|████▌ | 168410/371472 [2:27:32<17:02:03, 3.31it/s] 45%|████▌ | 168411/371472 [2:27:32<17:01:44, 3.31it/s] 45%|████▌ | 168412/371472 [2:27:33<16:39:11, 3.39it/s] 45%|████▌ | 168413/371472 [2:27:33<16:16:11, 3.47it/s] 45%|████▌ | 168414/371472 [2:27:33<16:02:44, 3.52it/s] 45%|████▌ | 168415/371472 [2:27:34<16:43:09, 3.37it/s] 45%|████▌ | 168416/371472 [2:27:34<16:45:02, 3.37it/s] 45%|████▌ | 168417/371472 [2:27:34<16:16:14, 3.47it/s] 45%|████▌ | 168418/371472 [2:27:34<16:02:44, 3.52it/s] 45%|████▌ | 168419/371472 [2:27:35<15:45:22, 3.58it/s] 45%|████▌ | 168420/371472 [2:27:35<17:08:04, 3.29it/s] {'loss': 2.9244, 'learning_rate': 5.92218104247021e-07, 'epoch': 7.25} + 45%|████▌ | 168420/371472 [2:27:35<17:08:04, 3.29it/s] 45%|████▌ | 168421/371472 [2:27:35<17:53:19, 3.15it/s] 45%|████▌ | 168422/371472 [2:27:36<17:12:39, 3.28it/s] 45%|████▌ | 168423/371472 [2:27:36<17:03:02, 3.31it/s] 45%|████▌ | 168424/371472 [2:27:36<17:05:14, 3.30it/s] 45%|████▌ | 168425/371472 [2:27:37<17:06:58, 3.30it/s] 45%|████▌ | 168426/371472 [2:27:37<17:04:40, 3.30it/s] 45%|████▌ | 168427/371472 [2:27:37<17:00:31, 3.32it/s] 45%|████▌ | 168428/371472 [2:27:38<17:23:13, 3.24it/s] 45%|████▌ | 168429/371472 [2:27:38<17:13:27, 3.27it/s] 45%|████▌ | 168430/371472 [2:27:38<16:54:19, 3.34it/s] 45%|████▌ | 168431/371472 [2:27:38<17:30:40, 3.22it/s] 45%|████▌ | 168432/371472 [2:27:39<17:17:55, 3.26it/s] 45%|████▌ | 168433/371472 [2:27:39<17:23:13, 3.24it/s] 45%|████▌ | 168434/371472 [2:27:39<17:05:15, 3.30it/s] 45%|████▌ | 168435/371472 [2:27:40<17:43:11, 3.18it/s] 45%|████▌ | 168436/371472 [2:27:40<17:43:59, 3.18it/s] 45%|████▌ | 168437/371472 [2:27:40<17:45:22, 3.18it/s] 45%|████▌ | 168438/371472 [2:27:41<17:27:28, 3.23it/s] 45%|████▌ | 168439/371472 [2:27:41<17:42:29, 3.18it/s] 45%|████▌ | 168440/371472 [2:27:41<17:19:55, 3.25it/s] {'loss': 2.996, 'learning_rate': 5.921696222715422e-07, 'epoch': 7.26} + 45%|████▌ | 168440/371472 [2:27:41<17:19:55, 3.25it/s] 45%|████▌ | 168441/371472 [2:27:42<18:53:24, 2.99it/s] 45%|████▌ | 168442/371472 [2:27:42<18:42:52, 3.01it/s] 45%|████▌ | 168443/371472 [2:27:42<19:05:40, 2.95it/s] 45%|████▌ | 168444/371472 [2:27:43<18:03:31, 3.12it/s] 45%|████▌ | 168445/371472 [2:27:43<17:07:08, 3.29it/s] 45%|████▌ | 168446/371472 [2:27:43<16:45:49, 3.36it/s] 45%|████▌ | 168447/371472 [2:27:43<16:54:10, 3.34it/s] 45%|████▌ | 168448/371472 [2:27:44<16:41:56, 3.38it/s] 45%|████▌ | 168449/371472 [2:27:44<16:51:06, 3.35it/s] 45%|████▌ | 168450/371472 [2:27:44<16:59:51, 3.32it/s] 45%|████▌ | 168451/371472 [2:27:45<17:48:46, 3.17it/s] 45%|████▌ | 168452/371472 [2:27:45<17:18:47, 3.26it/s] 45%|████▌ | 168453/371472 [2:27:45<17:13:26, 3.27it/s] 45%|████▌ | 168454/371472 [2:27:46<17:09:19, 3.29it/s] 45%|████▌ | 168455/371472 [2:27:46<16:54:18, 3.34it/s] 45%|████▌ | 168456/371472 [2:27:46<17:49:51, 3.16it/s] 45%|████▌ | 168457/371472 [2:27:47<17:35:44, 3.20it/s] 45%|████▌ | 168458/371472 [2:27:47<17:31:04, 3.22it/s] 45%|████▌ | 168459/371472 [2:27:47<17:03:51, 3.30it/s] 45%|████▌ | 168460/371472 [2:27:47<16:57:38, 3.32it/s] {'loss': 3.0186, 'learning_rate': 5.921211402960633e-07, 'epoch': 7.26} + 45%|████▌ | 168460/371472 [2:27:47<16:57:38, 3.32it/s] 45%|████▌ | 168461/371472 [2:27:48<16:40:23, 3.38it/s] 45%|████▌ | 168462/371472 [2:27:48<16:35:27, 3.40it/s] 45%|████▌ | 168463/371472 [2:27:48<16:27:36, 3.43it/s] 45%|████▌ | 168464/371472 [2:27:49<16:06:50, 3.50it/s] 45%|████▌ | 168465/371472 [2:27:49<15:50:10, 3.56it/s] 45%|████▌ | 168466/371472 [2:27:49<17:15:10, 3.27it/s] 45%|████▌ | 168467/371472 [2:27:50<17:31:12, 3.22it/s] 45%|████▌ | 168468/371472 [2:27:50<17:08:42, 3.29it/s] 45%|████▌ | 168469/371472 [2:27:50<16:47:26, 3.36it/s] 45%|████▌ | 168470/371472 [2:27:50<17:27:55, 3.23it/s] 45%|████▌ | 168471/371472 [2:27:51<16:55:28, 3.33it/s] 45%|████▌ | 168472/371472 [2:27:51<16:51:04, 3.35it/s] 45%|████▌ | 168473/371472 [2:27:51<16:44:46, 3.37it/s] 45%|████▌ | 168474/371472 [2:27:52<17:44:09, 3.18it/s] 45%|████▌ | 168475/371472 [2:27:52<16:51:22, 3.35it/s] 45%|████▌ | 168476/371472 [2:27:52<16:45:40, 3.36it/s] 45%|████▌ | 168477/371472 [2:27:53<17:23:16, 3.24it/s] 45%|████▌ | 168478/371472 [2:27:53<17:18:51, 3.26it/s] 45%|████▌ | 168479/371472 [2:27:53<17:30:31, 3.22it/s] 45%|████▌ | 168480/371472 [2:27:53<17:22:09, 3.25it/s] {'loss': 2.9952, 'learning_rate': 5.920726583205843e-07, 'epoch': 7.26} + 45%|████▌ | 168480/371472 [2:27:53<17:22:09, 3.25it/s] 45%|████▌ | 168481/371472 [2:27:54<17:14:34, 3.27it/s] 45%|████▌ | 168482/371472 [2:27:54<17:25:11, 3.24it/s] 45%|████▌ | 168483/371472 [2:27:54<17:00:11, 3.32it/s] 45%|████▌ | 168484/371472 [2:27:55<16:50:16, 3.35it/s] 45%|████▌ | 168485/371472 [2:27:55<16:42:09, 3.38it/s] 45%|████▌ | 168486/371472 [2:27:55<16:29:44, 3.42it/s] 45%|████▌ | 168487/371472 [2:27:56<16:38:37, 3.39it/s] 45%|████▌ | 168488/371472 [2:27:56<16:19:47, 3.45it/s] 45%|████▌ | 168489/371472 [2:27:56<17:41:13, 3.19it/s] 45%|████▌ | 168490/371472 [2:27:56<17:34:58, 3.21it/s] 45%|████▌ | 168491/371472 [2:27:57<17:03:42, 3.30it/s] 45%|████▌ | 168492/371472 [2:27:57<16:55:41, 3.33it/s] 45%|████▌ | 168493/371472 [2:27:57<17:02:33, 3.31it/s] 45%|████▌ | 168494/371472 [2:27:58<16:42:43, 3.37it/s] 45%|████▌ | 168495/371472 [2:27:58<17:23:40, 3.24it/s] 45%|████▌ | 168496/371472 [2:27:58<17:04:52, 3.30it/s] 45%|████▌ | 168497/371472 [2:27:59<17:40:36, 3.19it/s] 45%|████▌ | 168498/371472 [2:27:59<17:25:56, 3.23it/s] 45%|████▌ | 168499/371472 [2:27:59<17:38:47, 3.20it/s] 45%|████▌ | 168500/371472 [2:28:00<17:25:09, 3.24it/s] {'loss': 2.8745, 'learning_rate': 5.920241763451054e-07, 'epoch': 7.26} + 45%|████▌ | 168500/371472 [2:28:00<17:25:09, 3.24it/s] 45%|████▌ | 168501/371472 [2:28:00<16:55:30, 3.33it/s] 45%|████▌ | 168502/371472 [2:28:00<16:26:34, 3.43it/s] 45%|████▌ | 168503/371472 [2:28:00<17:28:44, 3.23it/s] 45%|████▌ | 168504/371472 [2:28:01<17:05:09, 3.30it/s] 45%|████▌ | 168505/371472 [2:28:01<16:57:18, 3.33it/s] 45%|████▌ | 168506/371472 [2:28:01<16:42:23, 3.37it/s] 45%|████▌ | 168507/371472 [2:28:02<16:29:16, 3.42it/s] 45%|████▌ | 168508/371472 [2:28:02<16:04:28, 3.51it/s] 45%|████▌ | 168509/371472 [2:28:02<16:13:10, 3.48it/s] 45%|████▌ | 168510/371472 [2:28:02<16:02:09, 3.52it/s] 45%|████▌ | 168511/371472 [2:28:03<16:02:14, 3.52it/s] 45%|████▌ | 168512/371472 [2:28:03<16:27:34, 3.43it/s] 45%|████▌ | 168513/371472 [2:28:03<18:21:08, 3.07it/s] 45%|████▌ | 168514/371472 [2:28:04<17:42:57, 3.18it/s] 45%|████▌ | 168515/371472 [2:28:04<17:23:58, 3.24it/s] 45%|████▌ | 168516/371472 [2:28:04<17:03:19, 3.31it/s] 45%|████▌ | 168517/371472 [2:28:05<17:54:54, 3.15it/s] 45%|████▌ | 168518/371472 [2:28:05<17:12:46, 3.28it/s] 45%|████▌ | 168519/371472 [2:28:05<16:35:17, 3.40it/s] 45%|████▌ | 168520/371472 [2:28:05<16:12:07, 3.48it/s] {'loss': 2.7985, 'learning_rate': 5.919756943696266e-07, 'epoch': 7.26} + 45%|████▌ | 168520/371472 [2:28:05<16:12:07, 3.48it/s] 45%|████▌ | 168521/371472 [2:28:06<16:01:28, 3.52it/s] 45%|████▌ | 168522/371472 [2:28:06<16:07:09, 3.50it/s] 45%|████▌ | 168523/371472 [2:28:06<16:11:30, 3.48it/s] 45%|████▌ | 168524/371472 [2:28:07<16:55:17, 3.33it/s] 45%|████▌ | 168525/371472 [2:28:07<16:19:27, 3.45it/s] 45%|████▌ | 168526/371472 [2:28:07<16:19:46, 3.45it/s] 45%|████▌ | 168527/371472 [2:28:08<16:40:01, 3.38it/s] 45%|████▌ | 168528/371472 [2:28:08<17:45:05, 3.18it/s] 45%|████▌ | 168529/371472 [2:28:08<16:58:06, 3.32it/s] 45%|████▌ | 168530/371472 [2:28:08<17:10:07, 3.28it/s] 45%|████▌ | 168531/371472 [2:28:09<16:35:44, 3.40it/s] 45%|████▌ | 168532/371472 [2:28:09<16:13:32, 3.47it/s] 45%|████▌ | 168533/371472 [2:28:09<16:46:58, 3.36it/s] 45%|████▌ | 168534/371472 [2:28:10<16:41:48, 3.38it/s] 45%|████▌ | 168535/371472 [2:28:10<17:33:55, 3.21it/s] 45%|████▌ | 168536/371472 [2:28:10<17:05:48, 3.30it/s] 45%|████▌ | 168537/371472 [2:28:11<17:05:49, 3.30it/s] 45%|████▌ | 168538/371472 [2:28:11<17:02:48, 3.31it/s] 45%|████▌ | 168539/371472 [2:28:11<16:45:58, 3.36it/s] 45%|████▌ | 168540/371472 [2:28:11<16:20:47, 3.45it/s] {'loss': 2.8791, 'learning_rate': 5.919272123941478e-07, 'epoch': 7.26} + 45%|████▌ | 168540/371472 [2:28:11<16:20:47, 3.45it/s] 45%|████▌ | 168541/371472 [2:28:12<17:12:37, 3.28it/s] 45%|████▌ | 168542/371472 [2:28:12<17:15:09, 3.27it/s] 45%|████▌ | 168543/371472 [2:28:12<17:46:27, 3.17it/s] 45%|████▌ | 168544/371472 [2:28:13<17:44:48, 3.18it/s] 45%|████▌ | 168545/371472 [2:28:13<17:00:25, 3.31it/s] 45%|████▌ | 168546/371472 [2:28:13<16:52:24, 3.34it/s] 45%|████▌ | 168547/371472 [2:28:14<17:51:09, 3.16it/s] 45%|████▌ | 168548/371472 [2:28:14<17:22:49, 3.24it/s] 45%|████▌ | 168549/371472 [2:28:14<17:11:45, 3.28it/s] 45%|████▌ | 168550/371472 [2:28:15<16:44:01, 3.37it/s] 45%|████▌ | 168551/371472 [2:28:15<16:57:41, 3.32it/s] 45%|████▌ | 168552/371472 [2:28:15<17:28:11, 3.23it/s] 45%|████▌ | 168553/371472 [2:28:15<16:55:22, 3.33it/s] 45%|████▌ | 168554/371472 [2:28:16<16:36:16, 3.39it/s] 45%|████▌ | 168555/371472 [2:28:16<16:56:39, 3.33it/s] 45%|████▌ | 168556/371472 [2:28:16<16:38:32, 3.39it/s] 45%|████▌ | 168557/371472 [2:28:17<16:49:51, 3.35it/s] 45%|████▌ | 168558/371472 [2:28:17<16:45:53, 3.36it/s] 45%|████▌ | 168559/371472 [2:28:17<16:16:13, 3.46it/s] 45%|████▌ | 168560/371472 [2:28:18<17:05:00, 3.30it/s] {'loss': 2.8099, 'learning_rate': 5.918787304186687e-07, 'epoch': 7.26} + 45%|████▌ | 168560/371472 [2:28:18<17:05:00, 3.30it/s] 45%|████▌ | 168561/371472 [2:28:18<17:51:45, 3.16it/s] 45%|████▌ | 168562/371472 [2:28:18<17:33:54, 3.21it/s] 45%|████▌ | 168563/371472 [2:28:18<17:39:29, 3.19it/s] 45%|████▌ | 168564/371472 [2:28:19<18:19:57, 3.07it/s] 45%|████▌ | 168565/371472 [2:28:19<17:22:08, 3.25it/s] 45%|████▌ | 168566/371472 [2:28:19<16:48:24, 3.35it/s] 45%|████▌ | 168567/371472 [2:28:20<16:16:30, 3.46it/s] 45%|████▌ | 168568/371472 [2:28:20<16:17:16, 3.46it/s] 45%|████▌ | 168569/371472 [2:28:20<16:23:43, 3.44it/s] 45%|████▌ | 168570/371472 [2:28:21<17:34:30, 3.21it/s] 45%|████▌ | 168571/371472 [2:28:21<17:27:26, 3.23it/s] 45%|████▌ | 168572/371472 [2:28:21<16:36:06, 3.39it/s] 45%|████▌ | 168573/371472 [2:28:21<16:00:36, 3.52it/s] 45%|████▌ | 168574/371472 [2:28:22<15:50:47, 3.56it/s] 45%|████▌ | 168575/371472 [2:28:22<15:57:43, 3.53it/s] 45%|████▌ | 168576/371472 [2:28:22<15:49:00, 3.56it/s] 45%|████▌ | 168577/371472 [2:28:23<16:02:53, 3.51it/s] 45%|████▌ | 168578/371472 [2:28:23<16:08:15, 3.49it/s] 45%|████▌ | 168579/371472 [2:28:23<16:07:07, 3.50it/s] 45%|████▌ | 168580/371472 [2:28:23<16:18:39, 3.46it/s] {'loss': 2.939, 'learning_rate': 5.918302484431899e-07, 'epoch': 7.26} + 45%|████▌ | 168580/371472 [2:28:23<16:18:39, 3.46it/s] 45%|████▌ | 168581/371472 [2:28:24<16:21:31, 3.45it/s] 45%|████▌ | 168582/371472 [2:28:24<18:11:42, 3.10it/s] 45%|████▌ | 168583/371472 [2:28:24<18:00:26, 3.13it/s] 45%|████▌ | 168584/371472 [2:28:25<17:37:24, 3.20it/s] 45%|████▌ | 168585/371472 [2:28:25<17:50:24, 3.16it/s] 45%|████▌ | 168586/371472 [2:28:25<17:22:58, 3.24it/s] 45%|████▌ | 168587/371472 [2:28:26<17:14:36, 3.27it/s] 45%|████▌ | 168588/371472 [2:28:26<16:40:59, 3.38it/s] 45%|████▌ | 168589/371472 [2:28:26<17:00:13, 3.31it/s] 45%|████▌ | 168590/371472 [2:28:26<16:36:09, 3.39it/s] 45%|████▌ | 168591/371472 [2:28:27<16:49:17, 3.35it/s] 45%|████▌ | 168592/371472 [2:28:27<16:08:37, 3.49it/s] 45%|████▌ | 168593/371472 [2:28:27<16:40:00, 3.38it/s] 45%|████▌ | 168594/371472 [2:28:28<16:27:32, 3.42it/s] 45%|████▌ | 168595/371472 [2:28:28<17:28:34, 3.22it/s] 45%|████▌ | 168596/371472 [2:28:28<17:23:20, 3.24it/s] 45%|████▌ | 168597/371472 [2:28:29<17:29:49, 3.22it/s] 45%|████▌ | 168598/371472 [2:28:29<16:59:04, 3.32it/s] 45%|████▌ | 168599/371472 [2:28:29<17:31:22, 3.22it/s] 45%|████▌ | 168600/371472 [2:28:30<17:28:18, 3.23it/s] {'loss': 2.9422, 'learning_rate': 5.91781766467711e-07, 'epoch': 7.26} + 45%|████▌ | 168600/371472 [2:28:30<17:28:18, 3.23it/s] 45%|████▌ | 168601/371472 [2:28:30<17:20:44, 3.25it/s] 45%|████▌ | 168602/371472 [2:28:30<16:52:03, 3.34it/s] 45%|████▌ | 168603/371472 [2:28:30<16:57:35, 3.32it/s] 45%|████▌ | 168604/371472 [2:28:31<17:20:41, 3.25it/s] 45%|████▌ | 168605/371472 [2:28:31<16:47:51, 3.35it/s] 45%|████▌ | 168606/371472 [2:28:31<17:19:05, 3.25it/s] 45%|████▌ | 168607/371472 [2:28:32<18:32:18, 3.04it/s] 45%|████▌ | 168608/371472 [2:28:32<18:03:42, 3.12it/s] 45%|████▌ | 168609/371472 [2:28:32<17:25:05, 3.24it/s] 45%|████▌ | 168610/371472 [2:28:33<16:48:10, 3.35it/s] 45%|████▌ | 168611/371472 [2:28:33<17:27:51, 3.23it/s] 45%|████▌ | 168612/371472 [2:28:33<17:15:57, 3.26it/s] 45%|████▌ | 168613/371472 [2:28:34<16:42:42, 3.37it/s] 45%|████▌ | 168614/371472 [2:28:34<16:41:19, 3.38it/s] 45%|████▌ | 168615/371472 [2:28:34<17:25:36, 3.23it/s] 45%|████▌ | 168616/371472 [2:28:34<16:51:30, 3.34it/s] 45%|████▌ | 168617/371472 [2:28:35<17:18:35, 3.26it/s] 45%|████▌ | 168618/371472 [2:28:35<16:38:52, 3.38it/s] 45%|████▌ | 168619/371472 [2:28:35<16:45:42, 3.36it/s] 45%|████▌ | 168620/371472 [2:28:36<16:25:28, 3.43it/s] {'loss': 2.9773, 'learning_rate': 5.91733284492232e-07, 'epoch': 7.26} + 45%|████▌ | 168620/371472 [2:28:36<16:25:28, 3.43it/s] 45%|████▌ | 168621/371472 [2:28:36<16:30:22, 3.41it/s] 45%|████▌ | 168622/371472 [2:28:36<16:32:46, 3.41it/s] 45%|████▌ | 168623/371472 [2:28:37<16:50:23, 3.35it/s] 45%|████▌ | 168624/371472 [2:28:37<16:16:20, 3.46it/s] 45%|████▌ | 168625/371472 [2:28:37<15:44:29, 3.58it/s] 45%|████▌ | 168626/371472 [2:28:37<16:15:51, 3.46it/s] 45%|████▌ | 168627/371472 [2:28:38<16:13:02, 3.47it/s] 45%|████▌ | 168628/371472 [2:28:38<15:44:20, 3.58it/s] 45%|████▌ | 168629/371472 [2:28:38<15:57:05, 3.53it/s] 45%|████▌ | 168630/371472 [2:28:38<15:50:04, 3.56it/s] 45%|████▌ | 168631/371472 [2:28:39<15:43:02, 3.58it/s] 45%|████▌ | 168632/371472 [2:28:39<15:55:09, 3.54it/s] 45%|████▌ | 168633/371472 [2:28:39<15:54:08, 3.54it/s] 45%|████▌ | 168634/371472 [2:28:40<16:02:46, 3.51it/s] 45%|████▌ | 168635/371472 [2:28:40<16:15:56, 3.46it/s] 45%|████▌ | 168636/371472 [2:28:40<16:36:54, 3.39it/s] 45%|████▌ | 168637/371472 [2:28:41<17:10:33, 3.28it/s] 45%|████▌ | 168638/371472 [2:28:41<18:28:26, 3.05it/s] 45%|████▌ | 168639/371472 [2:28:41<17:31:21, 3.22it/s] 45%|████▌ | 168640/371472 [2:28:41<17:03:46, 3.30it/s] {'loss': 2.9952, 'learning_rate': 5.916848025167531e-07, 'epoch': 7.26} + 45%|████▌ | 168640/371472 [2:28:41<17:03:46, 3.30it/s] 45%|████▌ | 168641/371472 [2:28:42<16:36:05, 3.39it/s] 45%|████▌ | 168642/371472 [2:28:42<16:57:40, 3.32it/s] 45%|████▌ | 168643/371472 [2:28:42<16:31:40, 3.41it/s] 45%|████▌ | 168644/371472 [2:28:43<17:20:09, 3.25it/s] 45%|████▌ | 168645/371472 [2:28:43<17:15:09, 3.27it/s] 45%|████▌ | 168646/371472 [2:28:43<16:51:27, 3.34it/s] 45%|████▌ | 168647/371472 [2:28:44<16:24:56, 3.43it/s] 45%|████▌ | 168648/371472 [2:28:44<16:20:58, 3.45it/s] 45%|████▌ | 168649/371472 [2:28:44<16:31:26, 3.41it/s] 45%|████▌ | 168650/371472 [2:28:44<16:57:09, 3.32it/s] 45%|████▌ | 168651/371472 [2:28:45<16:37:51, 3.39it/s] 45%|████▌ | 168652/371472 [2:28:45<15:58:57, 3.52it/s] 45%|████▌ | 168653/371472 [2:28:45<16:07:56, 3.49it/s] 45%|████▌ | 168654/371472 [2:28:46<16:36:17, 3.39it/s] 45%|████▌ | 168655/371472 [2:28:46<16:45:55, 3.36it/s] 45%|████▌ | 168656/371472 [2:28:46<17:13:14, 3.27it/s] 45%|████▌ | 168657/371472 [2:28:46<16:53:55, 3.33it/s] 45%|████▌ | 168658/371472 [2:28:47<16:26:34, 3.43it/s] 45%|████▌ | 168659/371472 [2:28:47<17:06:31, 3.29it/s] 45%|████▌ | 168660/371472 [2:28:48<18:51:34, 2.99it/s] {'loss': 2.95, 'learning_rate': 5.916363205412743e-07, 'epoch': 7.26} + 45%|████▌ | 168660/371472 [2:28:48<18:51:34, 2.99it/s] 45%|████▌ | 168661/371472 [2:28:48<17:44:51, 3.17it/s] 45%|████▌ | 168662/371472 [2:28:48<17:26:55, 3.23it/s] 45%|████▌ | 168663/371472 [2:28:48<17:03:41, 3.30it/s] 45%|████▌ | 168664/371472 [2:28:49<18:20:09, 3.07it/s] 45%|████▌ | 168665/371472 [2:28:49<17:27:29, 3.23it/s] 45%|████▌ | 168666/371472 [2:28:49<16:46:05, 3.36it/s] 45%|████▌ | 168667/371472 [2:28:50<16:53:30, 3.34it/s] 45%|████▌ | 168668/371472 [2:28:50<16:49:48, 3.35it/s] 45%|████▌ | 168669/371472 [2:28:50<16:37:05, 3.39it/s] 45%|████▌ | 168670/371472 [2:28:50<16:22:51, 3.44it/s] 45%|████▌ | 168671/371472 [2:28:51<17:01:24, 3.31it/s] 45%|████▌ | 168672/371472 [2:28:51<16:46:00, 3.36it/s] 45%|████▌ | 168673/371472 [2:28:51<16:49:10, 3.35it/s] 45%|████▌ | 168674/371472 [2:28:52<16:21:15, 3.44it/s] 45%|████▌ | 168675/371472 [2:28:52<16:36:50, 3.39it/s] 45%|████▌ | 168676/371472 [2:28:52<16:58:26, 3.32it/s] 45%|████▌ | 168677/371472 [2:28:53<16:39:19, 3.38it/s] 45%|████▌ | 168678/371472 [2:28:53<16:44:23, 3.37it/s] 45%|████▌ | 168679/371472 [2:28:53<16:34:03, 3.40it/s] 45%|████▌ | 168680/371472 [2:28:53<16:31:19, 3.41it/s] {'loss': 2.9477, 'learning_rate': 5.915878385657955e-07, 'epoch': 7.27} + 45%|████▌ | 168680/371472 [2:28:53<16:31:19, 3.41it/s] 45%|████▌ | 168681/371472 [2:28:54<16:18:30, 3.45it/s] 45%|████▌ | 168682/371472 [2:28:54<16:47:31, 3.35it/s] 45%|████▌ | 168683/371472 [2:28:54<16:24:38, 3.43it/s] 45%|████▌ | 168684/371472 [2:28:55<17:17:08, 3.26it/s] 45%|████▌ | 168685/371472 [2:28:55<17:03:34, 3.30it/s] 45%|████▌ | 168686/371472 [2:28:55<17:06:13, 3.29it/s] 45%|████▌ | 168687/371472 [2:28:56<18:11:13, 3.10it/s] 45%|████▌ | 168688/371472 [2:28:56<17:57:38, 3.14it/s] 45%|████▌ | 168689/371472 [2:28:56<17:40:00, 3.19it/s] 45%|████▌ | 168690/371472 [2:28:57<17:20:49, 3.25it/s] 45%|████▌ | 168691/371472 [2:28:57<17:10:22, 3.28it/s] 45%|████▌ | 168692/371472 [2:28:57<17:11:50, 3.28it/s] 45%|████▌ | 168693/371472 [2:28:57<16:35:58, 3.39it/s] 45%|████▌ | 168694/371472 [2:28:58<16:29:57, 3.41it/s] 45%|████▌ | 168695/371472 [2:28:58<16:12:12, 3.48it/s] 45%|████▌ | 168696/371472 [2:28:58<16:15:32, 3.46it/s] 45%|████▌ | 168697/371472 [2:28:59<16:00:20, 3.52it/s] 45%|████▌ | 168698/371472 [2:28:59<16:07:48, 3.49it/s] 45%|████▌ | 168699/371472 [2:28:59<16:10:40, 3.48it/s] 45%|████▌ | 168700/371472 [2:28:59<15:56:04, 3.53it/s] {'loss': 3.0112, 'learning_rate': 5.915393565903165e-07, 'epoch': 7.27} + 45%|████▌ | 168700/371472 [2:28:59<15:56:04, 3.53it/s] 45%|████▌ | 168701/371472 [2:29:00<16:04:46, 3.50it/s] 45%|████▌ | 168702/371472 [2:29:00<15:55:00, 3.54it/s] 45%|████▌ | 168703/371472 [2:29:00<15:40:44, 3.59it/s] 45%|████▌ | 168704/371472 [2:29:00<15:52:27, 3.55it/s] 45%|████▌ | 168705/371472 [2:29:01<16:27:45, 3.42it/s] 45%|████▌ | 168706/371472 [2:29:01<16:13:38, 3.47it/s] 45%|████▌ | 168707/371472 [2:29:01<15:53:19, 3.54it/s] 45%|████▌ | 168708/371472 [2:29:02<15:43:31, 3.58it/s] 45%|████▌ | 168709/371472 [2:29:02<16:05:24, 3.50it/s] 45%|████▌ | 168710/371472 [2:29:02<15:47:59, 3.56it/s] 45%|████▌ | 168711/371472 [2:29:03<16:41:46, 3.37it/s] 45%|████▌ | 168712/371472 [2:29:03<16:27:40, 3.42it/s] 45%|████▌ | 168713/371472 [2:29:03<16:12:19, 3.48it/s] 45%|████▌ | 168714/371472 [2:29:03<16:12:21, 3.48it/s] 45%|████▌ | 168715/371472 [2:29:04<16:10:02, 3.48it/s] 45%|████▌ | 168716/371472 [2:29:04<15:31:57, 3.63it/s] 45%|████▌ | 168717/371472 [2:29:04<16:17:10, 3.46it/s] 45%|████▌ | 168718/371472 [2:29:05<16:23:19, 3.44it/s] 45%|████▌ | 168719/371472 [2:29:05<16:23:05, 3.44it/s] 45%|████▌ | 168720/371472 [2:29:05<17:09:51, 3.28it/s] {'loss': 2.9472, 'learning_rate': 5.914908746148375e-07, 'epoch': 7.27} + 45%|████▌ | 168720/371472 [2:29:05<17:09:51, 3.28it/s] 45%|████▌ | 168721/371472 [2:29:05<16:30:55, 3.41it/s] 45%|████▌ | 168722/371472 [2:29:06<17:32:50, 3.21it/s] 45%|████▌ | 168723/371472 [2:29:06<17:34:33, 3.20it/s] 45%|████▌ | 168724/371472 [2:29:06<17:10:28, 3.28it/s] 45%|████▌ | 168725/371472 [2:29:07<16:39:18, 3.38it/s] 45%|████▌ | 168726/371472 [2:29:07<16:46:01, 3.36it/s] 45%|████▌ | 168727/371472 [2:29:07<16:18:51, 3.45it/s] 45%|████▌ | 168728/371472 [2:29:08<16:39:49, 3.38it/s] 45%|████▌ | 168729/371472 [2:29:08<16:51:30, 3.34it/s] 45%|████▌ | 168730/371472 [2:29:08<17:38:26, 3.19it/s] 45%|████▌ | 168731/371472 [2:29:08<17:01:41, 3.31it/s] 45%|████▌ | 168732/371472 [2:29:09<16:49:38, 3.35it/s] 45%|████▌ | 168733/371472 [2:29:09<16:21:53, 3.44it/s] 45%|████▌ | 168734/371472 [2:29:09<17:23:26, 3.24it/s] 45%|████▌ | 168735/371472 [2:29:10<17:01:36, 3.31it/s] 45%|████▌ | 168736/371472 [2:29:10<16:53:16, 3.33it/s] 45%|████▌ | 168737/371472 [2:29:10<16:53:37, 3.33it/s] 45%|████▌ | 168738/371472 [2:29:11<18:11:18, 3.10it/s] 45%|████▌ | 168739/371472 [2:29:11<17:49:13, 3.16it/s] 45%|████▌ | 168740/371472 [2:29:11<17:23:45, 3.24it/s] {'loss': 2.9012, 'learning_rate': 5.914423926393587e-07, 'epoch': 7.27} + 45%|████▌ | 168740/371472 [2:29:11<17:23:45, 3.24it/s] 45%|████▌ | 168741/371472 [2:29:12<18:11:40, 3.10it/s] 45%|████▌ | 168742/371472 [2:29:12<18:49:40, 2.99it/s] 45%|████▌ | 168743/371472 [2:29:12<18:01:58, 3.12it/s] 45%|████▌ | 168744/371472 [2:29:13<17:31:11, 3.21it/s] 45%|████▌ | 168745/371472 [2:29:13<17:06:37, 3.29it/s] 45%|████▌ | 168746/371472 [2:29:13<16:13:30, 3.47it/s] 45%|████▌ | 168747/371472 [2:29:13<16:22:21, 3.44it/s] 45%|████▌ | 168748/371472 [2:29:14<16:34:12, 3.40it/s] 45%|████▌ | 168749/371472 [2:29:14<16:15:12, 3.46it/s] 45%|████▌ | 168750/371472 [2:29:14<16:48:24, 3.35it/s] 45%|████▌ | 168751/371472 [2:29:15<17:39:27, 3.19it/s] 45%|████▌ | 168752/371472 [2:29:15<17:23:48, 3.24it/s] 45%|████▌ | 168753/371472 [2:29:15<17:29:28, 3.22it/s] 45%|████▌ | 168754/371472 [2:29:16<17:10:49, 3.28it/s] 45%|████▌ | 168755/371472 [2:29:16<16:39:40, 3.38it/s] 45%|████▌ | 168756/371472 [2:29:16<16:24:45, 3.43it/s] 45%|████▌ | 168757/371472 [2:29:16<16:26:12, 3.43it/s] 45%|████▌ | 168758/371472 [2:29:17<16:50:48, 3.34it/s] 45%|████▌ | 168759/371472 [2:29:17<16:54:55, 3.33it/s] 45%|████▌ | 168760/371472 [2:29:17<18:28:06, 3.05it/s] {'loss': 2.878, 'learning_rate': 5.913939106638799e-07, 'epoch': 7.27} + 45%|████▌ | 168760/371472 [2:29:17<18:28:06, 3.05it/s] 45%|████▌ | 168761/371472 [2:29:18<18:32:00, 3.04it/s] 45%|████▌ | 168762/371472 [2:29:18<17:39:46, 3.19it/s] 45%|████▌ | 168763/371472 [2:29:18<17:22:54, 3.24it/s] 45%|████▌ | 168764/371472 [2:29:19<17:42:31, 3.18it/s] 45%|████▌ | 168765/371472 [2:29:19<17:27:06, 3.23it/s] 45%|████▌ | 168766/371472 [2:29:19<17:07:23, 3.29it/s] 45%|████▌ | 168767/371472 [2:29:20<17:24:53, 3.23it/s] 45%|████▌ | 168768/371472 [2:29:20<17:05:18, 3.29it/s] 45%|████▌ | 168769/371472 [2:29:20<16:36:00, 3.39it/s] 45%|████▌ | 168770/371472 [2:29:20<17:28:38, 3.22it/s] 45%|████▌ | 168771/371472 [2:29:21<19:13:20, 2.93it/s] 45%|████▌ | 168772/371472 [2:29:21<18:20:04, 3.07it/s] 45%|████▌ | 168773/371472 [2:29:21<18:03:06, 3.12it/s] 45%|████▌ | 168774/371472 [2:29:22<17:29:27, 3.22it/s] 45%|████▌ | 168775/371472 [2:29:22<17:17:56, 3.25it/s] 45%|████▌ | 168776/371472 [2:29:22<17:01:37, 3.31it/s] 45%|████▌ | 168777/371472 [2:29:23<16:53:03, 3.33it/s] 45%|████▌ | 168778/371472 [2:29:23<16:31:17, 3.41it/s] 45%|████▌ | 168779/371472 [2:29:23<16:32:12, 3.40it/s] 45%|████▌ | 168780/371472 [2:29:23<16:17:55, 3.45it/s] {'loss': 3.0647, 'learning_rate': 5.913454286884009e-07, 'epoch': 7.27} + 45%|████▌ | 168780/371472 [2:29:23<16:17:55, 3.45it/s] 45%|████▌ | 168781/371472 [2:29:24<16:23:13, 3.44it/s] 45%|████▌ | 168782/371472 [2:29:24<16:08:20, 3.49it/s] 45%|████▌ | 168783/371472 [2:29:24<17:05:32, 3.29it/s] 45%|████▌ | 168784/371472 [2:29:25<17:44:09, 3.17it/s] 45%|████▌ | 168785/371472 [2:29:25<17:24:48, 3.23it/s] 45%|████▌ | 168786/371472 [2:29:25<16:55:45, 3.33it/s] 45%|████▌ | 168787/371472 [2:29:26<16:27:55, 3.42it/s] 45%|████▌ | 168788/371472 [2:29:26<16:29:33, 3.41it/s] 45%|████▌ | 168789/371472 [2:29:26<16:00:42, 3.52it/s] 45%|████▌ | 168790/371472 [2:29:26<15:56:42, 3.53it/s] 45%|████▌ | 168791/371472 [2:29:27<16:25:19, 3.43it/s] 45%|████▌ | 168792/371472 [2:29:27<16:44:09, 3.36it/s] 45%|████▌ | 168793/371472 [2:29:27<16:43:46, 3.37it/s] 45%|████▌ | 168794/371472 [2:29:28<17:54:00, 3.15it/s] 45%|████▌ | 168795/371472 [2:29:28<17:13:14, 3.27it/s] 45%|████▌ | 168796/371472 [2:29:28<16:53:47, 3.33it/s] 45%|████▌ | 168797/371472 [2:29:29<17:09:26, 3.28it/s] 45%|████▌ | 168798/371472 [2:29:29<16:34:02, 3.40it/s] 45%|████▌ | 168799/371472 [2:29:29<16:23:50, 3.43it/s] 45%|████▌ | 168800/371472 [2:29:29<16:16:13, 3.46it/s] {'loss': 2.8986, 'learning_rate': 5.91296946712922e-07, 'epoch': 7.27} + 45%|████▌ | 168800/371472 [2:29:29<16:16:13, 3.46it/s] 45%|████▌ | 168801/371472 [2:29:30<16:38:40, 3.38it/s] 45%|████▌ | 168802/371472 [2:29:30<16:26:52, 3.42it/s] 45%|████▌ | 168803/371472 [2:29:30<17:08:10, 3.29it/s] 45%|████▌ | 168804/371472 [2:29:31<17:03:44, 3.30it/s] 45%|████▌ | 168805/371472 [2:29:31<16:33:18, 3.40it/s] 45%|████▌ | 168806/371472 [2:29:31<16:24:01, 3.43it/s] 45%|████▌ | 168807/371472 [2:29:31<15:50:09, 3.55it/s] 45%|████▌ | 168808/371472 [2:29:32<16:38:45, 3.38it/s] 45%|████▌ | 168809/371472 [2:29:32<16:18:23, 3.45it/s] 45%|████▌ | 168810/371472 [2:29:32<15:53:22, 3.54it/s] 45%|████▌ | 168811/371472 [2:29:33<15:58:37, 3.52it/s] 45%|████▌ | 168812/371472 [2:29:33<15:56:11, 3.53it/s] 45%|████▌ | 168813/371472 [2:29:33<15:35:13, 3.61it/s] 45%|████▌ | 168814/371472 [2:29:33<16:13:29, 3.47it/s] 45%|████▌ | 168815/371472 [2:29:34<15:54:08, 3.54it/s] 45%|████▌ | 168816/371472 [2:29:34<16:52:06, 3.34it/s] 45%|████▌ | 168817/371472 [2:29:34<17:19:04, 3.25it/s] 45%|████▌ | 168818/371472 [2:29:35<16:50:41, 3.34it/s] 45%|████▌ | 168819/371472 [2:29:35<16:12:23, 3.47it/s] 45%|████▌ | 168820/371472 [2:29:35<15:59:49, 3.52it/s] {'loss': 2.9061, 'learning_rate': 5.912484647374432e-07, 'epoch': 7.27} + 45%|████▌ | 168820/371472 [2:29:35<15:59:49, 3.52it/s] 45%|████▌ | 168821/371472 [2:29:36<16:06:44, 3.49it/s] 45%|████▌ | 168822/371472 [2:29:36<15:58:30, 3.52it/s] 45%|████▌ | 168823/371472 [2:29:36<15:53:48, 3.54it/s] 45%|████▌ | 168824/371472 [2:29:36<16:05:11, 3.50it/s] 45%|████▌ | 168825/371472 [2:29:37<16:07:51, 3.49it/s] 45%|████▌ | 168826/371472 [2:29:37<16:13:28, 3.47it/s] 45%|████▌ | 168827/371472 [2:29:37<16:22:33, 3.44it/s] 45%|████▌ | 168828/371472 [2:29:38<16:34:41, 3.40it/s] 45%|████▌ | 168829/371472 [2:29:38<16:33:19, 3.40it/s] 45%|████▌ | 168830/371472 [2:29:38<16:22:24, 3.44it/s] 45%|████▌ | 168831/371472 [2:29:38<16:36:22, 3.39it/s] 45%|████▌ | 168832/371472 [2:29:39<16:09:30, 3.48it/s] 45%|████▌ | 168833/371472 [2:29:39<15:43:01, 3.58it/s] 45%|████▌ | 168834/371472 [2:29:39<15:36:58, 3.60it/s] 45%|████▌ | 168835/371472 [2:29:40<16:00:13, 3.52it/s] 45%|████▌ | 168836/371472 [2:29:40<15:50:18, 3.55it/s] 45%|████▌ | 168837/371472 [2:29:40<16:12:23, 3.47it/s] 45%|████▌ | 168838/371472 [2:29:40<16:33:48, 3.40it/s] 45%|████▌ | 168839/371472 [2:29:41<16:59:45, 3.31it/s] 45%|████▌ | 168840/371472 [2:29:41<17:28:42, 3.22it/s] {'loss': 2.9105, 'learning_rate': 5.911999827619643e-07, 'epoch': 7.27} + 45%|████▌ | 168840/371472 [2:29:41<17:28:42, 3.22it/s] 45%|████▌ | 168841/371472 [2:29:41<17:10:04, 3.28it/s] 45%|████▌ | 168842/371472 [2:29:42<17:21:59, 3.24it/s] 45%|████▌ | 168843/371472 [2:29:42<16:54:17, 3.33it/s] 45%|████▌ | 168844/371472 [2:29:42<17:01:34, 3.31it/s] 45%|████▌ | 168845/371472 [2:29:43<16:46:54, 3.35it/s] 45%|████▌ | 168846/371472 [2:29:43<16:41:13, 3.37it/s] 45%|████▌ | 168847/371472 [2:29:43<16:50:48, 3.34it/s] 45%|████▌ | 168848/371472 [2:29:43<17:16:30, 3.26it/s] 45%|████▌ | 168849/371472 [2:29:44<16:57:14, 3.32it/s] 45%|████▌ | 168850/371472 [2:29:44<16:20:57, 3.44it/s] 45%|████▌ | 168851/371472 [2:29:44<16:13:08, 3.47it/s] 45%|████▌ | 168852/371472 [2:29:45<15:55:40, 3.53it/s] 45%|████▌ | 168853/371472 [2:29:45<16:59:42, 3.31it/s] 45%|████▌ | 168854/371472 [2:29:45<16:58:55, 3.31it/s] 45%|████▌ | 168855/371472 [2:29:46<17:41:39, 3.18it/s] 45%|████▌ | 168856/371472 [2:29:46<17:27:11, 3.22it/s] 45%|████▌ | 168857/371472 [2:29:46<18:06:30, 3.11it/s] 45%|████▌ | 168858/371472 [2:29:47<17:53:38, 3.15it/s] 45%|████▌ | 168859/371472 [2:29:47<17:05:33, 3.29it/s] 45%|████▌ | 168860/371472 [2:29:47<16:38:30, 3.38it/s] {'loss': 2.9233, 'learning_rate': 5.911515007864853e-07, 'epoch': 7.27} + 45%|████▌ | 168860/371472 [2:29:47<16:38:30, 3.38it/s] 45%|████▌ | 168861/371472 [2:29:47<16:52:32, 3.34it/s] 45%|████▌ | 168862/371472 [2:29:48<16:46:59, 3.35it/s] 45%|████▌ | 168863/371472 [2:29:48<18:58:08, 2.97it/s] 45%|████▌ | 168864/371472 [2:29:48<17:58:36, 3.13it/s] 45%|████▌ | 168865/371472 [2:29:49<17:53:34, 3.15it/s] 45%|████▌ | 168866/371472 [2:29:49<17:39:38, 3.19it/s] 45%|████▌ | 168867/371472 [2:29:49<17:06:45, 3.29it/s] 45%|████▌ | 168868/371472 [2:29:50<16:58:28, 3.32it/s] 45%|████▌ | 168869/371472 [2:29:50<16:54:25, 3.33it/s] 45%|████▌ | 168870/371472 [2:29:50<17:45:45, 3.17it/s] 45%|████▌ | 168871/371472 [2:29:51<17:17:29, 3.25it/s] 45%|████▌ | 168872/371472 [2:29:51<17:05:22, 3.29it/s] 45%|████▌ | 168873/371472 [2:29:51<17:05:00, 3.29it/s] 45%|████▌ | 168874/371472 [2:29:51<16:32:24, 3.40it/s] 45%|████▌ | 168875/371472 [2:29:52<16:06:10, 3.49it/s] 45%|████▌ | 168876/371472 [2:29:52<16:34:38, 3.39it/s] 45%|████▌ | 168877/371472 [2:29:52<16:13:19, 3.47it/s] 45%|████▌ | 168878/371472 [2:29:53<15:59:36, 3.52it/s] 45%|████▌ | 168879/371472 [2:29:53<16:47:06, 3.35it/s] 45%|████▌ | 168880/371472 [2:29:53<16:50:32, 3.34it/s] {'loss': 2.8147, 'learning_rate': 5.911030188110064e-07, 'epoch': 7.27} + 45%|████▌ | 168880/371472 [2:29:53<16:50:32, 3.34it/s] 45%|████▌ | 168881/371472 [2:29:53<16:52:08, 3.34it/s] 45%|████▌ | 168882/371472 [2:29:54<18:22:02, 3.06it/s] 45%|████▌ | 168883/371472 [2:29:54<17:42:21, 3.18it/s] 45%|████▌ | 168884/371472 [2:29:54<17:31:36, 3.21it/s] 45%|████▌ | 168885/371472 [2:29:55<16:49:07, 3.35it/s] 45%|████▌ | 168886/371472 [2:29:55<17:22:30, 3.24it/s] 45%|████▌ | 168887/371472 [2:29:55<17:20:06, 3.25it/s] 45%|████▌ | 168888/371472 [2:29:56<16:45:48, 3.36it/s] 45%|████▌ | 168889/371472 [2:29:56<16:23:08, 3.43it/s] 45%|████▌ | 168890/371472 [2:29:56<16:16:09, 3.46it/s] 45%|████▌ | 168891/371472 [2:29:56<16:15:58, 3.46it/s] 45%|████▌ | 168892/371472 [2:29:57<16:27:20, 3.42it/s] 45%|████▌ | 168893/371472 [2:29:57<16:08:32, 3.49it/s] 45%|████▌ | 168894/371472 [2:29:57<16:26:52, 3.42it/s] 45%|████▌ | 168895/371472 [2:29:58<17:35:49, 3.20it/s] 45%|████▌ | 168896/371472 [2:29:58<18:13:14, 3.09it/s] 45%|████▌ | 168897/371472 [2:29:58<17:38:48, 3.19it/s] 45%|████▌ | 168898/371472 [2:29:59<17:41:30, 3.18it/s] 45%|████▌ | 168899/371472 [2:29:59<18:12:44, 3.09it/s] 45%|████▌ | 168900/371472 [2:29:59<17:36:48, 3.19it/s] {'loss': 2.9303, 'learning_rate': 5.910545368355276e-07, 'epoch': 7.27} + 45%|████▌ | 168900/371472 [2:29:59<17:36:48, 3.19it/s] 45%|████▌ | 168901/371472 [2:30:00<17:07:09, 3.29it/s] 45%|████▌ | 168902/371472 [2:30:00<17:54:03, 3.14it/s] 45%|████▌ | 168903/371472 [2:30:00<18:57:16, 2.97it/s] 45%|████▌ | 168904/371472 [2:30:01<17:53:57, 3.14it/s] 45%|████▌ | 168905/371472 [2:30:01<17:09:28, 3.28it/s] 45%|████▌ | 168906/371472 [2:30:01<17:26:13, 3.23it/s] 45%|████▌ | 168907/371472 [2:30:01<16:56:47, 3.32it/s] 45%|████▌ | 168908/371472 [2:30:02<17:30:38, 3.21it/s] 45%|████▌ | 168909/371472 [2:30:02<17:15:40, 3.26it/s] 45%|████▌ | 168910/371472 [2:30:02<17:01:17, 3.31it/s] 45%|████▌ | 168911/371472 [2:30:03<16:53:39, 3.33it/s] 45%|████▌ | 168912/371472 [2:30:03<16:34:13, 3.40it/s] 45%|████▌ | 168913/371472 [2:30:03<16:07:38, 3.49it/s] 45%|████▌ | 168914/371472 [2:30:04<16:45:15, 3.36it/s] 45%|████▌ | 168915/371472 [2:30:04<16:22:53, 3.43it/s] 45%|████▌ | 168916/371472 [2:30:04<17:01:51, 3.30it/s] 45%|████▌ | 168917/371472 [2:30:04<16:43:00, 3.37it/s] 45%|████▌ | 168918/371472 [2:30:05<17:44:54, 3.17it/s] 45%|████▌ | 168919/371472 [2:30:05<17:03:27, 3.30it/s] 45%|████▌ | 168920/371472 [2:30:05<16:46:23, 3.35it/s] {'loss': 2.9242, 'learning_rate': 5.910060548600487e-07, 'epoch': 7.28} + 45%|████▌ | 168920/371472 [2:30:05<16:46:23, 3.35it/s] 45%|████▌ | 168921/371472 [2:30:06<18:07:45, 3.10it/s] 45%|████▌ | 168922/371472 [2:30:06<17:33:46, 3.20it/s] 45%|████▌ | 168923/371472 [2:30:06<17:21:18, 3.24it/s] 45%|████▌ | 168924/371472 [2:30:07<16:42:34, 3.37it/s] 45%|████▌ | 168925/371472 [2:30:07<16:45:24, 3.36it/s] 45%|████▌ | 168926/371472 [2:30:07<16:36:30, 3.39it/s] 45%|████▌ | 168927/371472 [2:30:07<16:35:17, 3.39it/s] 45%|████▌ | 168928/371472 [2:30:08<16:20:38, 3.44it/s] 45%|████▌ | 168929/371472 [2:30:08<16:50:40, 3.34it/s] 45%|████▌ | 168930/371472 [2:30:08<16:25:04, 3.43it/s] 45%|████▌ | 168931/371472 [2:30:09<16:09:55, 3.48it/s] 45%|████▌ | 168932/371472 [2:30:09<16:23:28, 3.43it/s] 45%|████▌ | 168933/371472 [2:30:09<16:27:18, 3.42it/s] 45%|████▌ | 168934/371472 [2:30:09<16:03:17, 3.50it/s] 45%|████▌ | 168935/371472 [2:30:10<15:57:47, 3.52it/s] 45%|████▌ | 168936/371472 [2:30:10<16:07:09, 3.49it/s] 45%|████▌ | 168937/371472 [2:30:10<15:57:58, 3.52it/s] 45%|████▌ | 168938/371472 [2:30:11<16:14:18, 3.46it/s] 45%|████▌ | 168939/371472 [2:30:11<16:07:29, 3.49it/s] 45%|████▌ | 168940/371472 [2:30:11<17:26:06, 3.23it/s] {'loss': 3.0085, 'learning_rate': 5.909575728845698e-07, 'epoch': 7.28} + 45%|████▌ | 168940/371472 [2:30:11<17:26:06, 3.23it/s] 45%|████▌ | 168941/371472 [2:30:12<17:08:50, 3.28it/s] 45%|████▌ | 168942/371472 [2:30:12<17:06:59, 3.29it/s] 45%|████▌ | 168943/371472 [2:30:12<16:51:22, 3.34it/s] 45%|████▌ | 168944/371472 [2:30:12<16:36:35, 3.39it/s] 45%|████▌ | 168945/371472 [2:30:13<17:51:26, 3.15it/s] 45%|████▌ | 168946/371472 [2:30:13<17:58:54, 3.13it/s] 45%|████▌ | 168947/371472 [2:30:13<17:49:16, 3.16it/s] 45%|████▌ | 168948/371472 [2:30:14<17:30:33, 3.21it/s] 45%|████▌ | 168949/371472 [2:30:14<17:08:09, 3.28it/s] 45%|████▌ | 168950/371472 [2:30:14<16:36:27, 3.39it/s] 45%|████▌ | 168951/371472 [2:30:15<17:03:23, 3.30it/s] 45%|████▌ | 168952/371472 [2:30:15<16:45:44, 3.36it/s] 45%|████▌ | 168953/371472 [2:30:15<16:40:38, 3.37it/s] 45%|████▌ | 168954/371472 [2:30:16<16:34:05, 3.40it/s] 45%|████▌ | 168955/371472 [2:30:16<16:29:00, 3.41it/s] 45%|████▌ | 168956/371472 [2:30:16<16:14:57, 3.46it/s] 45%|████▌ | 168957/371472 [2:30:16<16:57:54, 3.32it/s] 45%|████▌ | 168958/371472 [2:30:17<17:05:03, 3.29it/s] 45%|████▌ | 168959/371472 [2:30:17<18:30:10, 3.04it/s] 45%|████▌ | 168960/371472 [2:30:17<18:52:03, 2.98it/s] {'loss': 2.872, 'learning_rate': 5.909090909090909e-07, 'epoch': 7.28} + 45%|████▌ | 168960/371472 [2:30:17<18:52:03, 2.98it/s] 45%|████▌ | 168961/371472 [2:30:18<17:45:40, 3.17it/s] 45%|████▌ | 168962/371472 [2:30:18<17:58:38, 3.13it/s] 45%|████▌ | 168963/371472 [2:30:18<17:22:57, 3.24it/s] 45%|████▌ | 168964/371472 [2:30:19<16:55:25, 3.32it/s] 45%|████▌ | 168965/371472 [2:30:19<17:20:24, 3.24it/s] 45%|████▌ | 168966/371472 [2:30:19<16:58:15, 3.31it/s] 45%|████▌ | 168967/371472 [2:30:20<16:32:08, 3.40it/s] 45%|████▌ | 168968/371472 [2:30:20<16:34:03, 3.40it/s] 45%|████▌ | 168969/371472 [2:30:20<16:32:23, 3.40it/s] 45%|████▌ | 168970/371472 [2:30:20<16:47:19, 3.35it/s] 45%|████▌ | 168971/371472 [2:30:21<16:32:36, 3.40it/s] 45%|████▌ | 168972/371472 [2:30:21<16:01:21, 3.51it/s] 45%|████▌ | 168973/371472 [2:30:21<16:03:23, 3.50it/s] 45%|████▌ | 168974/371472 [2:30:22<16:41:27, 3.37it/s] 45%|████▌ | 168975/371472 [2:30:22<17:08:46, 3.28it/s] 45%|████▌ | 168976/371472 [2:30:22<16:57:47, 3.32it/s] 45%|████▌ | 168977/371472 [2:30:22<16:32:55, 3.40it/s] 45%|████▌ | 168978/371472 [2:30:23<16:30:03, 3.41it/s] 45%|████▌ | 168979/371472 [2:30:23<17:09:46, 3.28it/s] 45%|████▌ | 168980/371472 [2:30:23<17:22:30, 3.24it/s] {'loss': 2.9409, 'learning_rate': 5.90860608933612e-07, 'epoch': 7.28} + 45%|████▌ | 168980/371472 [2:30:23<17:22:30, 3.24it/s] 45%|████▌ | 168981/371472 [2:30:24<17:17:17, 3.25it/s] 45%|████▌ | 168982/371472 [2:30:24<16:48:39, 3.35it/s] 45%|████▌ | 168983/371472 [2:30:24<17:54:29, 3.14it/s] 45%|████▌ | 168984/371472 [2:30:25<17:34:15, 3.20it/s] 45%|████▌ | 168985/371472 [2:30:25<17:13:42, 3.26it/s] 45%|████▌ | 168986/371472 [2:30:25<18:07:41, 3.10it/s] 45%|████▌ | 168987/371472 [2:30:26<17:09:51, 3.28it/s] 45%|████▌ | 168988/371472 [2:30:26<18:09:16, 3.10it/s] 45%|████▌ | 168989/371472 [2:30:26<17:23:37, 3.23it/s] 45%|████▌ | 168990/371472 [2:30:27<17:40:28, 3.18it/s] 45%|████▌ | 168991/371472 [2:30:27<17:20:30, 3.24it/s] 45%|████▌ | 168992/371472 [2:30:27<17:20:56, 3.24it/s] 45%|████▌ | 168993/371472 [2:30:27<17:04:41, 3.29it/s] 45%|████▌ | 168994/371472 [2:30:28<16:51:44, 3.34it/s] 45%|████▌ | 168995/371472 [2:30:28<17:01:02, 3.31it/s] 45%|████▌ | 168996/371472 [2:30:28<16:48:42, 3.35it/s] 45%|████▌ | 168997/371472 [2:30:29<16:28:22, 3.41it/s] 45%|████▌ | 168998/371472 [2:30:29<16:56:57, 3.32it/s] 45%|████▌ | 168999/371472 [2:30:29<17:06:19, 3.29it/s] 45%|████▌ | 169000/371472 [2:30:30<17:00:31, 3.31it/s] {'loss': 3.0711, 'learning_rate': 5.908121269581331e-07, 'epoch': 7.28} + 45%|████▌ | 169000/371472 [2:30:30<17:00:31, 3.31it/s] 45%|████▌ | 169001/371472 [2:30:30<17:19:39, 3.25it/s] 45%|████▌ | 169002/371472 [2:30:30<17:38:51, 3.19it/s] 45%|████▌ | 169003/371472 [2:30:30<17:29:16, 3.22it/s] 45%|████▌ | 169004/371472 [2:30:31<17:01:35, 3.30it/s] 45%|████▌ | 169005/371472 [2:30:31<17:25:29, 3.23it/s] 45%|████▌ | 169006/371472 [2:30:31<18:13:14, 3.09it/s] 45%|████▌ | 169007/371472 [2:30:32<18:23:13, 3.06it/s] 45%|████▌ | 169008/371472 [2:30:32<17:51:33, 3.15it/s] 45%|████▌ | 169009/371472 [2:30:32<17:16:03, 3.26it/s] 45%|████▌ | 169010/371472 [2:30:33<16:55:03, 3.32it/s] 45%|████▌ | 169011/371472 [2:30:33<16:56:21, 3.32it/s] 45%|████▌ | 169012/371472 [2:30:33<17:05:59, 3.29it/s] 45%|████▌ | 169013/371472 [2:30:34<16:34:35, 3.39it/s] 45%|████▌ | 169014/371472 [2:30:34<16:31:49, 3.40it/s] 45%|████▌ | 169015/371472 [2:30:34<15:58:31, 3.52it/s] 45%|████▌ | 169016/371472 [2:30:34<15:49:05, 3.56it/s] 45%|████▌ | 169017/371472 [2:30:35<16:06:26, 3.49it/s] 45%|████▌ | 169018/371472 [2:30:35<16:55:38, 3.32it/s] 45%|████▌ | 169019/371472 [2:30:35<17:19:05, 3.25it/s] 46%|████▌ | 169020/371472 [2:30:36<16:46:55, 3.35it/s] {'loss': 3.0192, 'learning_rate': 5.907636449826542e-07, 'epoch': 7.28} + 46%|████▌ | 169020/371472 [2:30:36<16:46:55, 3.35it/s] 46%|████▌ | 169021/371472 [2:30:36<16:44:23, 3.36it/s] 46%|████▌ | 169022/371472 [2:30:36<16:41:06, 3.37it/s] 46%|████▌ | 169023/371472 [2:30:36<16:15:12, 3.46it/s] 46%|████▌ | 169024/371472 [2:30:37<16:23:26, 3.43it/s] 46%|████▌ | 169025/371472 [2:30:37<16:18:52, 3.45it/s] 46%|████▌ | 169026/371472 [2:30:37<16:59:46, 3.31it/s] 46%|████▌ | 169027/371472 [2:30:38<16:41:37, 3.37it/s] 46%|████▌ | 169028/371472 [2:30:38<16:19:44, 3.44it/s] 46%|████▌ | 169029/371472 [2:30:38<16:03:13, 3.50it/s] 46%|████▌ | 169030/371472 [2:30:39<16:35:05, 3.39it/s] 46%|████▌ | 169031/371472 [2:30:39<16:41:45, 3.37it/s] 46%|████▌ | 169032/371472 [2:30:39<17:17:06, 3.25it/s] 46%|████▌ | 169033/371472 [2:30:39<16:39:57, 3.37it/s] 46%|████▌ | 169034/371472 [2:30:40<16:27:05, 3.42it/s] 46%|████▌ | 169035/371472 [2:30:40<16:19:54, 3.44it/s] 46%|████▌ | 169036/371472 [2:30:40<16:06:29, 3.49it/s] 46%|████▌ | 169037/371472 [2:30:41<16:09:03, 3.48it/s] 46%|████▌ | 169038/371472 [2:30:41<17:34:03, 3.20it/s] 46%|████▌ | 169039/371472 [2:30:41<17:14:57, 3.26it/s] 46%|████▌ | 169040/371472 [2:30:42<17:29:19, 3.22it/s] {'loss': 2.9171, 'learning_rate': 5.907151630071753e-07, 'epoch': 7.28} + 46%|████▌ | 169040/371472 [2:30:42<17:29:19, 3.22it/s] 46%|████▌ | 169041/371472 [2:30:42<16:55:40, 3.32it/s] 46%|████▌ | 169042/371472 [2:30:42<17:35:44, 3.20it/s] 46%|████▌ | 169043/371472 [2:30:42<17:01:41, 3.30it/s] 46%|████▌ | 169044/371472 [2:30:43<16:54:42, 3.32it/s] 46%|████▌ | 169045/371472 [2:30:43<16:49:34, 3.34it/s] 46%|████▌ | 169046/371472 [2:30:43<16:30:18, 3.41it/s] 46%|████▌ | 169047/371472 [2:30:44<16:31:58, 3.40it/s] 46%|████▌ | 169048/371472 [2:30:44<17:35:59, 3.19it/s] 46%|████▌ | 169049/371472 [2:30:44<17:46:28, 3.16it/s] 46%|████▌ | 169050/371472 [2:30:45<17:42:10, 3.18it/s] 46%|████▌ | 169051/371472 [2:30:45<17:40:54, 3.18it/s] 46%|████▌ | 169052/371472 [2:30:45<17:14:26, 3.26it/s] 46%|████▌ | 169053/371472 [2:30:46<17:17:40, 3.25it/s] 46%|████▌ | 169054/371472 [2:30:46<16:44:29, 3.36it/s] 46%|████▌ | 169055/371472 [2:30:46<16:50:20, 3.34it/s] 46%|████▌ | 169056/371472 [2:30:46<16:31:46, 3.40it/s] 46%|████▌ | 169057/371472 [2:30:47<17:39:51, 3.18it/s] 46%|████▌ | 169058/371472 [2:30:47<17:07:46, 3.28it/s] 46%|████▌ | 169059/371472 [2:30:47<17:09:22, 3.28it/s] 46%|████▌ | 169060/371472 [2:30:48<17:59:11, 3.13it/s] {'loss': 2.8123, 'learning_rate': 5.906666810316965e-07, 'epoch': 7.28} + 46%|████▌ | 169060/371472 [2:30:48<17:59:11, 3.13it/s] 46%|████▌ | 169061/371472 [2:30:48<17:42:40, 3.17it/s] 46%|████▌ | 169062/371472 [2:30:48<17:20:07, 3.24it/s] 46%|████▌ | 169063/371472 [2:30:49<16:55:46, 3.32it/s] 46%|████▌ | 169064/371472 [2:30:49<16:35:02, 3.39it/s] 46%|████▌ | 169065/371472 [2:30:49<17:19:11, 3.25it/s] 46%|████▌ | 169066/371472 [2:30:49<16:50:02, 3.34it/s] 46%|████▌ | 169067/371472 [2:30:50<16:25:10, 3.42it/s] 46%|████▌ | 169068/371472 [2:30:50<16:14:38, 3.46it/s] 46%|████▌ | 169069/371472 [2:30:50<16:25:43, 3.42it/s] 46%|████▌ | 169070/371472 [2:30:51<17:11:26, 3.27it/s] 46%|████▌ | 169071/371472 [2:30:51<17:46:21, 3.16it/s] 46%|████▌ | 169072/371472 [2:30:51<17:22:28, 3.24it/s] 46%|████▌ | 169073/371472 [2:30:52<16:43:51, 3.36it/s] 46%|████▌ | 169074/371472 [2:30:52<16:36:24, 3.39it/s] 46%|████▌ | 169075/371472 [2:30:52<16:12:41, 3.47it/s] 46%|████▌ | 169076/371472 [2:30:52<17:18:39, 3.25it/s] 46%|████▌ | 169077/371472 [2:30:53<16:39:25, 3.38it/s] 46%|████▌ | 169078/371472 [2:30:53<17:35:57, 3.19it/s] 46%|████▌ | 169079/371472 [2:30:53<17:20:45, 3.24it/s] 46%|████▌ | 169080/371472 [2:30:54<17:04:29, 3.29it/s] {'loss': 3.0775, 'learning_rate': 5.906181990562176e-07, 'epoch': 7.28} + 46%|████▌ | 169080/371472 [2:30:54<17:04:29, 3.29it/s] 46%|████▌ | 169081/371472 [2:30:54<16:41:49, 3.37it/s] 46%|████▌ | 169082/371472 [2:30:54<17:11:36, 3.27it/s] 46%|████▌ | 169083/371472 [2:30:55<16:40:56, 3.37it/s] 46%|████▌ | 169084/371472 [2:30:55<16:48:43, 3.34it/s] 46%|████▌ | 169085/371472 [2:30:55<17:14:14, 3.26it/s] 46%|████▌ | 169086/371472 [2:30:56<18:18:14, 3.07it/s] 46%|████▌ | 169087/371472 [2:30:56<18:19:00, 3.07it/s] 46%|████▌ | 169088/371472 [2:30:56<18:08:56, 3.10it/s] 46%|████▌ | 169089/371472 [2:30:57<18:00:19, 3.12it/s] 46%|████▌ | 169090/371472 [2:30:57<17:30:43, 3.21it/s] 46%|████▌ | 169091/371472 [2:30:57<17:20:05, 3.24it/s] 46%|████▌ | 169092/371472 [2:30:57<17:07:47, 3.28it/s] 46%|████▌ | 169093/371472 [2:30:58<17:51:07, 3.15it/s] 46%|████▌ | 169094/371472 [2:30:58<17:35:59, 3.19it/s] 46%|████▌ | 169095/371472 [2:30:58<17:24:41, 3.23it/s] 46%|████▌ | 169096/371472 [2:30:59<17:10:38, 3.27it/s] 46%|████▌ | 169097/371472 [2:30:59<16:36:30, 3.38it/s] 46%|████▌ | 169098/371472 [2:30:59<16:32:28, 3.40it/s] 46%|████▌ | 169099/371472 [2:31:00<16:28:21, 3.41it/s] 46%|████▌ | 169100/371472 [2:31:00<17:37:34, 3.19it/s] {'loss': 2.7945, 'learning_rate': 5.905697170807385e-07, 'epoch': 7.28} + 46%|████▌ | 169100/371472 [2:31:00<17:37:34, 3.19it/s] 46%|████▌ | 169101/371472 [2:31:00<17:01:42, 3.30it/s] 46%|████▌ | 169102/371472 [2:31:00<16:26:57, 3.42it/s] 46%|████▌ | 169103/371472 [2:31:01<16:00:37, 3.51it/s] 46%|████▌ | 169104/371472 [2:31:01<16:23:17, 3.43it/s] 46%|████▌ | 169105/371472 [2:31:01<16:35:01, 3.39it/s] 46%|████▌ | 169106/371472 [2:31:02<17:15:57, 3.26it/s] 46%|████▌ | 169107/371472 [2:31:02<17:30:18, 3.21it/s] 46%|████▌ | 169108/371472 [2:31:02<17:45:25, 3.17it/s] 46%|████▌ | 169109/371472 [2:31:03<17:12:59, 3.27it/s] 46%|████▌ | 169110/371472 [2:31:03<17:24:25, 3.23it/s] 46%|████▌ | 169111/371472 [2:31:03<17:10:35, 3.27it/s] 46%|████▌ | 169112/371472 [2:31:03<16:44:13, 3.36it/s] 46%|████▌ | 169113/371472 [2:31:04<17:03:01, 3.30it/s] 46%|████▌ | 169114/371472 [2:31:04<16:44:07, 3.36it/s] 46%|████▌ | 169115/371472 [2:31:04<17:17:11, 3.25it/s] 46%|████▌ | 169116/371472 [2:31:05<16:39:40, 3.37it/s] 46%|████▌ | 169117/371472 [2:31:05<16:37:41, 3.38it/s] 46%|████▌ | 169118/371472 [2:31:05<17:36:30, 3.19it/s] 46%|████▌ | 169119/371472 [2:31:06<17:41:48, 3.18it/s] 46%|████▌ | 169120/371472 [2:31:06<17:42:16, 3.17it/s] {'loss': 2.7648, 'learning_rate': 5.905212351052597e-07, 'epoch': 7.28} + 46%|████▌ | 169120/371472 [2:31:06<17:42:16, 3.17it/s] 46%|████▌ | 169121/371472 [2:31:06<17:38:24, 3.19it/s] 46%|████▌ | 169122/371472 [2:31:07<17:18:44, 3.25it/s] 46%|████▌ | 169123/371472 [2:31:07<18:28:38, 3.04it/s] 46%|████▌ | 169124/371472 [2:31:07<18:22:31, 3.06it/s] 46%|████▌ | 169125/371472 [2:31:08<17:42:17, 3.17it/s] 46%|████▌ | 169126/371472 [2:31:08<17:15:20, 3.26it/s] 46%|████▌ | 169127/371472 [2:31:08<16:48:22, 3.34it/s] 46%|████▌ | 169128/371472 [2:31:08<16:45:00, 3.36it/s] 46%|████▌ | 169129/371472 [2:31:09<16:20:58, 3.44it/s] 46%|████▌ | 169130/371472 [2:31:09<17:55:20, 3.14it/s] 46%|████▌ | 169131/371472 [2:31:09<17:21:47, 3.24it/s] 46%|████▌ | 169132/371472 [2:31:10<16:47:20, 3.35it/s] 46%|████▌ | 169133/371472 [2:31:10<16:33:13, 3.40it/s] 46%|████▌ | 169134/371472 [2:31:10<17:18:08, 3.25it/s] 46%|████▌ | 169135/371472 [2:31:11<16:48:09, 3.35it/s] 46%|████▌ | 169136/371472 [2:31:11<17:37:27, 3.19it/s] 46%|████▌ | 169137/371472 [2:31:11<17:02:26, 3.30it/s] 46%|████▌ | 169138/371472 [2:31:11<16:44:01, 3.36it/s] 46%|████▌ | 169139/371472 [2:31:12<16:32:01, 3.40it/s] 46%|████▌ | 169140/371472 [2:31:12<16:41:29, 3.37it/s] {'loss': 2.9796, 'learning_rate': 5.904727531297809e-07, 'epoch': 7.29} + 46%|████▌ | 169140/371472 [2:31:12<16:41:29, 3.37it/s] 46%|████▌ | 169141/371472 [2:31:12<16:23:07, 3.43it/s] 46%|████▌ | 169142/371472 [2:31:13<16:19:22, 3.44it/s] 46%|████▌ | 169143/371472 [2:31:13<16:59:30, 3.31it/s] 46%|████▌ | 169144/371472 [2:31:13<17:02:43, 3.30it/s] 46%|████▌ | 169145/371472 [2:31:14<18:04:37, 3.11it/s] 46%|████▌ | 169146/371472 [2:31:14<17:23:31, 3.23it/s] 46%|████▌ | 169147/371472 [2:31:14<17:48:19, 3.16it/s] 46%|████▌ | 169148/371472 [2:31:15<17:39:54, 3.18it/s] 46%|████▌ | 169149/371472 [2:31:15<17:19:16, 3.24it/s] 46%|████▌ | 169150/371472 [2:31:15<17:00:21, 3.30it/s] 46%|████▌ | 169151/371472 [2:31:15<16:47:02, 3.35it/s] 46%|████▌ | 169152/371472 [2:31:16<16:30:39, 3.40it/s] 46%|████▌ | 169153/371472 [2:31:16<16:24:27, 3.43it/s] 46%|████▌ | 169154/371472 [2:31:16<18:26:25, 3.05it/s] 46%|████▌ | 169155/371472 [2:31:17<18:16:12, 3.08it/s] 46%|████▌ | 169156/371472 [2:31:17<17:17:52, 3.25it/s] 46%|████▌ | 169157/371472 [2:31:17<17:05:23, 3.29it/s] 46%|████▌ | 169158/371472 [2:31:18<17:20:39, 3.24it/s] 46%|████▌ | 169159/371472 [2:31:18<16:56:02, 3.32it/s] 46%|████▌ | 169160/371472 [2:31:18<16:33:54, 3.39it/s] {'loss': 2.8709, 'learning_rate': 5.904242711543019e-07, 'epoch': 7.29} + 46%|████▌ | 169160/371472 [2:31:18<16:33:54, 3.39it/s] 46%|████▌ | 169161/371472 [2:31:18<16:56:32, 3.32it/s] 46%|████▌ | 169162/371472 [2:31:19<16:44:38, 3.36it/s] 46%|████▌ | 169163/371472 [2:31:19<16:21:09, 3.44it/s] 46%|████▌ | 169164/371472 [2:31:19<16:12:47, 3.47it/s] 46%|████▌ | 169165/371472 [2:31:20<16:19:03, 3.44it/s] 46%|████▌ | 169166/371472 [2:31:20<16:14:28, 3.46it/s] 46%|████▌ | 169167/371472 [2:31:20<16:16:56, 3.45it/s] 46%|████▌ | 169168/371472 [2:31:21<17:11:42, 3.27it/s] 46%|████▌ | 169169/371472 [2:31:21<16:59:59, 3.31it/s] 46%|████▌ | 169170/371472 [2:31:21<16:45:53, 3.35it/s] 46%|████▌ | 169171/371472 [2:31:21<16:27:00, 3.42it/s] 46%|████▌ | 169172/371472 [2:31:22<15:51:37, 3.54it/s] 46%|████▌ | 169173/371472 [2:31:22<16:12:37, 3.47it/s] 46%|████▌ | 169174/371472 [2:31:22<15:57:11, 3.52it/s] 46%|████▌ | 169175/371472 [2:31:22<15:50:17, 3.55it/s] 46%|████▌ | 169176/371472 [2:31:23<16:09:22, 3.48it/s] 46%|████▌ | 169177/371472 [2:31:23<15:50:55, 3.55it/s] 46%|████▌ | 169178/371472 [2:31:23<17:56:17, 3.13it/s] 46%|████▌ | 169179/371472 [2:31:24<17:03:08, 3.30it/s] 46%|████▌ | 169180/371472 [2:31:24<17:25:56, 3.22it/s] {'loss': 2.9439, 'learning_rate': 5.90375789178823e-07, 'epoch': 7.29} + 46%|████▌ | 169180/371472 [2:31:24<17:25:56, 3.22it/s] 46%|████▌ | 169181/371472 [2:31:24<16:50:07, 3.34it/s] 46%|████▌ | 169182/371472 [2:31:25<16:34:33, 3.39it/s] 46%|████▌ | 169183/371472 [2:31:25<16:52:55, 3.33it/s] 46%|████▌ | 169184/371472 [2:31:25<16:36:53, 3.38it/s] 46%|████▌ | 169185/371472 [2:31:26<17:31:06, 3.21it/s] 46%|████▌ | 169186/371472 [2:31:26<16:43:59, 3.36it/s] 46%|████▌ | 169187/371472 [2:31:26<16:33:56, 3.39it/s] 46%|████▌ | 169188/371472 [2:31:26<16:14:16, 3.46it/s] 46%|████▌ | 169189/371472 [2:31:27<16:07:01, 3.49it/s] 46%|████▌ | 169190/371472 [2:31:27<17:34:24, 3.20it/s] 46%|████▌ | 169191/371472 [2:31:27<17:37:59, 3.19it/s] 46%|████▌ | 169192/371472 [2:31:28<17:16:44, 3.25it/s] 46%|████▌ | 169193/371472 [2:31:28<16:56:19, 3.32it/s] 46%|████▌ | 169194/371472 [2:31:28<16:34:48, 3.39it/s] 46%|████▌ | 169195/371472 [2:31:29<16:58:45, 3.31it/s] 46%|████▌ | 169196/371472 [2:31:29<16:43:08, 3.36it/s] 46%|████▌ | 169197/371472 [2:31:29<17:00:41, 3.30it/s] 46%|████▌ | 169198/371472 [2:31:29<16:43:13, 3.36it/s] 46%|████▌ | 169199/371472 [2:31:30<16:52:18, 3.33it/s] 46%|████▌ | 169200/371472 [2:31:30<16:54:19, 3.32it/s] {'loss': 2.8146, 'learning_rate': 5.903273072033443e-07, 'epoch': 7.29} + 46%|████▌ | 169200/371472 [2:31:30<16:54:19, 3.32it/s] 46%|████▌ | 169201/371472 [2:31:30<16:48:02, 3.34it/s] 46%|████▌ | 169202/371472 [2:31:31<16:42:26, 3.36it/s] 46%|████▌ | 169203/371472 [2:31:31<16:19:22, 3.44it/s] 46%|████▌ | 169204/371472 [2:31:31<16:23:06, 3.43it/s] 46%|████▌ | 169205/371472 [2:31:31<15:59:40, 3.51it/s] 46%|████▌ | 169206/371472 [2:31:32<16:29:58, 3.41it/s] 46%|████▌ | 169207/371472 [2:31:32<16:49:32, 3.34it/s] 46%|████▌ | 169208/371472 [2:31:32<16:11:24, 3.47it/s] 46%|████▌ | 169209/371472 [2:31:33<16:24:11, 3.43it/s] 46%|████▌ | 169210/371472 [2:31:33<16:43:32, 3.36it/s] 46%|████▌ | 169211/371472 [2:31:33<17:21:54, 3.24it/s] 46%|████▌ | 169212/371472 [2:31:34<17:47:30, 3.16it/s] 46%|████▌ | 169213/371472 [2:31:34<17:18:57, 3.24it/s] 46%|████▌ | 169214/371472 [2:31:34<16:59:18, 3.31it/s] 46%|████▌ | 169215/371472 [2:31:34<16:42:43, 3.36it/s] 46%|████▌ | 169216/371472 [2:31:35<17:59:15, 3.12it/s] 46%|████▌ | 169217/371472 [2:31:35<18:13:43, 3.08it/s] 46%|████▌ | 169218/371472 [2:31:36<18:04:51, 3.11it/s] 46%|████▌ | 169219/371472 [2:31:36<17:10:28, 3.27it/s] 46%|████▌ | 169220/371472 [2:31:36<16:58:20, 3.31it/s] {'loss': 2.9144, 'learning_rate': 5.902788252278652e-07, 'epoch': 7.29} + 46%|████▌ | 169220/371472 [2:31:36<16:58:20, 3.31it/s] 46%|████▌ | 169221/371472 [2:31:36<16:32:26, 3.40it/s] 46%|████▌ | 169222/371472 [2:31:37<16:16:47, 3.45it/s] 46%|████▌ | 169223/371472 [2:31:37<17:12:06, 3.27it/s] 46%|████▌ | 169224/371472 [2:31:37<17:27:15, 3.22it/s] 46%|████▌ | 169225/371472 [2:31:38<17:39:36, 3.18it/s] 46%|████▌ | 169226/371472 [2:31:38<17:06:16, 3.28it/s] 46%|████▌ | 169227/371472 [2:31:38<17:27:01, 3.22it/s] 46%|████▌ | 169228/371472 [2:31:39<17:13:00, 3.26it/s] 46%|████▌ | 169229/371472 [2:31:39<16:56:14, 3.32it/s] 46%|████▌ | 169230/371472 [2:31:39<17:04:26, 3.29it/s] 46%|████▌ | 169231/371472 [2:31:39<17:34:26, 3.20it/s] 46%|████▌ | 169232/371472 [2:31:40<17:04:41, 3.29it/s] 46%|████▌ | 169233/371472 [2:31:40<18:10:16, 3.09it/s] 46%|████▌ | 169234/371472 [2:31:40<17:51:52, 3.14it/s] 46%|████▌ | 169235/371472 [2:31:41<18:19:03, 3.07it/s] 46%|████▌ | 169236/371472 [2:31:41<17:20:40, 3.24it/s] 46%|████▌ | 169237/371472 [2:31:41<16:56:53, 3.31it/s] 46%|████▌ | 169238/371472 [2:31:42<18:06:14, 3.10it/s] 46%|████▌ | 169239/371472 [2:31:42<19:53:44, 2.82it/s] 46%|████▌ | 169240/371472 [2:31:42<18:46:48, 2.99it/s] {'loss': 2.9881, 'learning_rate': 5.902303432523863e-07, 'epoch': 7.29} + 46%|████▌ | 169240/371472 [2:31:42<18:46:48, 2.99it/s] 46%|████▌ | 169241/371472 [2:31:43<17:55:45, 3.13it/s] 46%|████▌ | 169242/371472 [2:31:43<17:30:07, 3.21it/s] 46%|████▌ | 169243/371472 [2:31:43<16:59:55, 3.30it/s] 46%|████▌ | 169244/371472 [2:31:44<16:28:35, 3.41it/s] 46%|████▌ | 169245/371472 [2:31:44<16:36:11, 3.38it/s] 46%|████▌ | 169246/371472 [2:31:44<17:03:37, 3.29it/s] 46%|████▌ | 169247/371472 [2:31:44<17:05:05, 3.29it/s] 46%|████▌ | 169248/371472 [2:31:45<16:36:59, 3.38it/s] 46%|████▌ | 169249/371472 [2:31:45<16:21:26, 3.43it/s] 46%|████▌ | 169250/371472 [2:31:45<17:46:08, 3.16it/s] 46%|████▌ | 169251/371472 [2:31:46<17:54:26, 3.14it/s] 46%|████▌ | 169252/371472 [2:31:46<17:51:08, 3.15it/s] 46%|████▌ | 169253/371472 [2:31:46<17:19:16, 3.24it/s] 46%|████▌ | 169254/371472 [2:31:47<16:42:53, 3.36it/s] 46%|████▌ | 169255/371472 [2:31:47<16:29:39, 3.41it/s] 46%|████▌ | 169256/371472 [2:31:47<16:56:24, 3.32it/s] 46%|████▌ | 169257/371472 [2:31:48<17:02:22, 3.30it/s] 46%|████▌ | 169258/371472 [2:31:48<16:27:55, 3.41it/s] 46%|████▌ | 169259/371472 [2:31:48<16:33:35, 3.39it/s] 46%|████▌ | 169260/371472 [2:31:48<16:11:31, 3.47it/s] {'loss': 2.9816, 'learning_rate': 5.901818612769074e-07, 'epoch': 7.29} + 46%|████▌ | 169260/371472 [2:31:48<16:11:31, 3.47it/s] 46%|████▌ | 169261/371472 [2:31:49<17:34:28, 3.20it/s] 46%|████▌ | 169262/371472 [2:31:49<16:43:59, 3.36it/s] 46%|████▌ | 169263/371472 [2:31:49<16:56:41, 3.31it/s] 46%|████▌ | 169264/371472 [2:31:50<16:41:18, 3.37it/s] 46%|████▌ | 169265/371472 [2:31:50<16:33:11, 3.39it/s] 46%|████▌ | 169266/371472 [2:31:50<16:51:24, 3.33it/s] 46%|████▌ | 169267/371472 [2:31:51<17:14:46, 3.26it/s] 46%|████▌ | 169268/371472 [2:31:51<17:30:50, 3.21it/s] 46%|████▌ | 169269/371472 [2:31:51<17:14:08, 3.26it/s] 46%|████▌ | 169270/371472 [2:31:51<16:35:17, 3.39it/s] 46%|████▌ | 169271/371472 [2:31:52<16:25:52, 3.42it/s] 46%|████▌ | 169272/371472 [2:31:52<16:21:18, 3.43it/s] 46%|████▌ | 169273/371472 [2:31:52<16:45:52, 3.35it/s] 46%|████▌ | 169274/371472 [2:31:53<16:33:31, 3.39it/s] 46%|████▌ | 169275/371472 [2:31:53<16:06:28, 3.49it/s] 46%|████▌ | 169276/371472 [2:31:53<16:03:22, 3.50it/s] 46%|████▌ | 169277/371472 [2:31:53<15:56:27, 3.52it/s] 46%|████▌ | 169278/371472 [2:31:54<15:56:44, 3.52it/s] 46%|████▌ | 169279/371472 [2:31:54<16:37:22, 3.38it/s] 46%|████▌ | 169280/371472 [2:31:54<16:34:13, 3.39it/s] {'loss': 2.825, 'learning_rate': 5.901333793014286e-07, 'epoch': 7.29} + 46%|████▌ | 169280/371472 [2:31:54<16:34:13, 3.39it/s] 46%|████▌ | 169281/371472 [2:31:55<16:51:05, 3.33it/s] 46%|████▌ | 169282/371472 [2:31:55<18:35:05, 3.02it/s] 46%|████▌ | 169283/371472 [2:31:55<17:51:32, 3.14it/s] 46%|████▌ | 169284/371472 [2:31:56<17:52:02, 3.14it/s] 46%|████▌ | 169285/371472 [2:31:56<17:50:05, 3.15it/s] 46%|████▌ | 169286/371472 [2:31:56<17:54:41, 3.14it/s] 46%|████▌ | 169287/371472 [2:31:57<18:38:53, 3.01it/s] 46%|████▌ | 169288/371472 [2:31:57<17:38:02, 3.18it/s] 46%|████▌ | 169289/371472 [2:31:57<17:20:49, 3.24it/s] 46%|████▌ | 169290/371472 [2:31:58<18:07:21, 3.10it/s] 46%|████▌ | 169291/371472 [2:31:58<17:31:17, 3.21it/s] 46%|████▌ | 169292/371472 [2:31:58<17:14:14, 3.26it/s] 46%|████▌ | 169293/371472 [2:31:58<17:17:59, 3.25it/s] 46%|████▌ | 169294/371472 [2:31:59<17:25:08, 3.22it/s] 46%|████▌ | 169295/371472 [2:31:59<17:06:28, 3.28it/s] 46%|████▌ | 169296/371472 [2:31:59<16:57:20, 3.31it/s] 46%|████▌ | 169297/371472 [2:32:00<16:38:38, 3.37it/s] 46%|████▌ | 169298/371472 [2:32:00<16:19:15, 3.44it/s] 46%|████▌ | 169299/371472 [2:32:00<15:47:51, 3.55it/s] 46%|████▌ | 169300/371472 [2:32:00<15:36:07, 3.60it/s] {'loss': 3.0248, 'learning_rate': 5.900848973259497e-07, 'epoch': 7.29} + 46%|████▌ | 169300/371472 [2:32:00<15:36:07, 3.60it/s] 46%|████▌ | 169301/371472 [2:32:01<15:51:45, 3.54it/s] 46%|████▌ | 169302/371472 [2:32:01<16:17:10, 3.45it/s] 46%|████▌ | 169303/371472 [2:32:01<16:50:11, 3.34it/s] 46%|████▌ | 169304/371472 [2:32:02<16:39:48, 3.37it/s] 46%|████▌ | 169305/371472 [2:32:02<16:39:28, 3.37it/s] 46%|████▌ | 169306/371472 [2:32:02<16:58:56, 3.31it/s] 46%|████▌ | 169307/371472 [2:32:03<16:58:15, 3.31it/s] 46%|████▌ | 169308/371472 [2:32:03<18:24:32, 3.05it/s] 46%|████▌ | 169309/371472 [2:32:03<18:04:54, 3.11it/s] 46%|████▌ | 169310/371472 [2:32:04<18:18:52, 3.07it/s] 46%|████▌ | 169311/371472 [2:32:04<17:47:14, 3.16it/s] 46%|████▌ | 169312/371472 [2:32:04<17:10:39, 3.27it/s] 46%|████▌ | 169313/371472 [2:32:05<18:57:36, 2.96it/s] 46%|████▌ | 169314/371472 [2:32:05<18:12:18, 3.08it/s] 46%|████▌ | 169315/371472 [2:32:05<17:47:39, 3.16it/s] 46%|████▌ | 169316/371472 [2:32:05<17:36:00, 3.19it/s] 46%|████▌ | 169317/371472 [2:32:06<17:34:35, 3.19it/s] 46%|████▌ | 169318/371472 [2:32:06<17:33:50, 3.20it/s] 46%|████▌ | 169319/371472 [2:32:06<17:06:53, 3.28it/s] 46%|████▌ | 169320/371472 [2:32:07<16:27:05, 3.41it/s] {'loss': 2.9905, 'learning_rate': 5.900364153504708e-07, 'epoch': 7.29} + 46%|████▌ | 169320/371472 [2:32:07<16:27:05, 3.41it/s] 46%|████▌ | 169321/371472 [2:32:07<16:08:23, 3.48it/s] 46%|████▌ | 169322/371472 [2:32:07<16:35:42, 3.38it/s] 46%|████▌ | 169323/371472 [2:32:08<16:39:51, 3.37it/s] 46%|████▌ | 169324/371472 [2:32:08<16:38:49, 3.37it/s] 46%|████▌ | 169325/371472 [2:32:08<16:45:30, 3.35it/s] 46%|████▌ | 169326/371472 [2:32:08<16:24:54, 3.42it/s] 46%|████▌ | 169327/371472 [2:32:09<16:54:30, 3.32it/s] 46%|████▌ | 169328/371472 [2:32:09<17:13:18, 3.26it/s] 46%|████▌ | 169329/371472 [2:32:09<16:50:18, 3.33it/s] 46%|████▌ | 169330/371472 [2:32:10<16:16:51, 3.45it/s] 46%|████▌ | 169331/371472 [2:32:10<16:13:24, 3.46it/s] 46%|████▌ | 169332/371472 [2:32:10<16:52:36, 3.33it/s] 46%|████▌ | 169333/371472 [2:32:10<16:27:54, 3.41it/s] 46%|████▌ | 169334/371472 [2:32:11<17:12:19, 3.26it/s] 46%|████▌ | 169335/371472 [2:32:11<17:14:22, 3.26it/s] 46%|████▌ | 169336/371472 [2:32:11<17:08:38, 3.28it/s] 46%|████▌ | 169337/371472 [2:32:12<16:27:31, 3.41it/s] 46%|████▌ | 169338/371472 [2:32:12<16:44:11, 3.35it/s] 46%|████▌ | 169339/371472 [2:32:12<16:46:13, 3.35it/s] 46%|████▌ | 169340/371472 [2:32:13<16:07:03, 3.48it/s] {'loss': 2.9468, 'learning_rate': 5.899879333749919e-07, 'epoch': 7.29} + 46%|████▌ | 169340/371472 [2:32:13<16:07:03, 3.48it/s] 46%|████▌ | 169341/371472 [2:32:13<16:01:26, 3.50it/s] 46%|████▌ | 169342/371472 [2:32:13<17:14:15, 3.26it/s] 46%|████▌ | 169343/371472 [2:32:14<16:51:27, 3.33it/s] 46%|████▌ | 169344/371472 [2:32:14<16:17:23, 3.45it/s] 46%|████▌ | 169345/371472 [2:32:14<16:01:26, 3.50it/s] 46%|████▌ | 169346/371472 [2:32:14<16:16:24, 3.45it/s] 46%|████▌ | 169347/371472 [2:32:15<16:01:46, 3.50it/s] 46%|████▌ | 169348/371472 [2:32:15<16:22:25, 3.43it/s] 46%|████▌ | 169349/371472 [2:32:15<16:13:19, 3.46it/s] 46%|████▌ | 169350/371472 [2:32:15<16:12:51, 3.46it/s] 46%|████▌ | 169351/371472 [2:32:16<15:41:55, 3.58it/s] 46%|████▌ | 169352/371472 [2:32:16<17:54:50, 3.13it/s] 46%|████▌ | 169353/371472 [2:32:17<18:25:03, 3.05it/s] 46%|████▌ | 169354/371472 [2:32:17<17:41:48, 3.17it/s] 46%|████▌ | 169355/371472 [2:32:17<17:15:27, 3.25it/s] 46%|████▌ | 169356/371472 [2:32:17<16:55:26, 3.32it/s] 46%|████▌ | 169357/371472 [2:32:18<16:22:25, 3.43it/s] 46%|████▌ | 169358/371472 [2:32:18<16:30:01, 3.40it/s] 46%|████▌ | 169359/371472 [2:32:18<16:37:56, 3.38it/s] 46%|████▌ | 169360/371472 [2:32:19<16:20:07, 3.44it/s] {'loss': 2.9361, 'learning_rate': 5.89939451399513e-07, 'epoch': 7.29} + 46%|████▌ | 169360/371472 [2:32:19<16:20:07, 3.44it/s] 46%|████▌ | 169361/371472 [2:32:19<16:41:15, 3.36it/s] 46%|████▌ | 169362/371472 [2:32:19<17:03:28, 3.29it/s] 46%|████▌ | 169363/371472 [2:32:19<17:11:20, 3.27it/s] 46%|████▌ | 169364/371472 [2:32:20<17:00:56, 3.30it/s] 46%|████▌ | 169365/371472 [2:32:20<17:40:46, 3.18it/s] 46%|████▌ | 169366/371472 [2:32:20<17:27:03, 3.22it/s] 46%|████▌ | 169367/371472 [2:32:21<17:05:12, 3.29it/s] 46%|████▌ | 169368/371472 [2:32:21<17:53:16, 3.14it/s] 46%|████▌ | 169369/371472 [2:32:21<17:00:05, 3.30it/s] 46%|████▌ | 169370/371472 [2:32:22<17:02:31, 3.29it/s] 46%|████▌ | 169371/371472 [2:32:22<17:06:31, 3.28it/s] 46%|████▌ | 169372/371472 [2:32:22<17:08:22, 3.28it/s] 46%|████▌ | 169373/371472 [2:32:23<17:06:45, 3.28it/s] 46%|████▌ | 169374/371472 [2:32:23<17:42:59, 3.17it/s] 46%|████▌ | 169375/371472 [2:32:23<17:18:00, 3.24it/s] 46%|████▌ | 169376/371472 [2:32:24<17:51:31, 3.14it/s] 46%|████▌ | 169377/371472 [2:32:24<18:20:59, 3.06it/s] 46%|████▌ | 169378/371472 [2:32:24<17:34:08, 3.20it/s] 46%|████▌ | 169379/371472 [2:32:24<18:02:51, 3.11it/s] 46%|████▌ | 169380/371472 [2:32:25<17:23:24, 3.23it/s] {'loss': 3.002, 'learning_rate': 5.898909694240341e-07, 'epoch': 7.3} + 46%|████▌ | 169380/371472 [2:32:25<17:23:24, 3.23it/s] 46%|████▌ | 169381/371472 [2:32:25<16:44:36, 3.35it/s] 46%|████▌ | 169382/371472 [2:32:25<16:42:08, 3.36it/s] 46%|████▌ | 169383/371472 [2:32:26<17:29:59, 3.21it/s] 46%|████▌ | 169384/371472 [2:32:26<17:23:21, 3.23it/s] 46%|████▌ | 169385/371472 [2:32:26<17:00:36, 3.30it/s] 46%|████▌ | 169386/371472 [2:32:27<16:27:22, 3.41it/s] 46%|████▌ | 169387/371472 [2:32:27<16:25:57, 3.42it/s] 46%|████▌ | 169388/371472 [2:32:27<16:15:54, 3.45it/s] 46%|████▌ | 169389/371472 [2:32:27<16:47:40, 3.34it/s] 46%|████▌ | 169390/371472 [2:32:28<16:29:28, 3.40it/s] 46%|████▌ | 169391/371472 [2:32:28<16:22:35, 3.43it/s] 46%|████▌ | 169392/371472 [2:32:28<16:08:26, 3.48it/s] 46%|████▌ | 169393/371472 [2:32:29<16:20:41, 3.43it/s] 46%|████▌ | 169394/371472 [2:32:29<18:05:11, 3.10it/s] 46%|████▌ | 169395/371472 [2:32:29<17:19:48, 3.24it/s] 46%|████▌ | 169396/371472 [2:32:30<16:44:11, 3.35it/s] 46%|████▌ | 169397/371472 [2:32:30<16:36:59, 3.38it/s] 46%|████▌ | 169398/371472 [2:32:30<16:17:53, 3.44it/s] 46%|██���█▌ | 169399/371472 [2:32:30<15:45:00, 3.56it/s] 46%|████▌ | 169400/371472 [2:32:31<15:33:16, 3.61it/s] {'loss': 2.8868, 'learning_rate': 5.898424874485552e-07, 'epoch': 7.3} + 46%|████▌ | 169400/371472 [2:32:31<15:33:16, 3.61it/s] 46%|████▌ | 169401/371472 [2:32:31<15:44:20, 3.57it/s] 46%|████▌ | 169402/371472 [2:32:31<15:46:33, 3.56it/s] 46%|████▌ | 169403/371472 [2:32:32<16:32:12, 3.39it/s] 46%|████▌ | 169404/371472 [2:32:32<16:32:51, 3.39it/s] 46%|████▌ | 169405/371472 [2:32:32<15:59:58, 3.51it/s] 46%|████▌ | 169406/371472 [2:32:32<16:20:07, 3.44it/s] 46%|████▌ | 169407/371472 [2:32:33<16:01:05, 3.50it/s] 46%|████▌ | 169408/371472 [2:32:33<17:11:08, 3.27it/s] 46%|████▌ | 169409/371472 [2:32:33<16:22:36, 3.43it/s] 46%|████▌ | 169410/371472 [2:32:34<16:22:32, 3.43it/s] 46%|████▌ | 169411/371472 [2:32:34<15:58:55, 3.51it/s] 46%|████▌ | 169412/371472 [2:32:34<16:13:34, 3.46it/s] 46%|████▌ | 169413/371472 [2:32:34<16:07:07, 3.48it/s] 46%|████▌ | 169414/371472 [2:32:35<17:13:14, 3.26it/s] 46%|████▌ | 169415/371472 [2:32:35<16:53:58, 3.32it/s] 46%|████▌ | 169416/371472 [2:32:35<16:46:18, 3.35it/s] 46%|████▌ | 169417/371472 [2:32:36<18:23:02, 3.05it/s] 46%|████▌ | 169418/371472 [2:32:36<19:06:07, 2.94it/s] 46%|████▌ | 169419/371472 [2:32:36<17:59:40, 3.12it/s] 46%|████▌ | 169420/371472 [2:32:37<17:34:59, 3.19it/s] {'loss': 2.8819, 'learning_rate': 5.897940054730763e-07, 'epoch': 7.3} + 46%|████▌ | 169420/371472 [2:32:37<17:34:59, 3.19it/s] 46%|████▌ | 169421/371472 [2:32:37<17:32:54, 3.20it/s] 46%|████▌ | 169422/371472 [2:32:37<18:00:52, 3.12it/s] 46%|████▌ | 169423/371472 [2:32:38<18:15:01, 3.08it/s] 46%|████▌ | 169424/371472 [2:32:38<17:29:10, 3.21it/s] 46%|████▌ | 169425/371472 [2:32:38<17:04:09, 3.29it/s] 46%|████▌ | 169426/371472 [2:32:39<17:34:59, 3.19it/s] 46%|████▌ | 169427/371472 [2:32:39<17:08:22, 3.27it/s] 46%|████▌ | 169428/371472 [2:32:39<17:09:39, 3.27it/s] 46%|████▌ | 169429/371472 [2:32:39<16:41:15, 3.36it/s] 46%|████▌ | 169430/371472 [2:32:40<17:09:52, 3.27it/s] 46%|████▌ | 169431/371472 [2:32:40<17:13:45, 3.26it/s] 46%|████▌ | 169432/371472 [2:32:40<17:27:23, 3.21it/s] 46%|████▌ | 169433/371472 [2:32:41<16:55:08, 3.32it/s] 46%|████▌ | 169434/371472 [2:32:41<16:30:24, 3.40it/s] 46%|████▌ | 169435/371472 [2:32:41<16:44:17, 3.35it/s] 46%|████▌ | 169436/371472 [2:32:42<16:52:56, 3.32it/s] 46%|████▌ | 169437/371472 [2:32:42<17:26:11, 3.22it/s] 46%|████▌ | 169438/371472 [2:32:42<17:08:18, 3.27it/s] 46%|████▌ | 169439/371472 [2:32:42<16:33:18, 3.39it/s] 46%|████▌ | 169440/371472 [2:32:43<16:30:20, 3.40it/s] {'loss': 3.1066, 'learning_rate': 5.897455234975975e-07, 'epoch': 7.3} + 46%|████▌ | 169440/371472 [2:32:43<16:30:20, 3.40it/s] 46%|████▌ | 169441/371472 [2:32:43<16:18:16, 3.44it/s] 46%|████▌ | 169442/371472 [2:32:43<15:56:57, 3.52it/s] 46%|████▌ | 169443/371472 [2:32:44<16:32:42, 3.39it/s] 46%|████▌ | 169444/371472 [2:32:44<16:12:00, 3.46it/s] 46%|████▌ | 169445/371472 [2:32:44<16:03:25, 3.49it/s] 46%|████▌ | 169446/371472 [2:32:44<15:54:18, 3.53it/s] 46%|████▌ | 169447/371472 [2:32:45<16:06:38, 3.48it/s] 46%|████▌ | 169448/371472 [2:32:45<16:12:44, 3.46it/s] 46%|████▌ | 169449/371472 [2:32:45<16:41:02, 3.36it/s] 46%|████▌ | 169450/371472 [2:32:46<16:32:26, 3.39it/s] 46%|████▌ | 169451/371472 [2:32:46<16:14:38, 3.45it/s] 46%|████▌ | 169452/371472 [2:32:46<16:47:06, 3.34it/s] 46%|████▌ | 169453/371472 [2:32:47<17:20:17, 3.24it/s] 46%|████▌ | 169454/371472 [2:32:47<16:51:17, 3.33it/s] 46%|████▌ | 169455/371472 [2:32:47<16:40:44, 3.36it/s] 46%|████▌ | 169456/371472 [2:32:47<16:30:28, 3.40it/s] 46%|████▌ | 169457/371472 [2:32:48<16:14:23, 3.46it/s] 46%|████▌ | 169458/371472 [2:32:48<16:12:12, 3.46it/s] 46%|████▌ | 169459/371472 [2:32:48<15:58:16, 3.51it/s] 46%|████▌ | 169460/371472 [2:32:49<16:08:31, 3.48it/s] {'loss': 2.8859, 'learning_rate': 5.896970415221186e-07, 'epoch': 7.3} + 46%|████▌ | 169460/371472 [2:32:49<16:08:31, 3.48it/s] 46%|████▌ | 169461/371472 [2:32:49<16:09:57, 3.47it/s] 46%|████▌ | 169462/371472 [2:32:49<16:15:26, 3.45it/s] 46%|████▌ | 169463/371472 [2:32:49<16:16:54, 3.45it/s] 46%|████▌ | 169464/371472 [2:32:50<16:09:49, 3.47it/s] 46%|████▌ | 169465/371472 [2:32:50<16:10:20, 3.47it/s] 46%|████▌ | 169466/371472 [2:32:50<16:26:36, 3.41it/s] 46%|████▌ | 169467/371472 [2:32:51<17:27:03, 3.22it/s] 46%|████▌ | 169468/371472 [2:32:51<17:11:37, 3.26it/s] 46%|████▌ | 169469/371472 [2:32:51<17:22:27, 3.23it/s] 46%|████▌ | 169470/371472 [2:32:52<17:02:21, 3.29it/s] 46%|████▌ | 169471/371472 [2:32:52<18:06:20, 3.10it/s] 46%|████▌ | 169472/371472 [2:32:52<17:34:38, 3.19it/s] 46%|████▌ | 169473/371472 [2:32:53<17:06:24, 3.28it/s] 46%|████▌ | 169474/371472 [2:32:53<16:30:23, 3.40it/s] 46%|████▌ | 169475/371472 [2:32:53<16:25:12, 3.42it/s] 46%|████▌ | 169476/371472 [2:32:53<16:20:53, 3.43it/s] 46%|████▌ | 169477/371472 [2:32:54<16:40:25, 3.37it/s] 46%|████▌ | 169478/371472 [2:32:54<16:25:12, 3.42it/s] 46%|████▌ | 169479/371472 [2:32:54<16:13:29, 3.46it/s] 46%|████▌ | 169480/371472 [2:32:55<17:05:16, 3.28it/s] {'loss': 2.8926, 'learning_rate': 5.896485595466396e-07, 'epoch': 7.3} + 46%|████▌ | 169480/371472 [2:32:55<17:05:16, 3.28it/s] 46%|████▌ | 169481/371472 [2:32:55<17:04:48, 3.29it/s] 46%|████▌ | 169482/371472 [2:32:55<17:02:43, 3.29it/s] 46%|████▌ | 169483/371472 [2:32:55<16:51:07, 3.33it/s] 46%|████▌ | 169484/371472 [2:32:56<16:29:32, 3.40it/s] 46%|████▌ | 169485/371472 [2:32:56<16:22:44, 3.43it/s] 46%|████▌ | 169486/371472 [2:32:56<16:29:15, 3.40it/s] 46%|████▌ | 169487/371472 [2:32:57<16:32:34, 3.39it/s] 46%|████▌ | 169488/371472 [2:32:57<16:18:19, 3.44it/s] 46%|████▌ | 169489/371472 [2:32:57<15:58:18, 3.51it/s] 46%|████▌ | 169490/371472 [2:32:57<16:12:53, 3.46it/s] 46%|████▌ | 169491/371472 [2:32:58<16:00:24, 3.51it/s] 46%|████▌ | 169492/371472 [2:32:58<15:40:01, 3.58it/s] 46%|████▌ | 169493/371472 [2:32:58<15:53:32, 3.53it/s] 46%|████▌ | 169494/371472 [2:32:59<15:55:01, 3.52it/s] 46%|████▌ | 169495/371472 [2:32:59<15:55:46, 3.52it/s] 46%|████▌ | 169496/371472 [2:32:59<15:51:09, 3.54it/s] 46%|████▌ | 169497/371472 [2:32:59<15:55:17, 3.52it/s] 46%|████▌ | 169498/371472 [2:33:00<15:39:44, 3.58it/s] 46%|████▌ | 169499/371472 [2:33:00<15:56:57, 3.52it/s] 46%|████▌ | 169500/371472 [2:33:00<15:53:04, 3.53it/s] {'loss': 2.8052, 'learning_rate': 5.896000775711607e-07, 'epoch': 7.3} + 46%|████▌ | 169500/371472 [2:33:00<15:53:04, 3.53it/s] 46%|████▌ | 169501/371472 [2:33:01<16:33:25, 3.39it/s] 46%|████▌ | 169502/371472 [2:33:01<16:30:40, 3.40it/s] 46%|████▌ | 169503/371472 [2:33:01<18:21:26, 3.06it/s] 46%|████▌ | 169504/371472 [2:33:02<19:20:30, 2.90it/s] 46%|████▌ | 169505/371472 [2:33:02<19:32:54, 2.87it/s] 46%|████▌ | 169506/371472 [2:33:02<18:23:00, 3.05it/s] 46%|████▌ | 169507/371472 [2:33:03<17:33:18, 3.20it/s] 46%|████▌ | 169508/371472 [2:33:03<17:08:36, 3.27it/s] 46%|████▌ | 169509/371472 [2:33:03<16:45:36, 3.35it/s] 46%|████▌ | 169510/371472 [2:33:04<17:05:36, 3.28it/s] 46%|████▌ | 169511/371472 [2:33:04<16:44:57, 3.35it/s] 46%|████▌ | 169512/371472 [2:33:04<16:26:24, 3.41it/s] 46%|████▌ | 169513/371472 [2:33:04<16:21:01, 3.43it/s] 46%|████▌ | 169514/371472 [2:33:05<16:17:03, 3.44it/s] 46%|████▌ | 169515/371472 [2:33:05<16:14:16, 3.45it/s] 46%|████▌ | 169516/371472 [2:33:05<16:10:01, 3.47it/s] 46%|████▌ | 169517/371472 [2:33:06<16:07:15, 3.48it/s] 46%|████▌ | 169518/371472 [2:33:06<16:14:59, 3.45it/s] 46%|████▌ | 169519/371472 [2:33:06<19:27:07, 2.88it/s] 46%|████▌ | 169520/371472 [2:33:07<18:24:15, 3.05it/s] {'loss': 2.9299, 'learning_rate': 5.895515955956818e-07, 'epoch': 7.3} + 46%|████▌ | 169520/371472 [2:33:07<18:24:15, 3.05it/s] 46%|████▌ | 169521/371472 [2:33:07<17:38:08, 3.18it/s] 46%|████▌ | 169522/371472 [2:33:07<17:21:41, 3.23it/s] 46%|██��█▌ | 169523/371472 [2:33:07<17:34:02, 3.19it/s] 46%|████▌ | 169524/371472 [2:33:08<17:25:43, 3.22it/s] 46%|████▌ | 169525/371472 [2:33:08<18:50:47, 2.98it/s] 46%|████▌ | 169526/371472 [2:33:08<17:58:23, 3.12it/s] 46%|████▌ | 169527/371472 [2:33:09<18:28:08, 3.04it/s] 46%|████▌ | 169528/371472 [2:33:09<18:35:27, 3.02it/s] 46%|████▌ | 169529/371472 [2:33:09<18:48:19, 2.98it/s] 46%|████▌ | 169530/371472 [2:33:10<18:45:17, 2.99it/s] 46%|████▌ | 169531/371472 [2:33:10<19:56:31, 2.81it/s] 46%|████▌ | 169532/371472 [2:33:11<18:53:43, 2.97it/s] 46%|████▌ | 169533/371472 [2:33:11<18:15:26, 3.07it/s] 46%|████▌ | 169534/371472 [2:33:11<18:02:33, 3.11it/s] 46%|████▌ | 169535/371472 [2:33:11<17:17:19, 3.24it/s] 46%|████▌ | 169536/371472 [2:33:12<16:35:46, 3.38it/s] 46%|████▌ | 169537/371472 [2:33:12<16:35:46, 3.38it/s] 46%|████▌ | 169538/371472 [2:33:12<16:23:17, 3.42it/s] 46%|████▌ | 169539/371472 [2:33:13<16:28:19, 3.41it/s] 46%|████▌ | 169540/371472 [2:33:13<16:25:47, 3.41it/s] {'loss': 2.8855, 'learning_rate': 5.89503113620203e-07, 'epoch': 7.3} + 46%|████▌ | 169540/371472 [2:33:13<16:25:47, 3.41it/s] 46%|████▌ | 169541/371472 [2:33:13<18:45:40, 2.99it/s] 46%|████▌ | 169542/371472 [2:33:14<18:39:02, 3.01it/s] 46%|████▌ | 169543/371472 [2:33:14<17:53:29, 3.14it/s] 46%|████▌ | 169544/371472 [2:33:14<17:15:25, 3.25it/s] 46%|████▌ | 169545/371472 [2:33:14<16:58:32, 3.30it/s] 46%|████▌ | 169546/371472 [2:33:15<16:51:40, 3.33it/s] 46%|████▌ | 169547/371472 [2:33:15<17:27:43, 3.21it/s] 46%|████▌ | 169548/371472 [2:33:15<17:20:49, 3.23it/s] 46%|████▌ | 169549/371472 [2:33:16<17:26:41, 3.22it/s] 46%|████▌ | 169550/371472 [2:33:16<17:13:42, 3.26it/s] 46%|████▌ | 169551/371472 [2:33:16<17:03:51, 3.29it/s] 46%|████▌ | 169552/371472 [2:33:17<17:01:34, 3.29it/s] 46%|████▌ | 169553/371472 [2:33:17<17:01:38, 3.29it/s] 46%|████▌ | 169554/371472 [2:33:17<17:01:28, 3.29it/s] 46%|████▌ | 169555/371472 [2:33:18<17:18:47, 3.24it/s] 46%|████▌ | 169556/371472 [2:33:18<16:49:51, 3.33it/s] 46%|████▌ | 169557/371472 [2:33:18<16:33:25, 3.39it/s] 46%|████▌ | 169558/371472 [2:33:18<17:27:55, 3.21it/s] 46%|████▌ | 169559/371472 [2:33:19<17:01:21, 3.29it/s] 46%|████▌ | 169560/371472 [2:33:19<17:46:33, 3.16it/s] {'loss': 3.0999, 'learning_rate': 5.894546316447241e-07, 'epoch': 7.3} + 46%|████▌ | 169560/371472 [2:33:19<17:46:33, 3.16it/s] 46%|████▌ | 169561/371472 [2:33:19<17:07:32, 3.27it/s] 46%|████▌ | 169562/371472 [2:33:20<17:48:27, 3.15it/s] 46%|████▌ | 169563/371472 [2:33:20<16:53:58, 3.32it/s] 46%|████▌ | 169564/371472 [2:33:20<16:21:48, 3.43it/s] 46%|████▌ | 169565/371472 [2:33:21<16:22:59, 3.42it/s] 46%|████▌ | 169566/371472 [2:33:21<16:16:45, 3.45it/s] 46%|████▌ | 169567/371472 [2:33:21<16:27:31, 3.41it/s] 46%|████▌ | 169568/371472 [2:33:21<16:02:16, 3.50it/s] 46%|████▌ | 169569/371472 [2:33:22<15:43:55, 3.56it/s] 46%|████▌ | 169570/371472 [2:33:22<16:00:33, 3.50it/s] 46%|████▌ | 169571/371472 [2:33:22<15:59:50, 3.51it/s] 46%|████▌ | 169572/371472 [2:33:23<17:05:45, 3.28it/s] 46%|████▌ | 169573/371472 [2:33:23<17:11:40, 3.26it/s] 46%|████▌ | 169574/371472 [2:33:23<17:05:51, 3.28it/s] 46%|████▌ | 169575/371472 [2:33:23<16:55:40, 3.31it/s] 46%|████▌ | 169576/371472 [2:33:24<17:29:22, 3.21it/s] 46%|████▌ | 169577/371472 [2:33:24<16:58:52, 3.30it/s] 46%|████▌ | 169578/371472 [2:33:24<16:44:31, 3.35it/s] 46%|████▌ | 169579/371472 [2:33:25<16:40:56, 3.36it/s] 46%|████▌ | 169580/371472 [2:33:25<16:17:03, 3.44it/s] {'loss': 3.057, 'learning_rate': 5.894061496692452e-07, 'epoch': 7.3} + 46%|████▌ | 169580/371472 [2:33:25<16:17:03, 3.44it/s] 46%|████▌ | 169581/371472 [2:33:25<16:03:03, 3.49it/s] 46%|████▌ | 169582/371472 [2:33:26<16:17:14, 3.44it/s] 46%|████▌ | 169583/371472 [2:33:26<16:38:28, 3.37it/s] 46%|████▌ | 169584/371472 [2:33:26<16:39:57, 3.36it/s] 46%|████▌ | 169585/371472 [2:33:27<17:33:39, 3.19it/s] 46%|████▌ | 169586/371472 [2:33:27<16:41:47, 3.36it/s] 46%|████▌ | 169587/371472 [2:33:27<16:32:53, 3.39it/s] 46%|████▌ | 169588/371472 [2:33:27<16:47:36, 3.34it/s] 46%|████▌ | 169589/371472 [2:33:28<16:36:14, 3.38it/s] 46%|████▌ | 169590/371472 [2:33:28<16:41:54, 3.36it/s] 46%|████▌ | 169591/371472 [2:33:28<16:18:57, 3.44it/s] 46%|████▌ | 169592/371472 [2:33:29<17:09:47, 3.27it/s] 46%|████▌ | 169593/371472 [2:33:29<16:39:25, 3.37it/s] 46%|████▌ | 169594/371472 [2:33:29<16:15:01, 3.45it/s] 46%|████▌ | 169595/371472 [2:33:29<16:05:55, 3.48it/s] 46%|████▌ | 169596/371472 [2:33:30<17:25:12, 3.22it/s] 46%|████▌ | 169597/371472 [2:33:30<17:09:03, 3.27it/s] 46%|████▌ | 169598/371472 [2:33:30<17:57:01, 3.12it/s] 46%|████▌ | 169599/371472 [2:33:31<17:19:18, 3.24it/s] 46%|████▌ | 169600/371472 [2:33:31<16:57:15, 3.31it/s] {'loss': 3.0468, 'learning_rate': 5.893576676937663e-07, 'epoch': 7.3} + 46%|████▌ | 169600/371472 [2:33:31<16:57:15, 3.31it/s] 46%|████▌ | 169601/371472 [2:33:31<16:34:07, 3.38it/s] 46%|████▌ | 169602/371472 [2:33:32<16:12:40, 3.46it/s] 46%|████▌ | 169603/371472 [2:33:32<17:27:08, 3.21it/s] 46%|████▌ | 169604/371472 [2:33:32<16:44:14, 3.35it/s] 46%|████▌ | 169605/371472 [2:33:32<16:15:21, 3.45it/s] 46%|████▌ | 169606/371472 [2:33:33<17:21:16, 3.23it/s] 46%|████▌ | 169607/371472 [2:33:33<17:31:15, 3.20it/s] 46%|████▌ | 169608/371472 [2:33:33<17:04:03, 3.29it/s] 46%|████▌ | 169609/371472 [2:33:34<16:30:51, 3.40it/s] 46%|████▌ | 169610/371472 [2:33:34<15:58:53, 3.51it/s] 46%|████▌ | 169611/371472 [2:33:34<16:32:28, 3.39it/s] 46%|████▌ | 169612/371472 [2:33:35<17:16:50, 3.24it/s] 46%|████▌ | 169613/371472 [2:33:35<17:41:51, 3.17it/s] 46%|████▌ | 169614/371472 [2:33:35<17:41:26, 3.17it/s] 46%|████▌ | 169615/371472 [2:33:36<17:38:07, 3.18it/s] 46%|████▌ | 169616/371472 [2:33:36<18:01:51, 3.11it/s] 46%|████▌ | 169617/371472 [2:33:36<17:41:33, 3.17it/s] 46%|████▌ | 169618/371472 [2:33:36<17:06:28, 3.28it/s] 46%|████▌ | 169619/371472 [2:33:37<16:43:22, 3.35it/s] 46%|████▌ | 169620/371472 [2:33:37<16:31:56, 3.39it/s] {'loss': 3.1104, 'learning_rate': 5.893091857182873e-07, 'epoch': 7.31} + 46%|████▌ | 169620/371472 [2:33:37<16:31:56, 3.39it/s] 46%|████▌ | 169621/371472 [2:33:37<17:01:47, 3.29it/s] 46%|████▌ | 169622/371472 [2:33:38<16:33:44, 3.39it/s] 46%|████▌ | 169623/371472 [2:33:38<16:37:15, 3.37it/s] 46%|████▌ | 169624/371472 [2:33:38<16:40:40, 3.36it/s] 46%|████▌ | 169625/371472 [2:33:39<16:19:01, 3.44it/s] 46%|████▌ | 169626/371472 [2:33:39<17:45:02, 3.16it/s] 46%|████▌ | 169627/371472 [2:33:39<18:34:34, 3.02it/s] 46%|████▌ | 169628/371472 [2:33:40<18:26:07, 3.04it/s] 46%|████▌ | 169629/371472 [2:33:40<17:59:29, 3.12it/s] 46%|████▌ | 169630/371472 [2:33:40<17:24:20, 3.22it/s] 46%|████▌ | 169631/371472 [2:33:40<17:31:49, 3.20it/s] 46%|████▌ | 169632/371472 [2:33:41<16:54:22, 3.32it/s] 46%|████▌ | 169633/371472 [2:33:41<16:29:58, 3.40it/s] 46%|████▌ | 169634/371472 [2:33:41<16:48:40, 3.34it/s] 46%|████▌ | 169635/371472 [2:33:42<17:24:45, 3.22it/s] 46%|████▌ | 169636/371472 [2:33:42<17:31:30, 3.20it/s] 46%|████▌ | 169637/371472 [2:33:42<17:34:18, 3.19it/s] 46%|████▌ | 169638/371472 [2:33:43<17:25:54, 3.22it/s] 46%|████▌ | 169639/371472 [2:33:43<18:14:26, 3.07it/s] 46%|████▌ | 169640/371472 [2:33:43<17:58:10, 3.12it/s] {'loss': 2.8131, 'learning_rate': 5.892607037428084e-07, 'epoch': 7.31} + 46%|████▌ | 169640/371472 [2:33:43<17:58:10, 3.12it/s] 46%|████▌ | 169641/371472 [2:33:44<18:04:10, 3.10it/s] 46%|████▌ | 169642/371472 [2:33:44<18:26:16, 3.04it/s] 46%|████▌ | 169643/371472 [2:33:44<18:11:31, 3.08it/s] 46%|████▌ | 169644/371472 [2:33:45<18:46:45, 2.99it/s] 46%|████▌ | 169645/371472 [2:33:45<17:52:07, 3.14it/s] 46%|████▌ | 169646/371472 [2:33:45<17:15:26, 3.25it/s] 46%|████▌ | 169647/371472 [2:33:46<17:26:41, 3.21it/s] 46%|████▌ | 169648/371472 [2:33:46<17:43:55, 3.16it/s] 46%|████▌ | 169649/371472 [2:33:46<17:25:01, 3.22it/s] 46%|���███▌ | 169650/371472 [2:33:46<17:01:59, 3.29it/s] 46%|████▌ | 169651/371472 [2:33:47<17:58:22, 3.12it/s] 46%|████▌ | 169652/371472 [2:33:47<19:34:45, 2.86it/s] 46%|████▌ | 169653/371472 [2:33:48<19:01:23, 2.95it/s] 46%|████▌ | 169654/371472 [2:33:48<24:09:53, 2.32it/s] 46%|████▌ | 169655/371472 [2:33:48<21:37:46, 2.59it/s] 46%|████▌ | 169656/371472 [2:33:49<20:07:58, 2.78it/s] 46%|████▌ | 169657/371472 [2:33:49<22:35:05, 2.48it/s] 46%|████▌ | 169658/371472 [2:33:50<20:37:38, 2.72it/s] 46%|████▌ | 169659/371472 [2:33:50<21:00:21, 2.67it/s] 46%|████▌ | 169660/371472 [2:33:50<19:44:29, 2.84it/s] {'loss': 3.0096, 'learning_rate': 5.892122217673296e-07, 'epoch': 7.31} + 46%|████▌ | 169660/371472 [2:33:50<19:44:29, 2.84it/s] 46%|████▌ | 169661/371472 [2:33:51<19:10:37, 2.92it/s] 46%|████▌ | 169662/371472 [2:33:51<18:11:25, 3.08it/s] 46%|████▌ | 169663/371472 [2:33:51<17:35:53, 3.19it/s] 46%|████▌ | 169664/371472 [2:33:51<16:57:39, 3.31it/s] 46%|████▌ | 169665/371472 [2:33:52<16:58:52, 3.30it/s] 46%|████▌ | 169666/371472 [2:33:52<16:52:08, 3.32it/s] 46%|████▌ | 169667/371472 [2:33:52<16:33:23, 3.39it/s] 46%|████▌ | 169668/371472 [2:33:53<17:02:21, 3.29it/s] 46%|████▌ | 169669/371472 [2:33:53<16:38:09, 3.37it/s] 46%|████▌ | 169670/371472 [2:33:53<17:02:32, 3.29it/s] 46%|████▌ | 169671/371472 [2:33:54<16:54:10, 3.32it/s] 46%|████▌ | 169672/371472 [2:33:54<16:40:06, 3.36it/s] 46%|████▌ | 169673/371472 [2:33:54<16:35:28, 3.38it/s] 46%|████▌ | 169674/371472 [2:33:54<16:06:51, 3.48it/s] 46%|████▌ | 169675/371472 [2:33:55<16:16:03, 3.45it/s] 46%|████▌ | 169676/371472 [2:33:55<15:59:09, 3.51it/s] 46%|████▌ | 169677/371472 [2:33:55<16:30:25, 3.40it/s] 46%|████▌ | 169678/371472 [2:33:56<16:17:34, 3.44it/s] 46%|████▌ | 169679/371472 [2:33:56<16:01:52, 3.50it/s] 46%|████▌ | 169680/371472 [2:33:56<17:54:13, 3.13it/s] {'loss': 3.1009, 'learning_rate': 5.891637397918507e-07, 'epoch': 7.31} + 46%|████▌ | 169680/371472 [2:33:56<17:54:13, 3.13it/s] 46%|████▌ | 169681/371472 [2:33:57<18:39:22, 3.00it/s] 46%|████▌ | 169682/371472 [2:33:57<18:33:17, 3.02it/s] 46%|████▌ | 169683/371472 [2:33:57<17:32:04, 3.20it/s] 46%|████▌ | 169684/371472 [2:33:58<18:26:14, 3.04it/s] 46%|████▌ | 169685/371472 [2:33:58<17:33:33, 3.19it/s] 46%|████▌ | 169686/371472 [2:33:58<17:19:32, 3.24it/s] 46%|████▌ | 169687/371472 [2:33:58<16:25:25, 3.41it/s] 46%|████▌ | 169688/371472 [2:33:59<17:19:06, 3.24it/s] 46%|████▌ | 169689/371472 [2:33:59<16:41:19, 3.36it/s] 46%|████▌ | 169690/371472 [2:33:59<16:37:46, 3.37it/s] 46%|████▌ | 169691/371472 [2:34:00<17:13:46, 3.25it/s] 46%|████▌ | 169692/371472 [2:34:00<17:03:06, 3.29it/s] 46%|████▌ | 169693/371472 [2:34:00<16:51:35, 3.32it/s] 46%|████▌ | 169694/371472 [2:34:00<16:27:37, 3.41it/s] 46%|████▌ | 169695/371472 [2:34:01<16:10:33, 3.46it/s] 46%|████▌ | 169696/371472 [2:34:01<15:59:25, 3.51it/s] 46%|████▌ | 169697/371472 [2:34:01<16:35:48, 3.38it/s] 46%|████▌ | 169698/371472 [2:34:02<16:43:25, 3.35it/s] 46%|████▌ | 169699/371472 [2:34:02<16:17:57, 3.44it/s] 46%|████▌ | 169700/371472 [2:34:02<16:00:19, 3.50it/s] {'loss': 2.9723, 'learning_rate': 5.891152578163718e-07, 'epoch': 7.31} + 46%|████▌ | 169700/371472 [2:34:02<16:00:19, 3.50it/s] 46%|████▌ | 169701/371472 [2:34:02<16:06:59, 3.48it/s] 46%|████▌ | 169702/371472 [2:34:03<15:54:29, 3.52it/s] 46%|████▌ | 169703/371472 [2:34:03<17:11:12, 3.26it/s] 46%|████▌ | 169704/371472 [2:34:03<16:40:05, 3.36it/s] 46%|████▌ | 169705/371472 [2:34:04<17:38:56, 3.18it/s] 46%|████▌ | 169706/371472 [2:34:04<17:08:52, 3.27it/s] 46%|████▌ | 169707/371472 [2:34:04<16:54:22, 3.32it/s] 46%|████▌ | 169708/371472 [2:34:05<16:09:37, 3.47it/s] 46%|████▌ | 169709/371472 [2:34:05<15:54:32, 3.52it/s] 46%|████▌ | 169710/371472 [2:34:05<16:04:12, 3.49it/s] 46%|████▌ | 169711/371472 [2:34:05<16:15:34, 3.45it/s] 46%|████▌ | 169712/371472 [2:34:06<16:35:58, 3.38it/s] 46%|████▌ | 169713/371472 [2:34:06<16:08:57, 3.47it/s] 46%|████▌ | 169714/371472 [2:34:06<16:11:41, 3.46it/s] 46%|████▌ | 169715/371472 [2:34:07<15:50:14, 3.54it/s] 46%|████▌ | 169716/371472 [2:34:07<16:08:37, 3.47it/s] 46%|████▌ | 169717/371472 [2:34:07<15:55:41, 3.52it/s] 46%|████▌ | 169718/371472 [2:34:07<16:40:36, 3.36it/s] 46%|████▌ | 169719/371472 [2:34:08<16:35:31, 3.38it/s] 46%|████▌ | 169720/371472 [2:34:08<16:34:03, 3.38it/s] {'loss': 3.0135, 'learning_rate': 5.890667758408929e-07, 'epoch': 7.31} + 46%|████▌ | 169720/371472 [2:34:08<16:34:03, 3.38it/s] 46%|████▌ | 169721/371472 [2:34:08<16:36:25, 3.37it/s] 46%|████▌ | 169722/371472 [2:34:09<17:05:30, 3.28it/s] 46%|████▌ | 169723/371472 [2:34:09<16:48:12, 3.34it/s] 46%|████▌ | 169724/371472 [2:34:09<16:56:12, 3.31it/s] 46%|████▌ | 169725/371472 [2:34:10<16:40:30, 3.36it/s] 46%|████▌ | 169726/371472 [2:34:10<16:10:04, 3.47it/s] 46%|████▌ | 169727/371472 [2:34:10<16:11:20, 3.46it/s] 46%|████▌ | 169728/371472 [2:34:10<16:17:48, 3.44it/s] 46%|████▌ | 169729/371472 [2:34:11<16:57:34, 3.30it/s] 46%|████▌ | 169730/371472 [2:34:11<16:53:36, 3.32it/s] 46%|████▌ | 169731/371472 [2:34:11<17:37:26, 3.18it/s] 46%|████▌ | 169732/371472 [2:34:12<17:07:39, 3.27it/s] 46%|████▌ | 169733/371472 [2:34:12<16:51:23, 3.32it/s] 46%|████▌ | 169734/371472 [2:34:12<16:37:24, 3.37it/s] 46%|████▌ | 169735/371472 [2:34:13<17:07:38, 3.27it/s] 46%|████▌ | 169736/371472 [2:34:13<16:45:41, 3.34it/s] 46%|████▌ | 169737/371472 [2:34:13<16:31:09, 3.39it/s] 46%|████▌ | 169738/371472 [2:34:13<16:12:48, 3.46it/s] 46%|████▌ | 169739/371472 [2:34:14<16:21:09, 3.43it/s] 46%|████▌ | 169740/371472 [2:34:14<17:37:10, 3.18it/s] {'loss': 2.9477, 'learning_rate': 5.89018293865414e-07, 'epoch': 7.31} + 46%|████▌ | 169740/371472 [2:34:14<17:37:10, 3.18it/s] 46%|████▌ | 169741/371472 [2:34:14<17:28:59, 3.21it/s] 46%|████▌ | 169742/371472 [2:34:15<17:03:31, 3.28it/s] 46%|████▌ | 169743/371472 [2:34:15<16:41:21, 3.36it/s] 46%|████▌ | 169744/371472 [2:34:15<16:19:14, 3.43it/s] 46%|████▌ | 169745/371472 [2:34:16<16:41:41, 3.36it/s] 46%|████▌ | 169746/371472 [2:34:16<16:13:43, 3.45it/s] 46%|████▌ | 169747/371472 [2:34:16<16:48:57, 3.33it/s] 46%|████▌ | 169748/371472 [2:34:16<16:18:01, 3.44it/s] 46%|████▌ | 169749/371472 [2:34:17<16:07:47, 3.47it/s] 46%|████▌ | 169750/371472 [2:34:17<17:20:44, 3.23it/s] 46%|████▌ | 169751/371472 [2:34:17<17:21:52, 3.23it/s] 46%|████▌ | 169752/371472 [2:34:18<17:53:12, 3.13it/s] 46%|████▌ | 169753/371472 [2:34:18<17:08:10, 3.27it/s] 46%|████▌ | 169754/371472 [2:34:18<16:26:30, 3.41it/s] 46%|████▌ | 169755/371472 [2:34:19<16:25:07, 3.41it/s] 46%|████▌ | 169756/371472 [2:34:19<16:32:21, 3.39it/s] 46%|████▌ | 169757/371472 [2:34:19<16:14:14, 3.45it/s] 46%|████▌ | 169758/371472 [2:34:19<16:09:31, 3.47it/s] 46%|████▌ | 169759/371472 [2:34:20<15:56:38, 3.51it/s] 46%|████▌ | 169760/371472 [2:34:20<16:34:10, 3.38it/s] {'loss': 2.895, 'learning_rate': 5.889698118899351e-07, 'epoch': 7.31} + 46%|████▌ | 169760/371472 [2:34:20<16:34:10, 3.38it/s] 46%|████▌ | 169761/371472 [2:34:20<16:10:05, 3.47it/s] 46%|████▌ | 169762/371472 [2:34:21<16:35:40, 3.38it/s] 46%|████▌ | 169763/371472 [2:34:21<16:13:02, 3.45it/s] 46%|████▌ | 169764/371472 [2:34:21<16:20:28, 3.43it/s] 46%|████▌ | 169765/371472 [2:34:21<16:43:06, 3.35it/s] 46%|████▌ | 169766/371472 [2:34:22<16:06:41, 3.48it/s] 46%|████▌ | 169767/371472 [2:34:22<16:29:19, 3.40it/s] 46%|████▌ | 169768/371472 [2:34:22<16:06:03, 3.48it/s] 46%|████▌ | 169769/371472 [2:34:23<16:31:40, 3.39it/s] 46%|████▌ | 169770/371472 [2:34:23<16:44:56, 3.35it/s] 46%|████▌ | 169771/371472 [2:34:23<16:48:25, 3.33it/s] 46%|████▌ | 169772/371472 [2:34:24<17:16:53, 3.24it/s] 46%|████▌ | 169773/371472 [2:34:24<16:50:31, 3.33it/s] 46%|████▌ | 169774/371472 [2:34:24<16:38:46, 3.37it/s] 46%|████▌ | 169775/371472 [2:34:24<16:17:57, 3.44it/s] 46%|████▌ | 169776/371472 [2:34:25<16:31:13, 3.39it/s] 46%|████▌ | 169777/371472 [2:34:25<16:29:53, 3.40it/s] 46%|████▌ | 169778/371472 [2:34:25<16:22:56, 3.42it/s] 46%|████▌ | 169779/371472 [2:34:26<16:38:17, 3.37it/s] 46%|████▌ | 169780/371472 [2:34:26<16:01:45, 3.50it/s] {'loss': 2.8632, 'learning_rate': 5.889213299144562e-07, 'epoch': 7.31} + 46%|████▌ | 169780/371472 [2:34:26<16:01:45, 3.50it/s] 46%|████▌ | 169781/371472 [2:34:26<19:22:37, 2.89it/s] 46%|████▌ | 169782/371472 [2:34:27<18:41:06, 3.00it/s] 46%|████▌ | 169783/371472 [2:34:27<18:47:46, 2.98it/s] 46%|████▌ | 169784/371472 [2:34:27<18:16:42, 3.07it/s] 46%|████▌ | 169785/371472 [2:34:28<17:59:35, 3.11it/s] 46%|████▌ | 169786/371472 [2:34:28<17:17:44, 3.24it/s] 46%|████▌ | 169787/371472 [2:34:28<17:22:39, 3.22it/s] 46%|████▌ | 169788/371472 [2:34:29<17:06:05, 3.28it/s] 46%|████▌ | 169789/371472 [2:34:29<17:06:38, 3.27it/s] 46%|████▌ | 169790/371472 [2:34:29<17:24:24, 3.22it/s] 46%|████▌ | 169791/371472 [2:34:29<17:31:38, 3.20it/s] 46%|████▌ | 169792/371472 [2:34:30<17:05:06, 3.28it/s] 46%|████▌ | 169793/371472 [2:34:30<16:51:09, 3.32it/s] 46%|████▌ | 169794/371472 [2:34:30<16:57:24, 3.30it/s] 46%|████▌ | 169795/371472 [2:34:31<16:29:28, 3.40it/s] 46%|████▌ | 169796/371472 [2:34:31<16:48:41, 3.33it/s] 46%|████▌ | 169797/371472 [2:34:31<20:47:19, 2.69it/s] 46%|████▌ | 169798/371472 [2:34:32<19:43:08, 2.84it/s] 46%|████▌ | 169799/371472 [2:34:32<18:49:17, 2.98it/s] 46%|████▌ | 169800/371472 [2:34:32<18:23:46, 3.05it/s] {'loss': 2.8107, 'learning_rate': 5.888728479389773e-07, 'epoch': 7.31} + 46%|████▌ | 169800/371472 [2:34:32<18:23:46, 3.05it/s] 46%|████▌ | 169801/371472 [2:34:33<17:35:30, 3.18it/s] 46%|████▌ | 169802/371472 [2:34:33<17:03:20, 3.28it/s] 46%|████▌ | 169803/371472 [2:34:33<16:54:17, 3.31it/s] 46%|████▌ | 169804/371472 [2:34:34<16:59:53, 3.30it/s] 46%|████▌ | 169805/371472 [2:34:34<17:39:21, 3.17it/s] 46%|████▌ | 169806/371472 [2:34:34<16:44:51, 3.34it/s] 46%|████▌ | 169807/371472 [2:34:34<16:08:09, 3.47it/s] 46%|████▌ | 169808/371472 [2:34:35<16:37:28, 3.37it/s] 46%|████▌ | 169809/371472 [2:34:35<16:18:21, 3.44it/s] 46%|████▌ | 169810/371472 [2:34:35<17:05:51, 3.28it/s] 46%|████▌ | 169811/371472 [2:34:36<16:42:09, 3.35it/s] 46%|████▌ | 169812/371472 [2:34:36<16:43:53, 3.35it/s] 46%|████▌ | 169813/371472 [2:34:36<16:41:25, 3.36it/s] 46%|████▌ | 169814/371472 [2:34:36<16:02:04, 3.49it/s] 46%|████▌ | 169815/371472 [2:34:37<16:42:48, 3.35it/s] 46%|████▌ | 169816/371472 [2:34:37<16:53:55, 3.31it/s] 46%|████▌ | 169817/371472 [2:34:37<16:34:03, 3.38it/s] 46%|████▌ | 169818/371472 [2:34:38<16:09:23, 3.47it/s] 46%|████▌ | 169819/371472 [2:34:38<16:19:56, 3.43it/s] 46%|████▌ | 169820/371472 [2:34:38<16:28:17, 3.40it/s] {'loss': 3.0592, 'learning_rate': 5.888243659634984e-07, 'epoch': 7.31} + 46%|████▌ | 169820/371472 [2:34:38<16:28:17, 3.40it/s] 46%|████▌ | 169821/371472 [2:34:39<16:06:33, 3.48it/s] 46%|████▌ | 169822/371472 [2:34:39<16:34:03, 3.38it/s] 46%|████▌ | 169823/371472 [2:34:39<18:17:39, 3.06it/s] 46%|████▌ | 169824/371472 [2:34:40<17:32:10, 3.19it/s] 46%|████▌ | 169825/371472 [2:34:40<17:16:21, 3.24it/s] 46%|████▌ | 169826/371472 [2:34:40<17:19:22, 3.23it/s] 46%|████▌ | 169827/371472 [2:34:40<17:07:41, 3.27it/s] 46%|████▌ | 169828/371472 [2:34:41<17:04:59, 3.28it/s] 46%|████▌ | 169829/371472 [2:34:41<17:14:13, 3.25it/s] 46%|████▌ | 169830/371472 [2:34:41<17:06:42, 3.27it/s] 46%|████▌ | 169831/371472 [2:34:42<17:41:09, 3.17it/s] 46%|████▌ | 169832/371472 [2:34:42<17:09:51, 3.26it/s] 46%|████▌ | 169833/371472 [2:34:42<17:37:32, 3.18it/s] 46%|████▌ | 169834/371472 [2:34:43<17:12:45, 3.25it/s] 46%|████▌ | 169835/371472 [2:34:43<16:35:08, 3.38it/s] 46%|████▌ | 169836/371472 [2:34:43<16:31:02, 3.39it/s] 46%|████▌ | 169837/371472 [2:34:44<17:05:32, 3.28it/s] 46%|████▌ | 169838/371472 [2:34:44<16:42:44, 3.35it/s] 46%|████▌ | 169839/371472 [2:34:44<16:12:17, 3.46it/s] 46%|████▌ | 169840/371472 [2:34:44<16:05:50, 3.48it/s] {'loss': 2.7838, 'learning_rate': 5.887758839880196e-07, 'epoch': 7.32} + 46%|████▌ | 169840/371472 [2:34:44<16:05:50, 3.48it/s] 46%|████▌ | 169841/371472 [2:34:45<16:19:44, 3.43it/s] 46%|████▌ | 169842/371472 [2:34:45<17:35:11, 3.18it/s] 46%|████▌ | 169843/371472 [2:34:45<17:43:13, 3.16it/s] 46%|████▌ | 169844/371472 [2:34:46<17:07:25, 3.27it/s] 46%|████▌ | 169845/371472 [2:34:46<17:10:39, 3.26it/s] 46%|████▌ | 169846/371472 [2:34:46<16:56:56, 3.30it/s] 46%|████▌ | 169847/371472 [2:34:47<17:12:36, 3.25it/s] 46%|████▌ | 169848/371472 [2:34:47<17:12:30, 3.25it/s] 46%|████▌ | 169849/371472 [2:34:47<17:11:23, 3.26it/s] 46%|████▌ | 169850/371472 [2:34:47<17:10:02, 3.26it/s] 46%|████▌ | 169851/371472 [2:34:48<16:49:11, 3.33it/s] 46%|████▌ | 169852/371472 [2:34:48<16:35:56, 3.37it/s] 46%|████▌ | 169853/371472 [2:34:48<16:35:47, 3.37it/s] 46%|████▌ | 169854/371472 [2:34:49<16:39:19, 3.36it/s] 46%|████▌ | 169855/371472 [2:34:49<17:20:38, 3.23it/s] 46%|████▌ | 169856/371472 [2:34:49<17:12:12, 3.26it/s] 46%|████▌ | 169857/371472 [2:34:50<16:42:56, 3.35it/s] 46%|████▌ | 169858/371472 [2:34:50<16:51:03, 3.32it/s] 46%|████▌ | 169859/371472 [2:34:50<17:37:37, 3.18it/s] 46%|████▌ | 169860/371472 [2:34:50<16:53:59, 3.31it/s] {'loss': 2.854, 'learning_rate': 5.887274020125406e-07, 'epoch': 7.32} + 46%|████▌ | 169860/371472 [2:34:50<16:53:59, 3.31it/s] 46%|████▌ | 169861/371472 [2:34:51<16:45:40, 3.34it/s] 46%|████▌ | 169862/371472 [2:34:51<16:04:54, 3.48it/s] 46%|████▌ | 169863/371472 [2:34:51<16:10:32, 3.46it/s] 46%|████▌ | 169864/371472 [2:34:52<15:45:07, 3.56it/s] 46%|████▌ | 169865/371472 [2:34:52<16:26:24, 3.41it/s] 46%|████▌ | 169866/371472 [2:34:52<15:59:45, 3.50it/s] 46%|████▌ | 169867/371472 [2:34:52<16:22:52, 3.42it/s] 46%|████▌ | 169868/371472 [2:34:53<16:27:58, 3.40it/s] 46%|████▌ | 169869/371472 [2:34:53<17:13:57, 3.25it/s] 46%|████▌ | 169870/371472 [2:34:53<17:10:04, 3.26it/s] 46%|████▌ | 169871/371472 [2:34:54<17:04:16, 3.28it/s] 46%|████▌ | 169872/371472 [2:34:54<16:17:14, 3.44it/s] 46%|████▌ | 169873/371472 [2:34:54<15:40:22, 3.57it/s] 46%|████▌ | 169874/371472 [2:34:55<15:49:29, 3.54it/s] 46%|████▌ | 169875/371472 [2:34:55<15:51:03, 3.53it/s] 46%|████▌ | 169876/371472 [2:34:55<16:11:08, 3.46it/s] 46%|████▌ | 169877/371472 [2:34:55<16:22:05, 3.42it/s] 46%|████▌ | 169878/371472 [2:34:56<15:50:32, 3.53it/s] 46%|████▌ | 169879/371472 [2:34:56<16:06:21, 3.48it/s] 46%|████▌ | 169880/371472 [2:34:56<17:13:26, 3.25it/s] {'loss': 3.1152, 'learning_rate': 5.886789200370617e-07, 'epoch': 7.32} + 46%|████▌ | 169880/371472 [2:34:56<17:13:26, 3.25it/s] 46%|████▌ | 169881/371472 [2:34:57<17:33:42, 3.19it/s] 46%|████▌ | 169882/371472 [2:34:57<18:50:12, 2.97it/s] 46%|████▌ | 169883/371472 [2:34:57<18:31:25, 3.02it/s] 46%|████▌ | 169884/371472 [2:34:58<17:55:58, 3.12it/s] 46%|████▌ | 169885/371472 [2:34:58<17:26:09, 3.21it/s] 46%|████▌ | 169886/371472 [2:34:58<16:49:08, 3.33it/s] 46%|████▌ | 169887/371472 [2:34:58<16:21:59, 3.42it/s] 46%|████▌ | 169888/371472 [2:34:59<16:27:24, 3.40it/s] 46%|████▌ | 169889/371472 [2:34:59<16:36:13, 3.37it/s] 46%|████▌ | 169890/371472 [2:34:59<16:04:50, 3.48it/s] 46%|████▌ | 169891/371472 [2:35:00<15:58:32, 3.51it/s] 46%|████▌ | 169892/371472 [2:35:00<16:25:32, 3.41it/s] 46%|████▌ | 169893/371472 [2:35:00<16:28:21, 3.40it/s] 46%|████▌ | 169894/371472 [2:35:01<16:29:44, 3.39it/s] 46%|████▌ | 169895/371472 [2:35:01<16:25:13, 3.41it/s] 46%|████▌ | 169896/371472 [2:35:01<15:44:35, 3.56it/s] 46%|████▌ | 169897/371472 [2:35:01<16:24:59, 3.41it/s] 46%|████▌ | 169898/371472 [2:35:02<16:09:50, 3.46it/s] 46%|████▌ | 169899/371472 [2:35:02<15:57:17, 3.51it/s] 46%|████▌ | 169900/371472 [2:35:02<15:34:18, 3.60it/s] {'loss': 2.9547, 'learning_rate': 5.886304380615828e-07, 'epoch': 7.32} + 46%|████▌ | 169900/371472 [2:35:02<15:34:18, 3.60it/s] 46%|████▌ | 169901/371472 [2:35:02<15:36:41, 3.59it/s] 46%|████▌ | 169902/371472 [2:35:03<15:56:06, 3.51it/s] 46%|████▌ | 169903/371472 [2:35:03<15:51:42, 3.53it/s] 46%|████▌ | 169904/371472 [2:35:03<16:19:38, 3.43it/s] 46%|████▌ | 169905/371472 [2:35:04<16:20:58, 3.42it/s] 46%|████▌ | 169906/371472 [2:35:04<16:02:22, 3.49it/s] 46%|████▌ | 169907/371472 [2:35:04<16:27:25, 3.40it/s] 46%|████▌ | 169908/371472 [2:35:05<16:39:42, 3.36it/s] 46%|████▌ | 169909/371472 [2:35:05<16:10:11, 3.46it/s] 46%|████▌ | 169910/371472 [2:35:05<15:54:10, 3.52it/s] 46%|████▌ | 169911/371472 [2:35:05<15:56:35, 3.51it/s] 46%|████▌ | 169912/371472 [2:35:06<15:59:41, 3.50it/s] 46%|████▌ | 169913/371472 [2:35:06<15:43:56, 3.56it/s] 46%|████▌ | 169914/371472 [2:35:06<16:26:02, 3.41it/s] 46%|████▌ | 169915/371472 [2:35:07<16:05:34, 3.48it/s] 46%|████▌ | 169916/371472 [2:35:07<16:24:37, 3.41it/s] 46%|████▌ | 169917/371472 [2:35:07<16:37:27, 3.37it/s] 46%|████▌ | 169918/371472 [2:35:07<17:03:44, 3.28it/s] 46%|████▌ | 169919/371472 [2:35:08<17:09:43, 3.26it/s] 46%|████▌ | 169920/371472 [2:35:08<17:05:37, 3.28it/s] {'loss': 3.009, 'learning_rate': 5.88581956086104e-07, 'epoch': 7.32} + 46%|████▌ | 169920/371472 [2:35:08<17:05:37, 3.28it/s] 46%|████▌ | 169921/371472 [2:35:08<16:22:11, 3.42it/s] 46%|████▌ | 169922/371472 [2:35:09<16:44:55, 3.34it/s] 46%|████▌ | 169923/371472 [2:35:09<16:30:37, 3.39it/s] 46%|████▌ | 169924/371472 [2:35:09<16:52:48, 3.32it/s] 46%|████▌ | 169925/371472 [2:35:10<16:41:51, 3.35it/s] 46%|████▌ | 169926/371472 [2:35:10<16:21:52, 3.42it/s] 46%|████▌ | 169927/371472 [2:35:10<16:38:02, 3.37it/s] 46%|████▌ | 169928/371472 [2:35:10<16:29:38, 3.39it/s] 46%|████▌ | 169929/371472 [2:35:11<16:08:44, 3.47it/s] 46%|████▌ | 169930/371472 [2:35:11<16:42:23, 3.35it/s] 46%|████▌ | 169931/371472 [2:35:11<16:19:41, 3.43it/s] 46%|████▌ | 169932/371472 [2:35:12<15:59:52, 3.50it/s] 46%|████▌ | 169933/371472 [2:35:12<15:48:03, 3.54it/s] 46%|████▌ | 169934/371472 [2:35:12<15:50:26, 3.53it/s] 46%|████▌ | 169935/371472 [2:35:12<15:53:32, 3.52it/s] 46%|████▌ | 169936/371472 [2:35:13<16:12:58, 3.45it/s] 46%|████▌ | 169937/371472 [2:35:13<16:00:55, 3.50it/s] 46%|████▌ | 169938/371472 [2:35:13<16:19:22, 3.43it/s] 46%|████▌ | 169939/371472 [2:35:14<16:34:06, 3.38it/s] 46%|████▌ | 169940/371472 [2:35:14<17:02:53, 3.28it/s] {'loss': 2.9955, 'learning_rate': 5.885334741106251e-07, 'epoch': 7.32} + 46%|████▌ | 169940/371472 [2:35:14<17:02:53, 3.28it/s] 46%|████▌ | 169941/371472 [2:35:14<16:33:17, 3.38it/s] 46%|████▌ | 169942/371472 [2:35:15<17:19:16, 3.23it/s] 46%|████▌ | 169943/371472 [2:35:15<16:44:08, 3.34it/s] 46%|████▌ | 169944/371472 [2:35:15<16:50:26, 3.32it/s] 46%|████▌ | 169945/371472 [2:35:15<16:32:49, 3.38it/s] 46%|████▌ | 169946/371472 [2:35:16<16:28:35, 3.40it/s] 46%|████▌ | 169947/371472 [2:35:16<16:31:40, 3.39it/s] 46%|████▌ | 169948/371472 [2:35:16<16:37:05, 3.37it/s] 46%|████▌ | 169949/371472 [2:35:17<17:47:28, 3.15it/s] 46%|████▌ | 169950/371472 [2:35:17<17:31:50, 3.19it/s] 46%|████▌ | 169951/371472 [2:35:17<17:07:41, 3.27it/s] 46%|████▌ | 169952/371472 [2:35:18<16:56:05, 3.31it/s] 46%|████▌ | 169953/371472 [2:35:18<16:28:45, 3.40it/s] 46%|████▌ | 169954/371472 [2:35:18<16:34:22, 3.38it/s] 46%|████▌ | 169955/371472 [2:35:18<16:31:27, 3.39it/s] 46%|████▌ | 169956/371472 [2:35:19<16:46:27, 3.34it/s] 46%|████▌ | 169957/371472 [2:35:19<16:25:32, 3.41it/s] 46%|████▌ | 169958/371472 [2:35:19<16:06:37, 3.47it/s] 46%|████▌ | 169959/371472 [2:35:20<16:26:35, 3.40it/s] 46%|████▌ | 169960/371472 [2:35:20<17:11:27, 3.26it/s] {'loss': 2.8114, 'learning_rate': 5.884849921351462e-07, 'epoch': 7.32} + 46%|████▌ | 169960/371472 [2:35:20<17:11:27, 3.26it/s] 46%|████▌ | 169961/371472 [2:35:20<17:28:48, 3.20it/s] 46%|████▌ | 169962/371472 [2:35:21<17:04:13, 3.28it/s] 46%|████▌ | 169963/371472 [2:35:21<16:57:38, 3.30it/s] 46%|████▌ | 169964/371472 [2:35:21<16:53:33, 3.31it/s] 46%|████▌ | 169965/371472 [2:35:21<17:19:50, 3.23it/s] 46%|████▌ | 169966/371472 [2:35:22<16:28:05, 3.40it/s] 46%|████▌ | 169967/371472 [2:35:22<16:47:45, 3.33it/s] 46%|████▌ | 169968/371472 [2:35:22<16:52:55, 3.32it/s] 46%|████▌ | 169969/371472 [2:35:23<16:42:02, 3.35it/s] 46%|████▌ | 169970/371472 [2:35:23<17:07:24, 3.27it/s] 46%|████▌ | 169971/371472 [2:35:23<16:46:23, 3.34it/s] 46%|████▌ | 169972/371472 [2:35:24<17:06:08, 3.27it/s] 46%|████▌ | 169973/371472 [2:35:24<17:07:05, 3.27it/s] 46%|████▌ | 169974/371472 [2:35:24<17:05:25, 3.28it/s] 46%|████▌ | 169975/371472 [2:35:25<17:22:16, 3.22it/s] 46%|████▌ | 169976/371472 [2:35:25<20:18:40, 2.76it/s] 46%|████▌ | 169977/371472 [2:35:25<19:14:38, 2.91it/s] 46%|████▌ | 169978/371472 [2:35:26<17:50:11, 3.14it/s] 46%|████▌ | 169979/371472 [2:35:26<18:30:28, 3.02it/s] 46%|████▌ | 169980/371472 [2:35:26<17:23:09, 3.22it/s] {'loss': 2.9754, 'learning_rate': 5.884365101596673e-07, 'epoch': 7.32} + 46%|████▌ | 169980/371472 [2:35:26<17:23:09, 3.22it/s] 46%|████▌ | 169981/371472 [2:35:26<17:03:49, 3.28it/s] 46%|████▌ | 169982/371472 [2:35:27<17:03:09, 3.28it/s] 46%|████▌ | 169983/371472 [2:35:27<16:39:25, 3.36it/s] 46%|████▌ | 169984/371472 [2:35:27<16:44:11, 3.34it/s] 46%|████▌ | 169985/371472 [2:35:28<17:20:20, 3.23it/s] 46%|████▌ | 169986/371472 [2:35:28<17:15:17, 3.24it/s] 46%|████▌ | 169987/371472 [2:35:28<17:59:50, 3.11it/s] 46%|████▌ | 169988/371472 [2:35:29<17:47:33, 3.15it/s] 46%|████▌ | 169989/371472 [2:35:29<17:16:04, 3.24it/s] 46%|████▌ | 169990/371472 [2:35:29<16:54:04, 3.31it/s] 46%|████▌ | 169991/371472 [2:35:30<16:36:12, 3.37it/s] 46%|████▌ | 169992/371472 [2:35:30<16:14:14, 3.45it/s] 46%|████▌ | 169993/371472 [2:35:30<15:58:24, 3.50it/s] 46%|████▌ | 169994/371472 [2:35:30<16:34:02, 3.38it/s] 46%|████▌ | 169995/371472 [2:35:31<16:50:18, 3.32it/s] 46%|████▌ | 169996/371472 [2:35:31<17:30:25, 3.20it/s] 46%|████▌ | 169997/371472 [2:35:31<17:31:28, 3.19it/s] 46%|████▌ | 169998/371472 [2:35:32<17:35:12, 3.18it/s] 46%|████▌ | 169999/371472 [2:35:32<17:12:28, 3.25it/s] 46%|████▌ | 170000/371472 [2:35:32<16:42:02, 3.35it/s] {'loss': 2.9266, 'learning_rate': 5.883880281841884e-07, 'epoch': 7.32} + 46%|████▌ | 170000/371472 [2:35:32<16:42:02, 3.35it/s] 46%|████▌ | 170001/371472 [2:35:33<16:33:41, 3.38it/s] 46%|████▌ | 170002/371472 [2:35:33<16:28:46, 3.40it/s] 46%|████▌ | 170003/371472 [2:35:33<17:11:49, 3.25it/s] 46%|████▌ | 170004/371472 [2:35:33<17:15:39, 3.24it/s] 46%|████▌ | 170005/371472 [2:35:34<16:52:44, 3.32it/s] 46%|████▌ | 170006/371472 [2:35:34<17:02:08, 3.29it/s] 46%|████▌ | 170007/371472 [2:35:34<16:56:15, 3.30it/s] 46%|████▌ | 170008/371472 [2:35:35<16:49:51, 3.32it/s] 46%|████▌ | 170009/371472 [2:35:35<19:07:32, 2.93it/s] 46%|████▌ | 170010/371472 [2:35:35<18:21:08, 3.05it/s] 46%|████▌ | 170011/371472 [2:35:36<18:28:06, 3.03it/s] 46%|████▌ | 170012/371472 [2:35:36<17:57:20, 3.12it/s] 46%|████▌ | 170013/371472 [2:35:36<17:24:18, 3.22it/s] 46%|████▌ | 170014/371472 [2:35:37<17:15:29, 3.24it/s] 46%|████▌ | 170015/371472 [2:35:37<16:33:48, 3.38it/s] 46%|████▌ | 170016/371472 [2:35:37<16:19:48, 3.43it/s] 46%|████▌ | 170017/371472 [2:35:37<16:32:55, 3.38it/s] 46%|████▌ | 170018/371472 [2:35:38<16:25:30, 3.41it/s] 46%|████▌ | 170019/371472 [2:35:38<16:26:52, 3.40it/s] 46%|████▌ | 170020/371472 [2:35:38<16:21:18, 3.42it/s] {'loss': 2.8869, 'learning_rate': 5.883395462087095e-07, 'epoch': 7.32} + 46%|████▌ | 170020/371472 [2:35:38<16:21:18, 3.42it/s] 46%|████▌ | 170021/371472 [2:35:39<16:54:52, 3.31it/s] 46%|████▌ | 170022/371472 [2:35:39<17:04:22, 3.28it/s] 46%|████▌ | 170023/371472 [2:35:39<17:06:04, 3.27it/s] 46%|████▌ | 170024/371472 [2:35:40<17:08:21, 3.26it/s] 46%|████▌ | 170025/371472 [2:35:40<17:08:18, 3.27it/s] 46%|████▌ | 170026/371472 [2:35:40<17:09:24, 3.26it/s] 46%|████▌ | 170027/371472 [2:35:40<16:41:41, 3.35it/s] 46%|████▌ | 170028/371472 [2:35:41<16:04:24, 3.48it/s] 46%|████▌ | 170029/371472 [2:35:41<16:08:43, 3.47it/s] 46%|████▌ | 170030/371472 [2:35:41<16:48:40, 3.33it/s] 46%|████▌ | 170031/371472 [2:35:42<17:06:14, 3.27it/s] 46%|████▌ | 170032/371472 [2:35:42<17:06:55, 3.27it/s] 46%|████▌ | 170033/371472 [2:35:42<17:17:10, 3.24it/s] 46%|████▌ | 170034/371472 [2:35:43<16:47:25, 3.33it/s] 46%|████▌ | 170035/371472 [2:35:43<16:41:18, 3.35it/s] 46%|████▌ | 170036/371472 [2:35:43<16:17:46, 3.43it/s] 46%|████▌ | 170037/371472 [2:35:43<16:30:49, 3.39it/s] 46%|████▌ | 170038/371472 [2:35:44<17:47:15, 3.15it/s] 46%|████▌ | 170039/371472 [2:35:44<17:22:34, 3.22it/s] 46%|████▌ | 170040/371472 [2:35:44<17:23:41, 3.22it/s] {'loss': 2.9221, 'learning_rate': 5.882910642332306e-07, 'epoch': 7.32} + 46%|████▌ | 170040/371472 [2:35:44<17:23:41, 3.22it/s] 46%|████▌ | 170041/371472 [2:35:45<17:50:40, 3.14it/s] 46%|████▌ | 170042/371472 [2:35:45<17:50:44, 3.14it/s] 46%|████▌ | 170043/371472 [2:35:45<18:08:23, 3.08it/s] 46%|████▌ | 170044/371472 [2:35:46<17:24:41, 3.21it/s] 46%|████▌ | 170045/371472 [2:35:46<18:08:59, 3.08it/s] 46%|████▌ | 170046/371472 [2:35:46<17:55:41, 3.12it/s] 46%|████▌ | 170047/371472 [2:35:47<17:22:29, 3.22it/s] 46%|████▌ | 170048/371472 [2:35:47<19:03:31, 2.94it/s] 46%|████▌ | 170049/371472 [2:35:47<18:15:15, 3.07it/s] 46%|████▌ | 170050/371472 [2:35:48<17:40:32, 3.17it/s] 46%|████▌ | 170051/371472 [2:35:48<17:47:26, 3.14it/s] 46%|████▌ | 170052/371472 [2:35:48<17:13:26, 3.25it/s] 46%|████▌ | 170053/371472 [2:35:49<16:53:48, 3.31it/s] 46%|████▌ | 170054/371472 [2:35:49<16:59:33, 3.29it/s] 46%|████▌ | 170055/371472 [2:35:49<18:53:54, 2.96it/s] 46%|████▌ | 170056/371472 [2:35:50<17:59:39, 3.11it/s] 46%|████▌ | 170057/371472 [2:35:50<17:44:00, 3.15it/s] 46%|████▌ | 170058/371472 [2:35:50<17:45:48, 3.15it/s] 46%|████▌ | 170059/371472 [2:35:51<18:03:48, 3.10it/s] 46%|████▌ | 170060/371472 [2:35:51<17:36:29, 3.18it/s] {'loss': 2.8042, 'learning_rate': 5.882425822577517e-07, 'epoch': 7.32} + 46%|████▌ | 170060/371472 [2:35:51<17:36:29, 3.18it/s] 46%|████▌ | 170061/371472 [2:35:51<17:47:09, 3.15it/s] 46%|████▌ | 170062/371472 [2:35:51<17:33:15, 3.19it/s] 46%|████▌ | 170063/371472 [2:35:52<17:13:16, 3.25it/s] 46%|████▌ | 170064/371472 [2:35:52<17:01:27, 3.29it/s] 46%|████▌ | 170065/371472 [2:35:52<17:32:12, 3.19it/s] 46%|████▌ | 170066/371472 [2:35:53<17:12:04, 3.25it/s] 46%|████▌ | 170067/371472 [2:35:53<16:45:27, 3.34it/s] 46%|████▌ | 170068/371472 [2:35:53<16:30:34, 3.39it/s] 46%|████▌ | 170069/371472 [2:35:54<16:56:17, 3.30it/s] 46%|████▌ | 170070/371472 [2:35:54<16:42:43, 3.35it/s] 46%|████▌ | 170071/371472 [2:35:54<16:22:13, 3.42it/s] 46%|████▌ | 170072/371472 [2:35:54<16:30:46, 3.39it/s] 46%|████▌ | 170073/371472 [2:35:55<16:32:14, 3.38it/s] 46%|████▌ | 170074/371472 [2:35:55<16:31:23, 3.39it/s] 46%|████▌ | 170075/371472 [2:35:55<18:21:10, 3.05it/s] 46%|████▌ | 170076/371472 [2:35:56<19:54:03, 2.81it/s] 46%|████▌ | 170077/371472 [2:35:56<19:13:50, 2.91it/s] 46%|████▌ | 170078/371472 [2:35:56<18:29:31, 3.03it/s] 46%|████▌ | 170079/371472 [2:35:57<18:31:14, 3.02it/s] 46%|████▌ | 170080/371472 [2:35:57<17:46:49, 3.15it/s] {'loss': 2.8651, 'learning_rate': 5.881941002822729e-07, 'epoch': 7.33} + 46%|████▌ | 170080/371472 [2:35:57<17:46:49, 3.15it/s] 46%|████▌ | 170081/371472 [2:35:57<18:26:43, 3.03it/s] 46%|████▌ | 170082/371472 [2:35:58<17:59:39, 3.11it/s] 46%|████▌ | 170083/371472 [2:35:58<17:19:38, 3.23it/s] 46%|████▌ | 170084/371472 [2:35:58<16:42:42, 3.35it/s] 46%|████▌ | 170085/371472 [2:35:59<16:25:05, 3.41it/s] 46%|████▌ | 170086/371472 [2:35:59<16:54:37, 3.31it/s] 46%|████▌ | 170087/371472 [2:35:59<17:15:31, 3.24it/s] 46%|████▌ | 170088/371472 [2:36:00<17:25:52, 3.21it/s] 46%|████▌ | 170089/371472 [2:36:00<17:20:38, 3.23it/s] 46%|████▌ | 170090/371472 [2:36:00<17:42:44, 3.16it/s] 46%|████▌ | 170091/371472 [2:36:01<18:03:12, 3.10it/s] 46%|████▌ | 170092/371472 [2:36:01<17:20:23, 3.23it/s] 46%|████▌ | 170093/371472 [2:36:01<17:09:41, 3.26it/s] 46%|████▌ | 170094/371472 [2:36:01<16:53:56, 3.31it/s] 46%|████▌ | 170095/371472 [2:36:02<16:44:47, 3.34it/s] 46%|████▌ | 170096/371472 [2:36:02<16:31:57, 3.38it/s] 46%|████▌ | 170097/371472 [2:36:02<16:29:02, 3.39it/s] 46%|████▌ | 170098/371472 [2:36:03<16:41:25, 3.35it/s] 46%|████▌ | 170099/371472 [2:36:03<16:40:59, 3.35it/s] 46%|████▌ | 170100/371472 [2:36:03<17:26:37, 3.21it/s] {'loss': 2.9741, 'learning_rate': 5.88145618306794e-07, 'epoch': 7.33} + 46%|████▌ | 170100/371472 [2:36:03<17:26:37, 3.21it/s] 46%|████▌ | 170101/371472 [2:36:04<17:55:41, 3.12it/s] 46%|████▌ | 170102/371472 [2:36:04<17:17:40, 3.23it/s] 46%|████▌ | 170103/371472 [2:36:04<17:57:47, 3.11it/s] 46%|████▌ | 170104/371472 [2:36:05<19:08:18, 2.92it/s] 46%|████▌ | 170105/371472 [2:36:05<18:10:03, 3.08it/s] 46%|████▌ | 170106/371472 [2:36:05<17:24:24, 3.21it/s] 46%|████▌ | 170107/371472 [2:36:05<16:56:48, 3.30it/s] 46%|████▌ | 170108/371472 [2:36:06<17:06:14, 3.27it/s] 46%|████▌ | 170109/371472 [2:36:06<17:09:20, 3.26it/s] 46%|████▌ | 170110/371472 [2:36:06<17:37:50, 3.17it/s] 46%|████▌ | 170111/371472 [2:36:07<17:12:59, 3.25it/s] 46%|████▌ | 170112/371472 [2:36:07<18:15:04, 3.06it/s] 46%|████▌ | 170113/371472 [2:36:07<18:09:39, 3.08it/s] 46%|████▌ | 170114/371472 [2:36:08<17:26:17, 3.21it/s] 46%|████▌ | 170115/371472 [2:36:08<16:48:10, 3.33it/s] 46%|████▌ | 170116/371472 [2:36:08<16:55:18, 3.31it/s] 46%|████▌ | 170117/371472 [2:36:09<17:15:09, 3.24it/s] 46%|████▌ | 170118/371472 [2:36:09<17:00:41, 3.29it/s] 46%|████▌ | 170119/371472 [2:36:09<17:20:16, 3.23it/s] 46%|████▌ | 170120/371472 [2:36:09<16:32:19, 3.38it/s] {'loss': 2.6987, 'learning_rate': 5.880971363313149e-07, 'epoch': 7.33} + 46%|████▌ | 170120/371472 [2:36:09<16:32:19, 3.38it/s] 46%|████▌ | 170121/371472 [2:36:10<17:18:39, 3.23it/s] 46%|████▌ | 170122/371472 [2:36:10<16:54:30, 3.31it/s] 46%|████▌ | 170123/371472 [2:36:10<16:34:25, 3.37it/s] 46%|████▌ | 170124/371472 [2:36:11<16:17:16, 3.43it/s] 46%|████▌ | 170125/371472 [2:36:11<16:45:07, 3.34it/s] 46%|████▌ | 170126/371472 [2:36:11<16:39:02, 3.36it/s] 46%|████▌ | 170127/371472 [2:36:12<16:19:37, 3.43it/s] 46%|████▌ | 170128/371472 [2:36:12<16:02:47, 3.49it/s] 46%|████▌ | 170129/371472 [2:36:12<16:13:30, 3.45it/s] 46%|████▌ | 170130/371472 [2:36:12<15:46:52, 3.54it/s] 46%|████▌ | 170131/371472 [2:36:13<16:13:27, 3.45it/s] 46%|████▌ | 170132/371472 [2:36:13<16:03:05, 3.48it/s] 46%|████▌ | 170133/371472 [2:36:13<16:49:34, 3.32it/s] 46%|████▌ | 170134/371472 [2:36:14<16:48:38, 3.33it/s] 46%|████▌ | 170135/371472 [2:36:14<16:30:52, 3.39it/s] 46%|████▌ | 170136/371472 [2:36:14<16:38:43, 3.36it/s] 46%|████▌ | 170137/371472 [2:36:14<16:23:14, 3.41it/s] 46%|████▌ | 170138/371472 [2:36:15<17:52:00, 3.13it/s] 46%|████▌ | 170139/371472 [2:36:15<17:15:41, 3.24it/s] 46%|████▌ | 170140/371472 [2:36:15<18:17:52, 3.06it/s] {'loss': 3.0572, 'learning_rate': 5.880486543558361e-07, 'epoch': 7.33} + 46%|████▌ | 170140/371472 [2:36:15<18:17:52, 3.06it/s] 46%|████▌ | 170141/371472 [2:36:16<17:43:29, 3.16it/s] 46%|████▌ | 170142/371472 [2:36:16<17:19:06, 3.23it/s] 46%|████▌ | 170143/371472 [2:36:16<17:45:36, 3.15it/s] 46%|████▌ | 170144/371472 [2:36:17<19:01:01, 2.94it/s] 46%|████▌ | 170145/371472 [2:36:17<17:53:23, 3.13it/s] 46%|████▌ | 170146/371472 [2:36:17<17:22:30, 3.22it/s] 46%|████▌ | 170147/371472 [2:36:18<17:33:44, 3.18it/s] 46%|████▌ | 170148/371472 [2:36:18<16:51:24, 3.32it/s] 46%|████▌ | 170149/371472 [2:36:18<16:47:14, 3.33it/s] 46%|████▌ | 170150/371472 [2:36:19<17:30:44, 3.19it/s] 46%|████▌ | 170151/371472 [2:36:19<17:14:56, 3.24it/s] 46%|████▌ | 170152/371472 [2:36:19<17:11:55, 3.25it/s] 46%|████▌ | 170153/371472 [2:36:19<16:53:19, 3.31it/s] 46%|████▌ | 170154/371472 [2:36:20<16:51:48, 3.32it/s] 46%|████▌ | 170155/371472 [2:36:20<16:26:10, 3.40it/s] 46%|████▌ | 170156/371472 [2:36:20<17:03:09, 3.28it/s] 46%|████▌ | 170157/371472 [2:36:21<16:45:16, 3.34it/s] 46%|████▌ | 170158/371472 [2:36:21<16:52:41, 3.31it/s] 46%|████▌ | 170159/371472 [2:36:21<16:37:00, 3.37it/s] 46%|████▌ | 170160/371472 [2:36:22<16:22:40, 3.41it/s] {'loss': 2.7799, 'learning_rate': 5.880001723803572e-07, 'epoch': 7.33} + 46%|████▌ | 170160/371472 [2:36:22<16:22:40, 3.41it/s] 46%|████▌ | 170161/371472 [2:36:22<16:17:28, 3.43it/s] 46%|████▌ | 170162/371472 [2:36:22<16:22:25, 3.42it/s] 46%|████▌ | 170163/371472 [2:36:22<16:02:29, 3.49it/s] 46%|████▌ | 170164/371472 [2:36:23<16:28:37, 3.39it/s] 46%|████▌ | 170165/371472 [2:36:23<16:32:25, 3.38it/s] 46%|████▌ | 170166/371472 [2:36:23<16:59:12, 3.29it/s] 46%|████▌ | 170167/371472 [2:36:24<16:51:20, 3.32it/s] 46%|████▌ | 170168/371472 [2:36:24<17:14:12, 3.24it/s] 46%|████▌ | 170169/371472 [2:36:24<17:37:27, 3.17it/s] 46%|████▌ | 170170/371472 [2:36:25<17:10:04, 3.26it/s] 46%|████▌ | 170171/371472 [2:36:25<16:35:20, 3.37it/s] 46%|████▌ | 170172/371472 [2:36:25<18:46:11, 2.98it/s] 46%|████▌ | 170173/371472 [2:36:26<18:01:29, 3.10it/s] 46%|████▌ | 170174/371472 [2:36:26<17:50:59, 3.13it/s] 46%|████▌ | 170175/371472 [2:36:26<17:24:26, 3.21it/s] 46%|████▌ | 170176/371472 [2:36:26<17:12:50, 3.25it/s] 46%|████▌ | 170177/371472 [2:36:27<18:08:39, 3.08it/s] 46%|████▌ | 170178/371472 [2:36:27<18:25:34, 3.03it/s] 46%|████▌ | 170179/371472 [2:36:27<18:08:33, 3.08it/s] 46%|████▌ | 170180/371472 [2:36:28<17:28:45, 3.20it/s] {'loss': 2.9505, 'learning_rate': 5.879516904048783e-07, 'epoch': 7.33} + 46%|████▌ | 170180/371472 [2:36:28<17:28:45, 3.20it/s] 46%|████▌ | 170181/371472 [2:36:28<17:08:35, 3.26it/s] 46%|████▌ | 170182/371472 [2:36:28<17:04:44, 3.27it/s] 46%|████▌ | 170183/371472 [2:36:29<16:45:10, 3.34it/s] 46%|████▌ | 170184/371472 [2:36:29<16:57:10, 3.30it/s] 46%|████▌ | 170185/371472 [2:36:29<17:07:28, 3.27it/s] 46%|████▌ | 170186/371472 [2:36:30<17:22:01, 3.22it/s] 46%|████▌ | 170187/371472 [2:36:30<18:03:05, 3.10it/s] 46%|████▌ | 170188/371472 [2:36:30<17:27:59, 3.20it/s] 46%|████▌ | 170189/371472 [2:36:31<16:53:56, 3.31it/s] 46%|████▌ | 170190/371472 [2:36:31<16:41:39, 3.35it/s] 46%|████▌ | 170191/371472 [2:36:31<17:21:08, 3.22it/s] 46%|████▌ | 170192/371472 [2:36:31<17:00:44, 3.29it/s] 46%|████▌ | 170193/371472 [2:36:32<16:46:49, 3.33it/s] 46%|████▌ | 170194/371472 [2:36:32<16:39:09, 3.36it/s] 46%|████▌ | 170195/371472 [2:36:32<16:36:03, 3.37it/s] 46%|████▌ | 170196/371472 [2:36:33<16:48:49, 3.33it/s] 46%|████▌ | 170197/371472 [2:36:33<16:53:51, 3.31it/s] 46%|████▌ | 170198/371472 [2:36:33<17:41:42, 3.16it/s] 46%|████▌ | 170199/371472 [2:36:34<17:12:33, 3.25it/s] 46%|████▌ | 170200/371472 [2:36:34<16:46:41, 3.33it/s] {'loss': 3.0217, 'learning_rate': 5.879032084293994e-07, 'epoch': 7.33} + 46%|████▌ | 170200/371472 [2:36:34<16:46:41, 3.33it/s] 46%|████▌ | 170201/371472 [2:36:34<16:23:21, 3.41it/s] 46%|████▌ | 170202/371472 [2:36:34<16:16:48, 3.43it/s] 46%|████▌ | 170203/371472 [2:36:35<16:18:38, 3.43it/s] 46%|████▌ | 170204/371472 [2:36:35<16:39:56, 3.35it/s] 46%|████▌ | 170205/371472 [2:36:35<16:59:00, 3.29it/s] 46%|████▌ | 170206/371472 [2:36:36<17:20:17, 3.22it/s] 46%|████▌ | 170207/371472 [2:36:36<18:05:14, 3.09it/s] 46%|████▌ | 170208/371472 [2:36:36<17:37:09, 3.17it/s] 46%|████▌ | 170209/371472 [2:36:37<16:42:39, 3.35it/s] 46%|████▌ | 170210/371472 [2:36:37<16:26:33, 3.40it/s] 46%|████▌ | 170211/371472 [2:36:37<16:33:52, 3.38it/s] 46%|████▌ | 170212/371472 [2:36:37<16:32:56, 3.38it/s] 46%|████▌ | 170213/371472 [2:36:38<16:33:15, 3.38it/s] 46%|████▌ | 170214/371472 [2:36:38<16:30:17, 3.39it/s] 46%|████▌ | 170215/371472 [2:36:38<16:24:41, 3.41it/s] 46%|████▌ | 170216/371472 [2:36:39<16:24:37, 3.41it/s] 46%|████▌ | 170217/371472 [2:36:39<16:16:43, 3.43it/s] 46%|████▌ | 170218/371472 [2:36:39<17:26:13, 3.21it/s] 46%|████▌ | 170219/371472 [2:36:40<17:02:07, 3.28it/s] 46%|████▌ | 170220/371472 [2:36:40<17:01:44, 3.28it/s] {'loss': 3.004, 'learning_rate': 5.878547264539206e-07, 'epoch': 7.33} + 46%|████▌ | 170220/371472 [2:36:40<17:01:44, 3.28it/s] 46%|████▌ | 170221/371472 [2:36:40<16:54:25, 3.31it/s] 46%|████▌ | 170222/371472 [2:36:40<17:03:03, 3.28it/s] 46%|████▌ | 170223/371472 [2:36:41<17:05:54, 3.27it/s] 46%|████▌ | 170224/371472 [2:36:41<16:50:30, 3.32it/s] 46%|████▌ | 170225/371472 [2:36:41<17:02:39, 3.28it/s] 46%|████▌ | 170226/371472 [2:36:42<16:32:19, 3.38it/s] 46%|████▌ | 170227/371472 [2:36:42<16:31:43, 3.38it/s] 46%|████▌ | 170228/371472 [2:36:42<16:39:00, 3.36it/s] 46%|████▌ | 170229/371472 [2:36:43<18:06:49, 3.09it/s] 46%|████▌ | 170230/371472 [2:36:43<18:18:45, 3.05it/s] 46%|████▌ | 170231/371472 [2:36:43<18:24:01, 3.04it/s] 46%|████▌ | 170232/371472 [2:36:44<18:53:30, 2.96it/s] 46%|████▌ | 170233/371472 [2:36:44<18:03:53, 3.09it/s] 46%|████▌ | 170234/371472 [2:36:44<18:07:19, 3.08it/s] 46%|████▌ | 170235/371472 [2:36:45<17:48:36, 3.14it/s] 46%|████▌ | 170236/371472 [2:36:45<17:20:52, 3.22it/s] 46%|████▌ | 170237/371472 [2:36:45<16:59:32, 3.29it/s] 46%|████▌ | 170238/371472 [2:36:45<16:49:28, 3.32it/s] 46%|████▌ | 170239/371472 [2:36:46<17:16:39, 3.24it/s] 46%|████▌ | 170240/371472 [2:36:46<16:42:12, 3.35it/s] {'loss': 2.9208, 'learning_rate': 5.878062444784416e-07, 'epoch': 7.33} + 46%|████▌ | 170240/371472 [2:36:46<16:42:12, 3.35it/s] 46%|████▌ | 170241/371472 [2:36:46<16:33:07, 3.38it/s] 46%|████▌ | 170242/371472 [2:36:47<17:00:49, 3.29it/s] 46%|████▌ | 170243/371472 [2:36:47<17:45:28, 3.15it/s] 46%|████▌ | 170244/371472 [2:36:47<17:42:27, 3.16it/s] 46%|████▌ | 170245/371472 [2:36:48<17:25:55, 3.21it/s] 46%|████▌ | 170246/371472 [2:36:48<17:58:10, 3.11it/s] 46%|████▌ | 170247/371472 [2:36:48<18:18:38, 3.05it/s] 46%|████▌ | 170248/371472 [2:36:49<17:25:07, 3.21it/s] 46%|████▌ | 170249/371472 [2:36:49<17:28:53, 3.20it/s] 46%|████▌ | 170250/371472 [2:36:49<16:57:51, 3.29it/s] 46%|████▌ | 170251/371472 [2:36:49<16:25:04, 3.40it/s] 46%|████▌ | 170252/371472 [2:36:50<16:47:20, 3.33it/s] 46%|████▌ | 170253/371472 [2:36:50<16:50:16, 3.32it/s] 46%|████▌ | 170254/371472 [2:36:50<16:31:48, 3.38it/s] 46%|████▌ | 170255/371472 [2:36:51<16:04:49, 3.48it/s] 46%|████▌ | 170256/371472 [2:36:51<16:04:59, 3.48it/s] 46%|████▌ | 170257/371472 [2:36:51<16:47:40, 3.33it/s] 46%|████▌ | 170258/371472 [2:36:52<17:19:28, 3.23it/s] 46%|████▌ | 170259/371472 [2:36:52<17:11:55, 3.25it/s] 46%|████▌ | 170260/371472 [2:36:52<17:34:13, 3.18it/s] {'loss': 2.8257, 'learning_rate': 5.877577625029627e-07, 'epoch': 7.33} + 46%|████▌ | 170260/371472 [2:36:52<17:34:13, 3.18it/s] 46%|████▌ | 170261/371472 [2:36:53<17:04:55, 3.27it/s] 46%|████▌ | 170262/371472 [2:36:53<16:28:17, 3.39it/s] 46%|████▌ | 170263/371472 [2:36:53<16:25:56, 3.40it/s] 46%|████▌ | 170264/371472 [2:36:53<16:16:00, 3.44it/s] 46%|████▌ | 170265/371472 [2:36:54<15:52:00, 3.52it/s] 46%|████▌ | 170266/371472 [2:36:54<17:04:10, 3.27it/s] 46%|████▌ | 170267/371472 [2:36:54<17:16:30, 3.24it/s] 46%|████▌ | 170268/371472 [2:36:55<16:39:12, 3.36it/s] 46%|████▌ | 170269/371472 [2:36:55<16:27:12, 3.40it/s] 46%|████▌ | 170270/371472 [2:36:55<16:17:18, 3.43it/s] 46%|████▌ | 170271/371472 [2:36:55<16:27:24, 3.40it/s] 46%|████▌ | 170272/371472 [2:36:56<16:04:09, 3.48it/s] 46%|████▌ | 170273/371472 [2:36:56<16:18:06, 3.43it/s] 46%|████▌ | 170274/371472 [2:36:56<17:36:33, 3.17it/s] 46%|████▌ | 170275/371472 [2:36:57<17:23:03, 3.21it/s] 46%|████▌ | 170276/371472 [2:36:57<16:56:11, 3.30it/s] 46%|████▌ | 170277/371472 [2:36:57<17:57:49, 3.11it/s] 46%|████▌ | 170278/371472 [2:36:58<17:56:35, 3.11it/s] 46%|████▌ | 170279/371472 [2:36:58<17:27:40, 3.20it/s] 46%|████▌ | 170280/371472 [2:36:58<17:00:30, 3.29it/s] {'loss': 3.045, 'learning_rate': 5.877092805274838e-07, 'epoch': 7.33} + 46%|████▌ | 170280/371472 [2:36:58<17:00:30, 3.29it/s] 46%|████▌ | 170281/371472 [2:36:59<16:51:25, 3.32it/s] 46%|████▌ | 170282/371472 [2:36:59<16:53:14, 3.31it/s] 46%|████▌ | 170283/371472 [2:36:59<16:26:51, 3.40it/s] 46%|████▌ | 170284/371472 [2:36:59<16:24:43, 3.41it/s] 46%|████▌ | 170285/371472 [2:37:00<16:21:19, 3.42it/s] 46%|████▌ | 170286/371472 [2:37:00<15:57:24, 3.50it/s] 46%|████▌ | 170287/371472 [2:37:00<16:22:48, 3.41it/s] 46%|████▌ | 170288/371472 [2:37:01<16:06:36, 3.47it/s] 46%|████▌ | 170289/371472 [2:37:01<16:08:58, 3.46it/s] 46%|████▌ | 170290/371472 [2:37:01<16:26:42, 3.40it/s] 46%|████▌ | 170291/371472 [2:37:01<16:30:55, 3.38it/s] 46%|████▌ | 170292/371472 [2:37:02<16:37:57, 3.36it/s] 46%|████▌ | 170293/371472 [2:37:02<16:31:20, 3.38it/s] 46%|████▌ | 170294/371472 [2:37:02<16:29:40, 3.39it/s] 46%|████▌ | 170295/371472 [2:37:03<16:29:02, 3.39it/s] 46%|████▌ | 170296/371472 [2:37:03<17:17:14, 3.23it/s] 46%|████▌ | 170297/371472 [2:37:03<17:48:18, 3.14it/s] 46%|████▌ | 170298/371472 [2:37:04<18:04:15, 3.09it/s] 46%|████▌ | 170299/371472 [2:37:04<17:34:50, 3.18it/s] 46%|████▌ | 170300/371472 [2:37:04<17:33:57, 3.18it/s] {'loss': 2.9598, 'learning_rate': 5.87660798552005e-07, 'epoch': 7.34} + 46%|████▌ | 170300/371472 [2:37:04<17:33:57, 3.18it/s] 46%|████▌ | 170301/371472 [2:37:05<17:16:08, 3.24it/s] 46%|████▌ | 170302/371472 [2:37:05<16:51:51, 3.31it/s] 46%|████▌ | 170303/371472 [2:37:05<17:13:10, 3.25it/s] 46%|████▌ | 170304/371472 [2:37:05<16:53:15, 3.31it/s] 46%|████▌ | 170305/371472 [2:37:06<17:10:44, 3.25it/s] 46%|████▌ | 170306/371472 [2:37:06<16:59:42, 3.29it/s] 46%|████▌ | 170307/371472 [2:37:06<17:09:51, 3.26it/s] 46%|████▌ | 170308/371472 [2:37:07<16:54:41, 3.30it/s] 46%|████▌ | 170309/371472 [2:37:07<16:41:36, 3.35it/s] 46%|████▌ | 170310/371472 [2:37:07<16:46:04, 3.33it/s] 46%|████▌ | 170311/371472 [2:37:08<16:56:27, 3.30it/s] 46%|████▌ | 170312/371472 [2:37:08<16:43:58, 3.34it/s] 46%|████▌ | 170313/371472 [2:37:08<16:25:42, 3.40it/s] 46%|████▌ | 170314/371472 [2:37:08<16:18:39, 3.43it/s] 46%|████▌ | 170315/371472 [2:37:09<17:14:47, 3.24it/s] 46%|████▌ | 170316/371472 [2:37:09<16:34:48, 3.37it/s] 46%|████▌ | 170317/371472 [2:37:09<16:59:59, 3.29it/s] 46%|████▌ | 170318/371472 [2:37:10<16:28:57, 3.39it/s] 46%|████▌ | 170319/371472 [2:37:10<16:16:30, 3.43it/s] 46%|████▌ | 170320/371472 [2:37:10<16:21:27, 3.42it/s] {'loss': 3.1423, 'learning_rate': 5.876123165765261e-07, 'epoch': 7.34} + 46%|████▌ | 170320/371472 [2:37:10<16:21:27, 3.42it/s] 46%|████▌ | 170321/371472 [2:37:10<16:04:25, 3.48it/s] 46%|████▌ | 170322/371472 [2:37:11<16:58:24, 3.29it/s] 46%|████▌ | 170323/371472 [2:37:11<17:40:27, 3.16it/s] 46%|████▌ | 170324/371472 [2:37:12<17:55:41, 3.12it/s] 46%|████▌ | 170325/371472 [2:37:12<17:40:43, 3.16it/s] 46%|████▌ | 170326/371472 [2:37:12<17:33:10, 3.18it/s] 46%|████▌ | 170327/371472 [2:37:12<17:58:45, 3.11it/s] 46%|████▌ | 170328/371472 [2:37:13<17:28:02, 3.20it/s] 46%|████▌ | 170329/371472 [2:37:13<17:16:43, 3.23it/s] 46%|████▌ | 170330/371472 [2:37:13<17:32:48, 3.18it/s] 46%|████▌ | 170331/371472 [2:37:14<17:05:33, 3.27it/s] 46%|████▌ | 170332/371472 [2:37:14<16:35:14, 3.37it/s] 46%|████▌ | 170333/371472 [2:37:14<16:02:35, 3.48it/s] 46%|████▌ | 170334/371472 [2:37:14<15:56:15, 3.51it/s] 46%|████▌ | 170335/371472 [2:37:15<16:33:35, 3.37it/s] 46%|████▌ | 170336/371472 [2:37:15<16:28:29, 3.39it/s] 46%|████▌ | 170337/371472 [2:37:15<16:27:11, 3.40it/s] 46%|████▌ | 170338/371472 [2:37:16<16:42:47, 3.34it/s] 46%|████▌ | 170339/371472 [2:37:16<16:28:08, 3.39it/s] 46%|████▌ | 170340/371472 [2:37:16<16:58:14, 3.29it/s] {'loss': 2.8198, 'learning_rate': 5.875638346010472e-07, 'epoch': 7.34} + 46%|████▌ | 170340/371472 [2:37:16<16:58:14, 3.29it/s] 46%|████▌ | 170341/371472 [2:37:17<17:33:11, 3.18it/s] 46%|████▌ | 170342/371472 [2:37:17<16:56:12, 3.30it/s] 46%|████▌ | 170343/371472 [2:37:17<16:42:39, 3.34it/s] 46%|████▌ | 170344/371472 [2:37:18<16:47:08, 3.33it/s] 46%|████▌ | 170345/371472 [2:37:18<17:11:04, 3.25it/s] 46%|████▌ | 170346/371472 [2:37:18<16:30:24, 3.38it/s] 46%|████▌ | 170347/371472 [2:37:18<17:32:34, 3.18it/s] 46%|████▌ | 170348/371472 [2:37:19<19:12:16, 2.91it/s] 46%|████▌ | 170349/371472 [2:37:19<18:10:37, 3.07it/s] 46%|████▌ | 170350/371472 [2:37:20<18:44:37, 2.98it/s] 46%|████▌ | 170351/371472 [2:37:20<17:53:58, 3.12it/s] 46%|████▌ | 170352/371472 [2:37:20<17:03:17, 3.28it/s] 46%|████▌ | 170353/371472 [2:37:20<17:45:13, 3.15it/s] 46%|████▌ | 170354/371472 [2:37:21<17:01:14, 3.28it/s] 46%|████▌ | 170355/371472 [2:37:21<16:52:27, 3.31it/s] 46%|████▌ | 170356/371472 [2:37:21<16:34:21, 3.37it/s] 46%|████▌ | 170357/371472 [2:37:22<17:38:47, 3.17it/s] 46%|████▌ | 170358/371472 [2:37:22<16:47:33, 3.33it/s] 46%|████▌ | 170359/371472 [2:37:22<18:01:49, 3.10it/s] 46%|████▌ | 170360/371472 [2:37:23<17:32:51, 3.18it/s] {'loss': 2.9087, 'learning_rate': 5.875153526255683e-07, 'epoch': 7.34} + 46%|████▌ | 170360/371472 [2:37:23<17:32:51, 3.18it/s] 46%|████▌ | 170361/371472 [2:37:23<17:03:22, 3.28it/s] 46%|████▌ | 170362/371472 [2:37:23<17:06:13, 3.27it/s] 46%|████▌ | 170363/371472 [2:37:23<17:10:44, 3.25it/s] 46%|████▌ | 170364/371472 [2:37:24<16:54:37, 3.30it/s] 46%|████▌ | 170365/371472 [2:37:24<16:48:07, 3.32it/s] 46%|████▌ | 170366/371472 [2:37:24<16:31:38, 3.38it/s] 46%|████▌ | 170367/371472 [2:37:25<16:22:12, 3.41it/s] 46%|████▌ | 170368/371472 [2:37:25<16:26:07, 3.40it/s] 46%|████▌ | 170369/371472 [2:37:25<16:17:47, 3.43it/s] 46%|████▌ | 170370/371472 [2:37:26<16:40:01, 3.35it/s] 46%|████▌ | 170371/371472 [2:37:26<16:29:48, 3.39it/s] 46%|████▌ | 170372/371472 [2:37:26<19:49:13, 2.82it/s] 46%|████▌ | 170373/371472 [2:37:27<19:17:19, 2.90it/s] 46%|████▌ | 170374/371472 [2:37:27<18:05:08, 3.09it/s] 46%|████▌ | 170375/371472 [2:37:27<18:12:47, 3.07it/s] 46%|████▌ | 170376/371472 [2:37:28<17:45:39, 3.15it/s] 46%|████▌ | 170377/371472 [2:37:28<16:55:11, 3.30it/s] 46%|████▌ | 170378/371472 [2:37:28<16:38:58, 3.36it/s] 46%|████▌ | 170379/371472 [2:37:28<16:26:56, 3.40it/s] 46%|████▌ | 170380/371472 [2:37:29<16:33:16, 3.37it/s] {'loss': 3.1305, 'learning_rate': 5.874668706500894e-07, 'epoch': 7.34} + 46%|████▌ | 170380/371472 [2:37:29<16:33:16, 3.37it/s] 46%|████▌ | 170381/371472 [2:37:29<16:32:28, 3.38it/s] 46%|████▌ | 170382/371472 [2:37:29<16:06:46, 3.47it/s] 46%|████▌ | 170383/371472 [2:37:30<15:55:44, 3.51it/s] 46%|████▌ | 170384/371472 [2:37:30<16:02:13, 3.48it/s] 46%|████▌ | 170385/371472 [2:37:30<15:56:47, 3.50it/s] 46%|████▌ | 170386/371472 [2:37:30<16:01:15, 3.49it/s] 46%|████▌ | 170387/371472 [2:37:31<16:01:02, 3.49it/s] 46%|████▌ | 170388/371472 [2:37:31<15:57:48, 3.50it/s] 46%|████▌ | 170389/371472 [2:37:31<16:23:06, 3.41it/s] 46%|████▌ | 170390/371472 [2:37:32<16:19:52, 3.42it/s] 46%|████▌ | 170391/371472 [2:37:32<19:43:12, 2.83it/s] 46%|████▌ | 170392/371472 [2:37:32<18:35:27, 3.00it/s] 46%|████▌ | 170393/371472 [2:37:33<18:56:11, 2.95it/s] 46%|████▌ | 170394/371472 [2:37:33<18:14:33, 3.06it/s] 46%|████▌ | 170395/371472 [2:37:33<17:34:57, 3.18it/s] 46%|████▌ | 170396/371472 [2:37:34<16:45:07, 3.33it/s] 46%|████▌ | 170397/371472 [2:37:34<16:42:22, 3.34it/s] 46%|████▌ | 170398/371472 [2:37:34<17:29:06, 3.19it/s] 46%|████▌ | 170399/371472 [2:37:34<17:21:10, 3.22it/s] 46%|████▌ | 170400/371472 [2:37:35<17:00:19, 3.28it/s] {'loss': 2.8604, 'learning_rate': 5.874183886746105e-07, 'epoch': 7.34} + 46%|████▌ | 170400/371472 [2:37:35<17:00:19, 3.28it/s] 46%|████▌ | 170401/371472 [2:37:35<17:11:52, 3.25it/s] 46%|████▌ | 170402/371472 [2:37:35<17:30:16, 3.19it/s] 46%|████▌ | 170403/371472 [2:37:36<17:59:43, 3.10it/s] 46%|████▌ | 170404/371472 [2:37:36<17:36:58, 3.17it/s] 46%|████▌ | 170405/371472 [2:37:36<17:39:38, 3.16it/s] 46%|████▌ | 170406/371472 [2:37:37<17:02:02, 3.28it/s] 46%|████▌ | 170407/371472 [2:37:37<16:55:05, 3.30it/s] 46%|████▌ | 170408/371472 [2:37:37<17:05:18, 3.27it/s] 46%|████▌ | 170409/371472 [2:37:38<17:25:39, 3.20it/s] 46%|████▌ | 170410/371472 [2:37:38<17:55:58, 3.11it/s] 46%|████▌ | 170411/371472 [2:37:38<17:41:23, 3.16it/s] 46%|████▌ | 170412/371472 [2:37:39<18:14:38, 3.06it/s] 46%|████▌ | 170413/371472 [2:37:39<18:11:58, 3.07it/s] 46%|████▌ | 170414/371472 [2:37:39<17:32:38, 3.18it/s] 46%|████▌ | 170415/371472 [2:37:40<17:50:50, 3.13it/s] 46%|████▌ | 170416/371472 [2:37:40<17:39:39, 3.16it/s] 46%|████▌ | 170417/371472 [2:37:40<17:46:44, 3.14it/s] 46%|████▌ | 170418/371472 [2:37:40<17:21:01, 3.22it/s] 46%|████▌ | 170419/371472 [2:37:41<17:43:03, 3.15it/s] 46%|████▌ | 170420/371472 [2:37:41<17:28:48, 3.19it/s] {'loss': 2.8556, 'learning_rate': 5.873699066991315e-07, 'epoch': 7.34} + 46%|████▌ | 170420/371472 [2:37:41<17:28:48, 3.19it/s] 46%|████▌ | 170421/371472 [2:37:41<16:54:50, 3.30it/s] 46%|████▌ | 170422/371472 [2:37:42<16:37:09, 3.36it/s] 46%|████▌ | 170423/371472 [2:37:42<16:29:55, 3.38it/s] 46%|████▌ | 170424/371472 [2:37:42<18:23:52, 3.04it/s] 46%|████▌ | 170425/371472 [2:37:43<17:39:21, 3.16it/s] 46%|████▌ | 170426/371472 [2:37:43<17:20:17, 3.22it/s] 46%|████▌ | 170427/371472 [2:37:43<16:29:09, 3.39it/s] 46%|████▌ | 170428/371472 [2:37:44<16:27:59, 3.39it/s] 46%|████▌ | 170429/371472 [2:37:44<16:55:10, 3.30it/s] 46%|████▌ | 170430/371472 [2:37:44<16:42:39, 3.34it/s] 46%|████▌ | 170431/371472 [2:37:45<18:21:26, 3.04it/s] 46%|████▌ | 170432/371472 [2:37:45<18:21:07, 3.04it/s] 46%|████▌ | 170433/371472 [2:37:45<17:18:27, 3.23it/s] 46%|████▌ | 170434/371472 [2:37:45<17:50:01, 3.13it/s] 46%|████▌ | 170435/371472 [2:37:46<17:34:27, 3.18it/s] 46%|████▌ | 170436/371472 [2:37:46<17:00:12, 3.28it/s] 46%|████▌ | 170437/371472 [2:37:46<16:56:56, 3.29it/s] 46%|████▌ | 170438/371472 [2:37:47<16:30:57, 3.38it/s] 46%|████▌ | 170439/371472 [2:37:47<17:36:08, 3.17it/s] 46%|████▌ | 170440/371472 [2:37:47<18:11:01, 3.07it/s] {'loss': 2.7255, 'learning_rate': 5.873214247236527e-07, 'epoch': 7.34} + 46%|████▌ | 170440/371472 [2:37:47<18:11:01, 3.07it/s] 46%|████▌ | 170441/371472 [2:37:48<18:00:34, 3.10it/s] 46%|████▌ | 170442/371472 [2:37:48<17:17:53, 3.23it/s] 46%|████▌ | 170443/371472 [2:37:48<16:54:18, 3.30it/s] 46%|████▌ | 170444/371472 [2:37:48<16:22:12, 3.41it/s] 46%|████▌ | 170445/371472 [2:37:49<16:08:31, 3.46it/s] 46%|████▌ | 170446/371472 [2:37:49<17:08:31, 3.26it/s] 46%|████▌ | 170447/371472 [2:37:49<16:55:09, 3.30it/s] 46%|████▌ | 170448/371472 [2:37:50<17:15:07, 3.24it/s] 46%|████▌ | 170449/371472 [2:37:50<17:36:56, 3.17it/s] 46%|████▌ | 170450/371472 [2:37:50<16:48:46, 3.32it/s] 46%|████▌ | 170451/371472 [2:37:51<17:22:44, 3.21it/s] 46%|████▌ | 170452/371472 [2:37:51<17:14:35, 3.24it/s] 46%|████▌ | 170453/371472 [2:37:51<17:11:17, 3.25it/s] 46%|████▌ | 170454/371472 [2:37:52<17:31:25, 3.19it/s] 46%|████▌ | 170455/371472 [2:37:52<17:32:42, 3.18it/s] 46%|████▌ | 170456/371472 [2:37:52<17:43:16, 3.15it/s] 46%|████▌ | 170457/371472 [2:37:53<17:16:24, 3.23it/s] 46%|████▌ | 170458/371472 [2:37:53<18:17:02, 3.05it/s] 46%|████▌ | 170459/371472 [2:37:53<18:31:55, 3.01it/s] 46%|████▌ | 170460/371472 [2:37:54<17:33:57, 3.18it/s] {'loss': 3.0197, 'learning_rate': 5.872729427481739e-07, 'epoch': 7.34} + 46%|████▌ | 170460/371472 [2:37:54<17:33:57, 3.18it/s] 46%|████▌ | 170461/371472 [2:37:54<16:50:37, 3.31it/s] 46%|████▌ | 170462/371472 [2:37:54<16:18:28, 3.42it/s] 46%|████▌ | 170463/371472 [2:37:54<16:21:21, 3.41it/s] 46%|████▌ | 170464/371472 [2:37:55<16:19:21, 3.42it/s] 46%|████▌ | 170465/371472 [2:37:55<16:22:37, 3.41it/s] 46%|████▌ | 170466/371472 [2:37:55<16:10:06, 3.45it/s] 46%|████▌ | 170467/371472 [2:37:55<15:56:28, 3.50it/s] 46%|████▌ | 170468/371472 [2:37:56<16:39:44, 3.35it/s] 46%|████▌ | 170469/371472 [2:37:56<16:22:42, 3.41it/s] 46%|████▌ | 170470/371472 [2:37:56<16:20:47, 3.42it/s] 46%|████▌ | 170471/371472 [2:37:57<17:11:51, 3.25it/s] 46%|████▌ | 170472/371472 [2:37:57<16:34:51, 3.37it/s] 46%|████▌ | 170473/371472 [2:37:57<17:20:56, 3.22it/s] 46%|████▌ | 170474/371472 [2:37:58<17:23:01, 3.21it/s] 46%|████▌ | 170475/371472 [2:37:58<16:57:04, 3.29it/s] 46%|████▌ | 170476/371472 [2:37:58<16:36:17, 3.36it/s] 46%|████▌ | 170477/371472 [2:37:59<18:30:11, 3.02it/s] 46%|████▌ | 170478/371472 [2:37:59<17:34:44, 3.18it/s] 46%|████▌ | 170479/371472 [2:37:59<17:19:46, 3.22it/s] 46%|████▌ | 170480/371472 [2:38:00<16:56:20, 3.30it/s] {'loss': 2.7561, 'learning_rate': 5.87224460772695e-07, 'epoch': 7.34} + 46%|████▌ | 170480/371472 [2:38:00<16:56:20, 3.30it/s] 46%|████▌ | 170481/371472 [2:38:00<16:32:08, 3.38it/s] 46%|████▌ | 170482/371472 [2:38:00<16:55:57, 3.30it/s] 46%|████▌ | 170483/371472 [2:38:00<17:27:45, 3.20it/s] 46%|████▌ | 170484/371472 [2:38:01<17:36:20, 3.17it/s] 46%|████▌ | 170485/371472 [2:38:01<18:34:52, 3.00it/s] 46%|████▌ | 170486/371472 [2:38:01<17:35:14, 3.17it/s] 46%|████▌ | 170487/371472 [2:38:02<18:10:26, 3.07it/s] 46%|████▌ | 170488/371472 [2:38:02<17:25:30, 3.20it/s] 46%|████▌ | 170489/371472 [2:38:02<17:39:53, 3.16it/s] 46%|████▌ | 170490/371472 [2:38:03<16:53:39, 3.30it/s] 46%|████▌ | 170491/371472 [2:38:03<16:48:10, 3.32it/s] 46%|████▌ | 170492/371472 [2:38:03<16:16:36, 3.43it/s] 46%|████▌ | 170493/371472 [2:38:03<15:50:34, 3.52it/s] 46%|████▌ | 170494/371472 [2:38:04<15:46:33, 3.54it/s] 46%|████▌ | 170495/371472 [2:38:04<16:49:06, 3.32it/s] 46%|████▌ | 170496/371472 [2:38:04<16:25:00, 3.40it/s] 46%|████▌ | 170497/371472 [2:38:05<16:12:05, 3.45it/s] 46%|████▌ | 170498/371472 [2:38:05<16:15:42, 3.43it/s] 46%|████▌ | 170499/371472 [2:38:05<16:29:24, 3.39it/s] 46%|████▌ | 170500/371472 [2:38:06<16:40:37, 3.35it/s] {'loss': 2.8936, 'learning_rate': 5.871759787972159e-07, 'epoch': 7.34} + 46%|████▌ | 170500/371472 [2:38:06<16:40:37, 3.35it/s] 46%|████▌ | 170501/371472 [2:38:06<16:13:43, 3.44it/s] 46%|████▌ | 170502/371472 [2:38:06<16:04:51, 3.47it/s] 46%|████▌ | 170503/371472 [2:38:06<16:17:12, 3.43it/s] 46%|████▌ | 170504/371472 [2:38:07<15:55:12, 3.51it/s] 46%|████▌ | 170505/371472 [2:38:07<15:43:39, 3.55it/s] 46%|████▌ | 170506/371472 [2:38:07<15:54:09, 3.51it/s] 46%|████▌ | 170507/371472 [2:38:08<16:56:28, 3.30it/s] 46%|████▌ | 170508/371472 [2:38:08<18:19:19, 3.05it/s] 46%|████▌ | 170509/371472 [2:38:08<17:24:18, 3.21it/s] 46%|████▌ | 170510/371472 [2:38:09<17:25:48, 3.20it/s] 46%|████▌ | 170511/371472 [2:38:09<18:01:49, 3.10it/s] 46%|████▌ | 170512/371472 [2:38:09<17:56:08, 3.11it/s] 46%|████▌ | 170513/371472 [2:38:10<17:39:59, 3.16it/s] 46%|████▌ | 170514/371472 [2:38:10<17:23:52, 3.21it/s] 46%|████▌ | 170515/371472 [2:38:10<17:26:07, 3.20it/s] 46%|████▌ | 170516/371472 [2:38:10<17:06:48, 3.26it/s] 46%|████▌ | 170517/371472 [2:38:11<17:07:12, 3.26it/s] 46%|████▌ | 170518/371472 [2:38:11<17:02:33, 3.28it/s] 46%|████▌ | 170519/371472 [2:38:11<16:37:16, 3.36it/s] 46%|████▌ | 170520/371472 [2:38:12<17:04:33, 3.27it/s] {'loss': 2.9464, 'learning_rate': 5.871274968217371e-07, 'epoch': 7.34} + 46%|████▌ | 170520/371472 [2:38:12<17:04:33, 3.27it/s] 46%|████▌ | 170521/371472 [2:38:12<17:40:19, 3.16it/s] 46%|████▌ | 170522/371472 [2:38:12<17:33:01, 3.18it/s] 46%|████▌ | 170523/371472 [2:38:13<17:19:11, 3.22it/s] 46%|████▌ | 170524/371472 [2:38:13<16:51:28, 3.31it/s] 46%|████▌ | 170525/371472 [2:38:13<17:55:14, 3.11it/s] 46%|████▌ | 170526/371472 [2:38:14<17:37:45, 3.17it/s] 46%|████▌ | 170527/371472 [2:38:14<18:07:07, 3.08it/s] 46%|████▌ | 170528/371472 [2:38:14<17:04:59, 3.27it/s] 46%|████▌ | 170529/371472 [2:38:14<16:43:29, 3.34it/s] 46%|████▌ | 170530/371472 [2:38:15<16:21:41, 3.41it/s] 46%|████▌ | 170531/371472 [2:38:15<16:09:16, 3.46it/s] 46%|█��██▌ | 170532/371472 [2:38:15<16:20:51, 3.41it/s] 46%|████▌ | 170533/371472 [2:38:16<16:29:58, 3.38it/s] 46%|████▌ | 170534/371472 [2:38:16<16:14:43, 3.44it/s] 46%|████▌ | 170535/371472 [2:38:16<15:42:34, 3.55it/s] 46%|████▌ | 170536/371472 [2:38:16<15:32:13, 3.59it/s] 46%|████▌ | 170537/371472 [2:38:17<15:43:35, 3.55it/s] 46%|████▌ | 170538/371472 [2:38:17<16:37:31, 3.36it/s] 46%|████▌ | 170539/371472 [2:38:17<16:30:53, 3.38it/s] 46%|████▌ | 170540/371472 [2:38:18<16:29:07, 3.39it/s] {'loss': 2.8811, 'learning_rate': 5.870790148462583e-07, 'epoch': 7.35} + 46%|████▌ | 170540/371472 [2:38:18<16:29:07, 3.39it/s] 46%|████▌ | 170541/371472 [2:38:18<16:40:14, 3.35it/s] 46%|████▌ | 170542/371472 [2:38:18<16:49:41, 3.32it/s] 46%|████▌ | 170543/371472 [2:38:19<16:21:24, 3.41it/s] 46%|████▌ | 170544/371472 [2:38:19<15:54:27, 3.51it/s] 46%|████▌ | 170545/371472 [2:38:19<15:53:07, 3.51it/s] 46%|████▌ | 170546/371472 [2:38:19<16:18:49, 3.42it/s] 46%|████▌ | 170547/371472 [2:38:20<16:29:43, 3.38it/s] 46%|████▌ | 170548/371472 [2:38:20<17:03:56, 3.27it/s] 46%|████▌ | 170549/371472 [2:38:20<16:43:04, 3.34it/s] 46%|████▌ | 170550/371472 [2:38:21<16:31:55, 3.38it/s] 46%|████▌ | 170551/371472 [2:38:21<16:35:32, 3.36it/s] 46%|████▌ | 170552/371472 [2:38:21<16:32:24, 3.37it/s] 46%|████▌ | 170553/371472 [2:38:21<16:23:21, 3.41it/s] 46%|████▌ | 170554/371472 [2:38:22<16:28:11, 3.39it/s] 46%|████▌ | 170555/371472 [2:38:22<18:35:13, 3.00it/s] 46%|████▌ | 170556/371472 [2:38:23<18:40:53, 2.99it/s] 46%|████▌ | 170557/371472 [2:38:23<18:11:57, 3.07it/s] 46%|████▌ | 170558/371472 [2:38:23<17:38:44, 3.16it/s] 46%|████▌ | 170559/371472 [2:38:23<17:13:57, 3.24it/s] 46%|████▌ | 170560/371472 [2:38:24<16:42:13, 3.34it/s] {'loss': 2.9148, 'learning_rate': 5.870305328707794e-07, 'epoch': 7.35} + 46%|████▌ | 170560/371472 [2:38:24<16:42:13, 3.34it/s] 46%|████▌ | 170561/371472 [2:38:24<16:30:11, 3.38it/s] 46%|████▌ | 170562/371472 [2:38:24<16:22:46, 3.41it/s] 46%|████▌ | 170563/371472 [2:38:25<17:45:34, 3.14it/s] 46%|████▌ | 170564/371472 [2:38:25<17:03:16, 3.27it/s] 46%|████▌ | 170565/371472 [2:38:25<16:49:00, 3.32it/s] 46%|████▌ | 170566/371472 [2:38:26<17:12:47, 3.24it/s] 46%|████▌ | 170567/371472 [2:38:26<17:04:36, 3.27it/s] 46%|████▌ | 170568/371472 [2:38:26<17:11:52, 3.24it/s] 46%|████▌ | 170569/371472 [2:38:26<16:52:40, 3.31it/s] 46%|████▌ | 170570/371472 [2:38:27<16:42:32, 3.34it/s] 46%|████▌ | 170571/371472 [2:38:27<16:52:32, 3.31it/s] 46%|████▌ | 170572/371472 [2:38:27<16:47:49, 3.32it/s] 46%|████▌ | 170573/371472 [2:38:28<17:45:15, 3.14it/s] 46%|████▌ | 170574/371472 [2:38:28<19:12:18, 2.91it/s] 46%|████▌ | 170575/371472 [2:38:28<19:26:06, 2.87it/s] 46%|████▌ | 170576/371472 [2:38:29<18:47:54, 2.97it/s] 46%|████▌ | 170577/371472 [2:38:29<17:45:16, 3.14it/s] 46%|████▌ | 170578/371472 [2:38:29<17:29:21, 3.19it/s] 46%|████▌ | 170579/371472 [2:38:30<17:08:32, 3.26it/s] 46%|████▌ | 170580/371472 [2:38:30<16:42:33, 3.34it/s] {'loss': 3.0389, 'learning_rate': 5.869820508953004e-07, 'epoch': 7.35} + 46%|████▌ | 170580/371472 [2:38:30<16:42:33, 3.34it/s] 46%|████▌ | 170581/371472 [2:38:30<16:52:15, 3.31it/s] 46%|████▌ | 170582/371472 [2:38:31<16:31:30, 3.38it/s] 46%|████▌ | 170583/371472 [2:38:31<16:29:56, 3.38it/s] 46%|████▌ | 170584/371472 [2:38:31<16:24:36, 3.40it/s] 46%|████▌ | 170585/371472 [2:38:31<17:38:40, 3.16it/s] 46%|████▌ | 170586/371472 [2:38:32<17:22:17, 3.21it/s] 46%|████▌ | 170587/371472 [2:38:32<16:45:21, 3.33it/s] 46%|████▌ | 170588/371472 [2:38:32<16:12:49, 3.44it/s] 46%|████▌ | 170589/371472 [2:38:33<16:20:39, 3.41it/s] 46%|████▌ | 170590/371472 [2:38:33<16:08:18, 3.46it/s] 46%|████▌ | 170591/371472 [2:38:33<16:20:24, 3.41it/s] 46%|████▌ | 170592/371472 [2:38:33<16:26:40, 3.39it/s] 46%|████▌ | 170593/371472 [2:38:34<16:24:54, 3.40it/s] 46%|████▌ | 170594/371472 [2:38:34<16:26:35, 3.39it/s] 46%|████▌ | 170595/371472 [2:38:34<16:20:08, 3.42it/s] 46%|████▌ | 170596/371472 [2:38:35<16:48:27, 3.32it/s] 46%|████▌ | 170597/371472 [2:38:35<16:38:37, 3.35it/s] 46%|████▌ | 170598/371472 [2:38:35<17:48:39, 3.13it/s] 46%|████▌ | 170599/371472 [2:38:36<17:19:08, 3.22it/s] 46%|████▌ | 170600/371472 [2:38:36<17:10:25, 3.25it/s] {'loss': 2.991, 'learning_rate': 5.869335689198216e-07, 'epoch': 7.35} + 46%|████▌ | 170600/371472 [2:38:36<17:10:25, 3.25it/s] 46%|████▌ | 170601/371472 [2:38:36<16:59:27, 3.28it/s] 46%|████▌ | 170602/371472 [2:38:37<16:35:08, 3.36it/s] 46%|████▌ | 170603/371472 [2:38:37<16:43:39, 3.34it/s] 46%|████▌ | 170604/371472 [2:38:37<16:44:38, 3.33it/s] 46%|████▌ | 170605/371472 [2:38:37<17:13:02, 3.24it/s] 46%|████▌ | 170606/371472 [2:38:38<16:36:20, 3.36it/s] 46%|████▌ | 170607/371472 [2:38:38<15:53:11, 3.51it/s] 46%|████▌ | 170608/371472 [2:38:38<15:46:46, 3.54it/s] 46%|████▌ | 170609/371472 [2:38:39<16:25:52, 3.40it/s] 46%|████▌ | 170610/371472 [2:38:39<16:15:50, 3.43it/s] 46%|████▌ | 170611/371472 [2:38:39<16:40:12, 3.35it/s] 46%|████▌ | 170612/371472 [2:38:40<17:29:18, 3.19it/s] 46%|████▌ | 170613/371472 [2:38:40<17:10:51, 3.25it/s] 46%|████▌ | 170614/371472 [2:38:40<16:35:00, 3.36it/s] 46%|████▌ | 170615/371472 [2:38:40<17:00:27, 3.28it/s] 46%|████▌ | 170616/371472 [2:38:41<16:41:08, 3.34it/s] 46%|████▌ | 170617/371472 [2:38:41<16:47:45, 3.32it/s] 46%|████▌ | 170618/371472 [2:38:41<16:55:02, 3.30it/s] 46%|████▌ | 170619/371472 [2:38:42<16:54:00, 3.30it/s] 46%|████▌ | 170620/371472 [2:38:42<16:55:47, 3.30it/s] {'loss': 3.1231, 'learning_rate': 5.868850869443427e-07, 'epoch': 7.35} + 46%|████▌ | 170620/371472 [2:38:42<16:55:47, 3.30it/s] 46%|████▌ | 170621/371472 [2:38:42<18:02:46, 3.09it/s] 46%|████▌ | 170622/371472 [2:38:43<17:18:19, 3.22it/s] 46%|████▌ | 170623/371472 [2:38:43<17:16:18, 3.23it/s] 46%|████▌ | 170624/371472 [2:38:43<17:01:04, 3.28it/s] 46%|████▌ | 170625/371472 [2:38:43<17:19:35, 3.22it/s] 46%|████▌ | 170626/371472 [2:38:44<16:48:25, 3.32it/s] 46%|████▌ | 170627/371472 [2:38:44<16:45:20, 3.33it/s] 46%|████▌ | 170628/371472 [2:38:44<16:55:23, 3.30it/s] 46%|████▌ | 170629/371472 [2:38:45<16:52:30, 3.31it/s] 46%|████▌ | 170630/371472 [2:38:45<16:39:48, 3.35it/s] 46%|████▌ | 170631/371472 [2:38:45<16:46:42, 3.33it/s] 46%|████▌ | 170632/371472 [2:38:46<16:20:04, 3.42it/s] 46%|████▌ | 170633/371472 [2:38:46<16:18:58, 3.42it/s] 46%|████▌ | 170634/371472 [2:38:46<16:05:16, 3.47it/s] 46%|████▌ | 170635/371472 [2:38:46<16:01:31, 3.48it/s] 46%|████▌ | 170636/371472 [2:38:47<16:12:02, 3.44it/s] 46%|████▌ | 170637/371472 [2:38:47<16:08:37, 3.46it/s] 46%|████▌ | 170638/371472 [2:38:47<16:38:30, 3.35it/s] 46%|████▌ | 170639/371472 [2:38:48<16:35:50, 3.36it/s] 46%|████▌ | 170640/371472 [2:38:48<16:20:07, 3.42it/s] {'loss': 2.7957, 'learning_rate': 5.868366049688638e-07, 'epoch': 7.35} + 46%|████▌ | 170640/371472 [2:38:48<16:20:07, 3.42it/s] 46%|████▌ | 170641/371472 [2:38:48<16:42:48, 3.34it/s] 46%|████▌ | 170642/371472 [2:38:48<16:23:51, 3.40it/s] 46%|████▌ | 170643/371472 [2:38:49<16:46:12, 3.33it/s] 46%|████▌ | 170644/371472 [2:38:49<16:30:13, 3.38it/s] 46%|████▌ | 170645/371472 [2:38:49<17:38:38, 3.16it/s] 46%|████▌ | 170646/371472 [2:38:50<16:59:03, 3.28it/s] 46%|████▌ | 170647/371472 [2:38:50<17:35:02, 3.17it/s] 46%|████▌ | 170648/371472 [2:38:50<17:13:10, 3.24it/s] 46%|████▌ | 170649/371472 [2:38:51<17:08:01, 3.26it/s] 46%|████▌ | 170650/371472 [2:38:51<17:55:59, 3.11it/s] 46%|████▌ | 170651/371472 [2:38:51<17:18:32, 3.22it/s] 46%|████▌ | 170652/371472 [2:38:52<16:57:14, 3.29it/s] 46%|████▌ | 170653/371472 [2:38:52<17:08:32, 3.25it/s] 46%|████▌ | 170654/371472 [2:38:52<16:40:48, 3.34it/s] 46%|████▌ | 170655/371472 [2:38:52<16:20:21, 3.41it/s] 46%|████▌ | 170656/371472 [2:38:53<15:50:59, 3.52it/s] 46%|████▌ | 170657/371472 [2:38:53<15:41:04, 3.56it/s] 46%|████▌ | 170658/371472 [2:38:53<15:43:33, 3.55it/s] 46%|████▌ | 170659/371472 [2:38:54<16:20:24, 3.41it/s] 46%|████▌ | 170660/371472 [2:38:54<16:48:56, 3.32it/s] {'loss': 3.1204, 'learning_rate': 5.867881229933848e-07, 'epoch': 7.35} + 46%|████▌ | 170660/371472 [2:38:54<16:48:56, 3.32it/s] 46%|████▌ | 170661/371472 [2:38:54<16:31:06, 3.38it/s] 46%|████▌ | 170662/371472 [2:38:54<16:18:48, 3.42it/s] 46%|████▌ | 170663/371472 [2:38:55<16:12:28, 3.44it/s] 46%|████▌ | 170664/371472 [2:38:55<16:01:01, 3.48it/s] 46%|████▌ | 170665/371472 [2:38:55<15:59:10, 3.49it/s] 46%|████▌ | 170666/371472 [2:38:56<16:26:27, 3.39it/s] 46%|████▌ | 170667/371472 [2:38:56<16:27:47, 3.39it/s] 46%|████▌ | 170668/371472 [2:38:56<16:20:33, 3.41it/s] 46%|████▌ | 170669/371472 [2:38:57<16:25:23, 3.40it/s] 46%|████▌ | 170670/371472 [2:38:57<16:16:59, 3.43it/s] 46%|████▌ | 170671/371472 [2:38:57<17:47:10, 3.14it/s] 46%|████▌ | 170672/371472 [2:38:58<17:50:21, 3.13it/s] 46%|████▌ | 170673/371472 [2:38:58<18:10:33, 3.07it/s] 46%|████▌ | 170674/371472 [2:38:58<18:06:09, 3.08it/s] 46%|████▌ | 170675/371472 [2:38:58<17:39:17, 3.16it/s] 46%|████▌ | 170676/371472 [2:38:59<18:01:39, 3.09it/s] 46%|████▌ | 170677/371472 [2:38:59<18:27:34, 3.02it/s] 46%|████▌ | 170678/371472 [2:38:59<17:34:46, 3.17it/s] 46%|████▌ | 170679/371472 [2:39:00<19:25:08, 2.87it/s] 46%|████▌ | 170680/371472 [2:39:00<18:20:40, 3.04it/s] {'loss': 2.8421, 'learning_rate': 5.86739641017906e-07, 'epoch': 7.35} + 46%|████▌ | 170680/371472 [2:39:00<18:20:40, 3.04it/s] 46%|████▌ | 170681/371472 [2:39:00<17:45:25, 3.14it/s] 46%|████▌ | 170682/371472 [2:39:01<17:07:03, 3.26it/s] 46%|████▌ | 170683/371472 [2:39:01<16:39:29, 3.35it/s] 46%|████▌ | 170684/371472 [2:39:01<16:28:56, 3.38it/s] 46%|████▌ | 170685/371472 [2:39:02<16:33:51, 3.37it/s] 46%|████▌ | 170686/371472 [2:39:02<16:25:55, 3.39it/s] 46%|████▌ | 170687/371472 [2:39:02<16:41:15, 3.34it/s] 46%|████▌ | 170688/371472 [2:39:02<16:24:28, 3.40it/s] 46%|████▌ | 170689/371472 [2:39:03<15:58:34, 3.49it/s] 46%|████▌ | 170690/371472 [2:39:03<15:59:55, 3.49it/s] 46%|████▌ | 170691/371472 [2:39:03<16:24:15, 3.40it/s] 46%|████▌ | 170692/371472 [2:39:04<16:11:31, 3.44it/s] 46%|████▌ | 170693/371472 [2:39:04<16:36:53, 3.36it/s] 46%|████▌ | 170694/371472 [2:39:04<16:42:10, 3.34it/s] 46%|████▌ | 170695/371472 [2:39:05<16:21:09, 3.41it/s] 46%|████▌ | 170696/371472 [2:39:05<16:22:47, 3.40it/s] 46%|████▌ | 170697/371472 [2:39:05<15:59:20, 3.49it/s] 46%|████▌ | 170698/371472 [2:39:05<16:16:54, 3.43it/s] 46%|████▌ | 170699/371472 [2:39:06<16:21:08, 3.41it/s] 46%|████▌ | 170700/371472 [2:39:06<16:09:10, 3.45it/s] {'loss': 2.7792, 'learning_rate': 5.866911590424271e-07, 'epoch': 7.35} + 46%|████▌ | 170700/371472 [2:39:06<16:09:10, 3.45it/s] 46%|████▌ | 170701/371472 [2:39:06<16:11:03, 3.45it/s] 46%|████▌ | 170702/371472 [2:39:07<16:14:56, 3.43it/s] 46%|████▌ | 170703/371472 [2:39:07<18:07:40, 3.08it/s] 46%|████▌ | 170704/371472 [2:39:07<17:41:24, 3.15it/s] 46%|████▌ | 170705/371472 [2:39:08<18:12:38, 3.06it/s] 46%|████▌ | 170706/371472 [2:39:08<17:37:48, 3.16it/s] 46%|████▌ | 170707/371472 [2:39:08<17:09:30, 3.25it/s] 46%|████▌ | 170708/371472 [2:39:08<16:41:18, 3.34it/s] 46%|████▌ | 170709/371472 [2:39:09<16:29:26, 3.38it/s] 46%|████▌ | 170710/371472 [2:39:09<16:03:39, 3.47it/s] 46%|████▌ | 170711/371472 [2:39:09<17:16:24, 3.23it/s] 46%|████▌ | 170712/371472 [2:39:10<17:05:53, 3.26it/s] 46%|████▌ | 170713/371472 [2:39:10<17:09:22, 3.25it/s] 46%|████▌ | 170714/371472 [2:39:10<17:49:20, 3.13it/s] 46%|████▌ | 170715/371472 [2:39:11<17:23:40, 3.21it/s] 46%|████▌ | 170716/371472 [2:39:11<16:57:27, 3.29it/s] 46%|████▌ | 170717/371472 [2:39:11<16:29:18, 3.38it/s] 46%|████▌ | 170718/371472 [2:39:11<16:10:45, 3.45it/s] 46%|████▌ | 170719/371472 [2:39:12<16:54:54, 3.30it/s] 46%|████▌ | 170720/371472 [2:39:12<18:38:09, 2.99it/s] {'loss': 3.1122, 'learning_rate': 5.866426770669481e-07, 'epoch': 7.35} + 46%|████▌ | 170720/371472 [2:39:12<18:38:09, 2.99it/s] 46%|████▌ | 170721/371472 [2:39:13<17:58:47, 3.10it/s] 46%|████▌ | 170722/371472 [2:39:13<19:00:46, 2.93it/s] 46%|████▌ | 170723/371472 [2:39:13<18:15:10, 3.06it/s] 46%|████▌ | 170724/371472 [2:39:14<17:56:42, 3.11it/s] 46%|████▌ | 170725/371472 [2:39:14<17:39:22, 3.16it/s] 46%|████▌ | 170726/371472 [2:39:14<16:58:45, 3.28it/s] 46%|████▌ | 170727/371472 [2:39:14<16:22:14, 3.41it/s] 46%|████▌ | 170728/371472 [2:39:15<16:14:47, 3.43it/s] 46%|████▌ | 170729/371472 [2:39:15<16:12:37, 3.44it/s] 46%|████▌ | 170730/371472 [2:39:15<16:08:08, 3.46it/s] 46%|████▌ | 170731/371472 [2:39:16<15:56:29, 3.50it/s] 46%|████▌ | 170732/371472 [2:39:16<16:10:53, 3.45it/s] 46%|████▌ | 170733/371472 [2:39:16<16:27:27, 3.39it/s] 46%|████▌ | 170734/371472 [2:39:16<16:23:49, 3.40it/s] 46%|████▌ | 170735/371472 [2:39:17<16:13:04, 3.44it/s] 46%|████▌ | 170736/371472 [2:39:17<16:24:54, 3.40it/s] 46%|████▌ | 170737/371472 [2:39:17<16:18:53, 3.42it/s] 46%|████▌ | 170738/371472 [2:39:18<16:34:05, 3.37it/s] 46%|████▌ | 170739/371472 [2:39:18<16:45:09, 3.33it/s] 46%|████▌ | 170740/371472 [2:39:18<16:43:01, 3.34it/s] {'loss': 2.8722, 'learning_rate': 5.865941950914693e-07, 'epoch': 7.35} + 46%|████▌ | 170740/371472 [2:39:18<16:43:01, 3.34it/s] 46%|████▌ | 170741/371472 [2:39:18<16:26:42, 3.39it/s] 46%|████▌ | 170742/371472 [2:39:19<16:34:36, 3.36it/s] 46%|████▌ | 170743/371472 [2:39:19<16:30:42, 3.38it/s] 46%|████▌ | 170744/371472 [2:39:19<16:38:07, 3.35it/s] 46%|████▌ | 170745/371472 [2:39:20<16:28:33, 3.38it/s] 46%|████▌ | 170746/371472 [2:39:20<17:00:55, 3.28it/s] 46%|████▌ | 170747/371472 [2:39:20<17:08:12, 3.25it/s] 46%|████▌ | 170748/371472 [2:39:21<16:48:39, 3.32it/s] 46%|████▌ | 170749/371472 [2:39:21<16:44:37, 3.33it/s] 46%|████▌ | 170750/371472 [2:39:21<18:18:00, 3.05it/s] 46%|████▌ | 170751/371472 [2:39:22<17:23:31, 3.21it/s] 46%|████▌ | 170752/371472 [2:39:22<17:59:53, 3.10it/s] 46%|████▌ | 170753/371472 [2:39:22<17:49:27, 3.13it/s] 46%|████▌ | 170754/371472 [2:39:23<18:12:33, 3.06it/s] 46%|████▌ | 170755/371472 [2:39:23<18:22:28, 3.03it/s] 46%|████▌ | 170756/371472 [2:39:23<17:37:33, 3.16it/s] 46%|████▌ | 170757/371472 [2:39:23<17:09:10, 3.25it/s] 46%|████▌ | 170758/371472 [2:39:24<16:39:59, 3.35it/s] 46%|████▌ | 170759/371472 [2:39:24<16:36:45, 3.36it/s] 46%|████▌ | 170760/371472 [2:39:24<16:07:14, 3.46it/s] {'loss': 2.8448, 'learning_rate': 5.865457131159904e-07, 'epoch': 7.35} + 46%|████▌ | 170760/371472 [2:39:24<16:07:14, 3.46it/s] 46%|████▌ | 170761/371472 [2:39:25<16:19:42, 3.41it/s] 46%|████▌ | 170762/371472 [2:39:25<17:25:11, 3.20it/s] 46%|████▌ | 170763/371472 [2:39:25<17:29:18, 3.19it/s] 46%|████▌ | 170764/371472 [2:39:26<18:03:46, 3.09it/s] 46%|████▌ | 170765/371472 [2:39:26<17:46:37, 3.14it/s] 46%|████▌ | 170766/371472 [2:39:26<18:13:45, 3.06it/s] 46%|████▌ | 170767/371472 [2:39:27<17:38:33, 3.16it/s] 46%|████▌ | 170768/371472 [2:39:27<18:35:11, 3.00it/s] 46%|████▌ | 170769/371472 [2:39:27<18:17:48, 3.05it/s] 46%|████▌ | 170770/371472 [2:39:28<17:50:57, 3.12it/s] 46%|████▌ | 170771/371472 [2:39:28<17:57:22, 3.10it/s] 46%|████▌ | 170772/371472 [2:39:28<17:13:14, 3.24it/s] 46%|████▌ | 170773/371472 [2:39:29<17:49:13, 3.13it/s] 46%|████▌ | 170774/371472 [2:39:29<17:22:01, 3.21it/s] 46%|████▌ | 170775/371472 [2:39:29<16:57:24, 3.29it/s] 46%|████▌ | 170776/371472 [2:39:29<16:38:26, 3.35it/s] 46%|████▌ | 170777/371472 [2:39:30<16:19:23, 3.42it/s] 46%|████▌ | 170778/371472 [2:39:30<16:27:47, 3.39it/s] 46%|████▌ | 170779/371472 [2:39:30<17:24:03, 3.20it/s] 46%|████▌ | 170780/371472 [2:39:31<16:51:02, 3.31it/s] {'loss': 3.027, 'learning_rate': 5.864972311405115e-07, 'epoch': 7.36} + 46%|████▌ | 170780/371472 [2:39:31<16:51:02, 3.31it/s] 46%|████▌ | 170781/371472 [2:39:31<16:45:00, 3.33it/s] 46%|████▌ | 170782/371472 [2:39:31<16:12:15, 3.44it/s] 46%|████▌ | 170783/371472 [2:39:31<16:14:07, 3.43it/s] 46%|████▌ | 170784/371472 [2:39:32<16:55:54, 3.29it/s] 46%|████▌ | 170785/371472 [2:39:32<16:40:53, 3.34it/s] 46%|████▌ | 170786/371472 [2:39:32<16:15:58, 3.43it/s] 46%|████▌ | 170787/371472 [2:39:33<16:29:08, 3.38it/s] 46%|████▌ | 170788/371472 [2:39:33<16:36:34, 3.36it/s] 46%|████▌ | 170789/371472 [2:39:33<16:35:41, 3.36it/s] 46%|████▌ | 170790/371472 [2:39:34<16:20:51, 3.41it/s] 46%|████▌ | 170791/371472 [2:39:34<16:13:40, 3.44it/s] 46%|████▌ | 170792/371472 [2:39:34<16:42:31, 3.34it/s] 46%|████▌ | 170793/371472 [2:39:34<16:22:34, 3.40it/s] 46%|████▌ | 170794/371472 [2:39:35<16:15:46, 3.43it/s] 46%|████▌ | 170795/371472 [2:39:35<16:06:47, 3.46it/s] 46%|████▌ | 170796/371472 [2:39:35<16:45:33, 3.33it/s] 46%|████▌ | 170797/371472 [2:39:36<16:42:19, 3.34it/s] 46%|████▌ | 170798/371472 [2:39:36<16:24:12, 3.40it/s] 46%|████▌ | 170799/371472 [2:39:36<16:08:19, 3.45it/s] 46%|████▌ | 170800/371472 [2:39:37<17:11:01, 3.24it/s] {'loss': 2.8187, 'learning_rate': 5.864487491650325e-07, 'epoch': 7.36} + 46%|████▌ | 170800/371472 [2:39:37<17:11:01, 3.24it/s] 46%|████▌ | 170801/371472 [2:39:37<16:32:50, 3.37it/s] 46%|████▌ | 170802/371472 [2:39:37<16:23:53, 3.40it/s] 46%|████▌ | 170803/371472 [2:39:37<17:02:39, 3.27it/s] 46%|████▌ | 170804/371472 [2:39:38<16:23:14, 3.40it/s] 46%|████▌ | 170805/371472 [2:39:38<16:12:50, 3.44it/s] 46%|████▌ | 170806/371472 [2:39:38<16:08:04, 3.45it/s] 46%|████▌ | 170807/371472 [2:39:39<16:22:42, 3.40it/s] 46%|████▌ | 170808/371472 [2:39:39<16:10:14, 3.45it/s] 46%|████▌ | 170809/371472 [2:39:39<16:24:29, 3.40it/s] 46%|████▌ | 170810/371472 [2:39:39<16:04:54, 3.47it/s] 46%|████▌ | 170811/371472 [2:39:40<15:27:04, 3.61it/s] 46%|████▌ | 170812/371472 [2:39:40<15:37:52, 3.57it/s] 46%|████▌ | 170813/371472 [2:39:40<15:27:01, 3.61it/s] 46%|████▌ | 170814/371472 [2:39:41<16:22:48, 3.40it/s] 46%|████▌ | 170815/371472 [2:39:41<16:43:22, 3.33it/s] 46%|████▌ | 170816/371472 [2:39:41<16:05:40, 3.46it/s] 46%|████▌ | 170817/371472 [2:39:41<16:09:20, 3.45it/s] 46%|████▌ | 170818/371472 [2:39:42<16:16:23, 3.43it/s] 46%|████▌ | 170819/371472 [2:39:42<16:00:57, 3.48it/s] 46%|████▌ | 170820/371472 [2:39:42<17:00:34, 3.28it/s] {'loss': 2.9756, 'learning_rate': 5.864002671895537e-07, 'epoch': 7.36} + 46%|████▌ | 170820/371472 [2:39:42<17:00:34, 3.28it/s] 46%|████▌ | 170821/371472 [2:39:43<17:14:33, 3.23it/s] 46%|████▌ | 170822/371472 [2:39:43<16:55:34, 3.29it/s] 46%|████▌ | 170823/371472 [2:39:43<17:04:31, 3.26it/s] 46%|████▌ | 170824/371472 [2:39:44<19:00:53, 2.93it/s] 46%|████▌ | 170825/371472 [2:39:44<18:10:23, 3.07it/s] 46%|████▌ | 170826/371472 [2:39:44<18:53:47, 2.95it/s] 46%|████▌ | 170827/371472 [2:39:45<18:03:08, 3.09it/s] 46%|████▌ | 170828/371472 [2:39:45<17:13:51, 3.23it/s] 46%|████▌ | 170829/371472 [2:39:45<17:20:31, 3.21it/s] 46%|████▌ | 170830/371472 [2:39:46<17:39:36, 3.16it/s] 46%|████▌ | 170831/371472 [2:39:46<16:59:46, 3.28it/s] 46%|████▌ | 170832/371472 [2:39:46<16:31:25, 3.37it/s] 46%|████▌ | 170833/371472 [2:39:46<17:03:13, 3.27it/s] 46%|████▌ | 170834/371472 [2:39:47<16:52:37, 3.30it/s] 46%|████▌ | 170835/371472 [2:39:47<16:36:55, 3.35it/s] 46%|████▌ | 170836/371472 [2:39:47<16:42:01, 3.34it/s] 46%|████▌ | 170837/371472 [2:39:48<17:04:51, 3.26it/s] 46%|████▌ | 170838/371472 [2:39:48<16:49:34, 3.31it/s] 46%|████▌ | 170839/371472 [2:39:48<16:58:14, 3.28it/s] 46%|████▌ | 170840/371472 [2:39:49<17:26:15, 3.20it/s] {'loss': 2.8773, 'learning_rate': 5.863517852140749e-07, 'epoch': 7.36} + 46%|████▌ | 170840/371472 [2:39:49<17:26:15, 3.20it/s] 46%|████▌ | 170841/371472 [2:39:49<17:14:45, 3.23it/s] 46%|████▌ | 170842/371472 [2:39:49<17:01:32, 3.27it/s] 46%|████▌ | 170843/371472 [2:39:50<17:17:41, 3.22it/s] 46%|████▌ | 170844/371472 [2:39:50<17:15:32, 3.23it/s] 46%|████▌ | 170845/371472 [2:39:50<16:54:11, 3.30it/s] 46%|████▌ | 170846/371472 [2:39:50<16:26:02, 3.39it/s] 46%|████▌ | 170847/371472 [2:39:51<16:34:51, 3.36it/s] 46%|████▌ | 170848/371472 [2:39:51<16:33:48, 3.36it/s] 46%|████▌ | 170849/371472 [2:39:51<17:09:53, 3.25it/s] 46%|████▌ | 170850/371472 [2:39:52<17:08:44, 3.25it/s] 46%|████▌ | 170851/371472 [2:39:52<16:36:03, 3.36it/s] 46%|████▌ | 170852/371472 [2:39:52<17:22:14, 3.21it/s] 46%|████▌ | 170853/371472 [2:39:53<16:42:21, 3.34it/s] 46%|████▌ | 170854/371472 [2:39:53<17:58:18, 3.10it/s] 46%|████▌ | 170855/371472 [2:39:53<18:43:08, 2.98it/s] 46%|████▌ | 170856/371472 [2:39:54<19:36:11, 2.84it/s] 46%|████▌ | 170857/371472 [2:39:54<18:26:27, 3.02it/s] 46%|████▌ | 170858/371472 [2:39:54<17:44:04, 3.14it/s] 46%|████▌ | 170859/371472 [2:39:55<17:20:37, 3.21it/s] 46%|████▌ | 170860/371472 [2:39:55<16:59:47, 3.28it/s] {'loss': 2.7869, 'learning_rate': 5.86303303238596e-07, 'epoch': 7.36} + 46%|████▌ | 170860/371472 [2:39:55<16:59:47, 3.28it/s] 46%|████▌ | 170861/371472 [2:39:55<18:05:07, 3.08it/s] 46%|████▌ | 170862/371472 [2:39:55<17:14:38, 3.23it/s] 46%|████▌ | 170863/371472 [2:39:56<16:35:29, 3.36it/s] 46%|████▌ | 170864/371472 [2:39:56<17:32:17, 3.18it/s] 46%|████▌ | 170865/371472 [2:39:56<18:13:21, 3.06it/s] 46%|████▌ | 170866/371472 [2:39:57<17:58:15, 3.10it/s] 46%|████▌ | 170867/371472 [2:39:57<17:19:04, 3.22it/s] 46%|████▌ | 170868/371472 [2:39:57<17:19:19, 3.22it/s] 46%|████▌ | 170869/371472 [2:39:58<17:37:32, 3.16it/s] 46%|████▌ | 170870/371472 [2:39:58<16:45:48, 3.32it/s] 46%|████▌ | 170871/371472 [2:39:58<16:34:32, 3.36it/s] 46%|████▌ | 170872/371472 [2:39:58<16:14:17, 3.43it/s] 46%|████▌ | 170873/371472 [2:39:59<16:38:11, 3.35it/s] 46%|████▌ | 170874/371472 [2:39:59<16:55:14, 3.29it/s] 46%|████▌ | 170875/371472 [2:39:59<16:42:57, 3.33it/s] 46%|████▌ | 170876/371472 [2:40:00<17:10:49, 3.24it/s] 46%|████▌ | 170877/371472 [2:40:00<16:35:06, 3.36it/s] 46%|████▌ | 170878/371472 [2:40:00<16:22:32, 3.40it/s] 46%|████▌ | 170879/371472 [2:40:01<15:59:06, 3.49it/s] 46%|████▌ | 170880/371472 [2:40:01<15:47:07, 3.53it/s] {'loss': 3.163, 'learning_rate': 5.862548212631169e-07, 'epoch': 7.36} + 46%|████▌ | 170880/371472 [2:40:01<15:47:07, 3.53it/s] 46%|████▌ | 170881/371472 [2:40:01<17:04:01, 3.26it/s] 46%|████▌ | 170882/371472 [2:40:01<16:35:02, 3.36it/s] 46%|████▌ | 170883/371472 [2:40:02<16:17:43, 3.42it/s] 46%|████▌ | 170884/371472 [2:40:02<17:30:32, 3.18it/s] 46%|████▌ | 170885/371472 [2:40:02<17:05:46, 3.26it/s] 46%|████▌ | 170886/371472 [2:40:03<17:10:59, 3.24it/s] 46%|████▌ | 170887/371472 [2:40:03<17:28:36, 3.19it/s] 46%|████▌ | 170888/371472 [2:40:03<17:54:05, 3.11it/s] 46%|████▌ | 170889/371472 [2:40:04<17:22:12, 3.21it/s] 46%|████▌ | 170890/371472 [2:40:04<17:07:55, 3.25it/s] 46%|████▌ | 170891/371472 [2:40:04<16:51:29, 3.31it/s] 46%|████▌ | 170892/371472 [2:40:05<16:58:15, 3.28it/s] 46%|████▌ | 170893/371472 [2:40:05<16:47:41, 3.32it/s] 46%|████▌ | 170894/371472 [2:40:05<16:48:11, 3.32it/s] 46%|████▌ | 170895/371472 [2:40:05<16:47:43, 3.32it/s] 46%|████▌ | 170896/371472 [2:40:06<16:43:10, 3.33it/s] 46%|████▌ | 170897/371472 [2:40:06<16:32:55, 3.37it/s] 46%|████▌ | 170898/371472 [2:40:06<16:16:17, 3.42it/s] 46%|████▌ | 170899/371472 [2:40:07<16:43:24, 3.33it/s] 46%|████▌ | 170900/371472 [2:40:07<16:25:31, 3.39it/s] {'loss': 2.8545, 'learning_rate': 5.862063392876381e-07, 'epoch': 7.36} + 46%|████▌ | 170900/371472 [2:40:07<16:25:31, 3.39it/s] 46%|████▌ | 170901/371472 [2:40:07<17:23:10, 3.20it/s] 46%|████▌ | 170902/371472 [2:40:08<17:18:29, 3.22it/s] 46%|████▌ | 170903/371472 [2:40:08<17:26:42, 3.19it/s] 46%|████▌ | 170904/371472 [2:40:08<17:14:19, 3.23it/s] 46%|████▌ | 170905/371472 [2:40:09<16:44:28, 3.33it/s] 46%|████▌ | 170906/371472 [2:40:09<16:11:02, 3.44it/s] 46%|████▌ | 170907/371472 [2:40:09<15:51:39, 3.51it/s] 46%|████▌ | 170908/371472 [2:40:09<15:39:45, 3.56it/s] 46%|████▌ | 170909/371472 [2:40:10<15:56:03, 3.50it/s] 46%|████▌ | 170910/371472 [2:40:10<16:20:33, 3.41it/s] 46%|████▌ | 170911/371472 [2:40:10<16:22:10, 3.40it/s] 46%|████▌ | 170912/371472 [2:40:11<17:28:43, 3.19it/s] 46%|████▌ | 170913/371472 [2:40:11<18:33:16, 3.00it/s] 46%|████▌ | 170914/371472 [2:40:11<18:01:57, 3.09it/s] 46%|████▌ | 170915/371472 [2:40:12<17:17:42, 3.22it/s] 46%|████▌ | 170916/371472 [2:40:12<17:40:50, 3.15it/s] 46%|████▌ | 170917/371472 [2:40:12<17:16:55, 3.22it/s] 46%|████▌ | 170918/371472 [2:40:12<17:09:14, 3.25it/s] 46%|████▌ | 170919/371472 [2:40:13<16:55:46, 3.29it/s] 46%|████▌ | 170920/371472 [2:40:13<17:32:09, 3.18it/s] {'loss': 2.8849, 'learning_rate': 5.861578573121593e-07, 'epoch': 7.36} + 46%|████▌ | 170920/371472 [2:40:13<17:32:09, 3.18it/s] 46%|████▌ | 170921/371472 [2:40:13<17:03:51, 3.26it/s] 46%|████▌ | 170922/371472 [2:40:14<17:05:34, 3.26it/s] 46%|████▌ | 170923/371472 [2:40:14<16:40:49, 3.34it/s] 46%|████▌ | 170924/371472 [2:40:14<16:32:15, 3.37it/s] 46%|████▌ | 170925/371472 [2:40:15<16:17:48, 3.42it/s] 46%|████▌ | 170926/371472 [2:40:15<16:13:38, 3.43it/s] 46%|████▌ | 170927/371472 [2:40:15<16:29:53, 3.38it/s] 46%|████▌ | 170928/371472 [2:40:15<16:27:07, 3.39it/s] 46%|████▌ | 170929/371472 [2:40:16<16:07:42, 3.45it/s] 46%|████▌ | 170930/371472 [2:40:16<15:58:23, 3.49it/s] 46%|████▌ | 170931/371472 [2:40:16<16:01:28, 3.48it/s] 46%|████▌ | 170932/371472 [2:40:17<16:41:48, 3.34it/s] 46%|████▌ | 170933/371472 [2:40:17<16:12:32, 3.44it/s] 46%|████▌ | 170934/371472 [2:40:17<17:46:39, 3.13it/s] 46%|████▌ | 170935/371472 [2:40:18<19:47:37, 2.81it/s] 46%|████▌ | 170936/371472 [2:40:18<18:31:40, 3.01it/s] 46%|████▌ | 170937/371472 [2:40:18<18:05:04, 3.08it/s] 46%|████▌ | 170938/371472 [2:40:19<22:31:36, 2.47it/s] 46%|████▌ | 170939/371472 [2:40:19<22:09:36, 2.51it/s] 46%|████▌ | 170940/371472 [2:40:20<21:25:02, 2.60it/s] {'loss': 2.9166, 'learning_rate': 5.861093753366804e-07, 'epoch': 7.36} + 46%|████▌ | 170940/371472 [2:40:20<21:25:02, 2.60it/s] 46%|████▌ | 170941/371472 [2:40:20<19:56:25, 2.79it/s] 46%|████▌ | 170942/371472 [2:40:20<18:29:03, 3.01it/s] 46%|████▌ | 170943/371472 [2:40:21<18:25:19, 3.02it/s] 46%|████▌ | 170944/371472 [2:40:21<18:22:42, 3.03it/s] 46%|████▌ | 170945/371472 [2:40:21<17:54:37, 3.11it/s] 46%|████▌ | 170946/371472 [2:40:21<18:12:45, 3.06it/s] 46%|████▌ | 170947/371472 [2:40:22<19:22:44, 2.87it/s] 46%|████▌ | 170948/371472 [2:40:22<18:18:14, 3.04it/s] 46%|████▌ | 170949/371472 [2:40:22<18:15:13, 3.05it/s] 46%|████▌ | 170950/371472 [2:40:23<17:43:56, 3.14it/s] 46%|████▌ | 170951/371472 [2:40:23<17:36:18, 3.16it/s] 46%|████▌ | 170952/371472 [2:40:23<17:28:14, 3.19it/s] 46%|████▌ | 170953/371472 [2:40:24<17:17:55, 3.22it/s] 46%|████▌ | 170954/371472 [2:40:24<17:16:36, 3.22it/s] 46%|████▌ | 170955/371472 [2:40:24<17:26:58, 3.19it/s] 46%|████▌ | 170956/371472 [2:40:25<17:13:43, 3.23it/s] 46%|████▌ | 170957/371472 [2:40:25<17:01:27, 3.27it/s] 46%|████▌ | 170958/371472 [2:40:25<17:03:50, 3.26it/s] 46%|████▌ | 170959/371472 [2:40:26<16:47:23, 3.32it/s] 46%|████▌ | 170960/371472 [2:40:26<17:22:44, 3.20it/s] {'loss': 2.7729, 'learning_rate': 5.860608933612014e-07, 'epoch': 7.36} + 46%|████▌ | 170960/371472 [2:40:26<17:22:44, 3.20it/s] 46%|████▌ | 170961/371472 [2:40:26<16:57:18, 3.29it/s] 46%|████▌ | 170962/371472 [2:40:26<16:39:45, 3.34it/s] 46%|████▌ | 170963/371472 [2:40:27<19:33:10, 2.85it/s] 46%|████▌ | 170964/371472 [2:40:27<18:46:31, 2.97it/s] 46%|████▌ | 170965/371472 [2:40:28<19:38:24, 2.84it/s] 46%|████▌ | 170966/371472 [2:40:28<19:43:28, 2.82it/s] 46%|████▌ | 170967/371472 [2:40:28<18:39:30, 2.99it/s] 46%|████▌ | 170968/371472 [2:40:29<18:16:06, 3.05it/s] 46%|████▌ | 170969/371472 [2:40:29<17:44:53, 3.14it/s] 46%|████▌ | 170970/371472 [2:40:29<17:01:29, 3.27it/s] 46%|████▌ | 170971/371472 [2:40:29<16:43:27, 3.33it/s] 46%|████▌ | 170972/371472 [2:40:30<16:33:04, 3.36it/s] 46%|██���█▌ | 170973/371472 [2:40:30<17:12:00, 3.24it/s] 46%|████▌ | 170974/371472 [2:40:30<18:36:45, 2.99it/s] 46%|████▌ | 170975/371472 [2:40:31<18:19:12, 3.04it/s] 46%|████▌ | 170976/371472 [2:40:31<18:08:34, 3.07it/s] 46%|████▌ | 170977/371472 [2:40:31<17:38:40, 3.16it/s] 46%|████▌ | 170978/371472 [2:40:32<16:47:56, 3.32it/s] 46%|████▌ | 170979/371472 [2:40:32<17:03:27, 3.26it/s] 46%|████▌ | 170980/371472 [2:40:32<18:46:51, 2.97it/s] {'loss': 2.8605, 'learning_rate': 5.860124113857227e-07, 'epoch': 7.36} + 46%|████▌ | 170980/371472 [2:40:32<18:46:51, 2.97it/s] 46%|████▌ | 170981/371472 [2:40:33<17:52:00, 3.12it/s] 46%|████▌ | 170982/371472 [2:40:33<17:21:15, 3.21it/s] 46%|████▌ | 170983/371472 [2:40:33<16:46:38, 3.32it/s] 46%|████▌ | 170984/371472 [2:40:34<16:25:33, 3.39it/s] 46%|████▌ | 170985/371472 [2:40:34<16:13:53, 3.43it/s] 46%|████▌ | 170986/371472 [2:40:34<16:13:33, 3.43it/s] 46%|████▌ | 170987/371472 [2:40:34<16:11:15, 3.44it/s] 46%|████▌ | 170988/371472 [2:40:35<18:04:36, 3.08it/s] 46%|████▌ | 170989/371472 [2:40:35<17:29:06, 3.18it/s] 46%|████▌ | 170990/371472 [2:40:35<17:07:06, 3.25it/s] 46%|████▌ | 170991/371472 [2:40:36<17:13:41, 3.23it/s] 46%|████▌ | 170992/371472 [2:40:36<16:43:51, 3.33it/s] 46%|████▌ | 170993/371472 [2:40:36<16:35:43, 3.36it/s] 46%|████▌ | 170994/371472 [2:40:37<16:28:20, 3.38it/s] 46%|████▌ | 170995/371472 [2:40:37<16:04:54, 3.46it/s] 46%|████▌ | 170996/371472 [2:40:37<16:02:20, 3.47it/s] 46%|████▌ | 170997/371472 [2:40:37<16:27:01, 3.39it/s] 46%|████▌ | 170998/371472 [2:40:38<16:04:37, 3.46it/s] 46%|████▌ | 170999/371472 [2:40:38<15:57:50, 3.49it/s] 46%|████▌ | 171000/371472 [2:40:38<16:42:20, 3.33it/s] {'loss': 3.039, 'learning_rate': 5.859639294102437e-07, 'epoch': 7.37} + 46%|████▌ | 171000/371472 [2:40:38<16:42:20, 3.33it/s] 46%|████▌ | 171001/371472 [2:40:39<16:36:16, 3.35it/s] 46%|████▌ | 171002/371472 [2:40:39<16:31:48, 3.37it/s] 46%|████▌ | 171003/371472 [2:40:39<16:54:49, 3.29it/s] 46%|████▌ | 171004/371472 [2:40:39<16:32:49, 3.37it/s] 46%|████▌ | 171005/371472 [2:40:40<16:35:34, 3.36it/s] 46%|████▌ | 171006/371472 [2:40:40<16:36:35, 3.35it/s] 46%|████▌ | 171007/371472 [2:40:40<16:39:07, 3.34it/s] 46%|████▌ | 171008/371472 [2:40:41<16:38:43, 3.35it/s] 46%|████▌ | 171009/371472 [2:40:41<16:45:16, 3.32it/s] 46%|████▌ | 171010/371472 [2:40:41<16:28:07, 3.38it/s] 46%|████▌ | 171011/371472 [2:40:42<16:40:04, 3.34it/s] 46%|████▌ | 171012/371472 [2:40:42<17:18:32, 3.22it/s] 46%|████▌ | 171013/371472 [2:40:42<17:19:53, 3.21it/s] 46%|████▌ | 171014/371472 [2:40:43<17:26:49, 3.19it/s] 46%|████▌ | 171015/371472 [2:40:43<17:45:59, 3.13it/s] 46%|████▌ | 171016/371472 [2:40:43<17:41:30, 3.15it/s] 46%|████▌ | 171017/371472 [2:40:43<17:13:01, 3.23it/s] 46%|████▌ | 171018/371472 [2:40:44<16:48:48, 3.31it/s] 46%|████▌ | 171019/371472 [2:40:44<16:32:09, 3.37it/s] 46%|████▌ | 171020/371472 [2:40:44<16:39:33, 3.34it/s] {'loss': 2.8706, 'learning_rate': 5.859154474347647e-07, 'epoch': 7.37} + 46%|████▌ | 171020/371472 [2:40:44<16:39:33, 3.34it/s] 46%|████▌ | 171021/371472 [2:40:45<16:14:44, 3.43it/s] 46%|████▌ | 171022/371472 [2:40:45<16:18:00, 3.42it/s] 46%|████▌ | 171023/371472 [2:40:45<16:31:44, 3.37it/s] 46%|████▌ | 171024/371472 [2:40:46<16:38:40, 3.35it/s] 46%|████▌ | 171025/371472 [2:40:46<18:23:51, 3.03it/s] 46%|████▌ | 171026/371472 [2:40:46<18:01:29, 3.09it/s] 46%|████▌ | 171027/371472 [2:40:47<17:25:54, 3.19it/s] 46%|████▌ | 171028/371472 [2:40:47<16:56:30, 3.29it/s] 46%|████▌ | 171029/371472 [2:40:47<17:57:00, 3.10it/s] 46%|████▌ | 171030/371472 [2:40:47<17:47:19, 3.13it/s] 46%|████▌ | 171031/371472 [2:40:48<17:26:36, 3.19it/s] 46%|████▌ | 171032/371472 [2:40:48<17:00:12, 3.27it/s] 46%|████▌ | 171033/371472 [2:40:48<17:43:48, 3.14it/s] 46%|████▌ | 171034/371472 [2:40:49<17:53:56, 3.11it/s] 46%|████▌ | 171035/371472 [2:40:49<17:39:39, 3.15it/s] 46%|████▌ | 171036/371472 [2:40:49<17:34:52, 3.17it/s] 46%|████▌ | 171037/371472 [2:40:50<17:14:00, 3.23it/s] 46%|████▌ | 171038/371472 [2:40:50<17:03:19, 3.26it/s] 46%|████▌ | 171039/371472 [2:40:50<17:43:25, 3.14it/s] 46%|████▌ | 171040/371472 [2:40:51<17:07:32, 3.25it/s] {'loss': 2.8606, 'learning_rate': 5.858669654592858e-07, 'epoch': 7.37} + 46%|████▌ | 171040/371472 [2:40:51<17:07:32, 3.25it/s] 46%|████▌ | 171041/371472 [2:40:51<16:48:08, 3.31it/s] 46%|████▌ | 171042/371472 [2:40:51<16:16:14, 3.42it/s] 46%|████▌ | 171043/371472 [2:40:51<16:52:12, 3.30it/s] 46%|████▌ | 171044/371472 [2:40:52<16:59:36, 3.28it/s] 46%|████▌ | 171045/371472 [2:40:52<16:22:42, 3.40it/s] 46%|████▌ | 171046/371472 [2:40:52<16:23:29, 3.40it/s] 46%|████▌ | 171047/371472 [2:40:53<16:24:20, 3.39it/s] 46%|████▌ | 171048/371472 [2:40:53<16:38:58, 3.34it/s] 46%|████▌ | 171049/371472 [2:40:53<16:42:02, 3.33it/s] 46%|████▌ | 171050/371472 [2:40:54<17:32:27, 3.17it/s] 46%|████▌ | 171051/371472 [2:40:54<17:33:08, 3.17it/s] 46%|████▌ | 171052/371472 [2:40:54<17:08:46, 3.25it/s] 46%|████▌ | 171053/371472 [2:40:55<16:49:49, 3.31it/s] 46%|████▌ | 171054/371472 [2:40:55<16:56:26, 3.29it/s] 46%|████▌ | 171055/371472 [2:40:55<16:50:46, 3.30it/s] 46%|████▌ | 171056/371472 [2:40:55<16:34:33, 3.36it/s] 46%|████▌ | 171057/371472 [2:40:56<16:53:25, 3.30it/s] 46%|████▌ | 171058/371472 [2:40:56<17:08:39, 3.25it/s] 46%|████▌ | 171059/371472 [2:40:56<17:52:37, 3.11it/s] 46%|████▌ | 171060/371472 [2:40:57<18:11:56, 3.06it/s] {'loss': 2.9551, 'learning_rate': 5.85818483483807e-07, 'epoch': 7.37} + 46%|████▌ | 171060/371472 [2:40:57<18:11:56, 3.06it/s] 46%|████▌ | 171061/371472 [2:40:57<17:31:10, 3.18it/s] 46%|████▌ | 171062/371472 [2:40:57<17:19:38, 3.21it/s] 46%|████▌ | 171063/371472 [2:40:58<17:20:25, 3.21it/s] 46%|████▌ | 171064/371472 [2:40:58<17:18:54, 3.22it/s] 46%|████▌ | 171065/371472 [2:40:58<17:24:14, 3.20it/s] 46%|████▌ | 171066/371472 [2:40:59<16:40:25, 3.34it/s] 46%|████▌ | 171067/371472 [2:40:59<16:08:45, 3.45it/s] 46%|████▌ | 171068/371472 [2:40:59<16:17:19, 3.42it/s] 46%|████▌ | 171069/371472 [2:40:59<16:57:47, 3.28it/s] 46%|████▌ | 171070/371472 [2:41:00<16:42:21, 3.33it/s] 46%|████▌ | 171071/371472 [2:41:00<16:48:50, 3.31it/s] 46%|████▌ | 171072/371472 [2:41:00<17:19:45, 3.21it/s] 46%|████▌ | 171073/371472 [2:41:01<17:02:20, 3.27it/s] 46%|████▌ | 171074/371472 [2:41:01<16:47:38, 3.31it/s] 46%|████▌ | 171075/371472 [2:41:01<16:50:34, 3.30it/s] 46%|████▌ | 171076/371472 [2:41:02<17:01:40, 3.27it/s] 46%|████▌ | 171077/371472 [2:41:02<17:45:37, 3.13it/s] 46%|████▌ | 171078/371472 [2:41:02<17:33:02, 3.17it/s] 46%|████▌ | 171079/371472 [2:41:03<17:12:48, 3.23it/s] 46%|████▌ | 171080/371472 [2:41:03<17:08:33, 3.25it/s] {'loss': 2.8875, 'learning_rate': 5.857700015083282e-07, 'epoch': 7.37} + 46%|████▌ | 171080/371472 [2:41:03<17:08:33, 3.25it/s] 46%|████▌ | 171081/371472 [2:41:03<16:41:39, 3.33it/s] 46%|████▌ | 171082/371472 [2:41:03<16:22:03, 3.40it/s] 46%|████▌ | 171083/371472 [2:41:04<17:16:43, 3.22it/s] 46%|████▌ | 171084/371472 [2:41:04<17:44:02, 3.14it/s] 46%|████▌ | 171085/371472 [2:41:04<17:09:27, 3.24it/s] 46%|████▌ | 171086/371472 [2:41:05<16:31:15, 3.37it/s] 46%|████▌ | 171087/371472 [2:41:05<16:13:40, 3.43it/s] 46%|████▌ | 171088/371472 [2:41:05<16:36:19, 3.35it/s] 46%|████▌ | 171089/371472 [2:41:06<18:00:02, 3.09it/s] 46%|████▌ | 171090/371472 [2:41:06<18:00:41, 3.09it/s] 46%|████▌ | 171091/371472 [2:41:06<17:08:45, 3.25it/s] 46%|████▌ | 171092/371472 [2:41:06<16:51:36, 3.30it/s] 46%|████▌ | 171093/371472 [2:41:07<16:20:34, 3.41it/s] 46%|████▌ | 171094/371472 [2:41:07<16:15:39, 3.42it/s] 46%|████▌ | 171095/371472 [2:41:07<16:37:01, 3.35it/s] 46%|████▌ | 171096/371472 [2:41:08<16:42:05, 3.33it/s] 46%|████▌ | 171097/371472 [2:41:08<16:20:53, 3.40it/s] 46%|████▌ | 171098/371472 [2:41:08<16:03:55, 3.46it/s] 46%|████▌ | 171099/371472 [2:41:08<15:52:43, 3.51it/s] 46%|████▌ | 171100/371472 [2:41:09<16:28:21, 3.38it/s] {'loss': 2.9301, 'learning_rate': 5.857215195328492e-07, 'epoch': 7.37} + 46%|████▌ | 171100/371472 [2:41:09<16:28:21, 3.38it/s] 46%|████▌ | 171101/371472 [2:41:09<16:15:48, 3.42it/s] 46%|████▌ | 171102/371472 [2:41:09<16:12:54, 3.43it/s] 46%|████▌ | 171103/371472 [2:41:10<16:45:28, 3.32it/s] 46%|████▌ | 171104/371472 [2:41:10<16:34:52, 3.36it/s] 46%|████▌ | 171105/371472 [2:41:10<16:32:28, 3.36it/s] 46%|████▌ | 171106/371472 [2:41:11<16:45:40, 3.32it/s] 46%|████▌ | 171107/371472 [2:41:11<16:30:59, 3.37it/s] 46%|████▌ | 171108/371472 [2:41:11<16:33:25, 3.36it/s] 46%|████▌ | 171109/371472 [2:41:11<16:30:54, 3.37it/s] 46%|████▌ | 171110/371472 [2:41:12<16:25:53, 3.39it/s] 46%|████▌ | 171111/371472 [2:41:12<16:22:35, 3.40it/s] 46%|████▌ | 171112/371472 [2:41:12<16:15:54, 3.42it/s] 46%|████▌ | 171113/371472 [2:41:13<16:34:08, 3.36it/s] 46%|████▌ | 171114/371472 [2:41:13<16:11:48, 3.44it/s] 46%|████▌ | 171115/371472 [2:41:13<16:26:02, 3.39it/s] 46%|████▌ | 171116/371472 [2:41:14<16:05:05, 3.46it/s] 46%|████▌ | 171117/371472 [2:41:14<16:19:23, 3.41it/s] 46%|████▌ | 171118/371472 [2:41:14<18:00:36, 3.09it/s] 46%|████▌ | 171119/371472 [2:41:15<18:24:48, 3.02it/s] 46%|████▌ | 171120/371472 [2:41:15<17:17:29, 3.22it/s] {'loss': 3.0549, 'learning_rate': 5.856730375573703e-07, 'epoch': 7.37} + 46%|████▌ | 171120/371472 [2:41:15<17:17:29, 3.22it/s] 46%|████▌ | 171121/371472 [2:41:15<16:45:44, 3.32it/s] 46%|████▌ | 171122/371472 [2:41:15<17:19:52, 3.21it/s] 46%|████▌ | 171123/371472 [2:41:16<17:18:34, 3.22it/s] 46%|████▌ | 171124/371472 [2:41:16<16:47:18, 3.31it/s] 46%|████▌ | 171125/371472 [2:41:16<16:15:46, 3.42it/s] 46%|████▌ | 171126/371472 [2:41:17<16:03:58, 3.46it/s] 46%|████▌ | 171127/371472 [2:41:17<15:43:41, 3.54it/s] 46%|████▌ | 171128/371472 [2:41:17<15:52:23, 3.51it/s] 46%|████▌ | 171129/371472 [2:41:17<16:25:55, 3.39it/s] 46%|████▌ | 171130/371472 [2:41:18<16:06:44, 3.45it/s] 46%|████▌ | 171131/371472 [2:41:18<16:08:44, 3.45it/s] 46%|████▌ | 171132/371472 [2:41:18<16:36:08, 3.35it/s] 46%|████▌ | 171133/371472 [2:41:19<16:07:13, 3.45it/s] 46%|████▌ | 171134/371472 [2:41:19<16:11:18, 3.44it/s] 46%|████▌ | 171135/371472 [2:41:19<16:48:38, 3.31it/s] 46%|████▌ | 171136/371472 [2:41:20<16:28:30, 3.38it/s] 46%|████▌ | 171137/371472 [2:41:20<16:01:57, 3.47it/s] 46%|████▌ | 171138/371472 [2:41:20<15:42:37, 3.54it/s] 46%|████▌ | 171139/371472 [2:41:20<15:24:34, 3.61it/s] 46%|████▌ | 171140/371472 [2:41:21<15:37:00, 3.56it/s] {'loss': 2.9536, 'learning_rate': 5.856245555818914e-07, 'epoch': 7.37} + 46%|████▌ | 171140/371472 [2:41:21<15:37:00, 3.56it/s] 46%|████▌ | 171141/371472 [2:41:21<15:49:14, 3.52it/s] 46%|████▌ | 171142/371472 [2:41:21<15:45:12, 3.53it/s] 46%|████▌ | 171143/371472 [2:41:21<15:56:47, 3.49it/s] 46%|████▌ | 171144/371472 [2:41:22<15:41:34, 3.55it/s] 46%|████▌ | 171145/371472 [2:41:22<15:45:07, 3.53it/s] 46%|████▌ | 171146/371472 [2:41:22<16:05:06, 3.46it/s] 46%|████▌ | 171147/371472 [2:41:23<16:37:56, 3.35it/s] 46%|████▌ | 171148/371472 [2:41:23<17:04:12, 3.26it/s] 46%|████▌ | 171149/371472 [2:41:23<17:52:59, 3.11it/s] 46%|████▌ | 171150/371472 [2:41:24<17:13:44, 3.23it/s] 46%|████▌ | 171151/371472 [2:41:24<16:57:59, 3.28it/s] 46%|████▌ | 171152/371472 [2:41:24<17:42:11, 3.14it/s] 46%|████▌ | 171153/371472 [2:41:25<17:44:56, 3.14it/s] 46%|████▌ | 171154/371472 [2:41:25<17:27:00, 3.19it/s] 46%|████▌ | 171155/371472 [2:41:25<17:18:10, 3.22it/s] 46%|████▌ | 171156/371472 [2:41:25<16:47:26, 3.31it/s] 46%|████▌ | 171157/371472 [2:41:26<16:13:06, 3.43it/s] 46%|████▌ | 171158/371472 [2:41:26<16:03:50, 3.46it/s] 46%|████▌ | 171159/371472 [2:41:26<16:48:33, 3.31it/s] 46%|████▌ | 171160/371472 [2:41:27<16:24:51, 3.39it/s] {'loss': 2.7503, 'learning_rate': 5.855760736064126e-07, 'epoch': 7.37} + 46%|████▌ | 171160/371472 [2:41:27<16:24:51, 3.39it/s] 46%|████▌ | 171161/371472 [2:41:27<17:30:57, 3.18it/s] 46%|████▌ | 171162/371472 [2:41:27<17:50:52, 3.12it/s] 46%|████▌ | 171163/371472 [2:41:28<18:09:10, 3.07it/s] 46%|████▌ | 171164/371472 [2:41:28<17:58:43, 3.09it/s] 46%|████▌ | 171165/371472 [2:41:28<17:44:31, 3.14it/s] 46%|████▌ | 171166/371472 [2:41:29<17:04:20, 3.26it/s] 46%|████▌ | 171167/371472 [2:41:29<17:49:59, 3.12it/s] 46%|████▌ | 171168/371472 [2:41:29<17:08:12, 3.25it/s] 46%|████▌ | 171169/371472 [2:41:30<16:53:44, 3.29it/s] 46%|████▌ | 171170/371472 [2:41:30<16:43:49, 3.33it/s] 46%|████▌ | 171171/371472 [2:41:30<16:29:29, 3.37it/s] 46%|████▌ | 171172/371472 [2:41:30<16:47:25, 3.31it/s] 46%|████▌ | 171173/371472 [2:41:31<17:00:06, 3.27it/s] 46%|████▌ | 171174/371472 [2:41:31<17:14:10, 3.23it/s] 46%|████▌ | 171175/371472 [2:41:31<18:25:44, 3.02it/s] 46%|████▌ | 171176/371472 [2:41:32<17:40:10, 3.15it/s] 46%|████▌ | 171177/371472 [2:41:32<16:46:37, 3.32it/s] 46%|████▌ | 171178/371472 [2:41:32<16:32:31, 3.36it/s] 46%|████▌ | 171179/371472 [2:41:33<16:10:49, 3.44it/s] 46%|████▌ | 171180/371472 [2:41:33<15:46:35, 3.53it/s] {'loss': 2.9457, 'learning_rate': 5.855275916309336e-07, 'epoch': 7.37} + 46%|████▌ | 171180/371472 [2:41:33<15:46:35, 3.53it/s] 46%|████▌ | 171181/371472 [2:41:33<15:50:08, 3.51it/s] 46%|████▌ | 171182/371472 [2:41:33<15:50:30, 3.51it/s] 46%|████▌ | 171183/371472 [2:41:34<16:39:05, 3.34it/s] 46%|████▌ | 171184/371472 [2:41:34<17:05:07, 3.26it/s] 46%|████▌ | 171185/371472 [2:41:34<17:06:38, 3.25it/s] 46%|████▌ | 171186/371472 [2:41:35<17:28:19, 3.18it/s] 46%|████▌ | 171187/371472 [2:41:35<17:06:12, 3.25it/s] 46%|████▌ | 171188/371472 [2:41:35<17:27:50, 3.19it/s] 46%|████▌ | 171189/371472 [2:41:36<17:36:08, 3.16it/s] 46%|████▌ | 171190/371472 [2:41:36<17:01:19, 3.27it/s] 46%|████▌ | 171191/371472 [2:41:36<16:28:57, 3.38it/s] 46%|████▌ | 171192/371472 [2:41:36<16:19:44, 3.41it/s] 46%|████▌ | 171193/371472 [2:41:37<16:00:33, 3.48it/s] 46%|████▌ | 171194/371472 [2:41:37<16:15:18, 3.42it/s] 46%|████▌ | 171195/371472 [2:41:37<16:34:04, 3.36it/s] 46%|████▌ | 171196/371472 [2:41:38<16:19:10, 3.41it/s] 46%|████▌ | 171197/371472 [2:41:38<16:46:39, 3.32it/s] 46%|████▌ | 171198/371472 [2:41:38<17:01:34, 3.27it/s] 46%|████▌ | 171199/371472 [2:41:39<18:11:18, 3.06it/s] 46%|████▌ | 171200/371472 [2:41:39<17:05:29, 3.25it/s] {'loss': 2.9001, 'learning_rate': 5.854791096554547e-07, 'epoch': 7.37} + 46%|████▌ | 171200/371472 [2:41:39<17:05:29, 3.25it/s] 46%|████▌ | 171201/371472 [2:41:39<16:45:09, 3.32it/s] 46%|████▌ | 171202/371472 [2:41:39<16:30:41, 3.37it/s] 46%|████▌ | 171203/371472 [2:41:40<16:33:07, 3.36it/s] 46%|████▌ | 171204/371472 [2:41:40<16:49:33, 3.31it/s] 46%|████▌ | 171205/371472 [2:41:40<16:18:35, 3.41it/s] 46%|████▌ | 171206/371472 [2:41:41<16:31:17, 3.37it/s] 46%|████▌ | 171207/371472 [2:41:41<16:20:17, 3.40it/s] 46%|████▌ | 171208/371472 [2:41:41<16:57:51, 3.28it/s] 46%|████▌ | 171209/371472 [2:41:42<18:26:20, 3.02it/s] 46%|████▌ | 171210/371472 [2:41:42<18:40:07, 2.98it/s] 46%|████▌ | 171211/371472 [2:41:42<18:11:34, 3.06it/s] 46%|████▌ | 171212/371472 [2:41:43<17:46:00, 3.13it/s] 46%|████▌ | 171213/371472 [2:41:43<18:04:41, 3.08it/s] 46%|████▌ | 171214/371472 [2:41:43<17:42:57, 3.14it/s] 46%|████▌ | 171215/371472 [2:41:44<17:19:38, 3.21it/s] 46%|████▌ | 171216/371472 [2:41:44<16:42:36, 3.33it/s] 46%|████▌ | 171217/371472 [2:41:44<16:26:27, 3.38it/s] 46%|████▌ | 171218/371472 [2:41:44<16:19:32, 3.41it/s] 46%|████▌ | 171219/371472 [2:41:45<15:45:50, 3.53it/s] 46%|████▌ | 171220/371472 [2:41:45<16:28:31, 3.38it/s] {'loss': 2.7928, 'learning_rate': 5.854306276799759e-07, 'epoch': 7.37} + 46%|████▌ | 171220/371472 [2:41:45<16:28:31, 3.38it/s] 46%|████▌ | 171221/371472 [2:41:45<16:31:30, 3.37it/s] 46%|████▌ | 171222/371472 [2:41:46<16:27:45, 3.38it/s] 46%|████▌ | 171223/371472 [2:41:46<16:16:48, 3.42it/s] 46%|████▌ | 171224/371472 [2:41:46<16:08:14, 3.45it/s] 46%|████▌ | 171225/371472 [2:41:46<15:50:31, 3.51it/s] 46%|████▌ | 171226/371472 [2:41:47<16:01:00, 3.47it/s] 46%|████▌ | 171227/371472 [2:41:47<17:02:10, 3.27it/s] 46%|████▌ | 171228/371472 [2:41:47<17:00:26, 3.27it/s] 46%|████▌ | 171229/371472 [2:41:48<17:03:26, 3.26it/s] 46%|████▌ | 171230/371472 [2:41:48<17:41:33, 3.14it/s] 46%|████▌ | 171231/371472 [2:41:48<18:36:08, 2.99it/s] 46%|████▌ | 171232/371472 [2:41:49<18:15:03, 3.05it/s] 46%|████▌ | 171233/371472 [2:41:49<17:34:56, 3.16it/s] 46%|████▌ | 171234/371472 [2:41:49<17:03:00, 3.26it/s] 46%|████▌ | 171235/371472 [2:41:50<16:38:57, 3.34it/s] 46%|████▌ | 171236/371472 [2:41:50<16:41:39, 3.33it/s] 46%|████▌ | 171237/371472 [2:41:50<16:44:54, 3.32it/s] 46%|████▌ | 171238/371472 [2:41:50<16:09:12, 3.44it/s] 46%|████▌ | 171239/371472 [2:41:51<17:20:40, 3.21it/s] 46%|████▌ | 171240/371472 [2:41:51<17:03:57, 3.26it/s] {'loss': 2.8237, 'learning_rate': 5.85382145704497e-07, 'epoch': 7.38} + 46%|████▌ | 171240/371472 [2:41:51<17:03:57, 3.26it/s] 46%|████▌ | 171241/371472 [2:41:51<16:38:07, 3.34it/s] 46%|████▌ | 171242/371472 [2:41:52<15:55:44, 3.49it/s] 46%|████▌ | 171243/371472 [2:41:52<15:50:03, 3.51it/s] 46%|████▌ | 171244/371472 [2:41:52<15:59:04, 3.48it/s] 46%|████▌ | 171245/371472 [2:41:53<17:17:05, 3.22it/s] 46%|████▌ | 171246/371472 [2:41:53<17:16:25, 3.22it/s] 46%|████▌ | 171247/371472 [2:41:53<16:39:30, 3.34it/s] 46%|████▌ | 171248/371472 [2:41:53<16:34:08, 3.36it/s] 46%|████▌ | 171249/371472 [2:41:54<16:37:24, 3.35it/s] 46%|████▌ | 171250/371472 [2:41:54<16:36:29, 3.35it/s] 46%|████▌ | 171251/371472 [2:41:54<16:47:12, 3.31it/s] 46%|████▌ | 171252/371472 [2:41:55<18:28:35, 3.01it/s] 46%|████▌ | 171253/371472 [2:41:55<17:57:49, 3.10it/s] 46%|████▌ | 171254/371472 [2:41:55<17:16:36, 3.22it/s] 46%|████▌ | 171255/371472 [2:41:56<17:14:22, 3.23it/s] 46%|████▌ | 171256/371472 [2:41:56<17:08:36, 3.24it/s] 46%|████▌ | 171257/371472 [2:41:56<17:28:28, 3.18it/s] 46%|████▌ | 171258/371472 [2:41:57<16:54:58, 3.29it/s] 46%|████▌ | 171259/371472 [2:41:57<16:40:16, 3.34it/s] 46%|████▌ | 171260/371472 [2:41:57<16:29:26, 3.37it/s] {'loss': 3.0204, 'learning_rate': 5.85333663729018e-07, 'epoch': 7.38} + 46%|████▌ | 171260/371472 [2:41:57<16:29:26, 3.37it/s] 46%|████▌ | 171261/371472 [2:41:57<16:35:47, 3.35it/s] 46%|████▌ | 171262/371472 [2:41:58<16:56:56, 3.28it/s] 46%|████▌ | 171263/371472 [2:41:58<22:24:06, 2.48it/s] 46%|████▌ | 171264/371472 [2:41:59<21:07:51, 2.63it/s] 46%|████▌ | 171265/371472 [2:41:59<19:53:59, 2.79it/s] 46%|████▌ | 171266/371472 [2:41:59<18:47:13, 2.96it/s] 46%|████▌ | 171267/371472 [2:42:00<18:07:19, 3.07it/s] 46%|████▌ | 171268/371472 [2:42:00<17:33:58, 3.17it/s] 46%|████▌ | 171269/371472 [2:42:00<17:13:04, 3.23it/s] 46%|████▌ | 171270/371472 [2:42:00<16:51:25, 3.30it/s] 46%|████▌ | 171271/371472 [2:42:01<17:07:33, 3.25it/s] 46%|████▌ | 171272/371472 [2:42:01<16:54:38, 3.29it/s] 46%|████▌ | 171273/371472 [2:42:01<16:54:44, 3.29it/s] 46%|████▌ | 171274/371472 [2:42:02<16:56:25, 3.28it/s] 46%|████▌ | 171275/371472 [2:42:02<18:59:43, 2.93it/s] 46%|████▌ | 171276/371472 [2:42:03<19:26:09, 2.86it/s] 46%|████▌ | 171277/371472 [2:42:03<19:28:01, 2.86it/s] 46%|████▌ | 171278/371472 [2:42:03<19:40:37, 2.83it/s] 46%|████▌ | 171279/371472 [2:42:04<18:39:49, 2.98it/s] 46%|████▌ | 171280/371472 [2:42:04<17:48:53, 3.12it/s] {'loss': 3.0339, 'learning_rate': 5.852851817535391e-07, 'epoch': 7.38} + 46%|████▌ | 171280/371472 [2:42:04<17:48:53, 3.12it/s] 46%|████▌ | 171281/371472 [2:42:04<17:16:10, 3.22it/s] 46%|████▌ | 171282/371472 [2:42:04<17:13:24, 3.23it/s] 46%|████▌ | 171283/371472 [2:42:05<16:45:57, 3.32it/s] 46%|████▌ | 171284/371472 [2:42:05<16:26:40, 3.38it/s] 46%|████▌ | 171285/371472 [2:42:05<17:20:42, 3.21it/s] 46%|████▌ | 171286/371472 [2:42:06<17:43:33, 3.14it/s] 46%|████▌ | 171287/371472 [2:42:06<17:08:13, 3.24it/s] 46%|████▌ | 171288/371472 [2:42:06<18:14:57, 3.05it/s] 46%|████▌ | 171289/371472 [2:42:07<17:22:10, 3.20it/s] 46%|████▌ | 171290/371472 [2:42:07<17:49:23, 3.12it/s] 46%|████▌ | 171291/371472 [2:42:07<18:07:03, 3.07it/s] 46%|████▌ | 171292/371472 [2:42:08<17:54:29, 3.11it/s] 46%|████▌ | 171293/371472 [2:42:08<17:26:11, 3.19it/s] 46%|████▌ | 171294/371472 [2:42:08<17:03:58, 3.26it/s] 46%|████▌ | 171295/371472 [2:42:08<17:25:08, 3.19it/s] 46%|████▌ | 171296/371472 [2:42:09<17:15:09, 3.22it/s] 46%|████▌ | 171297/371472 [2:42:09<17:34:43, 3.16it/s] 46%|████▌ | 171298/371472 [2:42:09<17:04:07, 3.26it/s] 46%|████▌ | 171299/371472 [2:42:10<16:33:21, 3.36it/s] 46%|████▌ | 171300/371472 [2:42:10<16:21:03, 3.40it/s] {'loss': 2.8556, 'learning_rate': 5.852366997780603e-07, 'epoch': 7.38} + 46%|████▌ | 171300/371472 [2:42:10<16:21:03, 3.40it/s] 46%|████▌ | 171301/371472 [2:42:10<16:11:05, 3.44it/s] 46%|████▌ | 171302/371472 [2:42:11<15:47:53, 3.52it/s] 46%|████▌ | 171303/371472 [2:42:11<16:03:38, 3.46it/s] 46%|████▌ | 171304/371472 [2:42:11<15:50:33, 3.51it/s] 46%|████▌ | 171305/371472 [2:42:11<15:51:25, 3.51it/s] 46%|████▌ | 171306/371472 [2:42:12<15:25:23, 3.61it/s] 46%|████▌ | 171307/371472 [2:42:12<15:46:19, 3.53it/s] 46%|████▌ | 171308/371472 [2:42:12<15:58:20, 3.48it/s] 46%|████▌ | 171309/371472 [2:42:13<16:01:42, 3.47it/s] 46%|████▌ | 171310/371472 [2:42:13<15:45:19, 3.53it/s] 46%|████▌ | 171311/371472 [2:42:13<16:36:52, 3.35it/s] 46%|████▌ | 171312/371472 [2:42:13<16:26:52, 3.38it/s] 46%|████▌ | 171313/371472 [2:42:14<16:29:09, 3.37it/s] 46%|████▌ | 171314/371472 [2:42:14<16:54:14, 3.29it/s] 46%|████▌ | 171315/371472 [2:42:14<16:37:58, 3.34it/s] 46%|████▌ | 171316/371472 [2:42:15<17:31:07, 3.17it/s] 46%|████▌ | 171317/371472 [2:42:15<17:16:19, 3.22it/s] 46%|████▌ | 171318/371472 [2:42:15<16:54:34, 3.29it/s] 46%|████▌ | 171319/371472 [2:42:16<16:44:50, 3.32it/s] 46%|████▌ | 171320/371472 [2:42:16<16:33:16, 3.36it/s] {'loss': 3.0505, 'learning_rate': 5.851882178025814e-07, 'epoch': 7.38} + 46%|████▌ | 171320/371472 [2:42:16<16:33:16, 3.36it/s] 46%|████▌ | 171321/371472 [2:42:16<16:31:43, 3.36it/s] 46%|████▌ | 171322/371472 [2:42:17<17:24:10, 3.19it/s] 46%|████▌ | 171323/371472 [2:42:17<17:47:50, 3.12it/s] 46%|████▌ | 171324/371472 [2:42:17<17:00:42, 3.27it/s] 46%|████▌ | 171325/371472 [2:42:17<16:45:50, 3.32it/s] 46%|████▌ | 171326/371472 [2:42:18<17:04:33, 3.26it/s] 46%|████▌ | 171327/371472 [2:42:18<17:00:42, 3.27it/s] 46%|████▌ | 171328/371472 [2:42:18<17:21:53, 3.20it/s] 46%|████▌ | 171329/371472 [2:42:19<17:01:48, 3.26it/s] 46%|████▌ | 171330/371472 [2:42:19<16:38:16, 3.34it/s] 46%|████▌ | 171331/371472 [2:42:19<18:49:12, 2.95it/s] 46%|████▌ | 171332/371472 [2:42:20<19:23:27, 2.87it/s] 46%|████▌ | 171333/371472 [2:42:20<19:26:42, 2.86it/s] 46%|████▌ | 171334/371472 [2:42:20<18:24:30, 3.02it/s] 46%|████▌ | 171335/371472 [2:42:21<22:15:25, 2.50it/s] 46%|████▌ | 171336/371472 [2:42:21<20:42:44, 2.68it/s] 46%|████▌ | 171337/371472 [2:42:22<19:17:08, 2.88it/s] 46%|████▌ | 171338/371472 [2:42:22<18:08:30, 3.06it/s] 46%|████▌ | 171339/371472 [2:42:22<17:18:01, 3.21it/s] 46%|████▌ | 171340/371472 [2:42:22<16:40:32, 3.33it/s] {'loss': 2.7923, 'learning_rate': 5.851397358271024e-07, 'epoch': 7.38} + 46%|████▌ | 171340/371472 [2:42:22<16:40:32, 3.33it/s] 46%|████▌ | 171341/371472 [2:42:23<16:27:53, 3.38it/s] 46%|████▌ | 171342/371472 [2:42:23<16:25:44, 3.38it/s] 46%|████▌ | 171343/371472 [2:42:23<16:09:02, 3.44it/s] 46%|████▌ | 171344/371472 [2:42:23<15:51:24, 3.51it/s] 46%|████▌ | 171345/371472 [2:42:24<15:36:29, 3.56it/s] 46%|████▌ | 171346/371472 [2:42:24<16:13:36, 3.43it/s] 46%|████▌ | 171347/371472 [2:42:24<15:55:29, 3.49it/s] 46%|████▌ | 171348/371472 [2:42:25<16:17:24, 3.41it/s] 46%|████▌ | 171349/371472 [2:42:25<16:29:13, 3.37it/s] 46%|████▌ | 171350/371472 [2:42:25<16:16:13, 3.42it/s] 46%|████▌ | 171351/371472 [2:42:26<16:13:30, 3.43it/s] 46%|████▌ | 171352/371472 [2:42:26<17:04:13, 3.26it/s] 46%|████▌ | 171353/371472 [2:42:26<18:00:34, 3.09it/s] 46%|████▌ | 171354/371472 [2:42:27<18:08:29, 3.06it/s] 46%|████▌ | 171355/371472 [2:42:27<18:06:16, 3.07it/s] 46%|████▌ | 171356/371472 [2:42:27<17:42:53, 3.14it/s] 46%|████▌ | 171357/371472 [2:42:28<17:50:57, 3.11it/s] 46%|████▌ | 171358/371472 [2:42:28<17:06:30, 3.25it/s] 46%|████▌ | 171359/371472 [2:42:28<16:30:58, 3.37it/s] 46%|████▌ | 171360/371472 [2:42:28<16:25:18, 3.38it/s] {'loss': 3.0507, 'learning_rate': 5.850912538516236e-07, 'epoch': 7.38} + 46%|████▌ | 171360/371472 [2:42:28<16:25:18, 3.38it/s] 46%|████▌ | 171361/371472 [2:42:29<16:14:26, 3.42it/s] 46%|████▌ | 171362/371472 [2:42:29<15:52:35, 3.50it/s] 46%|████▌ | 171363/371472 [2:42:29<16:11:06, 3.43it/s] 46%|████▌ | 171364/371472 [2:42:30<16:09:41, 3.44it/s] 46%|████▌ | 171365/371472 [2:42:30<15:54:44, 3.49it/s] 46%|████▌ | 171366/371472 [2:42:30<16:05:26, 3.45it/s] 46%|████▌ | 171367/371472 [2:42:30<15:54:06, 3.50it/s] 46%|████▌ | 171368/371472 [2:42:31<16:08:33, 3.44it/s] 46%|████▌ | 171369/371472 [2:42:31<15:58:55, 3.48it/s] 46%|████▌ | 171370/371472 [2:42:31<16:42:37, 3.33it/s] 46%|████▌ | 171371/371472 [2:42:32<16:27:06, 3.38it/s] 46%|████▌ | 171372/371472 [2:42:32<16:16:53, 3.41it/s] 46%|████▌ | 171373/371472 [2:42:32<16:30:12, 3.37it/s] 46%|████▌ | 171374/371472 [2:42:32<16:17:29, 3.41it/s] 46%|████▌ | 171375/371472 [2:42:33<16:22:46, 3.39it/s] 46%|████▌ | 171376/371472 [2:42:33<16:13:35, 3.43it/s] 46%|████▌ | 171377/371472 [2:42:33<16:22:13, 3.40it/s] 46%|████▌ | 171378/371472 [2:42:34<16:21:24, 3.40it/s] 46%|████▌ | 171379/371472 [2:42:34<17:13:27, 3.23it/s] 46%|████▌ | 171380/371472 [2:42:34<17:23:15, 3.20it/s] {'loss': 3.1366, 'learning_rate': 5.850427718761448e-07, 'epoch': 7.38} + 46%|████▌ | 171380/371472 [2:42:34<17:23:15, 3.20it/s] 46%|████▌ | 171381/371472 [2:42:35<17:12:05, 3.23it/s] 46%|████▌ | 171382/371472 [2:42:35<16:56:09, 3.28it/s] 46%|████▌ | 171383/371472 [2:42:35<17:04:39, 3.25it/s] 46%|████▌ | 171384/371472 [2:42:36<17:31:29, 3.17it/s] 46%|████▌ | 171385/371472 [2:42:36<17:17:12, 3.22it/s] 46%|████▌ | 171386/371472 [2:42:36<17:10:06, 3.24it/s] 46%|████▌ | 171387/371472 [2:42:36<17:05:19, 3.25it/s] 46%|████▌ | 171388/371472 [2:42:37<16:42:33, 3.33it/s] 46%|████▌ | 171389/371472 [2:42:37<16:45:51, 3.32it/s] 46%|████▌ | 171390/371472 [2:42:37<18:22:55, 3.02it/s] 46%|████▌ | 171391/371472 [2:42:38<17:28:07, 3.18it/s] 46%|████▌ | 171392/371472 [2:42:38<17:28:41, 3.18it/s] 46%|████▌ | 171393/371472 [2:42:38<17:30:43, 3.17it/s] 46%|████▌ | 171394/371472 [2:42:39<17:13:22, 3.23it/s] 46%|████▌ | 171395/371472 [2:42:39<17:08:28, 3.24it/s] 46%|████▌ | 171396/371472 [2:42:39<17:12:54, 3.23it/s] 46%|████▌ | 171397/371472 [2:42:40<17:10:16, 3.24it/s] 46%|████▌ | 171398/371472 [2:42:40<17:27:17, 3.18it/s] 46%|████▌ | 171399/371472 [2:42:40<17:02:53, 3.26it/s] 46%|████▌ | 171400/371472 [2:42:40<16:34:25, 3.35it/s] {'loss': 3.0351, 'learning_rate': 5.849942899006657e-07, 'epoch': 7.38} + 46%|████▌ | 171400/371472 [2:42:40<16:34:25, 3.35it/s] 46%|████▌ | 171401/371472 [2:42:41<16:18:26, 3.41it/s] 46%|████▌ | 171402/371472 [2:42:41<16:08:28, 3.44it/s] 46%|████▌ | 171403/371472 [2:42:41<16:01:05, 3.47it/s] 46%|████▌ | 171404/371472 [2:42:42<16:20:46, 3.40it/s] 46%|████▌ | 171405/371472 [2:42:42<17:56:57, 3.10it/s] 46%|████▌ | 171406/371472 [2:42:42<17:17:19, 3.21it/s] 46%|████▌ | 171407/371472 [2:42:43<17:32:09, 3.17it/s] 46%|████▌ | 171408/371472 [2:42:43<17:21:14, 3.20it/s] 46%|████▌ | 171409/371472 [2:42:43<17:13:49, 3.23it/s] 46%|████▌ | 171410/371472 [2:42:43<16:31:41, 3.36it/s] 46%|████▌ | 171411/371472 [2:42:44<16:22:36, 3.39it/s] 46%|████▌ | 171412/371472 [2:42:44<16:28:52, 3.37it/s] 46%|████▌ | 171413/371472 [2:42:44<16:26:21, 3.38it/s] 46%|██��█▌ | 171414/371472 [2:42:45<16:11:07, 3.43it/s] 46%|████▌ | 171415/371472 [2:42:45<16:34:04, 3.35it/s] 46%|████▌ | 171416/371472 [2:42:45<16:33:56, 3.35it/s] 46%|████▌ | 171417/371472 [2:42:46<16:17:51, 3.41it/s] 46%|████▌ | 171418/371472 [2:42:46<15:53:21, 3.50it/s] 46%|████▌ | 171419/371472 [2:42:46<15:54:34, 3.49it/s] 46%|████▌ | 171420/371472 [2:42:46<15:45:41, 3.53it/s] {'loss': 3.0174, 'learning_rate': 5.849458079251868e-07, 'epoch': 7.38} + 46%|████▌ | 171420/371472 [2:42:46<15:45:41, 3.53it/s] 46%|████▌ | 171421/371472 [2:42:47<16:00:02, 3.47it/s] 46%|████▌ | 171422/371472 [2:42:47<16:06:00, 3.45it/s] 46%|████▌ | 171423/371472 [2:42:47<16:08:18, 3.44it/s] 46%|████▌ | 171424/371472 [2:42:48<16:16:52, 3.41it/s] 46%|████▌ | 171425/371472 [2:42:48<17:42:50, 3.14it/s] 46%|████▌ | 171426/371472 [2:42:48<17:07:25, 3.25it/s] 46%|████▌ | 171427/371472 [2:42:49<16:58:02, 3.27it/s] 46%|████▌ | 171428/371472 [2:42:49<16:11:00, 3.43it/s] 46%|████▌ | 171429/371472 [2:42:49<16:10:18, 3.44it/s] 46%|████▌ | 171430/371472 [2:42:49<16:04:09, 3.46it/s] 46%|████▌ | 171431/371472 [2:42:50<16:23:42, 3.39it/s] 46%|████▌ | 171432/371472 [2:42:50<16:01:42, 3.47it/s] 46%|████▌ | 171433/371472 [2:42:50<16:50:48, 3.30it/s] 46%|████▌ | 171434/371472 [2:42:51<16:19:49, 3.40it/s] 46%|████▌ | 171435/371472 [2:42:51<16:18:51, 3.41it/s] 46%|████▌ | 171436/371472 [2:42:51<15:58:33, 3.48it/s] 46%|████▌ | 171437/371472 [2:42:51<16:01:42, 3.47it/s] 46%|████▌ | 171438/371472 [2:42:52<16:09:49, 3.44it/s] 46%|████▌ | 171439/371472 [2:42:52<17:30:02, 3.18it/s] 46%|████▌ | 171440/371472 [2:42:52<17:30:37, 3.17it/s] {'loss': 2.9193, 'learning_rate': 5.84897325949708e-07, 'epoch': 7.38} + 46%|████▌ | 171440/371472 [2:42:52<17:30:37, 3.17it/s] 46%|████▌ | 171441/371472 [2:42:53<16:56:27, 3.28it/s] 46%|████▌ | 171442/371472 [2:42:53<16:52:25, 3.29it/s] 46%|████▌ | 171443/371472 [2:42:53<16:27:14, 3.38it/s] 46%|████▌ | 171444/371472 [2:42:54<16:31:54, 3.36it/s] 46%|████▌ | 171445/371472 [2:42:54<16:51:11, 3.30it/s] 46%|████▌ | 171446/371472 [2:42:54<16:40:07, 3.33it/s] 46%|████▌ | 171447/371472 [2:42:54<16:59:59, 3.27it/s] 46%|████▌ | 171448/371472 [2:42:55<18:04:26, 3.07it/s] 46%|████▌ | 171449/371472 [2:42:55<17:15:08, 3.22it/s] 46%|████▌ | 171450/371472 [2:42:55<16:43:17, 3.32it/s] 46%|████▌ | 171451/371472 [2:42:56<16:47:52, 3.31it/s] 46%|████▌ | 171452/371472 [2:42:56<16:33:07, 3.36it/s] 46%|████▌ | 171453/371472 [2:42:56<18:01:17, 3.08it/s] 46%|████▌ | 171454/371472 [2:42:57<17:57:02, 3.10it/s] 46%|████▌ | 171455/371472 [2:42:57<17:22:54, 3.20it/s] 46%|████▌ | 171456/371472 [2:42:57<16:41:12, 3.33it/s] 46%|████▌ | 171457/371472 [2:42:58<19:54:23, 2.79it/s] 46%|████▌ | 171458/371472 [2:42:58<19:37:45, 2.83it/s] 46%|████▌ | 171459/371472 [2:42:58<18:37:21, 2.98it/s] 46%|████▌ | 171460/371472 [2:42:59<17:53:00, 3.11it/s] {'loss': 2.993, 'learning_rate': 5.848488439742292e-07, 'epoch': 7.39} + 46%|████▌ | 171460/371472 [2:42:59<17:53:00, 3.11it/s] 46%|████▌ | 171461/371472 [2:42:59<17:57:50, 3.09it/s] 46%|████▌ | 171462/371472 [2:42:59<17:18:36, 3.21it/s] 46%|████▌ | 171463/371472 [2:43:00<16:55:57, 3.28it/s] 46%|████▌ | 171464/371472 [2:43:00<17:33:10, 3.17it/s] 46%|████▌ | 171465/371472 [2:43:00<16:51:07, 3.30it/s] 46%|████▌ | 171466/371472 [2:43:01<17:13:49, 3.22it/s] 46%|████▌ | 171467/371472 [2:43:01<17:19:44, 3.21it/s] 46%|████▌ | 171468/371472 [2:43:01<16:53:01, 3.29it/s] 46%|████▌ | 171469/371472 [2:43:01<17:40:57, 3.14it/s] 46%|████▌ | 171470/371472 [2:43:02<17:33:16, 3.16it/s] 46%|████▌ | 171471/371472 [2:43:02<17:12:30, 3.23it/s] 46%|████▌ | 171472/371472 [2:43:02<16:50:14, 3.30it/s] 46%|████▌ | 171473/371472 [2:43:03<16:44:20, 3.32it/s] 46%|████▌ | 171474/371472 [2:43:03<16:26:33, 3.38it/s] 46%|████▌ | 171475/371472 [2:43:03<16:36:10, 3.35it/s] 46%|████▌ | 171476/371472 [2:43:04<16:25:13, 3.38it/s] 46%|████▌ | 171477/371472 [2:43:04<17:06:32, 3.25it/s] 46%|████▌ | 171478/371472 [2:43:04<16:58:07, 3.27it/s] 46%|████▌ | 171479/371472 [2:43:04<17:00:13, 3.27it/s] 46%|████▌ | 171480/371472 [2:43:05<17:06:38, 3.25it/s] {'loss': 2.8399, 'learning_rate': 5.848003619987502e-07, 'epoch': 7.39} + 46%|████▌ | 171480/371472 [2:43:05<17:06:38, 3.25it/s] 46%|████▌ | 171481/371472 [2:43:05<18:57:43, 2.93it/s] 46%|████▌ | 171482/371472 [2:43:06<18:31:30, 3.00it/s] 46%|████▌ | 171483/371472 [2:43:06<18:07:44, 3.06it/s] 46%|████▌ | 171484/371472 [2:43:06<17:30:23, 3.17it/s] 46%|████▌ | 171485/371472 [2:43:06<17:01:24, 3.26it/s] 46%|████▌ | 171486/371472 [2:43:07<17:01:23, 3.26it/s] 46%|████▌ | 171487/371472 [2:43:07<16:38:06, 3.34it/s] 46%|████▌ | 171488/371472 [2:43:07<16:31:14, 3.36it/s] 46%|████▌ | 171489/371472 [2:43:08<16:43:08, 3.32it/s] 46%|████▌ | 171490/371472 [2:43:08<16:39:30, 3.33it/s] 46%|████▌ | 171491/371472 [2:43:08<16:30:25, 3.37it/s] 46%|████▌ | 171492/371472 [2:43:08<16:29:42, 3.37it/s] 46%|████▌ | 171493/371472 [2:43:09<17:04:50, 3.25it/s] 46%|████▌ | 171494/371472 [2:43:09<16:49:11, 3.30it/s] 46%|████▌ | 171495/371472 [2:43:09<17:09:44, 3.24it/s] 46%|████▌ | 171496/371472 [2:43:10<16:58:42, 3.27it/s] 46%|████▌ | 171497/371472 [2:43:10<16:48:38, 3.30it/s] 46%|████▌ | 171498/371472 [2:43:10<16:47:22, 3.31it/s] 46%|████▌ | 171499/371472 [2:43:11<16:43:24, 3.32it/s] 46%|████▌ | 171500/371472 [2:43:11<16:39:02, 3.34it/s] {'loss': 2.8423, 'learning_rate': 5.847518800232713e-07, 'epoch': 7.39} + 46%|████▌ | 171500/371472 [2:43:11<16:39:02, 3.34it/s] 46%|████▌ | 171501/371472 [2:43:11<17:08:41, 3.24it/s] 46%|████▌ | 171502/371472 [2:43:12<16:43:01, 3.32it/s] 46%|████▌ | 171503/371472 [2:43:12<16:32:41, 3.36it/s] 46%|████▌ | 171504/371472 [2:43:12<16:13:28, 3.42it/s] 46%|████▌ | 171505/371472 [2:43:12<16:32:17, 3.36it/s] 46%|████▌ | 171506/371472 [2:43:13<17:05:53, 3.25it/s] 46%|████▌ | 171507/371472 [2:43:13<17:08:37, 3.24it/s] 46%|████▌ | 171508/371472 [2:43:13<16:50:38, 3.30it/s] 46%|████▌ | 171509/371472 [2:43:14<16:24:07, 3.39it/s] 46%|████▌ | 171510/371472 [2:43:14<16:19:00, 3.40it/s] 46%|████▌ | 171511/371472 [2:43:14<16:15:45, 3.42it/s] 46%|████▌ | 171512/371472 [2:43:15<16:34:56, 3.35it/s] 46%|████▌ | 171513/371472 [2:43:15<16:21:34, 3.40it/s] 46%|████▌ | 171514/371472 [2:43:15<16:13:10, 3.42it/s] 46%|████▌ | 171515/371472 [2:43:15<16:27:16, 3.38it/s] 46%|████▌ | 171516/371472 [2:43:16<16:30:51, 3.36it/s] 46%|████▌ | 171517/371472 [2:43:16<16:26:31, 3.38it/s] 46%|████▌ | 171518/371472 [2:43:16<16:44:04, 3.32it/s] 46%|████▌ | 171519/371472 [2:43:17<16:36:56, 3.34it/s] 46%|████▌ | 171520/371472 [2:43:17<16:35:17, 3.35it/s] {'loss': 2.953, 'learning_rate': 5.847033980477924e-07, 'epoch': 7.39} + 46%|████▌ | 171520/371472 [2:43:17<16:35:17, 3.35it/s] 46%|████▌ | 171521/371472 [2:43:17<16:28:03, 3.37it/s] 46%|████▌ | 171522/371472 [2:43:18<16:50:54, 3.30it/s] 46%|████▌ | 171523/371472 [2:43:18<17:08:06, 3.24it/s] 46%|████▌ | 171524/371472 [2:43:18<18:18:18, 3.03it/s] 46%|████▌ | 171525/371472 [2:43:18<17:28:53, 3.18it/s] 46%|████▌ | 171526/371472 [2:43:19<17:22:28, 3.20it/s] 46%|████▌ | 171527/371472 [2:43:19<16:46:21, 3.31it/s] 46%|████▌ | 171528/371472 [2:43:19<16:36:41, 3.34it/s] 46%|████▌ | 171529/371472 [2:43:20<16:21:01, 3.40it/s] 46%|████▌ | 171530/371472 [2:43:20<16:25:16, 3.38it/s] 46%|████▌ | 171531/371472 [2:43:20<16:30:30, 3.36it/s] 46%|████▌ | 171532/371472 [2:43:21<16:53:41, 3.29it/s] 46%|████▌ | 171533/371472 [2:43:21<16:48:45, 3.30it/s] 46%|████▌ | 171534/371472 [2:43:21<16:39:01, 3.34it/s] 46%|████▌ | 171535/371472 [2:43:21<16:17:29, 3.41it/s] 46%|████▌ | 171536/371472 [2:43:22<16:48:32, 3.30it/s] 46%|████▌ | 171537/371472 [2:43:22<16:46:09, 3.31it/s] 46%|████▌ | 171538/371472 [2:43:22<16:24:32, 3.38it/s] 46%|████▌ | 171539/371472 [2:43:23<16:46:11, 3.31it/s] 46%|████▌ | 171540/371472 [2:43:23<16:17:04, 3.41it/s] {'loss': 2.8429, 'learning_rate': 5.846549160723136e-07, 'epoch': 7.39} + 46%|████▌ | 171540/371472 [2:43:23<16:17:04, 3.41it/s] 46%|████▌ | 171541/371472 [2:43:23<16:17:21, 3.41it/s] 46%|████▌ | 171542/371472 [2:43:24<16:20:30, 3.40it/s] 46%|████▌ | 171543/371472 [2:43:24<16:23:54, 3.39it/s] 46%|████▌ | 171544/371472 [2:43:24<16:34:44, 3.35it/s] 46%|████▌ | 171545/371472 [2:43:24<17:07:02, 3.24it/s] 46%|████▌ | 171546/371472 [2:43:25<16:41:14, 3.33it/s] 46%|████▌ | 171547/371472 [2:43:25<16:33:09, 3.36it/s] 46%|████▌ | 171548/371472 [2:43:25<16:26:48, 3.38it/s] 46%|████▌ | 171549/371472 [2:43:26<16:02:19, 3.46it/s] 46%|████▌ | 171550/371472 [2:43:26<16:21:32, 3.39it/s] 46%|████▌ | 171551/371472 [2:43:26<16:43:56, 3.32it/s] 46%|████▌ | 171552/371472 [2:43:26<16:07:16, 3.44it/s] 46%|████▌ | 171553/371472 [2:43:27<16:06:37, 3.45it/s] 46%|████▌ | 171554/371472 [2:43:27<16:26:03, 3.38it/s] 46%|████▌ | 171555/371472 [2:43:27<16:05:45, 3.45it/s] 46%|████▌ | 171556/371472 [2:43:28<16:26:29, 3.38it/s] 46%|████▌ | 171557/371472 [2:43:28<16:41:33, 3.33it/s] 46%|████▌ | 171558/371472 [2:43:28<16:36:59, 3.34it/s] 46%|████▌ | 171559/371472 [2:43:29<16:43:59, 3.32it/s] 46%|████▌ | 171560/371472 [2:43:29<16:10:36, 3.43it/s] {'loss': 2.9913, 'learning_rate': 5.846064340968346e-07, 'epoch': 7.39} + 46%|████▌ | 171560/371472 [2:43:29<16:10:36, 3.43it/s] 46%|████▌ | 171561/371472 [2:43:29<16:42:00, 3.33it/s] 46%|████▌ | 171562/371472 [2:43:29<16:41:26, 3.33it/s] 46%|████▌ | 171563/371472 [2:43:30<16:20:48, 3.40it/s] 46%|████▌ | 171564/371472 [2:43:30<15:55:01, 3.49it/s] 46%|████▌ | 171565/371472 [2:43:30<16:12:55, 3.42it/s] 46%|████▌ | 171566/371472 [2:43:31<15:58:21, 3.48it/s] 46%|████▌ | 171567/371472 [2:43:31<16:51:38, 3.29it/s] 46%|████▌ | 171568/371472 [2:43:31<16:50:36, 3.30it/s] 46%|████▌ | 171569/371472 [2:43:32<16:47:59, 3.31it/s] 46%|████▌ | 171570/371472 [2:43:32<16:50:53, 3.30it/s] 46%|████▌ | 171571/371472 [2:43:32<17:52:09, 3.11it/s] 46%|████▌ | 171572/371472 [2:43:33<18:32:25, 2.99it/s] 46%|████▌ | 171573/371472 [2:43:33<17:52:17, 3.11it/s] 46%|████▌ | 171574/371472 [2:43:33<17:16:57, 3.21it/s] 46%|████▌ | 171575/371472 [2:43:33<16:58:15, 3.27it/s] 46%|████▌ | 171576/371472 [2:43:34<16:22:47, 3.39it/s] 46%|████▌ | 171577/371472 [2:43:34<15:59:31, 3.47it/s] 46%|████▌ | 171578/371472 [2:43:34<15:58:30, 3.48it/s] 46%|████▌ | 171579/371472 [2:43:35<15:53:35, 3.49it/s] 46%|████▌ | 171580/371472 [2:43:35<16:25:40, 3.38it/s] {'loss': 2.9053, 'learning_rate': 5.845579521213557e-07, 'epoch': 7.39} + 46%|████▌ | 171580/371472 [2:43:35<16:25:40, 3.38it/s] 46%|████▌ | 171581/371472 [2:43:35<17:03:08, 3.26it/s] 46%|████▌ | 171582/371472 [2:43:36<17:02:35, 3.26it/s] 46%|████▌ | 171583/371472 [2:43:36<16:40:13, 3.33it/s] 46%|████▌ | 171584/371472 [2:43:36<16:49:18, 3.30it/s] 46%|████▌ | 171585/371472 [2:43:36<17:24:40, 3.19it/s] 46%|████▌ | 171586/371472 [2:43:37<17:12:56, 3.23it/s] 46%|████▌ | 171587/371472 [2:43:37<17:50:02, 3.11it/s] 46%|████▌ | 171588/371472 [2:43:38<18:55:20, 2.93it/s] 46%|████▌ | 171589/371472 [2:43:38<18:11:15, 3.05it/s] 46%|████▌ | 171590/371472 [2:43:38<17:45:01, 3.13it/s] 46%|████▌ | 171591/371472 [2:43:38<17:51:08, 3.11it/s] 46%|████▌ | 171592/371472 [2:43:39<17:40:33, 3.14it/s] 46%|████▌ | 171593/371472 [2:43:39<17:12:39, 3.23it/s] 46%|████▌ | 171594/371472 [2:43:39<17:24:09, 3.19it/s] 46%|████▌ | 171595/371472 [2:43:40<17:22:59, 3.19it/s] 46%|████▌ | 171596/371472 [2:43:40<16:39:23, 3.33it/s] 46%|████▌ | 171597/371472 [2:43:40<16:15:39, 3.41it/s] 46%|████▌ | 171598/371472 [2:43:41<16:21:52, 3.39it/s] 46%|████▌ | 171599/371472 [2:43:41<15:56:40, 3.48it/s] 46%|████▌ | 171600/371472 [2:43:41<15:49:46, 3.51it/s] {'loss': 2.9369, 'learning_rate': 5.845094701458769e-07, 'epoch': 7.39} + 46%|████▌ | 171600/371472 [2:43:41<15:49:46, 3.51it/s] 46%|████▌ | 171601/371472 [2:43:41<15:57:50, 3.48it/s] 46%|████▌ | 171602/371472 [2:43:42<15:51:02, 3.50it/s] 46%|████▌ | 171603/371472 [2:43:42<16:00:21, 3.47it/s] 46%|████▌ | 171604/371472 [2:43:42<15:55:49, 3.49it/s] 46%|████▌ | 171605/371472 [2:43:43<16:12:49, 3.42it/s] 46%|████▌ | 171606/371472 [2:43:43<16:09:31, 3.44it/s] 46%|████▌ | 171607/371472 [2:43:43<16:06:12, 3.45it/s] 46%|████▌ | 171608/371472 [2:43:43<16:10:52, 3.43it/s] 46%|████▌ | 171609/371472 [2:43:44<16:28:49, 3.37it/s] 46%|████▌ | 171610/371472 [2:43:44<16:48:59, 3.30it/s] 46%|████▌ | 171611/371472 [2:43:44<17:15:03, 3.22it/s] 46%|████▌ | 171612/371472 [2:43:45<17:38:57, 3.15it/s] 46%|████▌ | 171613/371472 [2:43:45<16:55:56, 3.28it/s] 46%|████▌ | 171614/371472 [2:43:45<17:22:29, 3.20it/s] 46%|████▌ | 171615/371472 [2:43:46<16:50:18, 3.30it/s] 46%|████▌ | 171616/371472 [2:43:46<18:08:01, 3.06it/s] 46%|████▌ | 171617/371472 [2:43:46<18:20:35, 3.03it/s] 46%|████▌ | 171618/371472 [2:43:47<17:44:48, 3.13it/s] 46%|████▌ | 171619/371472 [2:43:47<17:15:01, 3.22it/s] 46%|████▌ | 171620/371472 [2:43:47<16:47:33, 3.31it/s] {'loss': 2.8386, 'learning_rate': 5.844609881703981e-07, 'epoch': 7.39} + 46%|████▌ | 171620/371472 [2:43:47<16:47:33, 3.31it/s] 46%|████▌ | 171621/371472 [2:43:47<17:19:18, 3.20it/s] 46%|████▌ | 171622/371472 [2:43:48<16:52:28, 3.29it/s] 46%|████▌ | 171623/371472 [2:43:48<17:34:51, 3.16it/s] 46%|████▌ | 171624/371472 [2:43:48<17:02:04, 3.26it/s] 46%|████▌ | 171625/371472 [2:43:49<16:47:09, 3.31it/s] 46%|████▌ | 171626/371472 [2:43:49<16:13:45, 3.42it/s] 46%|████▌ | 171627/371472 [2:43:49<17:07:26, 3.24it/s] 46%|████▌ | 171628/371472 [2:43:50<16:44:54, 3.31it/s] 46%|████▌ | 171629/371472 [2:43:50<16:35:18, 3.35it/s] 46%|████▌ | 171630/371472 [2:43:50<16:54:39, 3.28it/s] 46%|████▌ | 171631/371472 [2:43:51<17:40:49, 3.14it/s] 46%|████▌ | 171632/371472 [2:43:51<17:06:03, 3.25it/s] 46%|████▌ | 171633/371472 [2:43:51<17:18:09, 3.21it/s] 46%|████▌ | 171634/371472 [2:43:51<16:51:40, 3.29it/s] 46%|████▌ | 171635/371472 [2:43:52<17:15:48, 3.22it/s] 46%|████▌ | 171636/371472 [2:43:52<17:12:31, 3.23it/s] 46%|████▌ | 171637/371472 [2:43:52<17:03:05, 3.26it/s] 46%|████▌ | 171638/371472 [2:43:53<16:55:56, 3.28it/s] 46%|████▌ | 171639/371472 [2:43:53<16:36:23, 3.34it/s] 46%|████▌ | 171640/371472 [2:43:53<17:58:27, 3.09it/s] {'loss': 2.8679, 'learning_rate': 5.84412506194919e-07, 'epoch': 7.39} + 46%|████▌ | 171640/371472 [2:43:53<17:58:27, 3.09it/s] 46%|████▌ | 171641/371472 [2:43:54<17:15:59, 3.21it/s] 46%|████▌ | 171642/371472 [2:43:54<16:41:50, 3.32it/s] 46%|████▌ | 171643/371472 [2:43:54<16:12:55, 3.42it/s] 46%|████▌ | 171644/371472 [2:43:54<16:34:56, 3.35it/s] 46%|████▌ | 171645/371472 [2:43:55<16:39:00, 3.33it/s] 46%|████▌ | 171646/371472 [2:43:55<18:46:09, 2.96it/s] 46%|████▌ | 171647/371472 [2:43:56<18:18:13, 3.03it/s] 46%|████▌ | 171648/371472 [2:43:56<18:06:52, 3.06it/s] 46%|████▌ | 171649/371472 [2:43:56<17:29:03, 3.17it/s] 46%|████▌ | 171650/371472 [2:43:56<17:16:18, 3.21it/s] 46%|████▌ | 171651/371472 [2:43:57<17:02:45, 3.26it/s] 46%|████▌ | 171652/371472 [2:43:57<16:34:05, 3.35it/s] 46%|████▌ | 171653/371472 [2:43:57<16:45:32, 3.31it/s] 46%|████▌ | 171654/371472 [2:43:58<16:57:07, 3.27it/s] 46%|████▌ | 171655/371472 [2:43:58<16:30:43, 3.36it/s] 46%|████▌ | 171656/371472 [2:43:58<16:43:04, 3.32it/s] 46%|████▌ | 171657/371472 [2:43:59<16:30:59, 3.36it/s] 46%|████▌ | 171658/371472 [2:43:59<16:00:09, 3.47it/s] 46%|████▌ | 171659/371472 [2:43:59<17:14:17, 3.22it/s] 46%|████▌ | 171660/371472 [2:43:59<16:41:52, 3.32it/s] {'loss': 2.7829, 'learning_rate': 5.843640242194401e-07, 'epoch': 7.39} + 46%|████▌ | 171660/371472 [2:43:59<16:41:52, 3.32it/s] 46%|████▌ | 171661/371472 [2:44:00<17:20:47, 3.20it/s] 46%|████▌ | 171662/371472 [2:44:00<16:37:02, 3.34it/s] 46%|████▌ | 171663/371472 [2:44:00<16:36:48, 3.34it/s] 46%|████▌ | 171664/371472 [2:44:01<16:40:36, 3.33it/s] 46%|████▌ | 171665/371472 [2:44:01<16:43:47, 3.32it/s] 46%|████▌ | 171666/371472 [2:44:01<16:21:02, 3.39it/s] 46%|████▌ | 171667/371472 [2:44:02<16:14:59, 3.42it/s] 46%|████▌ | 171668/371472 [2:44:02<16:47:33, 3.31it/s] 46%|████▌ | 171669/371472 [2:44:02<16:33:31, 3.35it/s] 46%|████▌ | 171670/371472 [2:44:02<16:09:34, 3.43it/s] 46%|████▌ | 171671/371472 [2:44:03<16:06:59, 3.44it/s] 46%|████▌ | 171672/371472 [2:44:03<16:21:10, 3.39it/s] 46%|████▌ | 171673/371472 [2:44:03<16:06:53, 3.44it/s] 46%|████▌ | 171674/371472 [2:44:04<16:55:34, 3.28it/s] 46%|████▌ | 171675/371472 [2:44:04<16:38:32, 3.33it/s] 46%|████▌ | 171676/371472 [2:44:04<16:32:16, 3.36it/s] 46%|████▌ | 171677/371472 [2:44:04<16:28:40, 3.37it/s] 46%|████▌ | 171678/371472 [2:44:05<17:27:47, 3.18it/s] 46%|████▌ | 171679/371472 [2:44:05<17:14:50, 3.22it/s] 46%|████▌ | 171680/371472 [2:44:05<16:44:47, 3.31it/s] {'loss': 2.8549, 'learning_rate': 5.843155422439613e-07, 'epoch': 7.39} + 46%|████▌ | 171680/371472 [2:44:05<16:44:47, 3.31it/s] 46%|████▌ | 171681/371472 [2:44:06<16:48:03, 3.30it/s] 46%|████▌ | 171682/371472 [2:44:06<16:57:38, 3.27it/s] 46%|████▌ | 171683/371472 [2:44:06<16:29:04, 3.37it/s] 46%|████▌ | 171684/371472 [2:44:07<15:47:06, 3.52it/s] 46%|████▌ | 171685/371472 [2:44:07<16:30:37, 3.36it/s] 46%|████▌ | 171686/371472 [2:44:07<16:20:47, 3.39it/s] 46%|████▌ | 171687/371472 [2:44:08<16:49:52, 3.30it/s] 46%|████▌ | 171688/371472 [2:44:08<16:31:49, 3.36it/s] 46%|████▌ | 171689/371472 [2:44:08<16:20:02, 3.40it/s] 46%|████▌ | 171690/371472 [2:44:08<16:41:40, 3.32it/s] 46%|████▌ | 171691/371472 [2:44:09<16:46:14, 3.31it/s] 46%|████▌ | 171692/371472 [2:44:09<16:57:25, 3.27it/s] 46%|████▌ | 171693/371472 [2:44:09<16:59:55, 3.26it/s] 46%|████▌ | 171694/371472 [2:44:10<16:44:33, 3.31it/s] 46%|████▌ | 171695/371472 [2:44:10<16:26:33, 3.37it/s] 46%|████▌ | 171696/371472 [2:44:10<16:32:15, 3.36it/s] 46%|████▌ | 171697/371472 [2:44:11<17:23:29, 3.19it/s] 46%|████▌ | 171698/371472 [2:44:11<17:14:31, 3.22it/s] 46%|████▌ | 171699/371472 [2:44:11<16:34:39, 3.35it/s] 46%|████▌ | 171700/371472 [2:44:11<16:15:48, 3.41it/s] {'loss': 2.8714, 'learning_rate': 5.842670602684825e-07, 'epoch': 7.4} + 46%|████▌ | 171700/371472 [2:44:11<16:15:48, 3.41it/s] 46%|████▌ | 171701/371472 [2:44:12<16:21:36, 3.39it/s] 46%|████▌ | 171702/371472 [2:44:12<16:49:48, 3.30it/s] 46%|████▌ | 171703/371472 [2:44:12<16:22:31, 3.39it/s] 46%|████▌ | 171704/371472 [2:44:13<16:03:00, 3.46it/s] 46%|████▌ | 171705/371472 [2:44:13<16:32:46, 3.35it/s] 46%|████▌ | 171706/371472 [2:44:13<16:15:43, 3.41it/s] 46%|████▌ | 171707/371472 [2:44:14<16:49:07, 3.30it/s] 46%|████▌ | 171708/371472 [2:44:14<17:01:05, 3.26it/s] 46%|████▌ | 171709/371472 [2:44:14<18:24:40, 3.01it/s] 46%|████▌ | 171710/371472 [2:44:14<17:38:44, 3.14it/s] 46%|████▌ | 171711/371472 [2:44:15<17:10:48, 3.23it/s] 46%|████▌ | 171712/371472 [2:44:15<17:00:44, 3.26it/s] 46%|████▌ | 171713/371472 [2:44:15<16:38:05, 3.34it/s] 46%|████▌ | 171714/371472 [2:44:16<16:31:55, 3.36it/s] 46%|████▌ | 171715/371472 [2:44:16<16:29:33, 3.36it/s] 46%|████▌ | 171716/371472 [2:44:16<16:44:12, 3.32it/s] 46%|████▌ | 171717/371472 [2:44:17<16:21:52, 3.39it/s] 46%|████▌ | 171718/371472 [2:44:17<17:37:16, 3.15it/s] 46%|████▌ | 171719/371472 [2:44:17<17:09:58, 3.23it/s] 46%|████▌ | 171720/371472 [2:44:18<17:35:01, 3.16it/s] {'loss': 2.7525, 'learning_rate': 5.842185782930035e-07, 'epoch': 7.4} + 46%|████▌ | 171720/371472 [2:44:18<17:35:01, 3.16it/s] 46%|████▌ | 171721/371472 [2:44:18<17:37:43, 3.15it/s] 46%|████▌ | 171722/371472 [2:44:18<17:10:49, 3.23it/s] 46%|████▌ | 171723/371472 [2:44:18<16:58:43, 3.27it/s] 46%|████▌ | 171724/371472 [2:44:19<16:55:06, 3.28it/s] 46%|████▌ | 171725/371472 [2:44:19<16:25:21, 3.38it/s] 46%|████▌ | 171726/371472 [2:44:19<16:48:03, 3.30it/s] 46%|████▌ | 171727/371472 [2:44:20<17:04:45, 3.25it/s] 46%|████▌ | 171728/371472 [2:44:20<17:46:19, 3.12it/s] 46%|████▌ | 171729/371472 [2:44:20<17:50:06, 3.11it/s] 46%|████▌ | 171730/371472 [2:44:21<17:10:00, 3.23it/s] 46%|████▌ | 171731/371472 [2:44:21<16:46:10, 3.31it/s] 46%|████▌ | 171732/371472 [2:44:21<17:05:29, 3.25it/s] 46%|████▌ | 171733/371472 [2:44:22<16:37:07, 3.34it/s] 46%|████▌ | 171734/371472 [2:44:22<16:20:00, 3.40it/s] 46%|████▌ | 171735/371472 [2:44:22<16:22:41, 3.39it/s] 46%|████▌ | 171736/371472 [2:44:22<17:26:01, 3.18it/s] 46%|████▌ | 171737/371472 [2:44:23<17:16:50, 3.21it/s] 46%|████▌ | 171738/371472 [2:44:23<16:56:58, 3.27it/s] 46%|████▌ | 171739/371472 [2:44:23<16:41:22, 3.32it/s] 46%|████▌ | 171740/371472 [2:44:24<16:26:57, 3.37it/s] {'loss': 2.8591, 'learning_rate': 5.841700963175246e-07, 'epoch': 7.4} + 46%|████▌ | 171740/371472 [2:44:24<16:26:57, 3.37it/s] 46%|████▌ | 171741/371472 [2:44:24<16:36:03, 3.34it/s] 46%|████▌ | 171742/371472 [2:44:24<16:27:20, 3.37it/s] 46%|████▌ | 171743/371472 [2:44:25<16:50:34, 3.29it/s] 46%|████▌ | 171744/371472 [2:44:25<16:21:56, 3.39it/s] 46%|████▌ | 171745/371472 [2:44:25<17:03:50, 3.25it/s] 46%|████▌ | 171746/371472 [2:44:25<16:52:21, 3.29it/s] 46%|████▌ | 171747/371472 [2:44:26<16:39:41, 3.33it/s] 46%|████▌ | 171748/371472 [2:44:26<16:52:07, 3.29it/s] 46%|████▌ | 171749/371472 [2:44:26<16:29:53, 3.36it/s] 46%|████▌ | 171750/371472 [2:44:27<16:18:29, 3.40it/s] 46%|████▌ | 171751/371472 [2:44:27<16:52:20, 3.29it/s] 46%|████▌ | 171752/371472 [2:44:27<16:34:11, 3.35it/s] 46%|████▌ | 171753/371472 [2:44:28<16:52:13, 3.29it/s] 46%|████▌ | 171754/371472 [2:44:28<16:34:03, 3.35it/s] 46%|████▌ | 171755/371472 [2:44:28<16:37:35, 3.34it/s] 46%|████▌ | 171756/371472 [2:44:28<16:39:15, 3.33it/s] 46%|████▌ | 171757/371472 [2:44:29<16:49:24, 3.30it/s] 46%|████▌ | 171758/371472 [2:44:29<16:45:31, 3.31it/s] 46%|████▌ | 171759/371472 [2:44:29<16:14:46, 3.41it/s] 46%|████▌ | 171760/371472 [2:44:30<16:53:43, 3.28it/s] {'loss': 2.8466, 'learning_rate': 5.841216143420458e-07, 'epoch': 7.4} + 46%|████▌ | 171760/371472 [2:44:30<16:53:43, 3.28it/s] 46%|████▌ | 171761/371472 [2:44:30<16:55:15, 3.28it/s] 46%|████▌ | 171762/371472 [2:44:30<17:08:25, 3.24it/s] 46%|████▌ | 171763/371472 [2:44:31<17:39:04, 3.14it/s] 46%|████▌ | 171764/371472 [2:44:31<17:14:01, 3.22it/s] 46%|████▌ | 171765/371472 [2:44:31<16:48:09, 3.30it/s] 46%|████▌ | 171766/371472 [2:44:31<16:47:35, 3.30it/s] 46%|████▌ | 171767/371472 [2:44:32<16:15:09, 3.41it/s] 46%|████▌ | 171768/371472 [2:44:32<16:10:18, 3.43it/s] 46%|████▌ | 171769/371472 [2:44:32<16:19:21, 3.40it/s] 46%|████▌ | 171770/371472 [2:44:33<17:18:48, 3.20it/s] 46%|████▌ | 171771/371472 [2:44:33<18:06:40, 3.06it/s] 46%|████▌ | 171772/371472 [2:44:33<18:05:32, 3.07it/s] 46%|████▌ | 171773/371472 [2:44:34<18:20:07, 3.03it/s] 46%|████▌ | 171774/371472 [2:44:34<18:14:37, 3.04it/s] 46%|████▌ | 171775/371472 [2:44:34<18:31:49, 2.99it/s] 46%|████▌ | 171776/371472 [2:44:35<17:42:34, 3.13it/s] 46%|████▌ | 171777/371472 [2:44:35<17:10:51, 3.23it/s] 46%|████▌ | 171778/371472 [2:44:35<17:51:44, 3.11it/s] 46%|████▌ | 171779/371472 [2:44:36<17:45:42, 3.12it/s] 46%|████▌ | 171780/371472 [2:44:36<17:26:07, 3.18it/s] {'loss': 2.8126, 'learning_rate': 5.840731323665667e-07, 'epoch': 7.4} + 46%|████▌ | 171780/371472 [2:44:36<17:26:07, 3.18it/s] 46%|████▌ | 171781/371472 [2:44:36<18:26:26, 3.01it/s] 46%|████▌ | 171782/371472 [2:44:37<17:43:23, 3.13it/s] 46%|████▌ | 171783/371472 [2:44:37<17:19:49, 3.20it/s] 46%|████▌ | 171784/371472 [2:44:37<16:50:29, 3.29it/s] 46%|████▌ | 171785/371472 [2:44:38<17:59:50, 3.08it/s] 46%|████▌ | 171786/371472 [2:44:38<17:28:15, 3.17it/s] 46%|████▌ | 171787/371472 [2:44:38<17:53:36, 3.10it/s] 46%|████▌ | 171788/371472 [2:44:39<17:40:04, 3.14it/s] 46%|████▌ | 171789/371472 [2:44:39<17:09:47, 3.23it/s] 46%|████▌ | 171790/371472 [2:44:39<16:31:39, 3.36it/s] 46%|████▌ | 171791/371472 [2:44:39<16:01:11, 3.46it/s] 46%|████▌ | 171792/371472 [2:44:40<15:35:42, 3.56it/s] 46%|████▌ | 171793/371472 [2:44:40<16:40:59, 3.32it/s] 46%|████▌ | 171794/371472 [2:44:40<16:39:26, 3.33it/s] 46%|████▌ | 171795/371472 [2:44:41<18:09:06, 3.06it/s] 46%|████▌ | 171796/371472 [2:44:41<17:34:16, 3.16it/s] 46%|████▌ | 171797/371472 [2:44:41<16:53:42, 3.28it/s] 46%|████▌ | 171798/371472 [2:44:42<17:15:58, 3.21it/s] 46%|████▌ | 171799/371472 [2:44:42<17:15:19, 3.21it/s] 46%|████▌ | 171800/371472 [2:44:42<17:11:57, 3.22it/s] {'loss': 2.9123, 'learning_rate': 5.840246503910878e-07, 'epoch': 7.4} + 46%|████▌ | 171800/371472 [2:44:42<17:11:57, 3.22it/s] 46%|████▌ | 171801/371472 [2:44:42<16:39:33, 3.33it/s] 46%|████▌ | 171802/371472 [2:44:43<16:31:51, 3.36it/s] 46%|████▌ | 171803/371472 [2:44:43<16:25:49, 3.38it/s] 46%|████▌ | 171804/371472 [2:44:43<16:10:23, 3.43it/s] 46%|████▌ | 171805/371472 [2:44:44<17:41:32, 3.13it/s] 46%|████▋ | 171806/371472 [2:44:44<17:11:31, 3.23it/s] 46%|████▋ | 171807/371472 [2:44:44<17:59:05, 3.08it/s] 46%|████▋ | 171808/371472 [2:44:45<17:25:49, 3.18it/s] 46%|████▋ | 171809/371472 [2:44:45<17:24:55, 3.18it/s] 46%|████▋ | 171810/371472 [2:44:45<16:59:04, 3.27it/s] 46%|████▋ | 171811/371472 [2:44:45<16:39:03, 3.33it/s] 46%|████▋ | 171812/371472 [2:44:46<16:45:30, 3.31it/s] 46%|████▋ | 171813/371472 [2:44:46<16:40:10, 3.33it/s] 46%|████▋ | 171814/371472 [2:44:46<17:24:40, 3.19it/s] 46%|████▋ | 171815/371472 [2:44:47<17:04:59, 3.25it/s] 46%|████▋ | 171816/371472 [2:44:47<17:14:49, 3.22it/s] 46%|████▋ | 171817/371472 [2:44:47<16:47:48, 3.30it/s] 46%|████▋ | 171818/371472 [2:44:48<17:22:42, 3.19it/s] 46%|████▋ | 171819/371472 [2:44:48<17:25:49, 3.18it/s] 46%|████▋ | 171820/371472 [2:44:48<16:34:11, 3.35it/s] {'loss': 2.8722, 'learning_rate': 5.83976168415609e-07, 'epoch': 7.4} + 46%|████▋ | 171820/371472 [2:44:48<16:34:11, 3.35it/s] 46%|████▋ | 171821/371472 [2:44:49<16:19:00, 3.40it/s] 46%|████▋ | 171822/371472 [2:44:49<16:30:57, 3.36it/s] 46%|████▋ | 171823/371472 [2:44:49<16:28:23, 3.37it/s] 46%|████▋ | 171824/371472 [2:44:49<16:31:05, 3.36it/s] 46%|████▋ | 171825/371472 [2:44:50<16:35:56, 3.34it/s] 46%|████▋ | 171826/371472 [2:44:50<16:42:35, 3.32it/s] 46%|████▋ | 171827/371472 [2:44:50<18:09:23, 3.05it/s] 46%|████▋ | 171828/371472 [2:44:51<17:53:27, 3.10it/s] 46%|████▋ | 171829/371472 [2:44:51<17:13:58, 3.22it/s] 46%|████▋ | 171830/371472 [2:44:51<17:15:27, 3.21it/s] 46%|████▋ | 171831/371472 [2:44:52<17:24:12, 3.19it/s] 46%|████▋ | 171832/371472 [2:44:52<17:09:58, 3.23it/s] 46%|████▋ | 171833/371472 [2:44:52<16:45:53, 3.31it/s] 46%|████▋ | 171834/371472 [2:44:53<16:19:41, 3.40it/s] 46%|████▋ | 171835/371472 [2:44:53<16:24:03, 3.38it/s] 46%|████▋ | 171836/371472 [2:44:53<16:30:30, 3.36it/s] 46%|████▋ | 171837/371472 [2:44:53<16:43:15, 3.32it/s] 46%|████▋ | 171838/371472 [2:44:54<17:49:48, 3.11it/s] 46%|████▋ | 171839/371472 [2:44:54<17:54:47, 3.10it/s] 46%|████▋ | 171840/371472 [2:44:54<17:15:20, 3.21it/s] {'loss': 2.9351, 'learning_rate': 5.839276864401302e-07, 'epoch': 7.4} + 46%|████▋ | 171840/371472 [2:44:54<17:15:20, 3.21it/s] 46%|████▋ | 171841/371472 [2:44:55<16:52:59, 3.28it/s] 46%|████▋ | 171842/371472 [2:44:55<16:53:26, 3.28it/s] 46%|████▋ | 171843/371472 [2:44:55<16:21:37, 3.39it/s] 46%|████▋ | 171844/371472 [2:44:56<16:28:47, 3.36it/s] 46%|████▋ | 171845/371472 [2:44:56<16:48:08, 3.30it/s] 46%|████▋ | 171846/371472 [2:44:56<16:18:25, 3.40it/s] 46%|████▋ | 171847/371472 [2:44:57<17:33:29, 3.16it/s] 46%|████▋ | 171848/371472 [2:44:57<17:31:05, 3.17it/s] 46%|████▋ | 171849/371472 [2:44:57<17:09:56, 3.23it/s] 46%|████▋ | 171850/371472 [2:44:57<17:19:17, 3.20it/s] 46%|████▋ | 171851/371472 [2:44:58<17:00:27, 3.26it/s] 46%|████▋ | 171852/371472 [2:44:58<16:55:10, 3.28it/s] 46%|████▋ | 171853/371472 [2:44:58<16:44:30, 3.31it/s] 46%|████▋ | 171854/371472 [2:44:59<16:16:56, 3.41it/s] 46%|████▋ | 171855/371472 [2:44:59<16:19:18, 3.40it/s] 46%|████▋ | 171856/371472 [2:44:59<16:28:06, 3.37it/s] 46%|████▋ | 171857/371472 [2:45:00<16:14:01, 3.42it/s] 46%|████▋ | 171858/371472 [2:45:00<17:31:06, 3.17it/s] 46%|████▋ | 171859/371472 [2:45:00<17:11:04, 3.23it/s] 46%|████▋ | 171860/371472 [2:45:00<16:48:17, 3.30it/s] {'loss': 2.9546, 'learning_rate': 5.838792044646512e-07, 'epoch': 7.4} + 46%|████▋ | 171860/371472 [2:45:00<16:48:17, 3.30it/s] 46%|████▋ | 171861/371472 [2:45:01<16:53:36, 3.28it/s] 46%|████▋ | 171862/371472 [2:45:01<16:21:48, 3.39it/s] 46%|████▋ | 171863/371472 [2:45:01<16:28:03, 3.37it/s] 46%|████▋ | 171864/371472 [2:45:02<16:39:17, 3.33it/s] 46%|████▋ | 171865/371472 [2:45:02<18:02:13, 3.07it/s] 46%|████▋ | 171866/371472 [2:45:02<19:16:38, 2.88it/s] 46%|████▋ | 171867/371472 [2:45:03<18:50:29, 2.94it/s] 46%|████▋ | 171868/371472 [2:45:03<17:54:10, 3.10it/s] 46%|████▋ | 171869/371472 [2:45:03<17:18:15, 3.20it/s] 46%|████▋ | 171870/371472 [2:45:04<16:48:59, 3.30it/s] 46%|████▋ | 171871/371472 [2:45:04<17:24:36, 3.18it/s] 46%|████▋ | 171872/371472 [2:45:04<16:36:49, 3.34it/s] 46%|████▋ | 171873/371472 [2:45:05<16:24:26, 3.38it/s] 46%|████▋ | 171874/371472 [2:45:05<16:23:10, 3.38it/s] 46%|████▋ | 171875/371472 [2:45:05<16:34:59, 3.34it/s] 46%|████▋ | 171876/371472 [2:45:05<17:28:13, 3.17it/s] 46%|████▋ | 171877/371472 [2:45:06<17:11:27, 3.23it/s] 46%|████▋ | 171878/371472 [2:45:06<16:47:26, 3.30it/s] 46%|████▋ | 171879/371472 [2:45:06<16:35:00, 3.34it/s] 46%|████▋ | 171880/371472 [2:45:07<16:25:24, 3.38it/s] {'loss': 2.9289, 'learning_rate': 5.838307224891723e-07, 'epoch': 7.4} + 46%|████▋ | 171880/371472 [2:45:07<16:25:24, 3.38it/s] 46%|████▋ | 171881/371472 [2:45:07<16:30:34, 3.36it/s] 46%|████▋ | 171882/371472 [2:45:07<16:26:41, 3.37it/s] 46%|████▋ | 171883/371472 [2:45:08<16:26:19, 3.37it/s] 46%|████▋ | 171884/371472 [2:45:08<16:29:39, 3.36it/s] 46%|████▋ | 171885/371472 [2:45:08<16:01:31, 3.46it/s] 46%|████▋ | 171886/371472 [2:45:09<18:07:51, 3.06it/s] 46%|████▋ | 171887/371472 [2:45:09<18:19:24, 3.03it/s] 46%|████▋ | 171888/371472 [2:45:09<17:31:02, 3.16it/s] 46%|████▋ | 171889/371472 [2:45:09<17:02:44, 3.25it/s] 46%|████▋ | 171890/371472 [2:45:10<16:26:51, 3.37it/s] 46%|████▋ | 171891/371472 [2:45:10<16:14:23, 3.41it/s] 46%|████▋ | 171892/371472 [2:45:10<17:02:05, 3.25it/s] 46%|████▋ | 171893/371472 [2:45:11<17:16:36, 3.21it/s] 46%|████▋ | 171894/371472 [2:45:11<16:56:37, 3.27it/s] 46%|████▋ | 171895/371472 [2:45:11<16:51:52, 3.29it/s] 46%|████▋ | 171896/371472 [2:45:12<17:06:02, 3.24it/s] 46%|████▋ | 171897/371472 [2:45:12<16:50:15, 3.29it/s] 46%|████▋ | 171898/371472 [2:45:12<16:29:38, 3.36it/s] 46%|████▋ | 171899/371472 [2:45:12<16:23:27, 3.38it/s] 46%|████▋ | 171900/371472 [2:45:13<16:09:23, 3.43it/s] {'loss': 2.9627, 'learning_rate': 5.837822405136934e-07, 'epoch': 7.4} + 46%|████▋ | 171900/371472 [2:45:13<16:09:23, 3.43it/s] 46%|████▋ | 171901/371472 [2:45:13<16:09:40, 3.43it/s] 46%|████▋ | 171902/371472 [2:45:13<15:59:44, 3.47it/s] 46%|████▋ | 171903/371472 [2:45:14<16:24:20, 3.38it/s] 46%|████▋ | 171904/371472 [2:45:14<16:54:30, 3.28it/s] 46%|████▋ | 171905/371472 [2:45:14<18:04:15, 3.07it/s] 46%|████▋ | 171906/371472 [2:45:15<17:16:10, 3.21it/s] 46%|████▋ | 171907/371472 [2:45:15<16:34:18, 3.35it/s] 46%|████▋ | 171908/371472 [2:45:15<16:23:13, 3.38it/s] 46%|████▋ | 171909/371472 [2:45:15<15:47:16, 3.51it/s] 46%|████▋ | 171910/371472 [2:45:16<15:41:08, 3.53it/s] 46%|████▋ | 171911/371472 [2:45:16<15:33:26, 3.56it/s] 46%|████▋ | 171912/371472 [2:45:16<15:52:48, 3.49it/s] 46%|████▋ | 171913/371472 [2:45:17<16:04:06, 3.45it/s] 46%|████▋ | 171914/371472 [2:45:17<16:22:46, 3.38it/s] 46%|████▋ | 171915/371472 [2:45:17<16:08:04, 3.44it/s] 46%|████▋ | 171916/371472 [2:45:17<15:50:26, 3.50it/s] 46%|████▋ | 171917/371472 [2:45:18<15:32:49, 3.57it/s] 46%|████▋ | 171918/371472 [2:45:18<16:14:38, 3.41it/s] 46%|████▋ | 171919/371472 [2:45:18<16:39:30, 3.33it/s] 46%|████▋ | 171920/371472 [2:45:19<17:34:43, 3.15it/s] {'loss': 2.9691, 'learning_rate': 5.837337585382146e-07, 'epoch': 7.4} + 46%|████▋ | 171920/371472 [2:45:19<17:34:43, 3.15it/s] 46%|████▋ | 171921/371472 [2:45:19<17:14:56, 3.21it/s] 46%|████▋ | 171922/371472 [2:45:19<16:48:52, 3.30it/s] 46%|████▋ | 171923/371472 [2:45:20<16:21:05, 3.39it/s] 46%|████▋ | 171924/371472 [2:45:20<19:18:38, 2.87it/s] 46%|████▋ | 171925/371472 [2:45:20<18:12:35, 3.04it/s] 46%|████▋ | 171926/371472 [2:45:21<17:42:00, 3.13it/s] 46%|████▋ | 171927/371472 [2:45:21<17:05:33, 3.24it/s] 46%|████▋ | 171928/371472 [2:45:21<17:30:09, 3.17it/s] 46%|████▋ | 171929/371472 [2:45:21<17:15:46, 3.21it/s] 46%|████▋ | 171930/371472 [2:45:22<16:47:27, 3.30it/s] 46%|████▋ | 171931/371472 [2:45:22<17:01:52, 3.25it/s] 46%|████▋ | 171932/371472 [2:45:22<16:25:18, 3.38it/s] 46%|████▋ | 171933/371472 [2:45:23<16:13:52, 3.41it/s] 46%|████▋ | 171934/371472 [2:45:23<16:02:16, 3.46it/s] 46%|████▋ | 171935/371472 [2:45:23<15:45:38, 3.52it/s] 46%|████▋ | 171936/371472 [2:45:23<15:36:40, 3.55it/s] 46%|████▋ | 171937/371472 [2:45:24<15:41:36, 3.53it/s] 46%|████▋ | 171938/371472 [2:45:24<15:57:05, 3.47it/s] 46%|████▋ | 171939/371472 [2:45:24<15:57:27, 3.47it/s] 46%|████▋ | 171940/371472 [2:45:25<16:11:17, 3.42it/s] {'loss': 2.8775, 'learning_rate': 5.836852765627356e-07, 'epoch': 7.41} + 46%|████▋ | 171940/371472 [2:45:25<16:11:17, 3.42it/s] 46%|████▋ | 171941/371472 [2:45:25<16:00:48, 3.46it/s] 46%|████▋ | 171942/371472 [2:45:25<16:03:16, 3.45it/s] 46%|████▋ | 171943/371472 [2:45:26<16:33:16, 3.35it/s] 46%|████▋ | 171944/371472 [2:45:26<16:26:37, 3.37it/s] 46%|████▋ | 171945/371472 [2:45:26<17:27:02, 3.18it/s] 46%|████▋ | 171946/371472 [2:45:27<17:45:50, 3.12it/s] 46%|████▋ | 171947/371472 [2:45:27<16:54:42, 3.28it/s] 46%|████▋ | 171948/371472 [2:45:27<16:26:19, 3.37it/s] 46%|████▋ | 171949/371472 [2:45:27<16:27:11, 3.37it/s] 46%|████▋ | 171950/371472 [2:45:28<16:26:49, 3.37it/s] 46%|████▋ | 171951/371472 [2:45:28<16:22:26, 3.38it/s] 46%|████▋ | 171952/371472 [2:45:28<16:06:12, 3.44it/s] 46%|████▋ | 171953/371472 [2:45:29<17:41:17, 3.13it/s] 46%|████▋ | 171954/371472 [2:45:29<16:54:27, 3.28it/s] 46%|████▋ | 171955/371472 [2:45:29<17:06:03, 3.24it/s] 46%|████▋ | 171956/371472 [2:45:29<16:38:43, 3.33it/s] 46%|████▋ | 171957/371472 [2:45:30<17:22:08, 3.19it/s] 46%|████▋ | 171958/371472 [2:45:30<16:46:32, 3.30it/s] 46%|████▋ | 171959/371472 [2:45:30<16:33:11, 3.35it/s] 46%|████▋ | 171960/371472 [2:45:31<16:29:56, 3.36it/s] {'loss': 2.8242, 'learning_rate': 5.836367945872567e-07, 'epoch': 7.41} + 46%|████▋ | 171960/371472 [2:45:31<16:29:56, 3.36it/s] 46%|████▋ | 171961/371472 [2:45:31<16:29:21, 3.36it/s] 46%|████▋ | 171962/371472 [2:45:31<16:28:56, 3.36it/s] 46%|████▋ | 171963/371472 [2:45:32<16:33:43, 3.35it/s] 46%|████▋ | 171964/371472 [2:45:32<16:06:31, 3.44it/s] 46%|████▋ | 171965/371472 [2:45:32<15:54:08, 3.48it/s] 46%|████▋ | 171966/371472 [2:45:32<15:55:17, 3.48it/s] 46%|████▋ | 171967/371472 [2:45:33<16:02:36, 3.45it/s] 46%|████▋ | 171968/371472 [2:45:33<16:08:18, 3.43it/s] 46%|████▋ | 171969/371472 [2:45:33<17:31:15, 3.16it/s] 46%|████▋ | 171970/371472 [2:45:34<17:42:21, 3.13it/s] 46%|████▋ | 171971/371472 [2:45:34<17:03:01, 3.25it/s] 46%|████▋ | 171972/371472 [2:45:34<17:19:46, 3.20it/s] 46%|████▋ | 171973/371472 [2:45:35<16:57:48, 3.27it/s] 46%|████▋ | 171974/371472 [2:45:35<16:24:48, 3.38it/s] 46%|████▋ | 171975/371472 [2:45:35<15:51:45, 3.49it/s] 46%|████▋ | 171976/371472 [2:45:35<15:41:10, 3.53it/s] 46%|████▋ | 171977/371472 [2:45:36<16:02:22, 3.45it/s] 46%|████▋ | 171978/371472 [2:45:36<15:45:11, 3.52it/s] 46%|████▋ | 171979/371472 [2:45:36<15:41:58, 3.53it/s] 46%|████▋ | 171980/371472 [2:45:37<17:29:10, 3.17it/s] {'loss': 2.8642, 'learning_rate': 5.835883126117779e-07, 'epoch': 7.41} + 46%|████▋ | 171980/371472 [2:45:37<17:29:10, 3.17it/s] 46%|████▋ | 171981/371472 [2:45:37<16:52:41, 3.28it/s] 46%|████▋ | 171982/371472 [2:45:37<16:42:17, 3.32it/s] 46%|████▋ | 171983/371472 [2:45:38<16:46:54, 3.30it/s] 46%|████▋ | 171984/371472 [2:45:38<18:44:21, 2.96it/s] 46%|████▋ | 171985/371472 [2:45:38<17:39:57, 3.14it/s] 46%|████▋ | 171986/371472 [2:45:39<17:00:29, 3.26it/s] 46%|████▋ | 171987/371472 [2:45:39<16:51:15, 3.29it/s] 46%|████▋ | 171988/371472 [2:45:39<18:24:20, 3.01it/s] 46%|████▋ | 171989/371472 [2:45:40<18:08:43, 3.05it/s] 46%|████▋ | 171990/371472 [2:45:40<17:34:38, 3.15it/s] 46%|████▋ | 171991/371472 [2:45:40<17:49:02, 3.11it/s] 46%|████▋ | 171992/371472 [2:45:40<17:15:40, 3.21it/s] 46%|████▋ | 171993/371472 [2:45:41<17:17:39, 3.20it/s] 46%|████▋ | 171994/371472 [2:45:41<17:15:51, 3.21it/s] 46%|████▋ | 171995/371472 [2:45:41<16:54:34, 3.28it/s] 46%|████▋ | 171996/371472 [2:45:42<16:34:03, 3.34it/s] 46%|████▋ | 171997/371472 [2:45:42<15:58:31, 3.47it/s] 46%|████▋ | 171998/371472 [2:45:42<15:30:32, 3.57it/s] 46%|████▋ | 171999/371472 [2:45:42<15:31:52, 3.57it/s] 46%|████▋ | 172000/371472 [2:45:43<16:40:52, 3.32it/s] {'loss': 2.927, 'learning_rate': 5.83539830636299e-07, 'epoch': 7.41} + 46%|████▋ | 172000/371472 [2:45:43<16:40:52, 3.32it/s] 46%|████▋ | 172001/371472 [2:45:43<17:01:53, 3.25it/s] 46%|████▋ | 172002/371472 [2:45:43<17:22:04, 3.19it/s] 46%|████▋ | 172003/371472 [2:45:44<16:58:28, 3.26it/s] 46%|████▋ | 172004/371472 [2:45:44<17:15:20, 3.21it/s] 46%|████▋ | 172005/371472 [2:45:44<18:09:31, 3.05it/s] 46%|████▋ | 172006/371472 [2:45:45<17:51:56, 3.10it/s] 46%|████▋ | 172007/371472 [2:45:45<17:07:59, 3.23it/s] 46%|████▋ | 172008/371472 [2:45:45<16:48:57, 3.29it/s] 46%|████▋ | 172009/371472 [2:45:46<16:27:33, 3.37it/s] 46%|████▋ | 172010/371472 [2:45:46<16:21:19, 3.39it/s] 46%|████▋ | 172011/371472 [2:45:46<16:43:39, 3.31it/s] 46%|████▋ | 172012/371472 [2:45:46<16:15:41, 3.41it/s] 46%|████▋ | 172013/371472 [2:45:47<16:37:36, 3.33it/s] 46%|████▋ | 172014/371472 [2:45:47<16:24:51, 3.38it/s] 46%|████▋ | 172015/371472 [2:45:47<16:31:48, 3.35it/s] 46%|████▋ | 172016/371472 [2:45:48<16:14:20, 3.41it/s] 46%|████▋ | 172017/371472 [2:45:48<16:03:50, 3.45it/s] 46%|████▋ | 172018/371472 [2:45:48<16:22:47, 3.38it/s] 46%|████▋ | 172019/371472 [2:45:49<15:59:59, 3.46it/s] 46%|████▋ | 172020/371472 [2:45:49<15:47:45, 3.51it/s] {'loss': 2.9396, 'learning_rate': 5.8349134866082e-07, 'epoch': 7.41} + 46%|████▋ | 172020/371472 [2:45:49<15:47:45, 3.51it/s] 46%|████▋ | 172021/371472 [2:45:49<15:24:02, 3.60it/s] 46%|████▋ | 172022/371472 [2:45:49<15:22:43, 3.60it/s] 46%|████▋ | 172023/371472 [2:45:50<15:42:47, 3.53it/s] 46%|████▋ | 172024/371472 [2:45:50<15:28:50, 3.58it/s] 46%|████▋ | 172025/371472 [2:45:50<16:47:42, 3.30it/s] 46%|████▋ | 172026/371472 [2:45:51<16:38:54, 3.33it/s] 46%|████▋ | 172027/371472 [2:45:51<16:22:18, 3.38it/s] 46%|████▋ | 172028/371472 [2:45:51<16:11:59, 3.42it/s] 46%|████▋ | 172029/371472 [2:45:51<16:12:51, 3.42it/s] 46%|████▋ | 172030/371472 [2:45:52<15:55:48, 3.48it/s] 46%|████▋ | 172031/371472 [2:45:52<17:03:41, 3.25it/s] 46%|████▋ | 172032/371472 [2:45:52<16:51:40, 3.29it/s] 46%|████▋ | 172033/371472 [2:45:53<16:39:29, 3.33it/s] 46%|████▋ | 172034/371472 [2:45:53<16:52:02, 3.28it/s] 46%|████▋ | 172035/371472 [2:45:53<16:26:27, 3.37it/s] 46%|████▋ | 172036/371472 [2:45:54<17:15:31, 3.21it/s] 46%|████▋ | 172037/371472 [2:45:54<17:00:04, 3.26it/s] 46%|████▋ | 172038/371472 [2:45:54<16:24:55, 3.37it/s] 46%|████▋ | 172039/371472 [2:45:54<16:10:08, 3.43it/s] 46%|████▋ | 172040/371472 [2:45:55<15:48:26, 3.50it/s] {'loss': 2.909, 'learning_rate': 5.834428666853411e-07, 'epoch': 7.41} + 46%|████▋ | 172040/371472 [2:45:55<15:48:26, 3.50it/s] 46%|████▋ | 172041/371472 [2:45:55<16:00:45, 3.46it/s] 46%|████▋ | 172042/371472 [2:45:55<16:04:05, 3.45it/s] 46%|████▋ | 172043/371472 [2:45:56<16:35:33, 3.34it/s] 46%|████▋ | 172044/371472 [2:45:56<16:39:45, 3.32it/s] 46%|████▋ | 172045/371472 [2:45:56<17:25:55, 3.18it/s] 46%|████▋ | 172046/371472 [2:45:57<17:14:19, 3.21it/s] 46%|████▋ | 172047/371472 [2:45:57<17:28:52, 3.17it/s] 46%|████▋ | 172048/371472 [2:45:57<16:52:49, 3.28it/s] 46%|████▋ | 172049/371472 [2:45:58<17:44:24, 3.12it/s] 46%|████▋ | 172050/371472 [2:45:58<17:25:52, 3.18it/s] 46%|████▋ | 172051/371472 [2:45:58<16:43:40, 3.31it/s] 46%|████▋ | 172052/371472 [2:45:58<16:24:04, 3.38it/s] 46%|████▋ | 172053/371472 [2:45:59<17:59:12, 3.08it/s] 46%|████▋ | 172054/371472 [2:45:59<17:17:30, 3.20it/s] 46%|████▋ | 172055/371472 [2:45:59<17:10:13, 3.23it/s] 46%|████▋ | 172056/371472 [2:46:00<17:12:18, 3.22it/s] 46%|████▋ | 172057/371472 [2:46:00<16:52:09, 3.28it/s] 46%|████▋ | 172058/371472 [2:46:00<16:36:16, 3.34it/s] 46%|████▋ | 172059/371472 [2:46:01<17:59:30, 3.08it/s] 46%|████▋ | 172060/371472 [2:46:01<17:27:56, 3.17it/s] {'loss': 2.9112, 'learning_rate': 5.833943847098623e-07, 'epoch': 7.41} + 46%|████▋ | 172060/371472 [2:46:01<17:27:56, 3.17it/s] 46%|████▋ | 172061/371472 [2:46:01<16:59:38, 3.26it/s] 46%|████▋ | 172062/371472 [2:46:01<16:15:20, 3.41it/s] 46%|████▋ | 172063/371472 [2:46:02<15:46:24, 3.51it/s] 46%|████▋ | 172064/371472 [2:46:02<15:31:26, 3.57it/s] 46%|████▋ | 172065/371472 [2:46:02<16:17:41, 3.40it/s] 46%|████▋ | 172066/371472 [2:46:03<16:38:55, 3.33it/s] 46%|████▋ | 172067/371472 [2:46:03<16:27:40, 3.36it/s] 46%|████▋ | 172068/371472 [2:46:03<16:00:58, 3.46it/s] 46%|████▋ | 172069/371472 [2:46:04<16:19:02, 3.39it/s] 46%|████▋ | 172070/371472 [2:46:04<16:32:46, 3.35it/s] 46%|████▋ | 172071/371472 [2:46:04<15:45:15, 3.52it/s] 46%|████▋ | 172072/371472 [2:46:04<15:58:23, 3.47it/s] 46%|████▋ | 172073/371472 [2:46:05<16:18:42, 3.40it/s] 46%|████▋ | 172074/371472 [2:46:05<16:10:57, 3.42it/s] 46%|████▋ | 172075/371472 [2:46:05<16:48:13, 3.30it/s] 46%|████▋ | 172076/371472 [2:46:06<16:41:20, 3.32it/s] 46%|████▋ | 172077/371472 [2:46:06<16:23:25, 3.38it/s] 46%|████▋ | 172078/371472 [2:46:06<16:26:19, 3.37it/s] 46%|████▋ | 172079/371472 [2:46:07<17:01:14, 3.25it/s] 46%|████▋ | 172080/371472 [2:46:07<17:39:16, 3.14it/s] {'loss': 2.9629, 'learning_rate': 5.833459027343834e-07, 'epoch': 7.41} + 46%|████▋ | 172080/371472 [2:46:07<17:39:16, 3.14it/s] 46%|████▋ | 172081/371472 [2:46:07<17:24:07, 3.18it/s] 46%|████▋ | 172082/371472 [2:46:07<17:40:12, 3.13it/s] 46%|████▋ | 172083/371472 [2:46:08<16:56:59, 3.27it/s] 46%|████▋ | 172084/371472 [2:46:08<16:39:15, 3.33it/s] 46%|████▋ | 172085/371472 [2:46:08<16:19:27, 3.39it/s] 46%|████▋ | 172086/371472 [2:46:09<16:40:52, 3.32it/s] 46%|████▋ | 172087/371472 [2:46:09<16:23:11, 3.38it/s] 46%|████▋ | 172088/371472 [2:46:09<15:51:53, 3.49it/s] 46%|████▋ | 172089/371472 [2:46:10<16:37:13, 3.33it/s] 46%|████▋ | 172090/371472 [2:46:10<17:01:58, 3.25it/s] 46%|████▋ | 172091/371472 [2:46:10<16:48:47, 3.29it/s] 46%|████▋ | 172092/371472 [2:46:10<16:30:49, 3.35it/s] 46%|████▋ | 172093/371472 [2:46:11<16:22:54, 3.38it/s] 46%|████▋ | 172094/371472 [2:46:11<17:06:21, 3.24it/s] 46%|████▋ | 172095/371472 [2:46:11<16:57:08, 3.27it/s] 46%|████▋ | 172096/371472 [2:46:12<16:29:26, 3.36it/s] 46%|████▋ | 172097/371472 [2:46:12<16:26:33, 3.37it/s] 46%|████▋ | 172098/371472 [2:46:12<16:14:03, 3.41it/s] 46%|████▋ | 172099/371472 [2:46:13<16:03:39, 3.45it/s] 46%|████▋ | 172100/371472 [2:46:13<15:45:04, 3.52it/s] {'loss': 2.9921, 'learning_rate': 5.832974207589045e-07, 'epoch': 7.41} + 46%|████▋ | 172100/371472 [2:46:13<15:45:04, 3.52it/s] 46%|████▋ | 172101/371472 [2:46:13<15:58:49, 3.47it/s] 46%|████▋ | 172102/371472 [2:46:13<16:10:14, 3.42it/s] 46%|████▋ | 172103/371472 [2:46:14<16:06:40, 3.44it/s] 46%|████▋ | 172104/371472 [2:46:14<16:17:26, 3.40it/s] 46%|████▋ | 172105/371472 [2:46:14<16:52:02, 3.28it/s] 46%|██��█▋ | 172106/371472 [2:46:15<16:52:49, 3.28it/s] 46%|████▋ | 172107/371472 [2:46:15<17:25:04, 3.18it/s] 46%|████▋ | 172108/371472 [2:46:15<17:11:54, 3.22it/s] 46%|████▋ | 172109/371472 [2:46:16<16:46:59, 3.30it/s] 46%|████▋ | 172110/371472 [2:46:16<16:18:57, 3.39it/s] 46%|████▋ | 172111/371472 [2:46:16<16:13:18, 3.41it/s] 46%|████▋ | 172112/371472 [2:46:16<17:49:00, 3.11it/s] 46%|████▋ | 172113/371472 [2:46:17<16:55:12, 3.27it/s] 46%|████▋ | 172114/371472 [2:46:17<16:52:13, 3.28it/s] 46%|████▋ | 172115/371472 [2:46:17<16:37:02, 3.33it/s] 46%|████▋ | 172116/371472 [2:46:18<17:05:05, 3.24it/s] 46%|████▋ | 172117/371472 [2:46:18<16:48:20, 3.30it/s] 46%|████▋ | 172118/371472 [2:46:18<18:23:40, 3.01it/s] 46%|████▋ | 172119/371472 [2:46:19<19:00:01, 2.91it/s] 46%|████▋ | 172120/371472 [2:46:19<17:48:11, 3.11it/s] {'loss': 3.0032, 'learning_rate': 5.832489387834256e-07, 'epoch': 7.41} + 46%|████▋ | 172120/371472 [2:46:19<17:48:11, 3.11it/s] 46%|████▋ | 172121/371472 [2:46:19<17:47:49, 3.11it/s] 46%|████▋ | 172122/371472 [2:46:20<17:49:07, 3.11it/s] 46%|████▋ | 172123/371472 [2:46:20<17:18:06, 3.20it/s] 46%|████▋ | 172124/371472 [2:46:20<17:13:03, 3.22it/s] 46%|████▋ | 172125/371472 [2:46:21<16:46:41, 3.30it/s] 46%|████▋ | 172126/371472 [2:46:21<17:43:54, 3.12it/s] 46%|████▋ | 172127/371472 [2:46:21<17:07:13, 3.23it/s] 46%|████▋ | 172128/371472 [2:46:21<16:56:59, 3.27it/s] 46%|████▋ | 172129/371472 [2:46:22<17:10:36, 3.22it/s] 46%|████▋ | 172130/371472 [2:46:22<16:46:38, 3.30it/s] 46%|████▋ | 172131/371472 [2:46:22<16:33:55, 3.34it/s] 46%|████▋ | 172132/371472 [2:46:23<17:21:35, 3.19it/s] 46%|████▋ | 172133/371472 [2:46:23<16:50:20, 3.29it/s] 46%|████▋ | 172134/371472 [2:46:23<16:49:53, 3.29it/s] 46%|████▋ | 172135/371472 [2:46:24<16:34:07, 3.34it/s] 46%|████▋ | 172136/371472 [2:46:24<16:42:46, 3.31it/s] 46%|████▋ | 172137/371472 [2:46:24<16:54:04, 3.28it/s] 46%|████▋ | 172138/371472 [2:46:24<16:34:14, 3.34it/s] 46%|████▋ | 172139/371472 [2:46:25<16:27:48, 3.36it/s] 46%|████▋ | 172140/371472 [2:46:25<16:30:24, 3.35it/s] {'loss': 3.0308, 'learning_rate': 5.832004568079468e-07, 'epoch': 7.41} + 46%|████▋ | 172140/371472 [2:46:25<16:30:24, 3.35it/s] 46%|████▋ | 172141/371472 [2:46:25<16:27:33, 3.36it/s] 46%|████▋ | 172142/371472 [2:46:26<16:16:17, 3.40it/s] 46%|████▋ | 172143/371472 [2:46:26<16:07:01, 3.44it/s] 46%|████▋ | 172144/371472 [2:46:26<16:11:34, 3.42it/s] 46%|████▋ | 172145/371472 [2:46:27<17:15:27, 3.21it/s] 46%|████▋ | 172146/371472 [2:46:27<16:49:16, 3.29it/s] 46%|████▋ | 172147/371472 [2:46:27<16:40:32, 3.32it/s] 46%|████▋ | 172148/371472 [2:46:27<16:38:48, 3.33it/s] 46%|████▋ | 172149/371472 [2:46:28<16:58:41, 3.26it/s] 46%|████▋ | 172150/371472 [2:46:28<17:05:21, 3.24it/s] 46%|████▋ | 172151/371472 [2:46:28<17:07:40, 3.23it/s] 46%|████▋ | 172152/371472 [2:46:29<16:53:33, 3.28it/s] 46%|████▋ | 172153/371472 [2:46:29<17:46:45, 3.11it/s] 46%|████▋ | 172154/371472 [2:46:29<17:21:10, 3.19it/s] 46%|████▋ | 172155/371472 [2:46:30<17:15:35, 3.21it/s] 46%|████▋ | 172156/371472 [2:46:30<16:54:54, 3.27it/s] 46%|████▋ | 172157/371472 [2:46:30<16:51:24, 3.28it/s] 46%|████▋ | 172158/371472 [2:46:31<16:44:38, 3.31it/s] 46%|████▋ | 172159/371472 [2:46:31<16:18:12, 3.40it/s] 46%|████▋ | 172160/371472 [2:46:31<16:29:17, 3.36it/s] {'loss': 2.9708, 'learning_rate': 5.831519748324678e-07, 'epoch': 7.42} + 46%|████▋ | 172160/371472 [2:46:31<16:29:17, 3.36it/s] 46%|████▋ | 172161/371472 [2:46:31<16:18:50, 3.39it/s] 46%|████▋ | 172162/371472 [2:46:32<17:07:23, 3.23it/s] 46%|████▋ | 172163/371472 [2:46:32<16:32:29, 3.35it/s] 46%|████▋ | 172164/371472 [2:46:32<16:02:59, 3.45it/s] 46%|████▋ | 172165/371472 [2:46:33<15:47:01, 3.51it/s] 46%|████▋ | 172166/371472 [2:46:33<16:08:19, 3.43it/s] 46%|████▋ | 172167/371472 [2:46:33<15:54:55, 3.48it/s] 46%|████▋ | 172168/371472 [2:46:33<16:11:09, 3.42it/s] 46%|████▋ | 172169/371472 [2:46:34<16:00:14, 3.46it/s] 46%|████▋ | 172170/371472 [2:46:34<15:47:15, 3.51it/s] 46%|████▋ | 172171/371472 [2:46:34<15:42:46, 3.52it/s] 46%|████▋ | 172172/371472 [2:46:35<15:53:41, 3.48it/s] 46%|████▋ | 172173/371472 [2:46:35<15:50:25, 3.49it/s] 46%|████▋ | 172174/371472 [2:46:35<15:32:08, 3.56it/s] 46%|████▋ | 172175/371472 [2:46:35<15:37:45, 3.54it/s] 46%|████▋ | 172176/371472 [2:46:36<15:46:20, 3.51it/s] 46%|████▋ | 172177/371472 [2:46:36<15:46:45, 3.51it/s] 46%|████▋ | 172178/371472 [2:46:36<16:00:56, 3.46it/s] 46%|████▋ | 172179/371472 [2:46:37<16:18:35, 3.39it/s] 46%|████▋ | 172180/371472 [2:46:37<16:48:15, 3.29it/s] {'loss': 3.0427, 'learning_rate': 5.831034928569889e-07, 'epoch': 7.42} + 46%|████▋ | 172180/371472 [2:46:37<16:48:15, 3.29it/s] 46%|████▋ | 172181/371472 [2:46:37<16:33:36, 3.34it/s] 46%|████▋ | 172182/371472 [2:46:38<16:18:33, 3.39it/s] 46%|████▋ | 172183/371472 [2:46:38<16:05:05, 3.44it/s] 46%|████▋ | 172184/371472 [2:46:38<15:48:06, 3.50it/s] 46%|████▋ | 172185/371472 [2:46:38<15:33:55, 3.56it/s] 46%|████▋ | 172186/371472 [2:46:39<15:51:09, 3.49it/s] 46%|████▋ | 172187/371472 [2:46:39<16:52:50, 3.28it/s] 46%|████▋ | 172188/371472 [2:46:39<16:50:43, 3.29it/s] 46%|████▋ | 172189/371472 [2:46:40<16:34:44, 3.34it/s] 46%|████▋ | 172190/371472 [2:46:40<16:28:39, 3.36it/s] 46%|████▋ | 172191/371472 [2:46:40<16:15:38, 3.40it/s] 46%|████▋ | 172192/371472 [2:46:40<16:27:14, 3.36it/s] 46%|████▋ | 172193/371472 [2:46:41<15:57:48, 3.47it/s] 46%|████▋ | 172194/371472 [2:46:41<15:25:57, 3.59it/s] 46%|████▋ | 172195/371472 [2:46:41<16:25:08, 3.37it/s] 46%|████▋ | 172196/371472 [2:46:42<16:06:20, 3.44it/s] 46%|████▋ | 172197/371472 [2:46:42<16:49:04, 3.29it/s] 46%|████▋ | 172198/371472 [2:46:42<16:59:36, 3.26it/s] 46%|████▋ | 172199/371472 [2:46:43<16:30:50, 3.35it/s] 46%|████▋ | 172200/371472 [2:46:43<16:18:39, 3.39it/s] {'loss': 2.8585, 'learning_rate': 5.8305501088151e-07, 'epoch': 7.42} + 46%|████▋ | 172200/371472 [2:46:43<16:18:39, 3.39it/s] 46%|████▋ | 172201/371472 [2:46:43<16:17:18, 3.40it/s] 46%|████▋ | 172202/371472 [2:46:43<15:51:22, 3.49it/s] 46%|████▋ | 172203/371472 [2:46:44<15:41:20, 3.53it/s] 46%|████▋ | 172204/371472 [2:46:44<16:25:58, 3.37it/s] 46%|████▋ | 172205/371472 [2:46:44<16:50:20, 3.29it/s] 46%|████▋ | 172206/371472 [2:46:45<17:03:50, 3.24it/s] 46%|████▋ | 172207/371472 [2:46:45<16:27:31, 3.36it/s] 46%|████▋ | 172208/371472 [2:46:45<16:40:06, 3.32it/s] 46%|████▋ | 172209/371472 [2:46:46<16:57:10, 3.26it/s] 46%|████▋ | 172210/371472 [2:46:46<16:30:52, 3.35it/s] 46%|████▋ | 172211/371472 [2:46:46<16:24:04, 3.37it/s] 46%|████▋ | 172212/371472 [2:46:46<16:54:59, 3.27it/s] 46%|████▋ | 172213/371472 [2:46:47<16:45:37, 3.30it/s] 46%|████▋ | 172214/371472 [2:46:47<16:39:08, 3.32it/s] 46%|████▋ | 172215/371472 [2:46:47<17:11:08, 3.22it/s] 46%|████▋ | 172216/371472 [2:46:48<16:36:20, 3.33it/s] 46%|████▋ | 172217/371472 [2:46:48<17:48:51, 3.11it/s] 46%|████▋ | 172218/371472 [2:46:48<17:39:40, 3.13it/s] 46%|████▋ | 172219/371472 [2:46:49<17:51:05, 3.10it/s] 46%|████▋ | 172220/371472 [2:46:49<17:19:11, 3.20it/s] {'loss': 3.0821, 'learning_rate': 5.830065289060312e-07, 'epoch': 7.42} + 46%|████▋ | 172220/371472 [2:46:49<17:19:11, 3.20it/s] 46%|████▋ | 172221/371472 [2:46:49<17:57:15, 3.08it/s] 46%|████▋ | 172222/371472 [2:46:50<17:15:13, 3.21it/s] 46%|████▋ | 172223/371472 [2:46:50<16:47:54, 3.29it/s] 46%|████▋ | 172224/371472 [2:46:50<16:23:43, 3.38it/s] 46%|████▋ | 172225/371472 [2:46:50<16:11:20, 3.42it/s] 46%|████▋ | 172226/371472 [2:46:51<15:59:54, 3.46it/s] 46%|████▋ | 172227/371472 [2:46:51<15:48:13, 3.50it/s] 46%|████▋ | 172228/371472 [2:46:51<15:49:52, 3.50it/s] 46%|████▋ | 172229/371472 [2:46:52<15:22:46, 3.60it/s] 46%|████▋ | 172230/371472 [2:46:52<15:49:41, 3.50it/s] 46%|████▋ | 172231/371472 [2:46:52<15:53:19, 3.48it/s] 46%|████▋ | 172232/371472 [2:46:52<15:56:08, 3.47it/s] 46%|████▋ | 172233/371472 [2:46:53<16:25:32, 3.37it/s] 46%|████▋ | 172234/371472 [2:46:53<16:30:07, 3.35it/s] 46%|████▋ | 172235/371472 [2:46:53<16:21:00, 3.38it/s] 46%|████▋ | 172236/371472 [2:46:54<17:47:06, 3.11it/s] 46%|████▋ | 172237/371472 [2:46:54<17:00:37, 3.25it/s] 46%|████▋ | 172238/371472 [2:46:54<18:42:58, 2.96it/s] 46%|████▋ | 172239/371472 [2:46:55<19:09:11, 2.89it/s] 46%|████▋ | 172240/371472 [2:46:55<18:16:26, 3.03it/s] {'loss': 2.7136, 'learning_rate': 5.829580469305523e-07, 'epoch': 7.42} + 46%|████▋ | 172240/371472 [2:46:55<18:16:26, 3.03it/s] 46%|████▋ | 172241/371472 [2:46:55<18:17:05, 3.03it/s] 46%|████▋ | 172242/371472 [2:46:56<17:05:19, 3.24it/s] 46%|████▋ | 172243/371472 [2:46:56<18:01:17, 3.07it/s] 46%|████▋ | 172244/371472 [2:46:56<20:14:41, 2.73it/s] 46%|████▋ | 172245/371472 [2:46:57<18:35:07, 2.98it/s] 46%|████▋ | 172246/371472 [2:46:57<18:31:41, 2.99it/s] 46%|████▋ | 172247/371472 [2:46:57<17:49:08, 3.11it/s] 46%|████▋ | 172248/371472 [2:46:58<17:43:08, 3.12it/s] 46%|████▋ | 172249/371472 [2:46:58<16:54:15, 3.27it/s] 46%|████▋ | 172250/371472 [2:46:58<16:27:04, 3.36it/s] 46%|████▋ | 172251/371472 [2:46:58<15:49:39, 3.50it/s] 46%|████▋ | 172252/371472 [2:46:59<15:46:26, 3.51it/s] 46%|████▋ | 172253/371472 [2:46:59<17:17:24, 3.20it/s] 46%|████▋ | 172254/371472 [2:46:59<17:11:21, 3.22it/s] 46%|████▋ | 172255/371472 [2:47:00<17:06:21, 3.23it/s] 46%|████▋ | 172256/371472 [2:47:00<17:25:10, 3.18it/s] 46%|████▋ | 172257/371472 [2:47:00<17:38:10, 3.14it/s] 46%|████▋ | 172258/371472 [2:47:01<17:11:26, 3.22it/s] 46%|████▋ | 172259/371472 [2:47:01<17:13:39, 3.21it/s] 46%|████▋ | 172260/371472 [2:47:01<16:42:23, 3.31it/s] {'loss': 2.9593, 'learning_rate': 5.829095649550734e-07, 'epoch': 7.42} + 46%|████▋ | 172260/371472 [2:47:01<16:42:23, 3.31it/s] 46%|████▋ | 172261/371472 [2:47:02<16:16:57, 3.40it/s] 46%|████▋ | 172262/371472 [2:47:02<15:46:07, 3.51it/s] 46%|████▋ | 172263/371472 [2:47:02<16:04:19, 3.44it/s] 46%|████▋ | 172264/371472 [2:47:02<15:52:52, 3.48it/s] 46%|████▋ | 172265/371472 [2:47:03<16:28:24, 3.36it/s] 46%|████▋ | 172266/371472 [2:47:03<16:53:30, 3.28it/s] 46%|████▋ | 172267/371472 [2:47:03<17:04:02, 3.24it/s] 46%|████▋ | 172268/371472 [2:47:04<18:26:25, 3.00it/s] 46%|████▋ | 172269/371472 [2:47:04<18:29:59, 2.99it/s] 46%|████▋ | 172270/371472 [2:47:04<17:29:33, 3.16it/s] 46%|████▋ | 172271/371472 [2:47:05<17:11:56, 3.22it/s] 46%|████▋ | 172272/371472 [2:47:05<16:43:01, 3.31it/s] 46%|████▋ | 172273/371472 [2:47:05<17:05:53, 3.24it/s] 46%|████▋ | 172274/371472 [2:47:06<16:33:04, 3.34it/s] 46%|████▋ | 172275/371472 [2:47:06<16:34:46, 3.34it/s] 46%|████▋ | 172276/371472 [2:47:06<16:19:10, 3.39it/s] 46%|████▋ | 172277/371472 [2:47:06<16:13:27, 3.41it/s] 46%|████▋ | 172278/371472 [2:47:07<16:06:03, 3.44it/s] 46%|████▋ | 172279/371472 [2:47:07<15:44:44, 3.51it/s] 46%|████▋ | 172280/371472 [2:47:07<15:50:29, 3.49it/s] {'loss': 2.9629, 'learning_rate': 5.828610829795944e-07, 'epoch': 7.42} + 46%|████▋ | 172280/371472 [2:47:07<15:50:29, 3.49it/s] 46%|████▋ | 172281/371472 [2:47:08<16:09:47, 3.42it/s] 46%|████▋ | 172282/371472 [2:47:08<15:55:38, 3.47it/s] 46%|████▋ | 172283/371472 [2:47:08<16:02:08, 3.45it/s] 46%|████▋ | 172284/371472 [2:47:08<15:59:30, 3.46it/s] 46%|████▋ | 172285/371472 [2:47:09<15:43:12, 3.52it/s] 46%|████▋ | 172286/371472 [2:47:09<15:57:56, 3.47it/s] 46%|████▋ | 172287/371472 [2:47:09<15:37:39, 3.54it/s] 46%|████▋ | 172288/371472 [2:47:10<16:49:51, 3.29it/s] 46%|████▋ | 172289/371472 [2:47:10<16:53:29, 3.28it/s] 46%|████▋ | 172290/371472 [2:47:10<16:41:30, 3.31it/s] 46%|████▋ | 172291/371472 [2:47:11<16:27:29, 3.36it/s] 46%|████▋ | 172292/371472 [2:47:11<16:20:07, 3.39it/s] 46%|████▋ | 172293/371472 [2:47:11<16:05:45, 3.44it/s] 46%|████▋ | 172294/371472 [2:47:11<15:56:05, 3.47it/s] 46%|████▋ | 172295/371472 [2:47:12<15:52:36, 3.48it/s] 46%|████▋ | 172296/371472 [2:47:12<16:10:12, 3.42it/s] 46%|████▋ | 172297/371472 [2:47:12<16:15:27, 3.40it/s] 46%|████▋ | 172298/371472 [2:47:13<16:23:59, 3.37it/s] 46%|████▋ | 172299/371472 [2:47:13<15:45:45, 3.51it/s] 46%|████▋ | 172300/371472 [2:47:13<15:36:19, 3.55it/s] {'loss': 2.9325, 'learning_rate': 5.828126010041155e-07, 'epoch': 7.42} + 46%|████▋ | 172300/371472 [2:47:13<15:36:19, 3.55it/s] 46%|████▋ | 172301/371472 [2:47:13<15:26:17, 3.58it/s] 46%|████▋ | 172302/371472 [2:47:14<16:34:23, 3.34it/s] 46%|████▋ | 172303/371472 [2:47:14<16:09:45, 3.42it/s] 46%|████▋ | 172304/371472 [2:47:14<15:42:56, 3.52it/s] 46%|████▋ | 172305/371472 [2:47:15<15:55:18, 3.47it/s] 46%|████▋ | 172306/371472 [2:47:15<15:41:38, 3.53it/s] 46%|████▋ | 172307/371472 [2:47:15<15:44:41, 3.51it/s] 46%|████▋ | 172308/371472 [2:47:15<15:47:37, 3.50it/s] 46%|████▋ | 172309/371472 [2:47:16<16:26:18, 3.37it/s] 46%|████▋ | 172310/371472 [2:47:16<16:01:28, 3.45it/s] 46%|████▋ | 172311/371472 [2:47:16<15:45:04, 3.51it/s] 46%|████▋ | 172312/371472 [2:47:17<15:49:14, 3.50it/s] 46%|████▋ | 172313/371472 [2:47:17<16:01:15, 3.45it/s] 46%|████▋ | 172314/371472 [2:47:17<16:20:33, 3.39it/s] 46%|████▋ | 172315/371472 [2:47:18<17:24:07, 3.18it/s] 46%|████▋ | 172316/371472 [2:47:18<17:05:11, 3.24it/s] 46%|████▋ | 172317/371472 [2:47:18<17:14:13, 3.21it/s] 46%|████▋ | 172318/371472 [2:47:18<16:54:18, 3.27it/s] 46%|████▋ | 172319/371472 [2:47:19<16:59:27, 3.26it/s] 46%|████▋ | 172320/371472 [2:47:19<17:11:32, 3.22it/s] {'loss': 2.9699, 'learning_rate': 5.827641190286366e-07, 'epoch': 7.42} + 46%|████▋ | 172320/371472 [2:47:19<17:11:32, 3.22it/s] 46%|████▋ | 172321/371472 [2:47:19<16:49:40, 3.29it/s] 46%|████▋ | 172322/371472 [2:47:20<16:38:49, 3.32it/s] 46%|████▋ | 172323/371472 [2:47:20<17:07:52, 3.23it/s] 46%|████▋ | 172324/371472 [2:47:20<17:43:18, 3.12it/s] 46%|████▋ | 172325/371472 [2:47:21<17:01:42, 3.25it/s] 46%|████▋ | 172326/371472 [2:47:21<17:25:38, 3.17it/s] 46%|████▋ | 172327/371472 [2:47:21<16:27:03, 3.36it/s] 46%|████▋ | 172328/371472 [2:47:21<16:02:59, 3.45it/s] 46%|████▋ | 172329/371472 [2:47:22<15:58:57, 3.46it/s] 46%|████▋ | 172330/371472 [2:47:22<16:17:39, 3.39it/s] 46%|████▋ | 172331/371472 [2:47:22<16:41:49, 3.31it/s] 46%|████▋ | 172332/371472 [2:47:23<17:19:58, 3.19it/s] 46%|████▋ | 172333/371472 [2:47:23<16:52:59, 3.28it/s] 46%|████▋ | 172334/371472 [2:47:23<16:52:48, 3.28it/s] 46%|████▋ | 172335/371472 [2:47:24<17:04:09, 3.24it/s] 46%|████▋ | 172336/371472 [2:47:24<16:45:01, 3.30it/s] 46%|████▋ | 172337/371472 [2:47:24<16:41:05, 3.32it/s] 46%|████▋ | 172338/371472 [2:47:25<16:54:17, 3.27it/s] 46%|████▋ | 172339/371472 [2:47:25<16:44:23, 3.30it/s] 46%|████▋ | 172340/371472 [2:47:25<16:29:40, 3.35it/s] {'loss': 3.0142, 'learning_rate': 5.827156370531577e-07, 'epoch': 7.42} + 46%|████▋ | 172340/371472 [2:47:25<16:29:40, 3.35it/s] 46%|████▋ | 172341/371472 [2:47:25<17:36:49, 3.14it/s] 46%|████▋ | 172342/371472 [2:47:26<17:17:39, 3.20it/s] 46%|████▋ | 172343/371472 [2:47:26<17:13:58, 3.21it/s] 46%|████▋ | 172344/371472 [2:47:26<16:59:39, 3.25it/s] 46%|████▋ | 172345/371472 [2:47:27<17:13:10, 3.21it/s] 46%|████▋ | 172346/371472 [2:47:27<17:49:16, 3.10it/s] 46%|████▋ | 172347/371472 [2:47:27<18:50:55, 2.93it/s] 46%|████▋ | 172348/371472 [2:47:28<18:01:38, 3.07it/s] 46%|████▋ | 172349/371472 [2:47:28<18:10:10, 3.04it/s] 46%|████▋ | 172350/371472 [2:47:28<17:48:45, 3.11it/s] 46%|████▋ | 172351/371472 [2:47:29<17:21:36, 3.19it/s] 46%|████▋ | 172352/371472 [2:47:29<17:02:59, 3.24it/s] 46%|████▋ | 172353/371472 [2:47:29<16:40:03, 3.32it/s] 46%|████▋ | 172354/371472 [2:47:30<16:41:24, 3.31it/s] 46%|████▋ | 172355/371472 [2:47:30<17:11:45, 3.22it/s] 46%|████▋ | 172356/371472 [2:47:30<17:41:19, 3.13it/s] 46%|████▋ | 172357/371472 [2:47:30<16:52:43, 3.28it/s] 46%|████▋ | 172358/371472 [2:47:31<17:13:10, 3.21it/s] 46%|████▋ | 172359/371472 [2:47:31<17:04:02, 3.24it/s] 46%|████▋ | 172360/371472 [2:47:31<16:50:52, 3.28it/s] {'loss': 2.7816, 'learning_rate': 5.826671550776789e-07, 'epoch': 7.42} + 46%|████▋ | 172360/371472 [2:47:31<16:50:52, 3.28it/s] 46%|████▋ | 172361/371472 [2:47:32<16:38:06, 3.32it/s] 46%|████▋ | 172362/371472 [2:47:32<16:15:52, 3.40it/s] 46%|████▋ | 172363/371472 [2:47:32<17:03:13, 3.24it/s] 46%|████▋ | 172364/371472 [2:47:33<17:23:43, 3.18it/s] 46%|████▋ | 172365/371472 [2:47:33<17:38:48, 3.13it/s] 46%|████▋ | 172366/371472 [2:47:33<17:33:03, 3.15it/s] 46%|████▋ | 172367/371472 [2:47:34<17:13:18, 3.21it/s] 46%|████▋ | 172368/371472 [2:47:34<17:05:09, 3.24it/s] 46%|████▋ | 172369/371472 [2:47:34<16:38:46, 3.32it/s] 46%|████▋ | 172370/371472 [2:47:35<17:12:10, 3.21it/s] 46%|████▋ | 172371/371472 [2:47:35<18:00:52, 3.07it/s] 46%|████▋ | 172372/371472 [2:47:35<18:09:34, 3.05it/s] 46%|████▋ | 172373/371472 [2:47:36<17:59:10, 3.07it/s] 46%|████▋ | 172374/371472 [2:47:36<17:57:46, 3.08it/s] 46%|████▋ | 172375/371472 [2:47:36<19:32:28, 2.83it/s] 46%|████▋ | 172376/371472 [2:47:37<18:57:12, 2.92it/s] 46%|████▋ | 172377/371472 [2:47:37<18:55:48, 2.92it/s] 46%|████▋ | 172378/371472 [2:47:37<18:14:53, 3.03it/s] 46%|████▋ | 172379/371472 [2:47:38<18:05:38, 3.06it/s] 46%|████▋ | 172380/371472 [2:47:38<18:30:44, 2.99it/s] {'loss': 2.8549, 'learning_rate': 5.826186731022e-07, 'epoch': 7.42} + 46%|████▋ | 172380/371472 [2:47:38<18:30:44, 2.99it/s] 46%|████▋ | 172381/371472 [2:47:38<18:38:17, 2.97it/s] 46%|████▋ | 172382/371472 [2:47:39<17:49:30, 3.10it/s] 46%|████▋ | 172383/371472 [2:47:39<17:34:20, 3.15it/s] 46%|████▋ | 172384/371472 [2:47:39<17:19:13, 3.19it/s] 46%|████▋ | 172385/371472 [2:47:39<17:41:55, 3.12it/s] 46%|████▋ | 172386/371472 [2:47:40<17:32:31, 3.15it/s] 46%|████▋ | 172387/371472 [2:47:40<16:54:37, 3.27it/s] 46%|████▋ | 172388/371472 [2:47:40<16:28:11, 3.36it/s] 46%|████▋ | 172389/371472 [2:47:41<16:06:24, 3.43it/s] 46%|████▋ | 172390/371472 [2:47:41<16:41:14, 3.31it/s] 46%|████▋ | 172391/371472 [2:47:41<16:31:49, 3.35it/s] 46%|████▋ | 172392/371472 [2:47:42<16:15:48, 3.40it/s] 46%|████▋ | 172393/371472 [2:47:42<19:01:38, 2.91it/s] 46%|████▋ | 172394/371472 [2:47:42<18:13:55, 3.03it/s] 46%|████▋ | 172395/371472 [2:47:43<17:33:29, 3.15it/s] 46%|████▋ | 172396/371472 [2:47:43<16:53:16, 3.27it/s] 46%|████▋ | 172397/371472 [2:47:43<16:35:49, 3.33it/s] 46%|████▋ | 172398/371472 [2:47:43<16:32:06, 3.34it/s] 46%|████▋ | 172399/371472 [2:47:44<16:38:04, 3.32it/s] 46%|████▋ | 172400/371472 [2:47:44<16:12:41, 3.41it/s] {'loss': 2.9331, 'learning_rate': 5.825701911267211e-07, 'epoch': 7.43} + 46%|████▋ | 172400/371472 [2:47:44<16:12:41, 3.41it/s] 46%|████▋ | 172401/371472 [2:47:44<16:16:46, 3.40it/s] 46%|████▋ | 172402/371472 [2:47:45<16:05:22, 3.44it/s] 46%|████▋ | 172403/371472 [2:47:45<16:39:14, 3.32it/s] 46%|████▋ | 172404/371472 [2:47:45<16:44:41, 3.30it/s] 46%|████▋ | 172405/371472 [2:47:46<16:23:57, 3.37it/s] 46%|████▋ | 172406/371472 [2:47:46<17:34:03, 3.15it/s] 46%|████▋ | 172407/371472 [2:47:46<16:54:20, 3.27it/s] 46%|████▋ | 172408/371472 [2:47:46<16:39:46, 3.32it/s] 46%|████▋ | 172409/371472 [2:47:47<16:45:11, 3.30it/s] 46%|████▋ | 172410/371472 [2:47:47<16:13:41, 3.41it/s] 46%|████▋ | 172411/371472 [2:47:47<16:27:15, 3.36it/s] 46%|████▋ | 172412/371472 [2:47:48<17:10:43, 3.22it/s] 46%|████▋ | 172413/371472 [2:47:48<16:35:49, 3.33it/s] 46%|████▋ | 172414/371472 [2:47:48<18:15:22, 3.03it/s] 46%|████▋ | 172415/371472 [2:47:49<18:01:38, 3.07it/s] 46%|████▋ | 172416/371472 [2:47:49<17:23:53, 3.18it/s] 46%|████▋ | 172417/371472 [2:47:49<19:50:11, 2.79it/s] 46%|████▋ | 172418/371472 [2:47:50<18:42:14, 2.96it/s] 46%|████▋ | 172419/371472 [2:47:50<18:55:25, 2.92it/s] 46%|████▋ | 172420/371472 [2:47:50<18:08:06, 3.05it/s] {'loss': 2.8974, 'learning_rate': 5.825217091512421e-07, 'epoch': 7.43} + 46%|████▋ | 172420/371472 [2:47:50<18:08:06, 3.05it/s] 46%|████▋ | 172421/371472 [2:47:51<18:48:38, 2.94it/s] 46%|████▋ | 172422/371472 [2:47:51<18:09:10, 3.05it/s] 46%|████▋ | 172423/371472 [2:47:51<17:13:10, 3.21it/s] 46%|████▋ | 172424/371472 [2:47:52<16:41:12, 3.31it/s] 46%|████▋ | 172425/371472 [2:47:52<16:01:08, 3.45it/s] 46%|████▋ | 172426/371472 [2:47:52<17:09:54, 3.22it/s] 46%|████▋ | 172427/371472 [2:47:53<17:15:10, 3.20it/s] 46%|████▋ | 172428/371472 [2:47:53<17:07:12, 3.23it/s] 46%|████▋ | 172429/371472 [2:47:53<16:33:32, 3.34it/s] 46%|████▋ | 172430/371472 [2:47:53<16:11:08, 3.42it/s] 46%|████▋ | 172431/371472 [2:47:54<16:24:52, 3.37it/s] 46%|████▋ | 172432/371472 [2:47:54<16:36:16, 3.33it/s] 46%|████▋ | 172433/371472 [2:47:54<16:37:56, 3.32it/s] 46%|████▋ | 172434/371472 [2:47:55<16:16:21, 3.40it/s] 46%|████▋ | 172435/371472 [2:47:55<16:13:15, 3.41it/s] 46%|████▋ | 172436/371472 [2:47:55<16:05:43, 3.44it/s] 46%|████▋ | 172437/371472 [2:47:55<15:56:40, 3.47it/s] 46%|████▋ | 172438/371472 [2:47:56<15:38:14, 3.54it/s] 46%|████▋ | 172439/371472 [2:47:56<15:47:56, 3.50it/s] 46%|████▋ | 172440/371472 [2:47:56<16:42:20, 3.31it/s] {'loss': 3.2114, 'learning_rate': 5.824732271757633e-07, 'epoch': 7.43} + 46%|████▋ | 172440/371472 [2:47:56<16:42:20, 3.31it/s] 46%|████▋ | 172441/371472 [2:47:57<18:49:55, 2.94it/s] 46%|████▋ | 172442/371472 [2:47:57<17:58:57, 3.07it/s] 46%|████▋ | 172443/371472 [2:47:57<17:53:04, 3.09it/s] 46%|████▋ | 172444/371472 [2:47:58<17:15:24, 3.20it/s] 46%|████▋ | 172445/371472 [2:47:58<16:48:19, 3.29it/s] 46%|████▋ | 172446/371472 [2:47:58<16:16:08, 3.40it/s] 46%|████▋ | 172447/371472 [2:47:59<16:24:45, 3.37it/s] 46%|████▋ | 172448/371472 [2:47:59<15:57:53, 3.46it/s] 46%|████▋ | 172449/371472 [2:47:59<16:08:50, 3.42it/s] 46%|████▋ | 172450/371472 [2:47:59<16:52:13, 3.28it/s] 46%|████▋ | 172451/371472 [2:48:00<17:50:49, 3.10it/s] 46%|████▋ | 172452/371472 [2:48:00<17:28:50, 3.16it/s] 46%|████▋ | 172453/371472 [2:48:00<16:39:58, 3.32it/s] 46%|████▋ | 172454/371472 [2:48:01<16:35:01, 3.33it/s] 46%|████▋ | 172455/371472 [2:48:01<16:35:08, 3.33it/s] 46%|████▋ | 172456/371472 [2:48:01<16:03:51, 3.44it/s] 46%|████▋ | 172457/371472 [2:48:01<16:00:26, 3.45it/s] 46%|████▋ | 172458/371472 [2:48:02<16:21:37, 3.38it/s] 46%|████▋ | 172459/371472 [2:48:02<16:01:53, 3.45it/s] 46%|████▋ | 172460/371472 [2:48:02<15:52:17, 3.48it/s] {'loss': 2.9152, 'learning_rate': 5.824247452002844e-07, 'epoch': 7.43} + 46%|████▋ | 172460/371472 [2:48:02<15:52:17, 3.48it/s] 46%|████▋ | 172461/371472 [2:48:03<15:56:44, 3.47it/s] 46%|████▋ | 172462/371472 [2:48:03<16:14:50, 3.40it/s] 46%|████▋ | 172463/371472 [2:48:03<16:16:01, 3.40it/s] 46%|████▋ | 172464/371472 [2:48:04<16:12:11, 3.41it/s] 46%|████▋ | 172465/371472 [2:48:04<17:03:53, 3.24it/s] 46%|████▋ | 172466/371472 [2:48:04<16:49:22, 3.29it/s] 46%|████▋ | 172467/371472 [2:48:04<16:30:16, 3.35it/s] 46%|████▋ | 172468/371472 [2:48:05<16:22:04, 3.38it/s] 46%|████▋ | 172469/371472 [2:48:05<16:09:24, 3.42it/s] 46%|████▋ | 172470/371472 [2:48:05<16:03:17, 3.44it/s] 46%|████▋ | 172471/371472 [2:48:06<15:46:29, 3.50it/s] 46%|████▋ | 172472/371472 [2:48:06<15:40:09, 3.53it/s] 46%|████▋ | 172473/371472 [2:48:06<15:37:31, 3.54it/s] 46%|████▋ | 172474/371472 [2:48:06<15:55:44, 3.47it/s] 46%|████▋ | 172475/371472 [2:48:07<16:11:41, 3.41it/s] 46%|████▋ | 172476/371472 [2:48:07<16:13:35, 3.41it/s] 46%|████▋ | 172477/371472 [2:48:07<16:27:45, 3.36it/s] 46%|████▋ | 172478/371472 [2:48:08<16:15:53, 3.40it/s] 46%|████▋ | 172479/371472 [2:48:08<15:51:53, 3.48it/s] 46%|████▋ | 172480/371472 [2:48:08<15:54:04, 3.48it/s] {'loss': 2.8957, 'learning_rate': 5.823762632248055e-07, 'epoch': 7.43} + 46%|████▋ | 172480/371472 [2:48:08<15:54:04, 3.48it/s] 46%|████▋ | 172481/371472 [2:48:09<16:02:11, 3.45it/s] 46%|████▋ | 172482/371472 [2:48:09<18:13:49, 3.03it/s] 46%|████▋ | 172483/371472 [2:48:09<17:28:25, 3.16it/s] 46%|████▋ | 172484/371472 [2:48:10<17:24:16, 3.18it/s] 46%|████▋ | 172485/371472 [2:48:10<17:43:45, 3.12it/s] 46%|████▋ | 172486/371472 [2:48:10<18:02:51, 3.06it/s] 46%|████▋ | 172487/371472 [2:48:11<17:47:06, 3.11it/s] 46%|████▋ | 172488/371472 [2:48:11<17:28:33, 3.16it/s] 46%|████▋ | 172489/371472 [2:48:11<16:52:46, 3.27it/s] 46%|████▋ | 172490/371472 [2:48:11<16:50:18, 3.28it/s] 46%|████▋ | 172491/371472 [2:48:12<16:32:22, 3.34it/s] 46%|████▋ | 172492/371472 [2:48:12<16:34:29, 3.33it/s] 46%|████▋ | 172493/371472 [2:48:12<16:52:21, 3.28it/s] 46%|████▋ | 172494/371472 [2:48:13<16:30:12, 3.35it/s] 46%|████▋ | 172495/371472 [2:48:13<16:19:39, 3.39it/s] 46%|████▋ | 172496/371472 [2:48:13<16:47:37, 3.29it/s] 46%|████▋ | 172497/371472 [2:48:13<16:10:20, 3.42it/s] 46%|████▋ | 172498/371472 [2:48:14<16:07:18, 3.43it/s] 46%|████▋ | 172499/371472 [2:48:14<16:05:39, 3.43it/s] 46%|████▋ | 172500/371472 [2:48:14<16:05:12, 3.44it/s] {'loss': 2.8788, 'learning_rate': 5.823277812493266e-07, 'epoch': 7.43} + 46%|████▋ | 172500/371472 [2:48:14<16:05:12, 3.44it/s] 46%|████▋ | 172501/371472 [2:48:15<15:47:46, 3.50it/s] 46%|████▋ | 172502/371472 [2:48:15<15:24:45, 3.59it/s] 46%|████▋ | 172503/371472 [2:48:15<15:46:38, 3.50it/s] 46%|████▋ | 172504/371472 [2:48:16<19:54:27, 2.78it/s] 46%|████▋ | 172505/371472 [2:48:16<19:47:08, 2.79it/s] 46%|████▋ | 172506/371472 [2:48:16<18:41:37, 2.96it/s] 46%|████▋ | 172507/371472 [2:48:17<18:33:15, 2.98it/s] 46%|████▋ | 172508/371472 [2:48:17<17:26:08, 3.17it/s] 46%|████▋ | 172509/371472 [2:48:17<16:49:12, 3.29it/s] 46%|████▋ | 172510/371472 [2:48:18<16:43:52, 3.30it/s] 46%|████▋ | 172511/371472 [2:48:18<17:01:47, 3.25it/s] 46%|████▋ | 172512/371472 [2:48:18<16:33:05, 3.34it/s] 46%|████▋ | 172513/371472 [2:48:18<16:03:58, 3.44it/s] 46%|████▋ | 172514/371472 [2:48:19<16:06:16, 3.43it/s] 46%|████▋ | 172515/371472 [2:48:19<15:26:48, 3.58it/s] 46%|████▋ | 172516/371472 [2:48:19<16:01:33, 3.45it/s] 46%|████▋ | 172517/371472 [2:48:20<15:59:27, 3.46it/s] 46%|████▋ | 172518/371472 [2:48:20<16:51:57, 3.28it/s] 46%|████▋ | 172519/371472 [2:48:20<17:01:28, 3.25it/s] 46%|████▋ | 172520/371472 [2:48:21<16:49:26, 3.28it/s] {'loss': 2.8834, 'learning_rate': 5.822792992738478e-07, 'epoch': 7.43} + 46%|████▋ | 172520/371472 [2:48:21<16:49:26, 3.28it/s] 46%|████▋ | 172521/371472 [2:48:21<16:29:11, 3.35it/s] 46%|████▋ | 172522/371472 [2:48:21<16:42:35, 3.31it/s] 46%|████▋ | 172523/371472 [2:48:21<16:47:43, 3.29it/s] 46%|████▋ | 172524/371472 [2:48:22<16:28:44, 3.35it/s] 46%|████▋ | 172525/371472 [2:48:22<16:38:53, 3.32it/s] 46%|████▋ | 172526/371472 [2:48:22<16:53:02, 3.27it/s] 46%|████▋ | 172527/371472 [2:48:23<16:36:38, 3.33it/s] 46%|████▋ | 172528/371472 [2:48:23<16:23:05, 3.37it/s] 46%|████▋ | 172529/371472 [2:48:23<16:28:48, 3.35it/s] 46%|████▋ | 172530/371472 [2:48:24<16:39:17, 3.32it/s] 46%|████▋ | 172531/371472 [2:48:24<16:35:49, 3.33it/s] 46%|████▋ | 172532/371472 [2:48:24<16:48:03, 3.29it/s] 46%|████▋ | 172533/371472 [2:48:24<16:22:25, 3.37it/s] 46%|████▋ | 172534/371472 [2:48:25<15:56:15, 3.47it/s] 46%|████▋ | 172535/371472 [2:48:25<15:47:56, 3.50it/s] 46%|████▋ | 172536/371472 [2:48:25<15:38:43, 3.53it/s] 46%|████▋ | 172537/371472 [2:48:26<17:56:23, 3.08it/s] 46%|████▋ | 172538/371472 [2:48:26<17:30:25, 3.16it/s] 46%|████▋ | 172539/371472 [2:48:26<17:04:34, 3.24it/s] 46%|████▋ | 172540/371472 [2:48:27<17:12:17, 3.21it/s] {'loss': 3.0285, 'learning_rate': 5.822308172983688e-07, 'epoch': 7.43} + 46%|████▋ | 172540/371472 [2:48:27<17:12:17, 3.21it/s] 46%|████▋ | 172541/371472 [2:48:27<18:14:50, 3.03it/s] 46%|████▋ | 172542/371472 [2:48:27<17:49:38, 3.10it/s] 46%|████▋ | 172543/371472 [2:48:28<18:10:26, 3.04it/s] 46%|████▋ | 172544/371472 [2:48:28<17:47:08, 3.11it/s] 46%|████▋ | 172545/371472 [2:48:28<17:28:23, 3.16it/s] 46%|████▋ | 172546/371472 [2:48:28<16:50:28, 3.28it/s] 46%|███���▋ | 172547/371472 [2:48:29<16:39:12, 3.32it/s] 46%|████▋ | 172548/371472 [2:48:29<16:49:25, 3.28it/s] 46%|████▋ | 172549/371472 [2:48:29<17:45:49, 3.11it/s] 46%|████▋ | 172550/371472 [2:48:30<17:30:40, 3.16it/s] 46%|████▋ | 172551/371472 [2:48:30<17:38:02, 3.13it/s] 46%|████▋ | 172552/371472 [2:48:30<17:31:04, 3.15it/s] 46%|████▋ | 172553/371472 [2:48:31<17:22:54, 3.18it/s] 46%|████▋ | 172554/371472 [2:48:31<19:10:25, 2.88it/s] 46%|████▋ | 172555/371472 [2:48:31<19:03:13, 2.90it/s] 46%|████▋ | 172556/371472 [2:48:32<18:31:19, 2.98it/s] 46%|████▋ | 172557/371472 [2:48:32<17:21:40, 3.18it/s] 46%|████▋ | 172558/371472 [2:48:32<16:47:45, 3.29it/s] 46%|████▋ | 172559/371472 [2:48:33<16:35:56, 3.33it/s] 46%|████▋ | 172560/371472 [2:48:33<16:03:23, 3.44it/s] {'loss': 2.9356, 'learning_rate': 5.821823353228899e-07, 'epoch': 7.43} + 46%|████▋ | 172560/371472 [2:48:33<16:03:23, 3.44it/s] 46%|████▋ | 172561/371472 [2:48:33<16:05:07, 3.43it/s] 46%|████▋ | 172562/371472 [2:48:33<16:24:31, 3.37it/s] 46%|████▋ | 172563/371472 [2:48:34<16:30:49, 3.35it/s] 46%|████▋ | 172564/371472 [2:48:34<16:29:22, 3.35it/s] 46%|████▋ | 172565/371472 [2:48:34<16:34:16, 3.33it/s] 46%|████▋ | 172566/371472 [2:48:35<16:24:19, 3.37it/s] 46%|████▋ | 172567/371472 [2:48:35<16:08:12, 3.42it/s] 46%|████▋ | 172568/371472 [2:48:35<16:49:41, 3.28it/s] 46%|████▋ | 172569/371472 [2:48:36<16:57:57, 3.26it/s] 46%|████▋ | 172570/371472 [2:48:36<16:40:12, 3.31it/s] 46%|████▋ | 172571/371472 [2:48:36<16:41:06, 3.31it/s] 46%|████▋ | 172572/371472 [2:48:36<16:35:48, 3.33it/s] 46%|████▋ | 172573/371472 [2:48:37<16:18:48, 3.39it/s] 46%|████▋ | 172574/371472 [2:48:37<16:24:05, 3.37it/s] 46%|████▋ | 172575/371472 [2:48:37<16:39:15, 3.32it/s] 46%|████▋ | 172576/371472 [2:48:38<16:41:36, 3.31it/s] 46%|████▋ | 172577/371472 [2:48:38<16:26:47, 3.36it/s] 46%|████▋ | 172578/371472 [2:48:38<16:23:56, 3.37it/s] 46%|████▋ | 172579/371472 [2:48:39<16:05:15, 3.43it/s] 46%|████▋ | 172580/371472 [2:48:39<17:21:20, 3.18it/s] {'loss': 2.9336, 'learning_rate': 5.82133853347411e-07, 'epoch': 7.43} + 46%|████▋ | 172580/371472 [2:48:39<17:21:20, 3.18it/s] 46%|████▋ | 172581/371472 [2:48:39<16:50:15, 3.28it/s] 46%|████▋ | 172582/371472 [2:48:39<16:49:50, 3.28it/s] 46%|████▋ | 172583/371472 [2:48:40<17:16:53, 3.20it/s] 46%|████▋ | 172584/371472 [2:48:40<16:39:31, 3.32it/s] 46%|████▋ | 172585/371472 [2:48:40<17:05:39, 3.23it/s] 46%|████▋ | 172586/371472 [2:48:41<18:54:32, 2.92it/s] 46%|████▋ | 172587/371472 [2:48:41<18:47:37, 2.94it/s] 46%|████▋ | 172588/371472 [2:48:41<18:32:02, 2.98it/s] 46%|████▋ | 172589/371472 [2:48:42<18:13:10, 3.03it/s] 46%|████▋ | 172590/371472 [2:48:42<17:19:03, 3.19it/s] 46%|████▋ | 172591/371472 [2:48:42<16:37:10, 3.32it/s] 46%|████▋ | 172592/371472 [2:48:43<17:03:23, 3.24it/s] 46%|████▋ | 172593/371472 [2:48:43<17:05:43, 3.23it/s] 46%|████▋ | 172594/371472 [2:48:43<17:11:28, 3.21it/s] 46%|████▋ | 172595/371472 [2:48:44<16:37:13, 3.32it/s] 46%|████▋ | 172596/371472 [2:48:44<16:20:41, 3.38it/s] 46%|████▋ | 172597/371472 [2:48:44<16:55:59, 3.26it/s] 46%|████▋ | 172598/371472 [2:48:45<17:00:54, 3.25it/s] 46%|████▋ | 172599/371472 [2:48:45<16:29:37, 3.35it/s] 46%|████▋ | 172600/371472 [2:48:45<16:15:02, 3.40it/s] {'loss': 2.8127, 'learning_rate': 5.820853713719322e-07, 'epoch': 7.43} + 46%|████▋ | 172600/371472 [2:48:45<16:15:02, 3.40it/s] 46%|████▋ | 172601/371472 [2:48:45<16:17:57, 3.39it/s] 46%|████▋ | 172602/371472 [2:48:46<16:14:46, 3.40it/s] 46%|████▋ | 172603/371472 [2:48:46<17:26:25, 3.17it/s] 46%|████▋ | 172604/371472 [2:48:46<17:26:24, 3.17it/s] 46%|████▋ | 172605/371472 [2:48:47<17:04:42, 3.23it/s] 46%|████▋ | 172606/371472 [2:48:47<17:28:04, 3.16it/s] 46%|████▋ | 172607/371472 [2:48:47<17:58:33, 3.07it/s] 46%|████▋ | 172608/371472 [2:48:48<17:28:47, 3.16it/s] 46%|████▋ | 172609/371472 [2:48:48<16:53:46, 3.27it/s] 46%|████▋ | 172610/371472 [2:48:48<16:51:15, 3.28it/s] 46%|████▋ | 172611/371472 [2:48:49<16:46:32, 3.29it/s] 46%|████▋ | 172612/371472 [2:48:49<16:44:25, 3.30it/s] 46%|████▋ | 172613/371472 [2:48:49<16:24:04, 3.37it/s] 46%|████▋ | 172614/371472 [2:48:49<16:20:11, 3.38it/s] 46%|████▋ | 172615/371472 [2:48:50<16:21:59, 3.38it/s] 46%|████▋ | 172616/371472 [2:48:50<16:40:24, 3.31it/s] 46%|████▋ | 172617/371472 [2:48:50<16:21:48, 3.38it/s] 46%|████▋ | 172618/371472 [2:48:51<16:13:55, 3.40it/s] 46%|████▋ | 172619/371472 [2:48:51<16:24:10, 3.37it/s] 46%|████▋ | 172620/371472 [2:48:51<16:41:04, 3.31it/s] {'loss': 3.0354, 'learning_rate': 5.820368893964533e-07, 'epoch': 7.44} + 46%|████▋ | 172620/371472 [2:48:51<16:41:04, 3.31it/s] 46%|████▋ | 172621/371472 [2:48:52<17:06:32, 3.23it/s] 46%|████▋ | 172622/371472 [2:48:52<16:52:34, 3.27it/s] 46%|████▋ | 172623/371472 [2:48:52<17:27:12, 3.16it/s] 46%|████▋ | 172624/371472 [2:48:52<17:11:42, 3.21it/s] 46%|████▋ | 172625/371472 [2:48:53<16:58:07, 3.26it/s] 46%|████▋ | 172626/371472 [2:48:53<16:41:34, 3.31it/s] 46%|████▋ | 172627/371472 [2:48:53<16:59:16, 3.25it/s] 46%|████▋ | 172628/371472 [2:48:54<16:30:01, 3.35it/s] 46%|████▋ | 172629/371472 [2:48:54<16:29:12, 3.35it/s] 46%|████▋ | 172630/371472 [2:48:54<15:59:04, 3.46it/s] 46%|████▋ | 172631/371472 [2:48:54<16:03:35, 3.44it/s] 46%|████▋ | 172632/371472 [2:48:55<17:40:03, 3.13it/s] 46%|████▋ | 172633/371472 [2:48:55<17:33:41, 3.15it/s] 46%|████▋ | 172634/371472 [2:48:56<17:24:48, 3.17it/s] 46%|████▋ | 172635/371472 [2:48:56<17:10:24, 3.22it/s] 46%|████▋ | 172636/371472 [2:48:56<17:04:01, 3.24it/s] 46%|████▋ | 172637/371472 [2:48:56<16:55:51, 3.26it/s] 46%|████▋ | 172638/371472 [2:48:57<17:56:45, 3.08it/s] 46%|████▋ | 172639/371472 [2:48:57<17:29:14, 3.16it/s] 46%|████▋ | 172640/371472 [2:48:57<17:14:26, 3.20it/s] {'loss': 2.916, 'learning_rate': 5.819884074209744e-07, 'epoch': 7.44} + 46%|████▋ | 172640/371472 [2:48:57<17:14:26, 3.20it/s] 46%|████▋ | 172641/371472 [2:48:58<17:54:50, 3.08it/s] 46%|████▋ | 172642/371472 [2:48:58<17:57:48, 3.07it/s] 46%|████▋ | 172643/371472 [2:48:58<17:34:38, 3.14it/s] 46%|████▋ | 172644/371472 [2:48:59<17:12:58, 3.21it/s] 46%|████▋ | 172645/371472 [2:48:59<18:21:19, 3.01it/s] 46%|████▋ | 172646/371472 [2:48:59<17:49:12, 3.10it/s] 46%|████▋ | 172647/371472 [2:49:00<17:37:04, 3.13it/s] 46%|████▋ | 172648/371472 [2:49:00<17:16:57, 3.20it/s] 46%|████▋ | 172649/371472 [2:49:00<16:59:43, 3.25it/s] 46%|████▋ | 172650/371472 [2:49:01<16:45:21, 3.30it/s] 46%|████▋ | 172651/371472 [2:49:01<16:58:46, 3.25it/s] 46%|████▋ | 172652/371472 [2:49:01<16:46:35, 3.29it/s] 46%|████▋ | 172653/371472 [2:49:01<16:28:18, 3.35it/s] 46%|████▋ | 172654/371472 [2:49:02<16:33:56, 3.33it/s] 46%|████▋ | 172655/371472 [2:49:02<16:25:25, 3.36it/s] 46%|████▋ | 172656/371472 [2:49:02<16:07:27, 3.43it/s] 46%|████▋ | 172657/371472 [2:49:03<16:27:05, 3.36it/s] 46%|████▋ | 172658/371472 [2:49:03<16:15:08, 3.40it/s] 46%|████▋ | 172659/371472 [2:49:03<16:25:08, 3.36it/s] 46%|████▋ | 172660/371472 [2:49:04<17:25:22, 3.17it/s] {'loss': 2.8452, 'learning_rate': 5.819399254454954e-07, 'epoch': 7.44} + 46%|████▋ | 172660/371472 [2:49:04<17:25:22, 3.17it/s] 46%|████▋ | 172661/371472 [2:49:04<17:22:55, 3.18it/s] 46%|████▋ | 172662/371472 [2:49:04<17:05:02, 3.23it/s] 46%|████▋ | 172663/371472 [2:49:05<17:24:21, 3.17it/s] 46%|████▋ | 172664/371472 [2:49:05<16:59:41, 3.25it/s] 46%|████▋ | 172665/371472 [2:49:05<16:47:38, 3.29it/s] 46%|████▋ | 172666/371472 [2:49:05<17:06:47, 3.23it/s] 46%|████▋ | 172667/371472 [2:49:06<16:35:32, 3.33it/s] 46%|████▋ | 172668/371472 [2:49:06<16:07:56, 3.42it/s] 46%|████▋ | 172669/371472 [2:49:06<16:04:10, 3.44it/s] 46%|████▋ | 172670/371472 [2:49:07<16:07:49, 3.42it/s] 46%|████▋ | 172671/371472 [2:49:07<15:54:15, 3.47it/s] 46%|████▋ | 172672/371472 [2:49:07<16:27:42, 3.35it/s] 46%|████▋ | 172673/371472 [2:49:07<16:24:14, 3.37it/s] 46%|████▋ | 172674/371472 [2:49:08<16:38:51, 3.32it/s] 46%|████▋ | 172675/371472 [2:49:08<16:22:33, 3.37it/s] 46%|████▋ | 172676/371472 [2:49:08<17:05:27, 3.23it/s] 46%|████▋ | 172677/371472 [2:49:09<17:08:38, 3.22it/s] 46%|████▋ | 172678/371472 [2:49:09<17:02:08, 3.24it/s] 46%|████▋ | 172679/371472 [2:49:09<16:31:31, 3.34it/s] 46%|████▋ | 172680/371472 [2:49:10<16:33:38, 3.33it/s] {'loss': 2.8804, 'learning_rate': 5.818914434700165e-07, 'epoch': 7.44} + 46%|████▋ | 172680/371472 [2:49:10<16:33:38, 3.33it/s] 46%|████▋ | 172681/371472 [2:49:10<17:02:21, 3.24it/s] 46%|████▋ | 172682/371472 [2:49:10<16:47:19, 3.29it/s] 46%|████▋ | 172683/371472 [2:49:11<16:56:17, 3.26it/s] 46%|████▋ | 172684/371472 [2:49:11<17:39:05, 3.13it/s] 46%|████▋ | 172685/371472 [2:49:11<17:15:15, 3.20it/s] 46%|████▋ | 172686/371472 [2:49:11<17:05:29, 3.23it/s] 46%|████▋ | 172687/371472 [2:49:12<16:30:07, 3.35it/s] 46%|████▋ | 172688/371472 [2:49:12<16:41:11, 3.31it/s] 46%|████▋ | 172689/371472 [2:49:12<16:19:05, 3.38it/s] 46%|████▋ | 172690/371472 [2:49:13<16:10:42, 3.41it/s] 46%|████▋ | 172691/371472 [2:49:13<16:42:31, 3.30it/s] 46%|████▋ | 172692/371472 [2:49:13<16:30:06, 3.35it/s] 46%|████▋ | 172693/371472 [2:49:14<16:23:07, 3.37it/s] 46%|████▋ | 172694/371472 [2:49:14<15:59:00, 3.45it/s] 46%|████▋ | 172695/371472 [2:49:14<16:12:07, 3.41it/s] 46%|████▋ | 172696/371472 [2:49:14<16:18:44, 3.38it/s] 46%|████▋ | 172697/371472 [2:49:15<16:30:26, 3.34it/s] 46%|████▋ | 172698/371472 [2:49:15<16:19:17, 3.38it/s] 46%|████▋ | 172699/371472 [2:49:15<16:16:20, 3.39it/s] 46%|████▋ | 172700/371472 [2:49:16<18:33:32, 2.98it/s] {'loss': 2.958, 'learning_rate': 5.818429614945377e-07, 'epoch': 7.44} + 46%|████▋ | 172700/371472 [2:49:16<18:33:32, 2.98it/s] 46%|████▋ | 172701/371472 [2:49:16<19:15:30, 2.87it/s] 46%|████▋ | 172702/371472 [2:49:16<18:12:16, 3.03it/s] 46%|████▋ | 172703/371472 [2:49:17<17:13:37, 3.21it/s] 46%|████▋ | 172704/371472 [2:49:17<16:57:19, 3.26it/s] 46%|████▋ | 172705/371472 [2:49:17<17:35:39, 3.14it/s] 46%|████▋ | 172706/371472 [2:49:18<17:51:16, 3.09it/s] 46%|████▋ | 172707/371472 [2:49:18<17:21:37, 3.18it/s] 46%|████▋ | 172708/371472 [2:49:18<16:42:37, 3.30it/s] 46%|████▋ | 172709/371472 [2:49:18<16:43:35, 3.30it/s] 46%|████▋ | 172710/371472 [2:49:19<16:39:15, 3.32it/s] 46%|████▋ | 172711/371472 [2:49:19<16:20:08, 3.38it/s] 46%|████▋ | 172712/371472 [2:49:19<16:06:27, 3.43it/s] 46%|████▋ | 172713/371472 [2:49:20<17:26:40, 3.16it/s] 46%|████▋ | 172714/371472 [2:49:20<16:47:16, 3.29it/s] 46%|████▋ | 172715/371472 [2:49:20<16:36:21, 3.32it/s] 46%|████▋ | 172716/371472 [2:49:21<16:36:53, 3.32it/s] 46%|████▋ | 172717/371472 [2:49:21<16:20:12, 3.38it/s] 46%|████▋ | 172718/371472 [2:49:21<16:05:46, 3.43it/s] 46%|████▋ | 172719/371472 [2:49:21<16:49:19, 3.28it/s] 46%|████▋ | 172720/371472 [2:49:22<16:44:11, 3.30it/s] {'loss': 2.897, 'learning_rate': 5.817944795190588e-07, 'epoch': 7.44} + 46%|████▋ | 172720/371472 [2:49:22<16:44:11, 3.30it/s] 46%|████▋ | 172721/371472 [2:49:22<16:39:57, 3.31it/s] 46%|████▋ | 172722/371472 [2:49:22<16:32:46, 3.34it/s] 46%|████▋ | 172723/371472 [2:49:23<17:17:28, 3.19it/s] 46%|████▋ | 172724/371472 [2:49:23<17:30:14, 3.15it/s] 46%|████▋ | 172725/371472 [2:49:23<16:58:23, 3.25it/s] 46%|████▋ | 172726/371472 [2:49:24<16:58:02, 3.25it/s] 46%|████▋ | 172727/371472 [2:49:24<16:32:18, 3.34it/s] 46%|████▋ | 172728/371472 [2:49:24<16:22:03, 3.37it/s] 46%|████▋ | 172729/371472 [2:49:25<16:14:31, 3.40it/s] 46%|████▋ | 172730/371472 [2:49:25<16:28:37, 3.35it/s] 46%|████▋ | 172731/371472 [2:49:25<16:12:42, 3.41it/s] 46%|████▋ | 172732/371472 [2:49:25<16:27:23, 3.35it/s] 46%|████▋ | 172733/371472 [2:49:26<16:28:28, 3.35it/s] 46%|████▋ | 172734/371472 [2:49:26<17:00:00, 3.25it/s] 47%|████▋ | 172735/371472 [2:49:26<16:50:25, 3.28it/s] 47%|████▋ | 172736/371472 [2:49:27<16:52:12, 3.27it/s] 47%|████▋ | 172737/371472 [2:49:27<16:37:08, 3.32it/s] 47%|████▋ | 172738/371472 [2:49:27<16:32:29, 3.34it/s] 47%|████▋ | 172739/371472 [2:49:28<17:26:58, 3.16it/s] 47%|████▋ | 172740/371472 [2:49:28<16:50:37, 3.28it/s] {'loss': 2.895, 'learning_rate': 5.817459975435799e-07, 'epoch': 7.44} + 47%|████▋ | 172740/371472 [2:49:28<16:50:37, 3.28it/s] 47%|████▋ | 172741/371472 [2:49:28<17:26:03, 3.17it/s] 47%|████▋ | 172742/371472 [2:49:29<17:01:34, 3.24it/s] 47%|████▋ | 172743/371472 [2:49:29<16:39:14, 3.31it/s] 47%|████▋ | 172744/371472 [2:49:29<16:56:51, 3.26it/s] 47%|████▋ | 172745/371472 [2:49:29<16:26:35, 3.36it/s] 47%|████▋ | 172746/371472 [2:49:30<16:00:46, 3.45it/s] 47%|████▋ | 172747/371472 [2:49:30<17:02:07, 3.24it/s] 47%|████▋ | 172748/371472 [2:49:30<16:41:16, 3.31it/s] 47%|████▋ | 172749/371472 [2:49:31<16:45:03, 3.30it/s] 47%|████▋ | 172750/371472 [2:49:31<17:39:30, 3.13it/s] 47%|████▋ | 172751/371472 [2:49:31<17:35:01, 3.14it/s] 47%|████▋ | 172752/371472 [2:49:32<18:13:16, 3.03it/s] 47%|████▋ | 172753/371472 [2:49:32<17:19:11, 3.19it/s] 47%|████▋ | 172754/371472 [2:49:32<17:05:35, 3.23it/s] 47%|████▋ | 172755/371472 [2:49:33<17:19:25, 3.19it/s] 47%|████▋ | 172756/371472 [2:49:33<17:14:18, 3.20it/s] 47%|████▋ | 172757/371472 [2:49:33<16:51:00, 3.28it/s] 47%|████▋ | 172758/371472 [2:49:33<16:33:45, 3.33it/s] 47%|████▋ | 172759/371472 [2:49:34<16:45:47, 3.29it/s] 47%|████▋ | 172760/371472 [2:49:34<17:03:10, 3.24it/s] {'loss': 2.9375, 'learning_rate': 5.816975155681011e-07, 'epoch': 7.44} + 47%|████▋ | 172760/371472 [2:49:34<17:03:10, 3.24it/s] 47%|████▋ | 172761/371472 [2:49:34<16:54:19, 3.27it/s] 47%|████▋ | 172762/371472 [2:49:35<16:33:54, 3.33it/s] 47%|████▋ | 172763/371472 [2:49:35<16:25:18, 3.36it/s] 47%|████▋ | 172764/371472 [2:49:35<16:10:33, 3.41it/s] 47%|████▋ | 172765/371472 [2:49:35<15:45:12, 3.50it/s] 47%|████▋ | 172766/371472 [2:49:36<15:37:52, 3.53it/s] 47%|████▋ | 172767/371472 [2:49:36<15:32:02, 3.55it/s] 47%|████▋ | 172768/371472 [2:49:36<15:39:45, 3.52it/s] 47%|████▋ | 172769/371472 [2:49:37<15:49:06, 3.49it/s] 47%|████▋ | 172770/371472 [2:49:37<15:36:26, 3.54it/s] 47%|████▋ | 172771/371472 [2:49:37<15:26:21, 3.57it/s] 47%|████▋ | 172772/371472 [2:49:37<16:16:25, 3.39it/s] 47%|████▋ | 172773/371472 [2:49:38<16:29:47, 3.35it/s] 47%|████▋ | 172774/371472 [2:49:38<16:18:04, 3.39it/s] 47%|████▋ | 172775/371472 [2:49:38<16:30:04, 3.34it/s] 47%|████▋ | 172776/371472 [2:49:39<16:18:16, 3.39it/s] 47%|████▋ | 172777/371472 [2:49:39<16:02:17, 3.44it/s] 47%|████▋ | 172778/371472 [2:49:39<15:59:07, 3.45it/s] 47%|████▋ | 172779/371472 [2:49:40<17:34:40, 3.14it/s] 47%|████▋ | 172780/371472 [2:49:40<16:59:57, 3.25it/s] {'loss': 2.9213, 'learning_rate': 5.816490335926221e-07, 'epoch': 7.44} + 47%|████▋ | 172780/371472 [2:49:40<16:59:57, 3.25it/s] 47%|████▋ | 172781/371472 [2:49:40<16:51:05, 3.28it/s] 47%|████▋ | 172782/371472 [2:49:41<16:54:59, 3.26it/s] 47%|████▋ | 172783/371472 [2:49:41<17:00:55, 3.24it/s] 47%|████▋ | 172784/371472 [2:49:41<17:06:15, 3.23it/s] 47%|████▋ | 172785/371472 [2:49:41<16:48:48, 3.28it/s] 47%|████▋ | 172786/371472 [2:49:42<16:35:49, 3.33it/s] 47%|████▋ | 172787/371472 [2:49:42<16:23:06, 3.37it/s] 47%|████▋ | 172788/371472 [2:49:42<15:52:20, 3.48it/s] 47%|████▋ | 172789/371472 [2:49:43<16:28:30, 3.35it/s] 47%|████▋ | 172790/371472 [2:49:43<15:58:09, 3.46it/s] 47%|████▋ | 172791/371472 [2:49:43<16:10:16, 3.41it/s] 47%|████▋ | 172792/371472 [2:49:44<17:13:36, 3.20it/s] 47%|████▋ | 172793/371472 [2:49:44<17:05:49, 3.23it/s] 47%|████▋ | 172794/371472 [2:49:44<17:06:08, 3.23it/s] 47%|████▋ | 172795/371472 [2:49:44<16:31:05, 3.34it/s] 47%|████▋ | 172796/371472 [2:49:45<16:06:11, 3.43it/s] 47%|████▋ | 172797/371472 [2:49:45<15:56:53, 3.46it/s] 47%|████▋ | 172798/371472 [2:49:45<16:09:15, 3.42it/s] 47%|████▋ | 172799/371472 [2:49:46<16:15:47, 3.39it/s] 47%|████▋ | 172800/371472 [2:49:46<16:16:26, 3.39it/s] {'loss': 2.8961, 'learning_rate': 5.816005516171432e-07, 'epoch': 7.44} + 47%|████▋ | 172800/371472 [2:49:46<16:16:26, 3.39it/s] 47%|████▋ | 172801/371472 [2:49:46<16:09:58, 3.41it/s] 47%|████▋ | 172802/371472 [2:49:47<17:36:49, 3.13it/s] 47%|████▋ | 172803/371472 [2:49:47<16:56:44, 3.26it/s] 47%|████▋ | 172804/371472 [2:49:47<16:57:15, 3.25it/s] 47%|████▋ | 172805/371472 [2:49:47<16:38:45, 3.32it/s] 47%|████▋ | 172806/371472 [2:49:48<16:16:46, 3.39it/s] 47%|████▋ | 172807/371472 [2:49:48<16:17:09, 3.39it/s] 47%|████▋ | 172808/371472 [2:49:48<15:50:33, 3.48it/s] 47%|████▋ | 172809/371472 [2:49:49<15:50:03, 3.49it/s] 47%|████▋ | 172810/371472 [2:49:49<15:56:38, 3.46it/s] 47%|████▋ | 172811/371472 [2:49:49<16:22:16, 3.37it/s] 47%|████▋ | 172812/371472 [2:49:49<16:04:10, 3.43it/s] 47%|████▋ | 172813/371472 [2:49:50<16:19:03, 3.38it/s] 47%|████▋ | 172814/371472 [2:49:50<16:05:44, 3.43it/s] 47%|████▋ | 172815/371472 [2:49:50<16:11:43, 3.41it/s] 47%|████▋ | 172816/371472 [2:49:51<16:13:08, 3.40it/s] 47%|████▋ | 172817/371472 [2:49:51<16:17:13, 3.39it/s] 47%|████▋ | 172818/371472 [2:49:51<16:03:21, 3.44it/s] 47%|████▋ | 172819/371472 [2:49:52<16:32:27, 3.34it/s] 47%|████▋ | 172820/371472 [2:49:52<17:06:06, 3.23it/s] {'loss': 2.8334, 'learning_rate': 5.815520696416643e-07, 'epoch': 7.44} + 47%|████▋ | 172820/371472 [2:49:52<17:06:06, 3.23it/s] 47%|████▋ | 172821/371472 [2:49:52<16:40:10, 3.31it/s] 47%|████▋ | 172822/371472 [2:49:53<18:03:10, 3.06it/s] 47%|████▋ | 172823/371472 [2:49:53<17:32:48, 3.14it/s] 47%|████▋ | 172824/371472 [2:49:53<16:58:38, 3.25it/s] 47%|████▋ | 172825/371472 [2:49:53<16:54:53, 3.26it/s] 47%|████▋ | 172826/371472 [2:49:54<16:30:23, 3.34it/s] 47%|████▋ | 172827/371472 [2:49:54<17:09:00, 3.22it/s] 47%|████▋ | 172828/371472 [2:49:54<17:21:24, 3.18it/s] 47%|████▋ | 172829/371472 [2:49:55<19:40:49, 2.80it/s] 47%|████▋ | 172830/371472 [2:49:55<18:30:50, 2.98it/s] 47%|████▋ | 172831/371472 [2:49:55<17:32:58, 3.14it/s] 47%|████▋ | 172832/371472 [2:49:56<17:38:06, 3.13it/s] 47%|████▋ | 172833/371472 [2:49:56<17:23:44, 3.17it/s] 47%|████▋ | 172834/371472 [2:49:56<16:53:40, 3.27it/s] 47%|████▋ | 172835/371472 [2:49:57<16:35:55, 3.32it/s] 47%|████▋ | 172836/371472 [2:49:57<17:35:40, 3.14it/s] 47%|████▋ | 172837/371472 [2:49:57<17:31:15, 3.15it/s] 47%|████▋ | 172838/371472 [2:49:58<17:12:43, 3.21it/s] 47%|████▋ | 172839/371472 [2:49:58<18:24:43, 3.00it/s] 47%|████▋ | 172840/371472 [2:49:58<18:26:31, 2.99it/s] {'loss': 2.7548, 'learning_rate': 5.815035876661854e-07, 'epoch': 7.44} + 47%|████▋ | 172840/371472 [2:49:58<18:26:31, 2.99it/s] 47%|████▋ | 172841/371472 [2:49:59<18:05:23, 3.05it/s] 47%|████▋ | 172842/371472 [2:49:59<17:56:53, 3.07it/s] 47%|████▋ | 172843/371472 [2:49:59<17:14:54, 3.20it/s] 47%|████▋ | 172844/371472 [2:49:59<16:52:42, 3.27it/s] 47%|████▋ | 172845/371472 [2:50:00<16:54:39, 3.26it/s] 47%|████▋ | 172846/371472 [2:50:00<17:02:14, 3.24it/s] 47%|████▋ | 172847/371472 [2:50:00<17:21:11, 3.18it/s] 47%|████▋ | 172848/371472 [2:50:01<16:32:00, 3.34it/s] 47%|████▋ | 172849/371472 [2:50:01<16:04:11, 3.43it/s] 47%|████▋ | 172850/371472 [2:50:01<16:19:06, 3.38it/s] 47%|████▋ | 172851/371472 [2:50:02<16:47:08, 3.29it/s] 47%|████▋ | 172852/371472 [2:50:02<17:29:17, 3.15it/s] 47%|████▋ | 172853/371472 [2:50:02<17:20:14, 3.18it/s] 47%|████▋ | 172854/371472 [2:50:03<17:00:47, 3.24it/s] 47%|████▋ | 172855/371472 [2:50:03<16:22:05, 3.37it/s] 47%|████▋ | 172856/371472 [2:50:03<16:58:27, 3.25it/s] 47%|████▋ | 172857/371472 [2:50:03<16:49:06, 3.28it/s] 47%|████▋ | 172858/371472 [2:50:04<17:21:54, 3.18it/s] 47%|████▋ | 172859/371472 [2:50:04<16:49:19, 3.28it/s] 47%|████▋ | 172860/371472 [2:50:04<16:07:37, 3.42it/s] {'loss': 2.9896, 'learning_rate': 5.814551056907065e-07, 'epoch': 7.45} + 47%|████▋ | 172860/371472 [2:50:04<16:07:37, 3.42it/s] 47%|████▋ | 172861/371472 [2:50:05<15:29:07, 3.56it/s] 47%|████▋ | 172862/371472 [2:50:05<15:30:57, 3.56it/s] 47%|████▋ | 172863/371472 [2:50:05<16:59:37, 3.25it/s] 47%|████▋ | 172864/371472 [2:50:06<16:38:51, 3.31it/s] 47%|████▋ | 172865/371472 [2:50:06<16:44:02, 3.30it/s] 47%|████▋ | 172866/371472 [2:50:06<16:30:21, 3.34it/s] 47%|████▋ | 172867/371472 [2:50:07<18:55:16, 2.92it/s] 47%|████▋ | 172868/371472 [2:50:07<18:12:14, 3.03it/s] 47%|████▋ | 172869/371472 [2:50:07<17:14:16, 3.20it/s] 47%|████▋ | 172870/371472 [2:50:07<17:05:27, 3.23it/s] 47%|████▋ | 172871/371472 [2:50:08<16:28:33, 3.35it/s] 47%|████▋ | 172872/371472 [2:50:08<16:16:10, 3.39it/s] 47%|████▋ | 172873/371472 [2:50:08<16:13:26, 3.40it/s] 47%|████▋ | 172874/371472 [2:50:09<16:06:06, 3.43it/s] 47%|████▋ | 172875/371472 [2:50:09<16:59:41, 3.25it/s] 47%|████▋ | 172876/371472 [2:50:09<16:28:03, 3.35it/s] 47%|████▋ | 172877/371472 [2:50:09<16:15:33, 3.39it/s] 47%|████▋ | 172878/371472 [2:50:10<16:31:17, 3.34it/s] 47%|████▋ | 172879/371472 [2:50:10<16:19:43, 3.38it/s] 47%|████▋ | 172880/371472 [2:50:10<16:04:27, 3.43it/s] {'loss': 2.9465, 'learning_rate': 5.814066237152276e-07, 'epoch': 7.45} + 47%|████▋ | 172880/371472 [2:50:10<16:04:27, 3.43it/s] 47%|████▋ | 172881/371472 [2:50:11<16:24:35, 3.36it/s] 47%|████▋ | 172882/371472 [2:50:11<16:38:11, 3.32it/s] 47%|████▋ | 172883/371472 [2:50:11<16:28:31, 3.35it/s] 47%|████▋ | 172884/371472 [2:50:12<17:21:36, 3.18it/s] 47%|████▋ | 172885/371472 [2:50:12<16:50:26, 3.28it/s] 47%|████▋ | 172886/371472 [2:50:12<16:46:54, 3.29it/s] 47%|████▋ | 172887/371472 [2:50:12<16:28:46, 3.35it/s] 47%|████▋ | 172888/371472 [2:50:13<16:17:58, 3.38it/s] 47%|████▋ | 172889/371472 [2:50:13<16:05:32, 3.43it/s] 47%|████▋ | 172890/371472 [2:50:13<15:41:49, 3.51it/s] 47%|████▋ | 172891/371472 [2:50:14<15:17:10, 3.61it/s] 47%|████▋ | 172892/371472 [2:50:14<15:35:02, 3.54it/s] 47%|████▋ | 172893/371472 [2:50:14<15:55:32, 3.46it/s] 47%|████▋ | 172894/371472 [2:50:15<17:43:09, 3.11it/s] 47%|████▋ | 172895/371472 [2:50:15<17:05:58, 3.23it/s] 47%|████▋ | 172896/371472 [2:50:15<18:36:33, 2.96it/s] 47%|████▋ | 172897/371472 [2:50:16<17:37:40, 3.13it/s] 47%|████▋ | 172898/371472 [2:50:16<17:14:13, 3.20it/s] 47%|████▋ | 172899/371472 [2:50:16<17:04:14, 3.23it/s] 47%|████▋ | 172900/371472 [2:50:17<17:43:57, 3.11it/s] {'loss': 2.9069, 'learning_rate': 5.813581417397488e-07, 'epoch': 7.45} + 47%|████▋ | 172900/371472 [2:50:17<17:43:57, 3.11it/s] 47%|████▋ | 172901/371472 [2:50:17<17:21:35, 3.18it/s] 47%|████▋ | 172902/371472 [2:50:17<19:02:45, 2.90it/s] 47%|████▋ | 172903/371472 [2:50:18<18:47:14, 2.94it/s] 47%|████▋ | 172904/371472 [2:50:18<17:50:03, 3.09it/s] 47%|████▋ | 172905/371472 [2:50:18<18:01:38, 3.06it/s] 47%|████▋ | 172906/371472 [2:50:18<17:28:54, 3.16it/s] 47%|████▋ | 172907/371472 [2:50:19<16:38:46, 3.31it/s] 47%|████▋ | 172908/371472 [2:50:19<16:15:05, 3.39it/s] 47%|████▋ | 172909/371472 [2:50:19<15:53:07, 3.47it/s] 47%|████▋ | 172910/371472 [2:50:20<15:37:53, 3.53it/s] 47%|████▋ | 172911/371472 [2:50:20<15:32:51, 3.55it/s] 47%|████▋ | 172912/371472 [2:50:20<15:41:51, 3.51it/s] 47%|████▋ | 172913/371472 [2:50:20<15:25:33, 3.58it/s] 47%|████▋ | 172914/371472 [2:50:21<15:27:36, 3.57it/s] 47%|████▋ | 172915/371472 [2:50:21<15:54:56, 3.47it/s] 47%|████▋ | 172916/371472 [2:50:21<15:52:48, 3.47it/s] 47%|████▋ | 172917/371472 [2:50:22<16:24:08, 3.36it/s] 47%|████▋ | 172918/371472 [2:50:22<16:15:13, 3.39it/s] 47%|████▋ | 172919/371472 [2:50:22<15:56:10, 3.46it/s] 47%|████▋ | 172920/371472 [2:50:22<15:37:46, 3.53it/s] {'loss': 2.8928, 'learning_rate': 5.813096597642698e-07, 'epoch': 7.45} + 47%|████▋ | 172920/371472 [2:50:22<15:37:46, 3.53it/s] 47%|████▋ | 172921/371472 [2:50:23<15:16:57, 3.61it/s] 47%|████▋ | 172922/371472 [2:50:23<14:57:59, 3.69it/s] 47%|████▋ | 172923/371472 [2:50:23<15:24:54, 3.58it/s] 47%|████▋ | 172924/371472 [2:50:24<15:20:36, 3.59it/s] 47%|████▋ | 172925/371472 [2:50:24<15:29:04, 3.56it/s] 47%|████▋ | 172926/371472 [2:50:24<16:57:08, 3.25it/s] 47%|████▋ | 172927/371472 [2:50:24<16:13:05, 3.40it/s] 47%|████▋ | 172928/371472 [2:50:25<15:58:32, 3.45it/s] 47%|████▋ | 172929/371472 [2:50:25<17:02:35, 3.24it/s] 47%|████▋ | 172930/371472 [2:50:25<17:47:40, 3.10it/s] 47%|████▋ | 172931/371472 [2:50:26<18:16:22, 3.02it/s] 47%|████▋ | 172932/371472 [2:50:26<18:58:16, 2.91it/s] 47%|████▋ | 172933/371472 [2:50:27<19:36:59, 2.81it/s] 47%|████▋ | 172934/371472 [2:50:27<18:21:15, 3.00it/s] 47%|████▋ | 172935/371472 [2:50:27<18:29:17, 2.98it/s] 47%|████▋ | 172936/371472 [2:50:27<18:11:00, 3.03it/s] 47%|████▋ | 172937/371472 [2:50:28<17:19:22, 3.18it/s] 47%|████▋ | 172938/371472 [2:50:28<16:35:27, 3.32it/s] 47%|████▋ | 172939/371472 [2:50:28<16:09:17, 3.41it/s] 47%|████▋ | 172940/371472 [2:50:29<16:56:27, 3.26it/s] {'loss': 2.7724, 'learning_rate': 5.812611777887909e-07, 'epoch': 7.45} + 47%|████▋ | 172940/371472 [2:50:29<16:56:27, 3.26it/s] 47%|████▋ | 172941/371472 [2:50:29<16:51:25, 3.27it/s] 47%|████▋ | 172942/371472 [2:50:29<16:54:46, 3.26it/s] 47%|████▋ | 172943/371472 [2:50:30<16:40:56, 3.31it/s] 47%|████▋ | 172944/371472 [2:50:30<16:39:24, 3.31it/s] 47%|████▋ | 172945/371472 [2:50:30<16:00:13, 3.45it/s] 47%|████▋ | 172946/371472 [2:50:30<16:03:42, 3.43it/s] 47%|████▋ | 172947/371472 [2:50:31<15:57:46, 3.45it/s] 47%|████▋ | 172948/371472 [2:50:31<16:26:11, 3.36it/s] 47%|████▋ | 172949/371472 [2:50:31<16:03:42, 3.43it/s] 47%|████▋ | 172950/371472 [2:50:32<15:59:41, 3.45it/s] 47%|████▋ | 172951/371472 [2:50:32<16:46:41, 3.29it/s] 47%|████▋ | 172952/371472 [2:50:32<16:30:08, 3.34it/s] 47%|████▋ | 172953/371472 [2:50:32<16:20:04, 3.38it/s] 47%|████▋ | 172954/371472 [2:50:33<16:00:18, 3.45it/s] 47%|████▋ | 172955/371472 [2:50:33<15:45:30, 3.50it/s] 47%|████▋ | 172956/371472 [2:50:33<16:06:00, 3.43it/s] 47%|████▋ | 172957/371472 [2:50:34<16:04:01, 3.43it/s] 47%|████▋ | 172958/371472 [2:50:34<15:42:43, 3.51it/s] 47%|████▋ | 172959/371472 [2:50:34<15:50:33, 3.48it/s] 47%|████▋ | 172960/371472 [2:50:34<15:36:27, 3.53it/s] {'loss': 2.8192, 'learning_rate': 5.81212695813312e-07, 'epoch': 7.45} + 47%|████▋ | 172960/371472 [2:50:34<15:36:27, 3.53it/s] 47%|████▋ | 172961/371472 [2:50:35<15:24:53, 3.58it/s] 47%|████▋ | 172962/371472 [2:50:35<15:36:59, 3.53it/s] 47%|████▋ | 172963/371472 [2:50:35<15:45:19, 3.50it/s] 47%|████▋ | 172964/371472 [2:50:36<16:37:53, 3.32it/s] 47%|████▋ | 172965/371472 [2:50:36<16:06:56, 3.42it/s] 47%|████▋ | 172966/371472 [2:50:36<15:42:19, 3.51it/s] 47%|████▋ | 172967/371472 [2:50:36<15:51:42, 3.48it/s] 47%|████▋ | 172968/371472 [2:50:37<16:27:18, 3.35it/s] 47%|████▋ | 172969/371472 [2:50:37<18:32:13, 2.97it/s] 47%|████▋ | 172970/371472 [2:50:38<18:37:23, 2.96it/s] 47%|████▋ | 172971/371472 [2:50:38<17:38:21, 3.13it/s] 47%|████▋ | 172972/371472 [2:50:38<17:17:52, 3.19it/s] 47%|████▋ | 172973/371472 [2:50:38<17:09:05, 3.21it/s] 47%|████▋ | 172974/371472 [2:50:39<16:30:06, 3.34it/s] 47%|████▋ | 172975/371472 [2:50:39<16:38:10, 3.31it/s] 47%|████▋ | 172976/371472 [2:50:39<16:09:53, 3.41it/s] 47%|████▋ | 172977/371472 [2:50:40<16:18:49, 3.38it/s] 47%|████▋ | 172978/371472 [2:50:40<17:00:46, 3.24it/s] 47%|████▋ | 172979/371472 [2:50:40<16:31:11, 3.34it/s] 47%|████▋ | 172980/371472 [2:50:41<16:57:55, 3.25it/s] {'loss': 3.0283, 'learning_rate': 5.811642138378331e-07, 'epoch': 7.45} + 47%|████▋ | 172980/371472 [2:50:41<16:57:55, 3.25it/s] 47%|████▋ | 172981/371472 [2:50:41<16:38:48, 3.31it/s] 47%|████▋ | 172982/371472 [2:50:41<16:17:47, 3.38it/s] 47%|████▋ | 172983/371472 [2:50:41<15:54:38, 3.47it/s] 47%|████▋ | 172984/371472 [2:50:42<15:26:26, 3.57it/s] 47%|████▋ | 172985/371472 [2:50:42<15:43:02, 3.51it/s] 47%|████▋ | 172986/371472 [2:50:42<16:00:41, 3.44it/s] 47%|████▋ | 172987/371472 [2:50:43<16:29:13, 3.34it/s] 47%|████��� | 172988/371472 [2:50:43<16:05:20, 3.43it/s] 47%|████▋ | 172989/371472 [2:50:43<16:00:00, 3.45it/s] 47%|████▋ | 172990/371472 [2:50:43<15:49:43, 3.48it/s] 47%|████▋ | 172991/371472 [2:50:44<16:51:04, 3.27it/s] 47%|████▋ | 172992/371472 [2:50:44<16:40:02, 3.31it/s] 47%|████▋ | 172993/371472 [2:50:44<16:21:51, 3.37it/s] 47%|████▋ | 172994/371472 [2:50:45<17:12:22, 3.20it/s] 47%|████▋ | 172995/371472 [2:50:45<16:47:05, 3.28it/s] 47%|████▋ | 172996/371472 [2:50:45<16:22:12, 3.37it/s] 47%|████▋ | 172997/371472 [2:50:46<16:18:05, 3.38it/s] 47%|████▋ | 172998/371472 [2:50:46<15:56:07, 3.46it/s] 47%|████▋ | 172999/371472 [2:50:46<16:10:35, 3.41it/s] 47%|████▋ | 173000/371472 [2:50:46<16:11:22, 3.41it/s] {'loss': 3.0158, 'learning_rate': 5.811157318623543e-07, 'epoch': 7.45} + 47%|████▋ | 173000/371472 [2:50:46<16:11:22, 3.41it/s] 47%|████▋ | 173001/371472 [2:50:47<16:30:43, 3.34it/s] 47%|████▋ | 173002/371472 [2:50:47<16:22:17, 3.37it/s] 47%|████▋ | 173003/371472 [2:50:47<16:38:24, 3.31it/s] 47%|████▋ | 173004/371472 [2:50:48<16:49:52, 3.28it/s] 47%|████▋ | 173005/371472 [2:50:48<17:13:42, 3.20it/s] 47%|████▋ | 173006/371472 [2:50:48<17:31:24, 3.15it/s] 47%|████▋ | 173007/371472 [2:50:49<17:01:32, 3.24it/s] 47%|████▋ | 173008/371472 [2:50:49<16:47:36, 3.28it/s] 47%|████▋ | 173009/371472 [2:50:49<16:40:00, 3.31it/s] 47%|████▋ | 173010/371472 [2:50:50<18:04:48, 3.05it/s] 47%|████▋ | 173011/371472 [2:50:50<17:45:42, 3.10it/s] 47%|████▋ | 173012/371472 [2:50:50<17:28:06, 3.16it/s] 47%|████▋ | 173013/371472 [2:50:50<16:54:27, 3.26it/s] 47%|████▋ | 173014/371472 [2:50:51<16:32:37, 3.33it/s] 47%|████▋ | 173015/371472 [2:50:51<16:05:10, 3.43it/s] 47%|████▋ | 173016/371472 [2:50:51<15:54:47, 3.46it/s] 47%|████▋ | 173017/371472 [2:50:52<15:57:19, 3.46it/s] 47%|████▋ | 173018/371472 [2:50:52<16:34:14, 3.33it/s] 47%|████▋ | 173019/371472 [2:50:52<16:10:41, 3.41it/s] 47%|████▋ | 173020/371472 [2:50:52<15:59:04, 3.45it/s] {'loss': 2.9748, 'learning_rate': 5.810672498868754e-07, 'epoch': 7.45} + 47%|████▋ | 173020/371472 [2:50:52<15:59:04, 3.45it/s] 47%|████▋ | 173021/371472 [2:50:53<16:04:22, 3.43it/s] 47%|████▋ | 173022/371472 [2:50:53<17:02:01, 3.24it/s] 47%|████▋ | 173023/371472 [2:50:53<17:42:27, 3.11it/s] 47%|████▋ | 173024/371472 [2:50:54<16:53:29, 3.26it/s] 47%|████▋ | 173025/371472 [2:50:54<16:26:57, 3.35it/s] 47%|████▋ | 173026/371472 [2:50:54<16:33:16, 3.33it/s] 47%|████▋ | 173027/371472 [2:50:55<16:02:29, 3.44it/s] 47%|████▋ | 173028/371472 [2:50:55<15:39:57, 3.52it/s] 47%|████▋ | 173029/371472 [2:50:55<15:53:03, 3.47it/s] 47%|████▋ | 173030/371472 [2:50:55<15:51:48, 3.47it/s] 47%|████▋ | 173031/371472 [2:50:56<17:08:53, 3.21it/s] 47%|████▋ | 173032/371472 [2:50:56<16:39:13, 3.31it/s] 47%|████▋ | 173033/371472 [2:50:56<17:22:31, 3.17it/s] 47%|████▋ | 173034/371472 [2:50:57<17:21:23, 3.18it/s] 47%|████▋ | 173035/371472 [2:50:57<18:15:11, 3.02it/s] 47%|████▋ | 173036/371472 [2:50:58<19:24:42, 2.84it/s] 47%|████▋ | 173037/371472 [2:50:58<18:31:27, 2.98it/s] 47%|████▋ | 173038/371472 [2:50:58<18:32:31, 2.97it/s] 47%|████▋ | 173039/371472 [2:50:58<17:34:30, 3.14it/s] 47%|████▋ | 173040/371472 [2:50:59<17:47:53, 3.10it/s] {'loss': 2.9266, 'learning_rate': 5.810187679113965e-07, 'epoch': 7.45} + 47%|████▋ | 173040/371472 [2:50:59<17:47:53, 3.10it/s] 47%|████▋ | 173041/371472 [2:50:59<16:56:36, 3.25it/s] 47%|████▋ | 173042/371472 [2:50:59<16:56:40, 3.25it/s] 47%|████▋ | 173043/371472 [2:51:00<16:24:34, 3.36it/s] 47%|████▋ | 173044/371472 [2:51:00<17:23:10, 3.17it/s] 47%|████▋ | 173045/371472 [2:51:00<17:01:28, 3.24it/s] 47%|████▋ | 173046/371472 [2:51:01<17:04:51, 3.23it/s] 47%|████▋ | 173047/371472 [2:51:01<16:38:39, 3.31it/s] 47%|████▋ | 173048/371472 [2:51:01<15:55:29, 3.46it/s] 47%|████▋ | 173049/371472 [2:51:01<15:51:57, 3.47it/s] 47%|████▋ | 173050/371472 [2:51:02<15:55:23, 3.46it/s] 47%|████▋ | 173051/371472 [2:51:02<15:55:16, 3.46it/s] 47%|████▋ | 173052/371472 [2:51:02<16:18:10, 3.38it/s] 47%|████▋ | 173053/371472 [2:51:03<16:09:04, 3.41it/s] 47%|████▋ | 173054/371472 [2:51:03<16:23:10, 3.36it/s] 47%|████▋ | 173055/371472 [2:51:03<16:36:24, 3.32it/s] 47%|████▋ | 173056/371472 [2:51:04<16:30:59, 3.34it/s] 47%|████▋ | 173057/371472 [2:51:04<16:00:26, 3.44it/s] 47%|████▋ | 173058/371472 [2:51:04<15:55:51, 3.46it/s] 47%|████▋ | 173059/371472 [2:51:04<16:00:34, 3.44it/s] 47%|████▋ | 173060/371472 [2:51:05<16:51:01, 3.27it/s] {'loss': 2.8645, 'learning_rate': 5.809702859359175e-07, 'epoch': 7.45} + 47%|████▋ | 173060/371472 [2:51:05<16:51:01, 3.27it/s] 47%|████▋ | 173061/371472 [2:51:05<17:44:41, 3.11it/s] 47%|████▋ | 173062/371472 [2:51:05<17:17:17, 3.19it/s] 47%|████▋ | 173063/371472 [2:51:06<16:57:12, 3.25it/s] 47%|████▋ | 173064/371472 [2:51:06<16:31:25, 3.34it/s] 47%|████▋ | 173065/371472 [2:51:06<16:00:25, 3.44it/s] 47%|████▋ | 173066/371472 [2:51:06<15:50:15, 3.48it/s] 47%|████▋ | 173067/371472 [2:51:07<15:41:39, 3.51it/s] 47%|████▋ | 173068/371472 [2:51:07<15:47:21, 3.49it/s] 47%|████▋ | 173069/371472 [2:51:07<15:44:33, 3.50it/s] 47%|████▋ | 173070/371472 [2:51:08<16:14:52, 3.39it/s] 47%|████▋ | 173071/371472 [2:51:08<16:37:23, 3.32it/s] 47%|████▋ | 173072/371472 [2:51:08<16:48:04, 3.28it/s] 47%|████▋ | 173073/371472 [2:51:09<16:29:10, 3.34it/s] 47%|████▋ | 173074/371472 [2:51:09<16:36:47, 3.32it/s] 47%|████▋ | 173075/371472 [2:51:09<17:16:40, 3.19it/s] 47%|████▋ | 173076/371472 [2:51:10<16:58:17, 3.25it/s] 47%|████▋ | 173077/371472 [2:51:10<17:13:55, 3.20it/s] 47%|████▋ | 173078/371472 [2:51:10<17:09:25, 3.21it/s] 47%|████▋ | 173079/371472 [2:51:10<16:48:46, 3.28it/s] 47%|████▋ | 173080/371472 [2:51:11<16:31:45, 3.33it/s] {'loss': 2.975, 'learning_rate': 5.809218039604387e-07, 'epoch': 7.45} + 47%|████▋ | 173080/371472 [2:51:11<16:31:45, 3.33it/s] 47%|████▋ | 173081/371472 [2:51:11<16:18:42, 3.38it/s] 47%|████▋ | 173082/371472 [2:51:11<16:38:29, 3.31it/s] 47%|████▋ | 173083/371472 [2:51:12<16:25:27, 3.36it/s] 47%|████▋ | 173084/371472 [2:51:12<16:07:21, 3.42it/s] 47%|████▋ | 173085/371472 [2:51:12<16:10:22, 3.41it/s] 47%|████▋ | 173086/371472 [2:51:12<16:16:02, 3.39it/s] 47%|████▋ | 173087/371472 [2:51:13<16:06:02, 3.42it/s] 47%|████▋ | 173088/371472 [2:51:13<15:59:18, 3.45it/s] 47%|████▋ | 173089/371472 [2:51:13<15:51:33, 3.47it/s] 47%|████▋ | 173090/371472 [2:51:14<15:42:12, 3.51it/s] 47%|████▋ | 173091/371472 [2:51:14<15:42:05, 3.51it/s] 47%|████▋ | 173092/371472 [2:51:14<16:24:26, 3.36it/s] 47%|████▋ | 173093/371472 [2:51:15<16:44:24, 3.29it/s] 47%|████▋ | 173094/371472 [2:51:15<16:47:03, 3.28it/s] 47%|████▋ | 173095/371472 [2:51:15<16:11:37, 3.40it/s] 47%|████▋ | 173096/371472 [2:51:15<16:14:48, 3.39it/s] 47%|████▋ | 173097/371472 [2:51:16<15:52:45, 3.47it/s] 47%|████▋ | 173098/371472 [2:51:16<16:43:55, 3.29it/s] 47%|████▋ | 173099/371472 [2:51:16<17:17:29, 3.19it/s] 47%|████▋ | 173100/371472 [2:51:17<17:12:33, 3.20it/s] {'loss': 2.8677, 'learning_rate': 5.808733219849598e-07, 'epoch': 7.46} + 47%|████▋ | 173100/371472 [2:51:17<17:12:33, 3.20it/s] 47%|████▋ | 173101/371472 [2:51:17<16:39:12, 3.31it/s] 47%|████▋ | 173102/371472 [2:51:17<16:25:09, 3.36it/s] 47%|████▋ | 173103/371472 [2:51:18<16:36:17, 3.32it/s] 47%|████▋ | 173104/371472 [2:51:18<16:01:52, 3.44it/s] 47%|████▋ | 173105/371472 [2:51:18<16:04:48, 3.43it/s] 47%|████▋ | 173106/371472 [2:51:18<15:52:52, 3.47it/s] 47%|████▋ | 173107/371472 [2:51:19<17:15:37, 3.19it/s] 47%|████▋ | 173108/371472 [2:51:19<17:02:21, 3.23it/s] 47%|████▋ | 173109/371472 [2:51:20<19:10:07, 2.87it/s] 47%|████▋ | 173110/371472 [2:51:20<18:38:43, 2.96it/s] 47%|████▋ | 173111/371472 [2:51:20<17:42:21, 3.11it/s] 47%|████▋ | 173112/371472 [2:51:20<17:37:03, 3.13it/s] 47%|████▋ | 173113/371472 [2:51:21<17:14:48, 3.19it/s] 47%|████▋ | 173114/371472 [2:51:21<17:03:49, 3.23it/s] 47%|���███▋ | 173115/371472 [2:51:21<17:58:18, 3.07it/s] 47%|████▋ | 173116/371472 [2:51:22<17:08:11, 3.22it/s] 47%|████▋ | 173117/371472 [2:51:22<16:46:14, 3.29it/s] 47%|████▋ | 173118/371472 [2:51:22<17:28:20, 3.15it/s] 47%|████▋ | 173119/371472 [2:51:23<16:55:09, 3.26it/s] 47%|████▋ | 173120/371472 [2:51:23<16:10:33, 3.41it/s] {'loss': 3.0536, 'learning_rate': 5.808248400094809e-07, 'epoch': 7.46} + 47%|████▋ | 173120/371472 [2:51:23<16:10:33, 3.41it/s] 47%|████▋ | 173121/371472 [2:51:23<16:27:12, 3.35it/s] 47%|████▋ | 173122/371472 [2:51:23<16:39:16, 3.31it/s] 47%|████▋ | 173123/371472 [2:51:24<16:15:10, 3.39it/s] 47%|████▋ | 173124/371472 [2:51:24<16:37:51, 3.31it/s] 47%|████▋ | 173125/371472 [2:51:24<16:27:15, 3.35it/s] 47%|████▋ | 173126/371472 [2:51:25<16:25:11, 3.36it/s] 47%|████▋ | 173127/371472 [2:51:25<16:25:14, 3.36it/s] 47%|████▋ | 173128/371472 [2:51:25<15:59:52, 3.44it/s] 47%|████▋ | 173129/371472 [2:51:25<15:52:47, 3.47it/s] 47%|████▋ | 173130/371472 [2:51:26<15:55:20, 3.46it/s] 47%|████▋ | 173131/371472 [2:51:26<15:41:27, 3.51it/s] 47%|████▋ | 173132/371472 [2:51:26<15:43:44, 3.50it/s] 47%|████▋ | 173133/371472 [2:51:27<16:02:15, 3.44it/s] 47%|████▋ | 173134/371472 [2:51:27<15:39:12, 3.52it/s] 47%|████▋ | 173135/371472 [2:51:27<15:37:51, 3.52it/s] 47%|████▋ | 173136/371472 [2:51:28<16:09:14, 3.41it/s] 47%|████▋ | 173137/371472 [2:51:28<16:08:37, 3.41it/s] 47%|████▋ | 173138/371472 [2:51:28<16:03:24, 3.43it/s] 47%|████▋ | 173139/371472 [2:51:28<15:44:20, 3.50it/s] 47%|████▋ | 173140/371472 [2:51:29<15:46:33, 3.49it/s] {'loss': 2.7891, 'learning_rate': 5.80776358034002e-07, 'epoch': 7.46} + 47%|████▋ | 173140/371472 [2:51:29<15:46:33, 3.49it/s] 47%|████▋ | 173141/371472 [2:51:29<16:06:26, 3.42it/s] 47%|████▋ | 173142/371472 [2:51:29<17:59:16, 3.06it/s] 47%|████▋ | 173143/371472 [2:51:30<17:05:33, 3.22it/s] 47%|████▋ | 173144/371472 [2:51:30<17:00:10, 3.24it/s] 47%|████▋ | 173145/371472 [2:51:30<16:33:29, 3.33it/s] 47%|████▋ | 173146/371472 [2:51:31<17:17:03, 3.19it/s] 47%|████▋ | 173147/371472 [2:51:31<16:55:42, 3.25it/s] 47%|████▋ | 173148/371472 [2:51:31<17:18:02, 3.18it/s] 47%|████▋ | 173149/371472 [2:51:32<17:20:06, 3.18it/s] 47%|████▋ | 173150/371472 [2:51:32<17:36:59, 3.13it/s] 47%|████▋ | 173151/371472 [2:51:32<17:28:13, 3.15it/s] 47%|████▋ | 173152/371472 [2:51:32<17:15:00, 3.19it/s] 47%|████▋ | 173153/371472 [2:51:33<18:02:50, 3.05it/s] 47%|████▋ | 173154/371472 [2:51:33<17:40:49, 3.12it/s] 47%|████▋ | 173155/371472 [2:51:33<17:08:53, 3.21it/s] 47%|████▋ | 173156/371472 [2:51:34<17:24:03, 3.17it/s] 47%|████▋ | 173157/371472 [2:51:34<17:00:54, 3.24it/s] 47%|████▋ | 173158/371472 [2:51:34<16:46:56, 3.28it/s] 47%|████▋ | 173159/371472 [2:51:35<17:06:20, 3.22it/s] 47%|████▋ | 173160/371472 [2:51:35<17:40:15, 3.12it/s] {'loss': 2.697, 'learning_rate': 5.807278760585232e-07, 'epoch': 7.46} + 47%|████▋ | 173160/371472 [2:51:35<17:40:15, 3.12it/s] 47%|████▋ | 173161/371472 [2:51:35<17:06:55, 3.22it/s] 47%|████▋ | 173162/371472 [2:51:36<16:24:53, 3.36it/s] 47%|████▋ | 173163/371472 [2:51:36<17:17:59, 3.18it/s] 47%|████▋ | 173164/371472 [2:51:36<17:02:45, 3.23it/s] 47%|████▋ | 173165/371472 [2:51:36<16:32:20, 3.33it/s] 47%|████▋ | 173166/371472 [2:51:37<17:25:56, 3.16it/s] 47%|████▋ | 173167/371472 [2:51:37<16:49:56, 3.27it/s] 47%|████▋ | 173168/371472 [2:51:37<16:42:42, 3.30it/s] 47%|████▋ | 173169/371472 [2:51:38<16:42:46, 3.30it/s] 47%|████▋ | 173170/371472 [2:51:38<17:35:27, 3.13it/s] 47%|████▋ | 173171/371472 [2:51:38<17:30:53, 3.14it/s] 47%|████▋ | 173172/371472 [2:51:39<17:07:49, 3.22it/s] 47%|████▋ | 173173/371472 [2:51:39<16:56:17, 3.25it/s] 47%|████▋ | 173174/371472 [2:51:39<16:26:41, 3.35it/s] 47%|████▋ | 173175/371472 [2:51:40<16:07:12, 3.42it/s] 47%|████▋ | 173176/371472 [2:51:40<16:10:13, 3.41it/s] 47%|████▋ | 173177/371472 [2:51:40<16:31:12, 3.33it/s] 47%|████▋ | 173178/371472 [2:51:40<17:10:21, 3.21it/s] 47%|████▋ | 173179/371472 [2:51:41<17:07:42, 3.22it/s] 47%|████▋ | 173180/371472 [2:51:41<17:04:52, 3.22it/s] {'loss': 2.8482, 'learning_rate': 5.806793940830442e-07, 'epoch': 7.46} + 47%|████▋ | 173180/371472 [2:51:41<17:04:52, 3.22it/s] 47%|████▋ | 173181/371472 [2:51:41<17:12:16, 3.20it/s] 47%|████▋ | 173182/371472 [2:51:42<16:41:09, 3.30it/s] 47%|████▋ | 173183/371472 [2:51:42<16:23:16, 3.36it/s] 47%|████▋ | 173184/371472 [2:51:42<16:40:50, 3.30it/s] 47%|████▋ | 173185/371472 [2:51:43<16:22:01, 3.37it/s] 47%|████▋ | 173186/371472 [2:51:43<16:09:57, 3.41it/s] 47%|████▋ | 173187/371472 [2:51:43<16:49:45, 3.27it/s] 47%|████▋ | 173188/371472 [2:51:43<16:06:52, 3.42it/s] 47%|████▋ | 173189/371472 [2:51:44<16:12:49, 3.40it/s] 47%|████▋ | 173190/371472 [2:51:44<16:56:52, 3.25it/s] 47%|████▋ | 173191/371472 [2:51:44<17:07:58, 3.21it/s] 47%|████▋ | 173192/371472 [2:51:45<17:27:16, 3.16it/s] 47%|████▋ | 173193/371472 [2:51:45<16:45:56, 3.29it/s] 47%|████▋ | 173194/371472 [2:51:45<16:18:07, 3.38it/s] 47%|████▋ | 173195/371472 [2:51:46<16:07:13, 3.42it/s] 47%|████▋ | 173196/371472 [2:51:46<15:34:58, 3.53it/s] 47%|████▋ | 173197/371472 [2:51:46<15:38:40, 3.52it/s] 47%|████▋ | 173198/371472 [2:51:47<17:18:15, 3.18it/s] 47%|████▋ | 173199/371472 [2:51:47<17:08:57, 3.21it/s] 47%|████▋ | 173200/371472 [2:51:47<16:50:43, 3.27it/s] {'loss': 2.9113, 'learning_rate': 5.806309121075652e-07, 'epoch': 7.46} + 47%|████▋ | 173200/371472 [2:51:47<16:50:43, 3.27it/s] 47%|████▋ | 173201/371472 [2:51:47<16:42:21, 3.30it/s] 47%|████▋ | 173202/371472 [2:51:48<17:00:10, 3.24it/s] 47%|████▋ | 173203/371472 [2:51:48<16:48:05, 3.28it/s] 47%|████▋ | 173204/371472 [2:51:48<18:02:38, 3.05it/s] 47%|████▋ | 173205/371472 [2:51:49<16:57:27, 3.25it/s] 47%|████▋ | 173206/371472 [2:51:49<16:27:06, 3.35it/s] 47%|████▋ | 173207/371472 [2:51:49<16:51:48, 3.27it/s] 47%|████▋ | 173208/371472 [2:51:50<16:19:44, 3.37it/s] 47%|████▋ | 173209/371472 [2:51:50<16:34:53, 3.32it/s] 47%|████▋ | 173210/371472 [2:51:50<16:20:15, 3.37it/s] 47%|████▋ | 173211/371472 [2:51:50<15:59:35, 3.44it/s] 47%|████▋ | 173212/371472 [2:51:51<16:13:56, 3.39it/s] 47%|████▋ | 173213/371472 [2:51:51<17:10:33, 3.21it/s] 47%|████▋ | 173214/371472 [2:51:51<16:41:29, 3.30it/s] 47%|████▋ | 173215/371472 [2:51:52<16:28:06, 3.34it/s] 47%|████▋ | 173216/371472 [2:51:52<16:40:40, 3.30it/s] 47%|████▋ | 173217/371472 [2:51:52<16:10:51, 3.40it/s] 47%|████▋ | 173218/371472 [2:51:53<16:45:22, 3.29it/s] 47%|████▋ | 173219/371472 [2:51:53<16:02:11, 3.43it/s] 47%|████▋ | 173220/371472 [2:51:53<16:48:40, 3.28it/s] {'loss': 3.0873, 'learning_rate': 5.805824301320864e-07, 'epoch': 7.46} + 47%|████▋ | 173220/371472 [2:51:53<16:48:40, 3.28it/s] 47%|████▋ | 173221/371472 [2:51:53<16:23:47, 3.36it/s] 47%|████▋ | 173222/371472 [2:51:54<16:20:57, 3.37it/s] 47%|████▋ | 173223/371472 [2:51:54<16:50:09, 3.27it/s] 47%|████▋ | 173224/371472 [2:51:54<17:06:57, 3.22it/s] 47%|████▋ | 173225/371472 [2:51:55<17:22:44, 3.17it/s] 47%|████▋ | 173226/371472 [2:51:55<17:07:42, 3.22it/s] 47%|████▋ | 173227/371472 [2:51:55<16:56:51, 3.25it/s] 47%|████▋ | 173228/371472 [2:51:56<17:27:50, 3.15it/s] 47%|████▋ | 173229/371472 [2:51:56<17:33:28, 3.14it/s] 47%|████▋ | 173230/371472 [2:51:56<16:56:54, 3.25it/s] 47%|████▋ | 173231/371472 [2:51:57<16:39:28, 3.31it/s] 47%|████▋ | 173232/371472 [2:51:57<16:01:21, 3.44it/s] 47%|████▋ | 173233/371472 [2:51:57<15:45:11, 3.50it/s] 47%|████▋ | 173234/371472 [2:51:57<16:06:48, 3.42it/s] 47%|████▋ | 173235/371472 [2:51:58<15:58:34, 3.45it/s] 47%|████▋ | 173236/371472 [2:51:58<15:32:27, 3.54it/s] 47%|████▋ | 173237/371472 [2:51:58<15:47:15, 3.49it/s] 47%|████▋ | 173238/371472 [2:51:59<15:54:31, 3.46it/s] 47%|████▋ | 173239/371472 [2:51:59<16:18:01, 3.38it/s] 47%|████▋ | 173240/371472 [2:51:59<16:18:08, 3.38it/s] {'loss': 3.0078, 'learning_rate': 5.805339481566076e-07, 'epoch': 7.46} + 47%|████▋ | 173240/371472 [2:51:59<16:18:08, 3.38it/s] 47%|████▋ | 173241/371472 [2:51:59<16:13:11, 3.39it/s] 47%|████▋ | 173242/371472 [2:52:00<16:08:59, 3.41it/s] 47%|████▋ | 173243/371472 [2:52:00<16:09:47, 3.41it/s] 47%|████▋ | 173244/371472 [2:52:00<16:37:41, 3.31it/s] 47%|████▋ | 173245/371472 [2:52:01<16:31:48, 3.33it/s] 47%|████▋ | 173246/371472 [2:52:01<16:27:19, 3.35it/s] 47%|████▋ | 173247/371472 [2:52:01<16:05:37, 3.42it/s] 47%|████▋ | 173248/371472 [2:52:02<16:42:29, 3.30it/s] 47%|████▋ | 173249/371472 [2:52:02<16:26:21, 3.35it/s] 47%|████▋ | 173250/371472 [2:52:02<16:06:59, 3.42it/s] 47%|████▋ | 173251/371472 [2:52:02<16:00:40, 3.44it/s] 47%|████▋ | 173252/371472 [2:52:03<16:26:25, 3.35it/s] 47%|████▋ | 173253/371472 [2:52:03<16:03:06, 3.43it/s] 47%|████▋ | 173254/371472 [2:52:03<16:13:00, 3.40it/s] 47%|████▋ | 173255/371472 [2:52:04<16:22:14, 3.36it/s] 47%|████▋ | 173256/371472 [2:52:04<15:54:38, 3.46it/s] 47%|████▋ | 173257/371472 [2:52:04<15:29:02, 3.56it/s] 47%|████▋ | 173258/371472 [2:52:04<15:58:13, 3.45it/s] 47%|████▋ | 173259/371472 [2:52:05<15:41:55, 3.51it/s] 47%|████▋ | 173260/371472 [2:52:05<15:25:07, 3.57it/s] {'loss': 2.8836, 'learning_rate': 5.804854661811287e-07, 'epoch': 7.46} + 47%|████▋ | 173260/371472 [2:52:05<15:25:07, 3.57it/s] 47%|████▋ | 173261/371472 [2:52:05<16:38:39, 3.31it/s] 47%|████▋ | 173262/371472 [2:52:06<16:27:10, 3.35it/s] 47%|████▋ | 173263/371472 [2:52:06<17:01:08, 3.24it/s] 47%|████▋ | 173264/371472 [2:52:06<16:47:32, 3.28it/s] 47%|████▋ | 173265/371472 [2:52:07<16:15:54, 3.38it/s] 47%|████▋ | 173266/371472 [2:52:07<16:10:38, 3.40it/s] 47%|████▋ | 173267/371472 [2:52:07<16:03:59, 3.43it/s] 47%|████▋ | 173268/371472 [2:52:07<16:23:59, 3.36it/s] 47%|████▋ | 173269/371472 [2:52:08<16:21:05, 3.37it/s] 47%|████▋ | 173270/371472 [2:52:08<16:23:32, 3.36it/s] 47%|████▋ | 173271/371472 [2:52:08<16:20:03, 3.37it/s] 47%|████▋ | 173272/371472 [2:52:09<16:30:54, 3.33it/s] 47%|████▋ | 173273/371472 [2:52:09<16:16:36, 3.38it/s] 47%|████▋ | 173274/371472 [2:52:09<16:08:42, 3.41it/s] 47%|████▋ | 173275/371472 [2:52:10<17:19:55, 3.18it/s] 47%|████▋ | 173276/371472 [2:52:10<17:23:29, 3.17it/s] 47%|████▋ | 173277/371472 [2:52:10<17:23:36, 3.17it/s] 47%|████▋ | 173278/371472 [2:52:10<17:14:13, 3.19it/s] 47%|████▋ | 173279/371472 [2:52:11<17:18:39, 3.18it/s] 47%|████▋ | 173280/371472 [2:52:11<17:28:05, 3.15it/s] {'loss': 2.9884, 'learning_rate': 5.804369842056497e-07, 'epoch': 7.46} + 47%|████▋ | 173280/371472 [2:52:11<17:28:05, 3.15it/s] 47%|████▋ | 173281/371472 [2:52:11<17:05:39, 3.22it/s] 47%|████▋ | 173282/371472 [2:52:12<17:44:00, 3.10it/s] 47%|████▋ | 173283/371472 [2:52:12<16:59:20, 3.24it/s] 47%|████▋ | 173284/371472 [2:52:12<16:46:59, 3.28it/s] 47%|████▋ | 173285/371472 [2:52:13<17:03:27, 3.23it/s] 47%|████▋ | 173286/371472 [2:52:13<16:58:23, 3.24it/s] 47%|████▋ | 173287/371472 [2:52:13<16:22:48, 3.36it/s] 47%|████▋ | 173288/371472 [2:52:14<16:02:47, 3.43it/s] 47%|████▋ | 173289/371472 [2:52:14<15:57:19, 3.45it/s] 47%|████▋ | 173290/371472 [2:52:14<15:57:47, 3.45it/s] 47%|████▋ | 173291/371472 [2:52:14<16:01:55, 3.43it/s] 47%|████▋ | 173292/371472 [2:52:15<15:58:01, 3.45it/s] 47%|████▋ | 173293/371472 [2:52:15<15:38:51, 3.52it/s] 47%|████▋ | 173294/371472 [2:52:15<15:40:58, 3.51it/s] 47%|████▋ | 173295/371472 [2:52:16<15:48:18, 3.48it/s] 47%|████▋ | 173296/371472 [2:52:16<16:04:12, 3.43it/s] 47%|████▋ | 173297/371472 [2:52:16<15:56:49, 3.45it/s] 47%|████▋ | 173298/371472 [2:52:16<16:16:41, 3.38it/s] 47%|████▋ | 173299/371472 [2:52:17<15:44:38, 3.50it/s] 47%|████▋ | 173300/371472 [2:52:17<17:20:19, 3.17it/s] {'loss': 3.0345, 'learning_rate': 5.803885022301708e-07, 'epoch': 7.46} + 47%|████▋ | 173300/371472 [2:52:17<17:20:19, 3.17it/s] 47%|████▋ | 173301/371472 [2:52:17<17:26:22, 3.16it/s] 47%|████▋ | 173302/371472 [2:52:18<16:53:21, 3.26it/s] 47%|████▋ | 173303/371472 [2:52:18<16:34:25, 3.32it/s] 47%|████▋ | 173304/371472 [2:52:18<16:48:43, 3.27it/s] 47%|████▋ | 173305/371472 [2:52:19<16:41:49, 3.30it/s] 47%|████▋ | 173306/371472 [2:52:19<16:29:45, 3.34it/s] 47%|████▋ | 173307/371472 [2:52:19<16:59:48, 3.24it/s] 47%|████▋ | 173308/371472 [2:52:19<16:38:50, 3.31it/s] 47%|████▋ | 173309/371472 [2:52:20<17:20:43, 3.17it/s] 47%|████▋ | 173310/371472 [2:52:20<17:32:05, 3.14it/s] 47%|████▋ | 173311/371472 [2:52:20<16:39:19, 3.30it/s] 47%|████▋ | 173312/371472 [2:52:21<17:00:27, 3.24it/s] 47%|████▋ | 173313/371472 [2:52:21<17:12:05, 3.20it/s] 47%|████▋ | 173314/371472 [2:52:21<16:48:06, 3.28it/s] 47%|████▋ | 173315/371472 [2:52:22<16:53:53, 3.26it/s] 47%|████▋ | 173316/371472 [2:52:22<16:47:29, 3.28it/s] 47%|████▋ | 173317/371472 [2:52:22<16:48:39, 3.27it/s] 47%|████▋ | 173318/371472 [2:52:23<16:14:21, 3.39it/s] 47%|████▋ | 173319/371472 [2:52:23<17:09:33, 3.21it/s] 47%|████▋ | 173320/371472 [2:52:23<16:29:07, 3.34it/s] {'loss': 2.9537, 'learning_rate': 5.80340020254692e-07, 'epoch': 7.47} + 47%|████▋ | 173320/371472 [2:52:23<16:29:07, 3.34it/s] 47%|████▋ | 173321/371472 [2:52:23<16:49:32, 3.27it/s] 47%|████▋ | 173322/371472 [2:52:24<16:29:25, 3.34it/s] 47%|████▋ | 173323/371472 [2:52:24<16:38:36, 3.31it/s] 47%|████▋ | 173324/371472 [2:52:24<16:55:21, 3.25it/s] 47%|████▋ | 173325/371472 [2:52:25<16:44:43, 3.29it/s] 47%|████▋ | 173326/371472 [2:52:25<17:41:59, 3.11it/s] 47%|████▋ | 173327/371472 [2:52:25<17:35:41, 3.13it/s] 47%|████▋ | 173328/371472 [2:52:26<18:12:23, 3.02it/s] 47%|████▋ | 173329/371472 [2:52:26<18:10:32, 3.03it/s] 47%|████▋ | 173330/371472 [2:52:26<17:22:30, 3.17it/s] 47%|████▋ | 173331/371472 [2:52:27<16:55:51, 3.25it/s] 47%|████▋ | 173332/371472 [2:52:27<17:40:40, 3.11it/s] 47%|████▋ | 173333/371472 [2:52:27<18:05:09, 3.04it/s] 47%|████▋ | 173334/371472 [2:52:28<17:36:41, 3.13it/s] 47%|████▋ | 173335/371472 [2:52:28<17:18:23, 3.18it/s] 47%|████▋ | 173336/371472 [2:52:28<16:51:57, 3.26it/s] 47%|████▋ | 173337/371472 [2:52:29<17:01:18, 3.23it/s] 47%|████▋ | 173338/371472 [2:52:29<17:00:25, 3.24it/s] 47%|████▋ | 173339/371472 [2:52:29<16:47:01, 3.28it/s] 47%|████▋ | 173340/371472 [2:52:29<16:29:55, 3.34it/s] {'loss': 2.8841, 'learning_rate': 5.802915382792131e-07, 'epoch': 7.47} + 47%|████▋ | 173340/371472 [2:52:29<16:29:55, 3.34it/s] 47%|████▋ | 173341/371472 [2:52:30<17:14:30, 3.19it/s] 47%|████▋ | 173342/371472 [2:52:30<17:15:14, 3.19it/s] 47%|████▋ | 173343/371472 [2:52:30<18:19:55, 3.00it/s] 47%|████▋ | 173344/371472 [2:52:31<17:28:02, 3.15it/s] 47%|████▋ | 173345/371472 [2:52:31<16:52:27, 3.26it/s] 47%|████▋ | 173346/371472 [2:52:31<16:45:15, 3.28it/s] 47%|████▋ | 173347/371472 [2:52:32<17:05:44, 3.22it/s] 47%|████▋ | 173348/371472 [2:52:32<16:55:50, 3.25it/s] 47%|████▋ | 173349/371472 [2:52:32<17:28:44, 3.15it/s] 47%|████▋ | 173350/371472 [2:52:33<17:09:04, 3.21it/s] 47%|████▋ | 173351/371472 [2:52:33<17:05:10, 3.22it/s] 47%|████▋ | 173352/371472 [2:52:33<17:25:33, 3.16it/s] 47%|████▋ | 173353/371472 [2:52:34<16:52:02, 3.26it/s] 47%|████▋ | 173354/371472 [2:52:34<17:31:30, 3.14it/s] 47%|████▋ | 173355/371472 [2:52:34<17:06:26, 3.22it/s] 47%|████▋ | 173356/371472 [2:52:34<17:01:59, 3.23it/s] 47%|████▋ | 173357/371472 [2:52:35<17:39:53, 3.12it/s] 47%|████▋ | 173358/371472 [2:52:35<17:09:15, 3.21it/s] 47%|████▋ | 173359/371472 [2:52:35<18:09:17, 3.03it/s] 47%|████▋ | 173360/371472 [2:52:36<17:39:23, 3.12it/s] {'loss': 2.6887, 'learning_rate': 5.802430563037341e-07, 'epoch': 7.47} + 47%|████▋ | 173360/371472 [2:52:36<17:39:23, 3.12it/s] 47%|████▋ | 173361/371472 [2:52:36<17:02:55, 3.23it/s] 47%|████▋ | 173362/371472 [2:52:36<16:45:51, 3.28it/s] 47%|████▋ | 173363/371472 [2:52:37<16:33:07, 3.32it/s] 47%|████▋ | 173364/371472 [2:52:37<18:35:38, 2.96it/s] 47%|████▋ | 173365/371472 [2:52:37<18:18:30, 3.01it/s] 47%|████▋ | 173366/371472 [2:52:38<17:44:47, 3.10it/s] 47%|████▋ | 173367/371472 [2:52:38<17:47:58, 3.09it/s] 47%|████▋ | 173368/371472 [2:52:38<17:26:32, 3.15it/s] 47%|████▋ | 173369/371472 [2:52:39<16:47:56, 3.28it/s] 47%|████▋ | 173370/371472 [2:52:39<16:35:29, 3.32it/s] 47%|████▋ | 173371/371472 [2:52:39<17:19:28, 3.18it/s] 47%|████▋ | 173372/371472 [2:52:40<16:36:15, 3.31it/s] 47%|████▋ | 173373/371472 [2:52:40<16:46:18, 3.28it/s] 47%|████▋ | 173374/371472 [2:52:40<16:47:47, 3.28it/s] 47%|████▋ | 173375/371472 [2:52:40<16:44:23, 3.29it/s] 47%|████▋ | 173376/371472 [2:52:41<16:45:21, 3.28it/s] 47%|████▋ | 173377/371472 [2:52:41<16:50:17, 3.27it/s] 47%|████▋ | 173378/371472 [2:52:41<17:30:41, 3.14it/s] 47%|████▋ | 173379/371472 [2:52:42<16:50:29, 3.27it/s] 47%|████▋ | 173380/371472 [2:52:42<16:40:43, 3.30it/s] {'loss': 2.9607, 'learning_rate': 5.801945743282553e-07, 'epoch': 7.47} + 47%|████▋ | 173380/371472 [2:52:42<16:40:43, 3.30it/s] 47%|████▋ | 173381/371472 [2:52:42<16:24:22, 3.35it/s] 47%|████▋ | 173382/371472 [2:52:43<16:22:35, 3.36it/s] 47%|████▋ | 173383/371472 [2:52:43<17:16:32, 3.19it/s] 47%|████▋ | 173384/371472 [2:52:43<16:56:02, 3.25it/s] 47%|████▋ | 173385/371472 [2:52:43<16:46:28, 3.28it/s] 47%|████▋ | 173386/371472 [2:52:44<18:19:55, 3.00it/s] 47%|████▋ | 173387/371472 [2:52:44<17:31:30, 3.14it/s] 47%|████▋ | 173388/371472 [2:52:44<17:10:44, 3.20it/s] 47%|████▋ | 173389/371472 [2:52:45<16:35:19, 3.32it/s] 47%|████▋ | 173390/371472 [2:52:45<16:10:55, 3.40it/s] 47%|████▋ | 173391/371472 [2:52:45<16:50:09, 3.27it/s] 47%|████▋ | 173392/371472 [2:52:46<16:28:10, 3.34it/s] 47%|████▋ | 173393/371472 [2:52:46<16:28:51, 3.34it/s] 47%|████▋ | 173394/371472 [2:52:46<16:27:26, 3.34it/s] 47%|████▋ | 173395/371472 [2:52:47<16:24:40, 3.35it/s] 47%|████▋ | 173396/371472 [2:52:47<16:52:39, 3.26it/s] 47%|████▋ | 173397/371472 [2:52:47<16:50:25, 3.27it/s] 47%|████▋ | 173398/371472 [2:52:47<16:27:05, 3.34it/s] 47%|████▋ | 173399/371472 [2:52:48<16:34:16, 3.32it/s] 47%|████▋ | 173400/371472 [2:52:48<16:52:55, 3.26it/s] {'loss': 2.9414, 'learning_rate': 5.801460923527764e-07, 'epoch': 7.47} + 47%|████▋ | 173400/371472 [2:52:48<16:52:55, 3.26it/s] 47%|████▋ | 173401/371472 [2:52:48<16:55:24, 3.25it/s] 47%|████▋ | 173402/371472 [2:52:49<16:36:24, 3.31it/s] 47%|████▋ | 173403/371472 [2:52:49<16:28:23, 3.34it/s] 47%|████▋ | 173404/371472 [2:52:49<16:02:51, 3.43it/s] 47%|████▋ | 173405/371472 [2:52:50<16:06:17, 3.42it/s] 47%|████▋ | 173406/371472 [2:52:50<15:52:32, 3.47it/s] 47%|████▋ | 173407/371472 [2:52:50<16:23:51, 3.36it/s] 47%|████▋ | 173408/371472 [2:52:50<16:16:23, 3.38it/s] 47%|████▋ | 173409/371472 [2:52:51<15:52:32, 3.47it/s] 47%|████▋ | 173410/371472 [2:52:51<16:07:03, 3.41it/s] 47%|████▋ | 173411/371472 [2:52:51<16:15:50, 3.38it/s] 47%|████▋ | 173412/371472 [2:52:52<17:17:44, 3.18it/s] 47%|████▋ | 173413/371472 [2:52:52<16:41:58, 3.29it/s] 47%|████▋ | 173414/371472 [2:52:52<16:34:59, 3.32it/s] 47%|████▋ | 173415/371472 [2:52:53<17:15:11, 3.19it/s] 47%|████▋ | 173416/371472 [2:52:53<16:43:29, 3.29it/s] 47%|████▋ | 173417/371472 [2:52:53<16:16:50, 3.38it/s] 47%|████▋ | 173418/371472 [2:52:53<16:03:21, 3.43it/s] 47%|████▋ | 173419/371472 [2:52:54<15:59:17, 3.44it/s] 47%|████▋ | 173420/371472 [2:52:54<16:03:02, 3.43it/s] {'loss': 3.0906, 'learning_rate': 5.800976103772975e-07, 'epoch': 7.47} + 47%|████▋ | 173420/371472 [2:52:54<16:03:02, 3.43it/s] 47%|████▋ | 173421/371472 [2:52:54<18:24:08, 2.99it/s] 47%|████▋ | 173422/371472 [2:52:55<17:56:57, 3.06it/s] 47%|████▋ | 173423/371472 [2:52:55<17:03:02, 3.23it/s] 47%|████▋ | 173424/371472 [2:52:55<16:40:23, 3.30it/s] 47%|████▋ | 173425/371472 [2:52:56<17:00:24, 3.23it/s] 47%|████▋ | 173426/371472 [2:52:56<16:56:33, 3.25it/s] 47%|████▋ | 173427/371472 [2:52:56<17:07:32, 3.21it/s] 47%|████▋ | 173428/371472 [2:52:57<16:58:57, 3.24it/s] 47%|████�� | 173429/371472 [2:52:57<16:39:56, 3.30it/s] 47%|████▋ | 173430/371472 [2:52:57<16:32:54, 3.32it/s] 47%|████▋ | 173431/371472 [2:52:57<17:22:07, 3.17it/s] 47%|████▋ | 173432/371472 [2:52:58<17:04:30, 3.22it/s] 47%|████▋ | 173433/371472 [2:52:58<16:29:48, 3.33it/s] 47%|████▋ | 173434/371472 [2:52:58<16:15:18, 3.38it/s] 47%|████▋ | 173435/371472 [2:52:59<16:16:12, 3.38it/s] 47%|████▋ | 173436/371472 [2:52:59<17:28:35, 3.15it/s] 47%|████▋ | 173437/371472 [2:52:59<16:55:13, 3.25it/s] 47%|████▋ | 173438/371472 [2:53:00<18:37:12, 2.95it/s] 47%|████▋ | 173439/371472 [2:53:00<17:56:02, 3.07it/s] 47%|████▋ | 173440/371472 [2:53:00<17:06:11, 3.22it/s] {'loss': 2.8137, 'learning_rate': 5.800491284018185e-07, 'epoch': 7.47} + 47%|████▋ | 173440/371472 [2:53:00<17:06:11, 3.22it/s] 47%|████▋ | 173441/371472 [2:53:01<17:02:36, 3.23it/s] 47%|████▋ | 173442/371472 [2:53:01<16:19:04, 3.37it/s] 47%|████▋ | 173443/371472 [2:53:01<15:58:12, 3.44it/s] 47%|████▋ | 173444/371472 [2:53:01<15:33:20, 3.54it/s] 47%|████▋ | 173445/371472 [2:53:02<16:51:34, 3.26it/s] 47%|████▋ | 173446/371472 [2:53:02<16:33:58, 3.32it/s] 47%|████▋ | 173447/371472 [2:53:02<16:45:48, 3.28it/s] 47%|████▋ | 173448/371472 [2:53:03<16:21:39, 3.36it/s] 47%|████▋ | 173449/371472 [2:53:03<16:25:36, 3.35it/s] 47%|████▋ | 173450/371472 [2:53:03<16:48:17, 3.27it/s] 47%|████▋ | 173451/371472 [2:53:04<17:04:48, 3.22it/s] 47%|████▋ | 173452/371472 [2:53:04<16:44:57, 3.28it/s] 47%|████▋ | 173453/371472 [2:53:04<16:31:22, 3.33it/s] 47%|████▋ | 173454/371472 [2:53:05<17:38:09, 3.12it/s] 47%|████▋ | 173455/371472 [2:53:05<16:46:33, 3.28it/s] 47%|████▋ | 173456/371472 [2:53:05<16:16:54, 3.38it/s] 47%|████▋ | 173457/371472 [2:53:05<16:04:50, 3.42it/s] 47%|████▋ | 173458/371472 [2:53:06<16:07:55, 3.41it/s] 47%|████▋ | 173459/371472 [2:53:06<15:51:03, 3.47it/s] 47%|████▋ | 173460/371472 [2:53:06<16:51:53, 3.26it/s] {'loss': 2.9699, 'learning_rate': 5.800006464263397e-07, 'epoch': 7.47} + 47%|████▋ | 173460/371472 [2:53:06<16:51:53, 3.26it/s] 47%|████▋ | 173461/371472 [2:53:07<16:11:23, 3.40it/s] 47%|████▋ | 173462/371472 [2:53:07<16:08:01, 3.41it/s] 47%|████▋ | 173463/371472 [2:53:07<16:11:55, 3.40it/s] 47%|████▋ | 173464/371472 [2:53:07<15:51:51, 3.47it/s] 47%|████▋ | 173465/371472 [2:53:08<17:29:45, 3.14it/s] 47%|████▋ | 173466/371472 [2:53:08<17:00:22, 3.23it/s] 47%|████▋ | 173467/371472 [2:53:08<16:25:50, 3.35it/s] 47%|████▋ | 173468/371472 [2:53:09<16:12:23, 3.39it/s] 47%|████▋ | 173469/371472 [2:53:09<16:02:49, 3.43it/s] 47%|████▋ | 173470/371472 [2:53:09<15:51:42, 3.47it/s] 47%|████▋ | 173471/371472 [2:53:10<16:40:16, 3.30it/s] 47%|████▋ | 173472/371472 [2:53:10<16:01:58, 3.43it/s] 47%|████▋ | 173473/371472 [2:53:10<15:48:01, 3.48it/s] 47%|████▋ | 173474/371472 [2:53:10<16:32:28, 3.33it/s] 47%|████▋ | 173475/371472 [2:53:11<16:24:50, 3.35it/s] 47%|████▋ | 173476/371472 [2:53:11<16:51:38, 3.26it/s] 47%|████▋ | 173477/371472 [2:53:11<16:27:31, 3.34it/s] 47%|████▋ | 173478/371472 [2:53:12<16:11:36, 3.40it/s] 47%|████▋ | 173479/371472 [2:53:12<17:35:07, 3.13it/s] 47%|████▋ | 173480/371472 [2:53:12<17:59:53, 3.06it/s] {'loss': 3.0245, 'learning_rate': 5.799521644508608e-07, 'epoch': 7.47} + 47%|████▋ | 173480/371472 [2:53:12<17:59:53, 3.06it/s] 47%|████▋ | 173481/371472 [2:53:13<17:27:17, 3.15it/s] 47%|████▋ | 173482/371472 [2:53:13<17:12:13, 3.20it/s] 47%|████▋ | 173483/371472 [2:53:13<17:52:51, 3.08it/s] 47%|████▋ | 173484/371472 [2:53:14<17:40:22, 3.11it/s] 47%|████▋ | 173485/371472 [2:53:14<17:18:35, 3.18it/s] 47%|████▋ | 173486/371472 [2:53:14<16:48:13, 3.27it/s] 47%|████▋ | 173487/371472 [2:53:15<17:26:15, 3.15it/s] 47%|████▋ | 173488/371472 [2:53:15<17:07:25, 3.21it/s] 47%|████▋ | 173489/371472 [2:53:15<16:45:17, 3.28it/s] 47%|████▋ | 173490/371472 [2:53:15<16:40:51, 3.30it/s] 47%|████▋ | 173491/371472 [2:53:16<16:23:55, 3.35it/s] 47%|████▋ | 173492/371472 [2:53:16<16:28:11, 3.34it/s] 47%|████▋ | 173493/371472 [2:53:16<16:32:00, 3.33it/s] 47%|████▋ | 173494/371472 [2:53:17<16:39:58, 3.30it/s] 47%|████▋ | 173495/371472 [2:53:17<17:34:45, 3.13it/s] 47%|████▋ | 173496/371472 [2:53:17<17:19:13, 3.18it/s] 47%|████▋ | 173497/371472 [2:53:18<17:21:03, 3.17it/s] 47%|████▋ | 173498/371472 [2:53:18<17:25:12, 3.16it/s] 47%|████▋ | 173499/371472 [2:53:18<16:47:28, 3.28it/s] 47%|████▋ | 173500/371472 [2:53:18<16:21:23, 3.36it/s] {'loss': 2.9055, 'learning_rate': 5.799036824753817e-07, 'epoch': 7.47} + 47%|████▋ | 173500/371472 [2:53:18<16:21:23, 3.36it/s] 47%|████▋ | 173501/371472 [2:53:19<16:06:11, 3.41it/s] 47%|████▋ | 173502/371472 [2:53:19<15:53:51, 3.46it/s] 47%|████▋ | 173503/371472 [2:53:19<17:00:47, 3.23it/s] 47%|████▋ | 173504/371472 [2:53:20<16:32:59, 3.32it/s] 47%|████▋ | 173505/371472 [2:53:20<16:38:24, 3.30it/s] 47%|████▋ | 173506/371472 [2:53:20<16:22:33, 3.36it/s] 47%|████▋ | 173507/371472 [2:53:21<17:13:19, 3.19it/s] 47%|████▋ | 173508/371472 [2:53:21<17:02:17, 3.23it/s] 47%|████▋ | 173509/371472 [2:53:21<16:50:37, 3.26it/s] 47%|████▋ | 173510/371472 [2:53:22<17:19:18, 3.17it/s] 47%|████▋ | 173511/371472 [2:53:22<17:51:35, 3.08it/s] 47%|████▋ | 173512/371472 [2:53:22<17:16:48, 3.18it/s] 47%|████▋ | 173513/371472 [2:53:22<16:48:15, 3.27it/s] 47%|████▋ | 173514/371472 [2:53:23<16:57:56, 3.24it/s] 47%|████▋ | 173515/371472 [2:53:23<16:57:34, 3.24it/s] 47%|████▋ | 173516/371472 [2:53:23<17:14:51, 3.19it/s] 47%|████▋ | 173517/371472 [2:53:24<17:01:57, 3.23it/s] 47%|████▋ | 173518/371472 [2:53:24<16:56:31, 3.25it/s] 47%|████▋ | 173519/371472 [2:53:24<16:23:12, 3.36it/s] 47%|████▋ | 173520/371472 [2:53:25<16:05:41, 3.42it/s] {'loss': 2.8786, 'learning_rate': 5.79855200499903e-07, 'epoch': 7.47} + 47%|████▋ | 173520/371472 [2:53:25<16:05:41, 3.42it/s] 47%|████▋ | 173521/371472 [2:53:25<16:04:29, 3.42it/s] 47%|████▋ | 173522/371472 [2:53:25<16:32:11, 3.33it/s] 47%|████▋ | 173523/371472 [2:53:25<16:09:04, 3.40it/s] 47%|████▋ | 173524/371472 [2:53:26<17:04:24, 3.22it/s] 47%|████▋ | 173525/371472 [2:53:26<16:56:28, 3.25it/s] 47%|████▋ | 173526/371472 [2:53:26<16:36:06, 3.31it/s] 47%|████▋ | 173527/371472 [2:53:27<16:24:02, 3.35it/s] 47%|████▋ | 173528/371472 [2:53:27<16:09:53, 3.40it/s] 47%|████▋ | 173529/371472 [2:53:27<16:26:54, 3.34it/s] 47%|████▋ | 173530/371472 [2:53:28<16:47:23, 3.27it/s] 47%|████▋ | 173531/371472 [2:53:28<16:08:25, 3.41it/s] 47%|████▋ | 173532/371472 [2:53:28<16:00:19, 3.44it/s] 47%|████▋ | 173533/371472 [2:53:28<15:58:49, 3.44it/s] 47%|████▋ | 173534/371472 [2:53:29<16:06:04, 3.41it/s] 47%|████▋ | 173535/371472 [2:53:29<15:55:11, 3.45it/s] 47%|████▋ | 173536/371472 [2:53:29<15:49:59, 3.47it/s] 47%|████▋ | 173537/371472 [2:53:30<16:08:53, 3.40it/s] 47%|████▋ | 173538/371472 [2:53:30<17:55:54, 3.07it/s] 47%|████▋ | 173539/371472 [2:53:30<17:11:09, 3.20it/s] 47%|████▋ | 173540/371472 [2:53:31<17:20:56, 3.17it/s] {'loss': 3.0392, 'learning_rate': 5.798067185244242e-07, 'epoch': 7.47} + 47%|████▋ | 173540/371472 [2:53:31<17:20:56, 3.17it/s] 47%|████▋ | 173541/371472 [2:53:31<16:49:17, 3.27it/s] 47%|████▋ | 173542/371472 [2:53:31<16:51:26, 3.26it/s] 47%|████▋ | 173543/371472 [2:53:31<16:22:04, 3.36it/s] 47%|████▋ | 173544/371472 [2:53:32<16:57:00, 3.24it/s] 47%|████▋ | 173545/371472 [2:53:32<16:39:34, 3.30it/s] 47%|████▋ | 173546/371472 [2:53:32<16:29:43, 3.33it/s] 47%|████▋ | 173547/371472 [2:53:33<16:12:25, 3.39it/s] 47%|████▋ | 173548/371472 [2:53:33<16:15:28, 3.38it/s] 47%|████▋ | 173549/371472 [2:53:33<16:09:43, 3.40it/s] 47%|████▋ | 173550/371472 [2:53:34<16:35:30, 3.31it/s] 47%|████▋ | 173551/371472 [2:53:34<16:38:17, 3.30it/s] 47%|████▋ | 173552/371472 [2:53:34<16:18:24, 3.37it/s] 47%|████▋ | 173553/371472 [2:53:34<16:28:54, 3.34it/s] 47%|████▋ | 173554/371472 [2:53:35<17:21:54, 3.17it/s] 47%|████▋ | 173555/371472 [2:53:35<16:54:27, 3.25it/s] 47%|��███▋ | 173556/371472 [2:53:35<16:46:14, 3.28it/s] 47%|████▋ | 173557/371472 [2:53:36<16:18:21, 3.37it/s] 47%|████▋ | 173558/371472 [2:53:36<16:18:02, 3.37it/s] 47%|████▋ | 173559/371472 [2:53:36<16:30:29, 3.33it/s] 47%|████▋ | 173560/371472 [2:53:37<16:21:28, 3.36it/s] {'loss': 2.9517, 'learning_rate': 5.797582365489452e-07, 'epoch': 7.48} + 47%|████▋ | 173560/371472 [2:53:37<16:21:28, 3.36it/s] 47%|████▋ | 173561/371472 [2:53:37<16:24:42, 3.35it/s] 47%|████▋ | 173562/371472 [2:53:37<16:16:33, 3.38it/s] 47%|████▋ | 173563/371472 [2:53:38<16:51:16, 3.26it/s] 47%|████▋ | 173564/371472 [2:53:38<16:07:22, 3.41it/s] 47%|████▋ | 173565/371472 [2:53:38<16:17:08, 3.38it/s] 47%|████▋ | 173566/371472 [2:53:38<16:19:36, 3.37it/s] 47%|████▋ | 173567/371472 [2:53:39<15:49:58, 3.47it/s] 47%|████▋ | 173568/371472 [2:53:39<15:54:57, 3.45it/s] 47%|████▋ | 173569/371472 [2:53:39<15:32:00, 3.54it/s] 47%|████▋ | 173570/371472 [2:53:39<15:19:44, 3.59it/s] 47%|████▋ | 173571/371472 [2:53:40<15:33:13, 3.53it/s] 47%|████▋ | 173572/371472 [2:53:40<15:45:59, 3.49it/s] 47%|████▋ | 173573/371472 [2:53:40<15:52:25, 3.46it/s] 47%|████▋ | 173574/371472 [2:53:41<16:14:53, 3.38it/s] 47%|████▋ | 173575/371472 [2:53:41<16:26:03, 3.34it/s] 47%|████▋ | 173576/371472 [2:53:41<17:04:44, 3.22it/s] 47%|████▋ | 173577/371472 [2:53:42<16:28:01, 3.34it/s] 47%|████▋ | 173578/371472 [2:53:42<16:56:08, 3.25it/s] 47%|████▋ | 173579/371472 [2:53:42<16:28:29, 3.34it/s] 47%|████▋ | 173580/371472 [2:53:42<16:02:13, 3.43it/s] {'loss': 2.9106, 'learning_rate': 5.797097545734662e-07, 'epoch': 7.48} + 47%|████▋ | 173580/371472 [2:53:42<16:02:13, 3.43it/s] 47%|████▋ | 173581/371472 [2:53:43<17:24:33, 3.16it/s] 47%|████▋ | 173582/371472 [2:53:43<18:19:48, 3.00it/s] 47%|████▋ | 173583/371472 [2:53:44<17:33:23, 3.13it/s] 47%|████▋ | 173584/371472 [2:53:44<17:45:34, 3.10it/s] 47%|████▋ | 173585/371472 [2:53:44<17:48:26, 3.09it/s] 47%|████▋ | 173586/371472 [2:53:44<17:20:15, 3.17it/s] 47%|████▋ | 173587/371472 [2:53:45<17:23:59, 3.16it/s] 47%|████▋ | 173588/371472 [2:53:45<16:47:18, 3.27it/s] 47%|████▋ | 173589/371472 [2:53:45<18:19:30, 3.00it/s] 47%|████▋ | 173590/371472 [2:53:46<18:06:56, 3.03it/s] 47%|████▋ | 173591/371472 [2:53:46<17:29:08, 3.14it/s] 47%|████▋ | 173592/371472 [2:53:46<17:26:07, 3.15it/s] 47%|████▋ | 173593/371472 [2:53:47<17:07:53, 3.21it/s] 47%|████▋ | 173594/371472 [2:53:47<17:46:56, 3.09it/s] 47%|████▋ | 173595/371472 [2:53:47<17:29:02, 3.14it/s] 47%|████▋ | 173596/371472 [2:53:48<17:27:38, 3.15it/s] 47%|████▋ | 173597/371472 [2:53:48<17:04:35, 3.22it/s] 47%|████▋ | 173598/371472 [2:53:48<17:34:22, 3.13it/s] 47%|████▋ | 173599/371472 [2:53:49<16:56:57, 3.24it/s] 47%|████▋ | 173600/371472 [2:53:49<16:42:20, 3.29it/s] {'loss': 3.0123, 'learning_rate': 5.796612725979874e-07, 'epoch': 7.48} + 47%|████▋ | 173600/371472 [2:53:49<16:42:20, 3.29it/s] 47%|████▋ | 173601/371472 [2:53:49<17:52:53, 3.07it/s] 47%|████▋ | 173602/371472 [2:53:50<16:59:36, 3.23it/s] 47%|████▋ | 173603/371472 [2:53:50<16:38:55, 3.30it/s] 47%|████▋ | 173604/371472 [2:53:50<16:32:07, 3.32it/s] 47%|████▋ | 173605/371472 [2:53:50<16:48:27, 3.27it/s] 47%|████▋ | 173606/371472 [2:53:51<17:17:56, 3.18it/s] 47%|████▋ | 173607/371472 [2:53:51<17:49:29, 3.08it/s] 47%|████▋ | 173608/371472 [2:53:51<16:49:25, 3.27it/s] 47%|████▋ | 173609/371472 [2:53:52<16:58:54, 3.24it/s] 47%|████▋ | 173610/371472 [2:53:52<16:27:47, 3.34it/s] 47%|████▋ | 173611/371472 [2:53:52<16:56:11, 3.25it/s] 47%|████▋ | 173612/371472 [2:53:53<16:28:21, 3.34it/s] 47%|████▋ | 173613/371472 [2:53:53<16:11:36, 3.39it/s] 47%|████▋ | 173614/371472 [2:53:53<16:13:05, 3.39it/s] 47%|████▋ | 173615/371472 [2:53:53<16:56:03, 3.25it/s] 47%|████▋ | 173616/371472 [2:53:54<17:13:35, 3.19it/s] 47%|████▋ | 173617/371472 [2:53:54<17:19:51, 3.17it/s] 47%|████▋ | 173618/371472 [2:53:54<16:52:21, 3.26it/s] 47%|████▋ | 173619/371472 [2:53:55<16:32:28, 3.32it/s] 47%|████▋ | 173620/371472 [2:53:55<17:30:35, 3.14it/s] {'loss': 2.824, 'learning_rate': 5.796127906225086e-07, 'epoch': 7.48} + 47%|████▋ | 173620/371472 [2:53:55<17:30:35, 3.14it/s] 47%|████▋ | 173621/371472 [2:53:55<17:00:39, 3.23it/s] 47%|████▋ | 173622/371472 [2:53:56<17:00:20, 3.23it/s] 47%|████▋ | 173623/371472 [2:53:56<16:28:37, 3.34it/s] 47%|████▋ | 173624/371472 [2:53:56<16:48:02, 3.27it/s] 47%|████▋ | 173625/371472 [2:53:57<16:35:46, 3.31it/s] 47%|████▋ | 173626/371472 [2:53:57<17:35:12, 3.12it/s] 47%|████▋ | 173627/371472 [2:53:57<17:52:01, 3.08it/s] 47%|████▋ | 173628/371472 [2:53:58<17:26:02, 3.15it/s] 47%|████▋ | 173629/371472 [2:53:58<17:06:40, 3.21it/s] 47%|████▋ | 173630/371472 [2:53:58<17:27:03, 3.15it/s] 47%|████▋ | 173631/371472 [2:53:58<16:53:59, 3.25it/s] 47%|████▋ | 173632/371472 [2:53:59<16:17:54, 3.37it/s] 47%|████▋ | 173633/371472 [2:53:59<16:05:32, 3.41it/s] 47%|████▋ | 173634/371472 [2:53:59<16:06:31, 3.41it/s] 47%|████▋ | 173635/371472 [2:54:00<15:45:35, 3.49it/s] 47%|████▋ | 173636/371472 [2:54:00<15:46:13, 3.48it/s] 47%|████▋ | 173637/371472 [2:54:00<15:55:12, 3.45it/s] 47%|████▋ | 173638/371472 [2:54:00<15:27:52, 3.55it/s] 47%|████▋ | 173639/371472 [2:54:01<15:10:20, 3.62it/s] 47%|████▋ | 173640/371472 [2:54:01<15:05:36, 3.64it/s] {'loss': 3.0775, 'learning_rate': 5.795643086470297e-07, 'epoch': 7.48} + 47%|████▋ | 173640/371472 [2:54:01<15:05:36, 3.64it/s] 47%|████▋ | 173641/371472 [2:54:01<15:19:47, 3.58it/s] 47%|████▋ | 173642/371472 [2:54:02<15:33:36, 3.53it/s] 47%|████▋ | 173643/371472 [2:54:02<15:34:34, 3.53it/s] 47%|████▋ | 173644/371472 [2:54:02<15:34:35, 3.53it/s] 47%|████▋ | 173645/371472 [2:54:02<15:34:39, 3.53it/s] 47%|████▋ | 173646/371472 [2:54:03<16:13:57, 3.39it/s] 47%|████▋ | 173647/371472 [2:54:03<16:03:48, 3.42it/s] 47%|████▋ | 173648/371472 [2:54:03<16:37:57, 3.30it/s] 47%|████▋ | 173649/371472 [2:54:04<16:20:27, 3.36it/s] 47%|████▋ | 173650/371472 [2:54:04<16:28:47, 3.33it/s] 47%|████▋ | 173651/371472 [2:54:04<16:15:09, 3.38it/s] 47%|████▋ | 173652/371472 [2:54:05<16:47:31, 3.27it/s] 47%|████▋ | 173653/371472 [2:54:05<16:41:38, 3.29it/s] 47%|████▋ | 173654/371472 [2:54:05<16:57:33, 3.24it/s] 47%|████▋ | 173655/371472 [2:54:05<16:29:57, 3.33it/s] 47%|████▋ | 173656/371472 [2:54:06<16:43:01, 3.29it/s] 47%|████▋ | 173657/371472 [2:54:06<16:52:37, 3.26it/s] 47%|████▋ | 173658/371472 [2:54:06<17:06:29, 3.21it/s] 47%|████▋ | 173659/371472 [2:54:07<16:40:11, 3.30it/s] 47%|████▋ | 173660/371472 [2:54:07<16:59:37, 3.23it/s] {'loss': 2.8225, 'learning_rate': 5.795158266715507e-07, 'epoch': 7.48} + 47%|████▋ | 173660/371472 [2:54:07<16:59:37, 3.23it/s] 47%|████▋ | 173661/371472 [2:54:07<16:52:19, 3.26it/s] 47%|████▋ | 173662/371472 [2:54:08<18:14:32, 3.01it/s] 47%|████▋ | 173663/371472 [2:54:08<17:26:15, 3.15it/s] 47%|████▋ | 173664/371472 [2:54:08<17:09:17, 3.20it/s] 47%|████▋ | 173665/371472 [2:54:09<16:56:18, 3.24it/s] 47%|████▋ | 173666/371472 [2:54:09<16:44:51, 3.28it/s] 47%|████▋ | 173667/371472 [2:54:09<16:25:23, 3.35it/s] 47%|████▋ | 173668/371472 [2:54:10<18:57:26, 2.90it/s] 47%|████▋ | 173669/371472 [2:54:10<18:36:34, 2.95it/s] 47%|████▋ | 173670/371472 [2:54:10<19:12:36, 2.86it/s] 47%|████▋ | 173671/371472 [2:54:11<18:24:20, 2.99it/s] 47%|████▋ | 173672/371472 [2:54:11<17:31:49, 3.13it/s] 47%|████▋ | 173673/371472 [2:54:11<17:11:06, 3.20it/s] 47%|████▋ | 173674/371472 [2:54:12<18:11:27, 3.02it/s] 47%|████▋ | 173675/371472 [2:54:12<17:26:14, 3.15it/s] 47%|████▋ | 173676/371472 [2:54:12<16:44:34, 3.28it/s] 47%|████▋ | 173677/371472 [2:54:12<16:22:30, 3.36it/s] 47%|████▋ | 173678/371472 [2:54:13<16:42:04, 3.29it/s] 47%|████▋ | 173679/371472 [2:54:13<16:23:03, 3.35it/s] 47%|████▋ | 173680/371472 [2:54:13<16:23:10, 3.35it/s] {'loss': 2.9347, 'learning_rate': 5.794673446960718e-07, 'epoch': 7.48} + 47%|████▋ | 173680/371472 [2:54:13<16:23:10, 3.35it/s] 47%|████▋ | 173681/371472 [2:54:14<16:22:05, 3.36it/s] 47%|████▋ | 173682/371472 [2:54:14<16:35:00, 3.31it/s] 47%|████▋ | 173683/371472 [2:54:14<16:18:04, 3.37it/s] 47%|████▋ | 173684/371472 [2:54:14<16:14:34, 3.38it/s] 47%|████▋ | 173685/371472 [2:54:15<16:05:34, 3.41it/s] 47%|████▋ | 173686/371472 [2:54:15<16:19:09, 3.37it/s] 47%|████▋ | 173687/371472 [2:54:15<16:11:22, 3.39it/s] 47%|████▋ | 173688/371472 [2:54:16<15:57:29, 3.44it/s] 47%|████▋ | 173689/371472 [2:54:16<15:43:01, 3.50it/s] 47%|████▋ | 173690/371472 [2:54:16<15:59:53, 3.43it/s] 47%|████▋ | 173691/371472 [2:54:17<15:43:58, 3.49it/s] 47%|████▋ | 173692/371472 [2:54:17<16:35:04, 3.31it/s] 47%|████▋ | 173693/371472 [2:54:17<17:03:38, 3.22it/s] 47%|████▋ | 173694/371472 [2:54:17<17:08:10, 3.21it/s] 47%|████▋ | 173695/371472 [2:54:18<17:02:57, 3.22it/s] 47%|████▋ | 173696/371472 [2:54:18<18:00:34, 3.05it/s] 47%|████▋ | 173697/371472 [2:54:18<17:27:52, 3.15it/s] 47%|████▋ | 173698/371472 [2:54:19<17:00:33, 3.23it/s] 47%|████▋ | 173699/371472 [2:54:19<17:03:03, 3.22it/s] 47%|████▋ | 173700/371472 [2:54:19<16:49:21, 3.27it/s] {'loss': 2.7681, 'learning_rate': 5.79418862720593e-07, 'epoch': 7.48} + 47%|████▋ | 173700/371472 [2:54:19<16:49:21, 3.27it/s] 47%|████▋ | 173701/371472 [2:54:20<17:02:32, 3.22it/s] 47%|████▋ | 173702/371472 [2:54:20<16:52:34, 3.26it/s] 47%|████▋ | 173703/371472 [2:54:20<16:41:51, 3.29it/s] 47%|████▋ | 173704/371472 [2:54:21<16:27:29, 3.34it/s] 47%|████▋ | 173705/371472 [2:54:21<18:01:27, 3.05it/s] 47%|████▋ | 173706/371472 [2:54:21<17:21:34, 3.16it/s] 47%|████▋ | 173707/371472 [2:54:22<16:31:54, 3.32it/s] 47%|████▋ | 173708/371472 [2:54:22<16:29:11, 3.33it/s] 47%|████▋ | 173709/371472 [2:54:22<17:40:59, 3.11it/s] 47%|████▋ | 173710/371472 [2:54:22<17:18:14, 3.17it/s] 47%|████▋ | 173711/371472 [2:54:23<17:05:55, 3.21it/s] 47%|████▋ | 173712/371472 [2:54:23<16:50:01, 3.26it/s] 47%|████▋ | 173713/371472 [2:54:23<16:27:41, 3.34it/s] 47%|████▋ | 173714/371472 [2:54:24<16:01:20, 3.43it/s] 47%|████▋ | 173715/371472 [2:54:24<15:50:49, 3.47it/s] 47%|████▋ | 173716/371472 [2:54:24<15:48:58, 3.47it/s] 47%|████▋ | 173717/371472 [2:54:25<16:05:09, 3.41it/s] 47%|████▋ | 173718/371472 [2:54:25<15:56:01, 3.45it/s] 47%|████▋ | 173719/371472 [2:54:25<15:59:19, 3.44it/s] 47%|████▋ | 173720/371472 [2:54:25<16:54:33, 3.25it/s] {'loss': 2.8223, 'learning_rate': 5.793703807451141e-07, 'epoch': 7.48} + 47%|████▋ | 173720/371472 [2:54:25<16:54:33, 3.25it/s] 47%|████▋ | 173721/371472 [2:54:26<17:07:25, 3.21it/s] 47%|████▋ | 173722/371472 [2:54:26<16:42:49, 3.29it/s] 47%|████▋ | 173723/371472 [2:54:26<16:39:19, 3.30it/s] 47%|████▋ | 173724/371472 [2:54:27<16:07:59, 3.40it/s] 47%|████▋ | 173725/371472 [2:54:27<17:05:20, 3.21it/s] 47%|████▋ | 173726/371472 [2:54:27<16:43:56, 3.28it/s] 47%|████▋ | 173727/371472 [2:54:28<16:28:43, 3.33it/s] 47%|████▋ | 173728/371472 [2:54:28<16:21:57, 3.36it/s] 47%|████▋ | 173729/371472 [2:54:28<16:04:16, 3.42it/s] 47%|████▋ | 173730/371472 [2:54:28<15:33:00, 3.53it/s] 47%|████▋ | 173731/371472 [2:54:29<15:33:58, 3.53it/s] 47%|████▋ | 173732/371472 [2:54:29<16:07:01, 3.41it/s] 47%|████▋ | 173733/371472 [2:54:29<16:37:22, 3.30it/s] 47%|████▋ | 173734/371472 [2:54:30<16:27:17, 3.34it/s] 47%|████▋ | 173735/371472 [2:54:30<16:43:28, 3.28it/s] 47%|████▋ | 173736/371472 [2:54:30<17:51:30, 3.08it/s] 47%|████▋ | 173737/371472 [2:54:31<17:02:40, 3.22it/s] 47%|████▋ | 173738/371472 [2:54:31<16:34:32, 3.31it/s] 47%|████▋ | 173739/371472 [2:54:31<16:37:49, 3.30it/s] 47%|████▋ | 173740/371472 [2:54:31<16:07:39, 3.41it/s] {'loss': 2.8764, 'learning_rate': 5.793218987696351e-07, 'epoch': 7.48} + 47%|████▋ | 173740/371472 [2:54:31<16:07:39, 3.41it/s] 47%|████▋ | 173741/371472 [2:54:32<16:23:17, 3.35it/s] 47%|████▋ | 173742/371472 [2:54:32<16:45:16, 3.28it/s] 47%|████▋ | 173743/371472 [2:54:32<16:28:12, 3.33it/s] 47%|████▋ | 173744/371472 [2:54:33<17:29:15, 3.14it/s] 47%|████▋ | 173745/371472 [2:54:33<16:48:25, 3.27it/s] 47%|████▋ | 173746/371472 [2:54:33<16:54:52, 3.25it/s] 47%|████▋ | 173747/371472 [2:54:34<16:30:49, 3.33it/s] 47%|████▋ | 173748/371472 [2:54:34<16:14:33, 3.38it/s] 47%|████▋ | 173749/371472 [2:54:34<16:11:09, 3.39it/s] 47%|████▋ | 173750/371472 [2:54:34<16:14:07, 3.38it/s] 47%|████▋ | 173751/371472 [2:54:35<16:30:18, 3.33it/s] 47%|████▋ | 173752/371472 [2:54:35<16:23:39, 3.35it/s] 47%|████▋ | 173753/371472 [2:54:35<17:18:48, 3.17it/s] 47%|████▋ | 173754/371472 [2:54:36<16:42:20, 3.29it/s] 47%|████▋ | 173755/371472 [2:54:36<17:14:31, 3.19it/s] 47%|████▋ | 173756/371472 [2:54:36<16:51:03, 3.26it/s] 47%|████▋ | 173757/371472 [2:54:37<16:23:53, 3.35it/s] 47%|████▋ | 173758/371472 [2:54:37<17:25:50, 3.15it/s] 47%|████▋ | 173759/371472 [2:54:37<17:39:04, 3.11it/s] 47%|████▋ | 173760/371472 [2:54:38<17:53:44, 3.07it/s] {'loss': 2.8406, 'learning_rate': 5.792734167941563e-07, 'epoch': 7.48} + 47%|████▋ | 173760/371472 [2:54:38<17:53:44, 3.07it/s] 47%|████▋ | 173761/371472 [2:54:38<17:27:02, 3.15it/s] 47%|████▋ | 173762/371472 [2:54:38<17:00:35, 3.23it/s] 47%|████▋ | 173763/371472 [2:54:38<16:41:35, 3.29it/s] 47%|████▋ | 173764/371472 [2:54:39<16:37:33, 3.30it/s] 47%|████▋ | 173765/371472 [2:54:39<16:17:46, 3.37it/s] 47%|████▋ | 173766/371472 [2:54:39<16:21:30, 3.36it/s] 47%|████▋ | 173767/371472 [2:54:40<15:59:26, 3.43it/s] 47%|████▋ | 173768/371472 [2:54:40<17:07:22, 3.21it/s] 47%|████▋ | 173769/371472 [2:54:40<16:56:40, 3.24it/s] 47%|████▋ | 173770/371472 [2:54:41<16:20:36, 3.36it/s] 47%|████▋ | 173771/371472 [2:54:41<16:59:25, 3.23it/s] 47%|████▋ | 173772/371472 [2:54:41<17:38:56, 3.11it/s] 47%|████▋ | 173773/371472 [2:54:42<17:15:20, 3.18it/s] 47%|████▋ | 173774/371472 [2:54:42<16:43:10, 3.28it/s] 47%|████▋ | 173775/371472 [2:54:42<16:13:07, 3.39it/s] 47%|████▋ | 173776/371472 [2:54:42<15:52:06, 3.46it/s] 47%|████▋ | 173777/371472 [2:54:43<16:24:20, 3.35it/s] 47%|████▋ | 173778/371472 [2:54:43<16:30:45, 3.33it/s] 47%|████▋ | 173779/371472 [2:54:43<16:09:37, 3.40it/s] 47%|████▋ | 173780/371472 [2:54:44<16:27:27, 3.34it/s] {'loss': 2.7933, 'learning_rate': 5.792249348186775e-07, 'epoch': 7.49} + 47%|████▋ | 173780/371472 [2:54:44<16:27:27, 3.34it/s] 47%|████▋ | 173781/371472 [2:54:44<17:07:29, 3.21it/s] 47%|████▋ | 173782/371472 [2:54:44<17:46:56, 3.09it/s] 47%|████▋ | 173783/371472 [2:54:45<17:24:38, 3.15it/s] 47%|████▋ | 173784/371472 [2:54:45<17:09:25, 3.20it/s] 47%|████▋ | 173785/371472 [2:54:45<17:26:50, 3.15it/s] 47%|████▋ | 173786/371472 [2:54:46<17:17:45, 3.17it/s] 47%|████▋ | 173787/371472 [2:54:46<16:53:03, 3.25it/s] 47%|████▋ | 173788/371472 [2:54:46<17:12:07, 3.19it/s] 47%|████▋ | 173789/371472 [2:54:46<16:48:33, 3.27it/s] 47%|████▋ | 173790/371472 [2:54:47<16:25:53, 3.34it/s] 47%|████▋ | 173791/371472 [2:54:47<16:14:27, 3.38it/s] 47%|████▋ | 173792/371472 [2:54:47<16:15:11, 3.38it/s] 47%|████▋ | 173793/371472 [2:54:48<16:10:15, 3.40it/s] 47%|████▋ | 173794/371472 [2:54:48<17:05:03, 3.21it/s] 47%|████▋ | 173795/371472 [2:54:48<16:28:38, 3.33it/s] 47%|████▋ | 173796/371472 [2:54:49<16:07:13, 3.41it/s] 47%|████▋ | 173797/371472 [2:54:49<16:43:58, 3.28it/s] 47%|████▋ | 173798/371472 [2:54:49<16:44:36, 3.28it/s] 47%|████▋ | 173799/371472 [2:54:49<16:32:14, 3.32it/s] 47%|████▋ | 173800/371472 [2:54:50<15:57:59, 3.44it/s] {'loss': 3.0147, 'learning_rate': 5.791764528431985e-07, 'epoch': 7.49} + 47%|████▋ | 173800/371472 [2:54:50<15:57:59, 3.44it/s] 47%|████▋ | 173801/371472 [2:54:50<16:58:55, 3.23it/s] 47%|████▋ | 173802/371472 [2:54:50<16:51:22, 3.26it/s] 47%|████▋ | 173803/371472 [2:54:51<16:33:31, 3.32it/s] 47%|████▋ | 173804/371472 [2:54:51<16:23:24, 3.35it/s] 47%|████▋ | 173805/371472 [2:54:51<17:02:19, 3.22it/s] 47%|████▋ | 173806/371472 [2:54:52<16:24:04, 3.35it/s] 47%|████▋ | 173807/371472 [2:54:52<16:08:39, 3.40it/s] 47%|████▋ | 173808/371472 [2:54:52<15:47:49, 3.48it/s] 47%|████▋ | 173809/371472 [2:54:52<17:00:48, 3.23it/s] 47%|████▋ | 173810/371472 [2:54:53<16:37:21, 3.30it/s] 47%|████▋ | 173811/371472 [2:54:53<16:27:23, 3.34it/s] 47%|████▋ | 173812/371472 [2:54:53<16:00:51, 3.43it/s] 47%|████▋ | 173813/371472 [2:54:54<16:13:49, 3.38it/s] 47%|████▋ | 173814/371472 [2:54:54<16:20:20, 3.36it/s] 47%|████▋ | 173815/371472 [2:54:54<16:06:12, 3.41it/s] 47%|████▋ | 173816/371472 [2:54:55<16:00:48, 3.43it/s] 47%|████▋ | 173817/371472 [2:54:55<16:30:09, 3.33it/s] 47%|████▋ | 173818/371472 [2:54:55<16:12:15, 3.39it/s] 47%|████▋ | 173819/371472 [2:54:55<16:25:24, 3.34it/s] 47%|████▋ | 173820/371472 [2:54:56<15:55:15, 3.45it/s] {'loss': 2.806, 'learning_rate': 5.791279708677195e-07, 'epoch': 7.49} + 47%|████▋ | 173820/371472 [2:54:56<15:55:15, 3.45it/s] 47%|████▋ | 173821/371472 [2:54:56<15:57:58, 3.44it/s] 47%|████▋ | 173822/371472 [2:54:56<16:23:22, 3.35it/s] 47%|████▋ | 173823/371472 [2:54:57<16:54:03, 3.25it/s] 47%|████▋ | 173824/371472 [2:54:57<16:24:21, 3.35it/s] 47%|████▋ | 173825/371472 [2:54:57<16:21:51, 3.35it/s] 47%|████▋ | 173826/371472 [2:54:58<17:06:38, 3.21it/s] 47%|████▋ | 173827/371472 [2:54:58<17:31:21, 3.13it/s] 47%|████▋ | 173828/371472 [2:54:58<17:04:12, 3.22it/s] 47%|████▋ | 173829/371472 [2:54:58<16:41:59, 3.29it/s] 47%|████▋ | 173830/371472 [2:54:59<17:26:27, 3.15it/s] 47%|████▋ | 173831/371472 [2:54:59<17:16:25, 3.18it/s] 47%|████▋ | 173832/371472 [2:54:59<16:54:12, 3.25it/s] 47%|████▋ | 173833/371472 [2:55:00<17:47:25, 3.09it/s] 47%|████▋ | 173834/371472 [2:55:00<17:10:09, 3.20it/s] 47%|████▋ | 173835/371472 [2:55:00<16:36:20, 3.31it/s] 47%|████▋ | 173836/371472 [2:55:01<16:22:00, 3.35it/s] 47%|████▋ | 173837/371472 [2:55:01<16:00:21, 3.43it/s] 47%|████▋ | 173838/371472 [2:55:01<16:09:25, 3.40it/s] 47%|████▋ | 173839/371472 [2:55:01<16:07:17, 3.41it/s] 47%|████▋ | 173840/371472 [2:55:02<16:00:24, 3.43it/s] {'loss': 2.8958, 'learning_rate': 5.790794888922407e-07, 'epoch': 7.49} + 47%|████▋ | 173840/371472 [2:55:02<16:00:24, 3.43it/s] 47%|████▋ | 173841/371472 [2:55:02<16:29:34, 3.33it/s] 47%|████▋ | 173842/371472 [2:55:02<16:19:41, 3.36it/s] 47%|████▋ | 173843/371472 [2:55:03<16:01:42, 3.42it/s] 47%|████▋ | 173844/371472 [2:55:03<16:12:45, 3.39it/s] 47%|████▋ | 173845/371472 [2:55:03<17:30:32, 3.14it/s] 47%|████▋ | 173846/371472 [2:55:04<16:57:47, 3.24it/s] 47%|████▋ | 173847/371472 [2:55:04<17:08:21, 3.20it/s] 47%|████▋ | 173848/371472 [2:55:04<16:49:14, 3.26it/s] 47%|████▋ | 173849/371472 [2:55:05<16:16:13, 3.37it/s] 47%|████▋ | 173850/371472 [2:55:05<16:10:40, 3.39it/s] 47%|████▋ | 173851/371472 [2:55:05<16:17:20, 3.37it/s] 47%|████▋ | 173852/371472 [2:55:05<16:08:05, 3.40it/s] 47%|████▋ | 173853/371472 [2:55:06<16:01:42, 3.42it/s] 47%|████▋ | 173854/371472 [2:55:06<15:28:13, 3.55it/s] 47%|████▋ | 173855/371472 [2:55:06<15:37:21, 3.51it/s] 47%|████▋ | 173856/371472 [2:55:07<15:31:32, 3.54it/s] 47%|████▋ | 173857/371472 [2:55:07<16:06:23, 3.41it/s] 47%|████▋ | 173858/371472 [2:55:07<15:53:38, 3.45it/s] 47%|████▋ | 173859/371472 [2:55:07<15:48:30, 3.47it/s] 47%|████▋ | 173860/371472 [2:55:08<15:43:11, 3.49it/s] {'loss': 3.0115, 'learning_rate': 5.790310069167619e-07, 'epoch': 7.49} + 47%|████▋ | 173860/371472 [2:55:08<15:43:11, 3.49it/s] 47%|████▋ | 173861/371472 [2:55:08<16:26:27, 3.34it/s] 47%|████▋ | 173862/371472 [2:55:08<16:49:36, 3.26it/s] 47%|████▋ | 173863/371472 [2:55:09<16:44:55, 3.28it/s] 47%|████▋ | 173864/371472 [2:55:09<16:41:50, 3.29it/s] 47%|████▋ | 173865/371472 [2:55:09<16:29:55, 3.33it/s] 47%|████▋ | 173866/371472 [2:55:10<16:41:31, 3.29it/s] 47%|████▋ | 173867/371472 [2:55:10<16:29:10, 3.33it/s] 47%|████▋ | 173868/371472 [2:55:10<16:24:10, 3.35it/s] 47%|████▋ | 173869/371472 [2:55:10<15:57:02, 3.44it/s] 47%|████▋ | 173870/371472 [2:55:11<15:50:41, 3.46it/s] 47%|████▋ | 173871/371472 [2:55:11<16:30:45, 3.32it/s] 47%|████▋ | 173872/371472 [2:55:11<16:33:16, 3.32it/s] 47%|████▋ | 173873/371472 [2:55:12<16:32:08, 3.32it/s] 47%|████▋ | 173874/371472 [2:55:12<15:57:02, 3.44it/s] 47%|████▋ | 173875/371472 [2:55:12<15:50:24, 3.47it/s] 47%|████▋ | 173876/371472 [2:55:12<15:18:54, 3.58it/s] 47%|████▋ | 173877/371472 [2:55:13<19:01:04, 2.89it/s] 47%|████▋ | 173878/371472 [2:55:13<17:40:30, 3.11it/s] 47%|████▋ | 173879/371472 [2:55:14<17:43:24, 3.10it/s] 47%|████▋ | 173880/371472 [2:55:14<17:36:32, 3.12it/s] {'loss': 3.0222, 'learning_rate': 5.78982524941283e-07, 'epoch': 7.49} + 47%|████▋ | 173880/371472 [2:55:14<17:36:32, 3.12it/s] 47%|████▋ | 173881/371472 [2:55:14<17:35:26, 3.12it/s] 47%|████▋ | 173882/371472 [2:55:14<16:57:51, 3.24it/s] 47%|████▋ | 173883/371472 [2:55:15<16:45:25, 3.28it/s] 47%|████▋ | 173884/371472 [2:55:15<16:20:39, 3.36it/s] 47%|████▋ | 173885/371472 [2:55:15<16:03:42, 3.42it/s] 47%|████▋ | 173886/371472 [2:55:16<15:47:39, 3.47it/s] 47%|████▋ | 173887/371472 [2:55:16<15:53:43, 3.45it/s] 47%|████▋ | 173888/371472 [2:55:16<15:44:44, 3.49it/s] 47%|████▋ | 173889/371472 [2:55:16<16:02:46, 3.42it/s] 47%|████▋ | 173890/371472 [2:55:17<15:31:43, 3.53it/s] 47%|████▋ | 173891/371472 [2:55:17<15:12:15, 3.61it/s] 47%|████▋ | 173892/371472 [2:55:17<15:18:58, 3.58it/s] 47%|████▋ | 173893/371472 [2:55:18<16:12:35, 3.39it/s] 47%|████▋ | 173894/371472 [2:55:18<15:57:00, 3.44it/s] 47%|████▋ | 173895/371472 [2:55:18<15:55:35, 3.45it/s] 47%|████▋ | 173896/371472 [2:55:18<16:01:31, 3.42it/s] 47%|████▋ | 173897/371472 [2:55:19<16:25:59, 3.34it/s] 47%|████▋ | 173898/371472 [2:55:19<17:45:08, 3.09it/s] 47%|████▋ | 173899/371472 [2:55:19<16:55:17, 3.24it/s] 47%|████▋ | 173900/371472 [2:55:20<16:23:33, 3.35it/s] {'loss': 2.9076, 'learning_rate': 5.78934042965804e-07, 'epoch': 7.49} + 47%|████▋ | 173900/371472 [2:55:20<16:23:33, 3.35it/s] 47%|████▋ | 173901/371472 [2:55:20<16:41:55, 3.29it/s] 47%|████▋ | 173902/371472 [2:55:20<16:27:25, 3.33it/s] 47%|████▋ | 173903/371472 [2:55:21<16:33:20, 3.31it/s] 47%|████▋ | 173904/371472 [2:55:21<17:27:22, 3.14it/s] 47%|████▋ | 173905/371472 [2:55:21<18:24:20, 2.98it/s] 47%|████▋ | 173906/371472 [2:55:22<18:14:52, 3.01it/s] 47%|████▋ | 173907/371472 [2:55:22<17:16:13, 3.18it/s] 47%|████▋ | 173908/371472 [2:55:22<16:47:51, 3.27it/s] 47%|████▋ | 173909/371472 [2:55:23<17:14:27, 3.18it/s] 47%|████▋ | 173910/371472 [2:55:23<17:09:23, 3.20it/s] 47%|████▋ | 173911/371472 [2:55:23<16:47:33, 3.27it/s] 47%|████▋ | 173912/371472 [2:55:23<16:24:53, 3.34it/s] 47%|████▋ | 173913/371472 [2:55:24<15:44:24, 3.49it/s] 47%|████▋ | 173914/371472 [2:55:24<16:15:17, 3.38it/s] 47%|████▋ | 173915/371472 [2:55:24<17:10:57, 3.19it/s] 47%|████▋ | 173916/371472 [2:55:25<17:27:07, 3.14it/s] 47%|████▋ | 173917/371472 [2:55:25<16:57:35, 3.24it/s] 47%|████▋ | 173918/371472 [2:55:25<17:43:06, 3.10it/s] 47%|████▋ | 173919/371472 [2:55:26<16:44:08, 3.28it/s] 47%|████▋ | 173920/371472 [2:55:26<17:22:48, 3.16it/s] {'loss': 2.921, 'learning_rate': 5.788855609903252e-07, 'epoch': 7.49} + 47%|████▋ | 173920/371472 [2:55:26<17:22:48, 3.16it/s] 47%|████▋ | 173921/371472 [2:55:26<18:19:27, 2.99it/s] 47%|████▋ | 173922/371472 [2:55:27<17:51:19, 3.07it/s] 47%|████▋ | 173923/371472 [2:55:27<17:37:01, 3.11it/s] 47%|████▋ | 173924/371472 [2:55:27<17:14:06, 3.18it/s] 47%|████▋ | 173925/371472 [2:55:28<17:31:26, 3.13it/s] 47%|████▋ | 173926/371472 [2:55:28<17:10:13, 3.20it/s] 47%|████▋ | 173927/371472 [2:55:28<16:44:50, 3.28it/s] 47%|████▋ | 173928/371472 [2:55:28<16:37:20, 3.30it/s] 47%|████▋ | 173929/371472 [2:55:29<18:36:52, 2.95it/s] 47%|████▋ | 173930/371472 [2:55:29<18:31:35, 2.96it/s] 47%|████▋ | 173931/371472 [2:55:30<18:21:42, 2.99it/s] 47%|████▋ | 173932/371472 [2:55:30<17:23:54, 3.15it/s] 47%|████▋ | 173933/371472 [2:55:30<17:24:23, 3.15it/s] 47%|████▋ | 173934/371472 [2:55:30<16:51:22, 3.26it/s] 47%|████▋ | 173935/371472 [2:55:31<16:56:17, 3.24it/s] 47%|████▋ | 173936/371472 [2:55:31<16:51:31, 3.25it/s] 47%|████▋ | 173937/371472 [2:55:31<16:23:30, 3.35it/s] 47%|████▋ | 173938/371472 [2:55:32<17:26:19, 3.15it/s] 47%|████▋ | 173939/371472 [2:55:32<17:23:31, 3.15it/s] 47%|████▋ | 173940/371472 [2:55:32<16:46:18, 3.27it/s] {'loss': 2.942, 'learning_rate': 5.788370790148462e-07, 'epoch': 7.49} + 47%|████▋ | 173940/371472 [2:55:32<16:46:18, 3.27it/s] 47%|████▋ | 173941/371472 [2:55:33<16:24:37, 3.34it/s] 47%|████▋ | 173942/371472 [2:55:33<16:13:19, 3.38it/s] 47%|████▋ | 173943/371472 [2:55:33<15:58:11, 3.44it/s] 47%|████▋ | 173944/371472 [2:55:33<16:22:40, 3.35it/s] 47%|████▋ | 173945/371472 [2:55:34<17:06:39, 3.21it/s] 47%|████▋ | 173946/371472 [2:55:34<16:48:09, 3.27it/s] 47%|████▋ | 173947/371472 [2:55:34<17:01:51, 3.22it/s] 47%|████▋ | 173948/371472 [2:55:35<16:33:31, 3.31it/s] 47%|████▋ | 173949/371472 [2:55:35<15:54:59, 3.45it/s] 47%|████▋ | 173950/371472 [2:55:35<15:52:11, 3.46it/s] 47%|████▋ | 173951/371472 [2:55:36<16:28:37, 3.33it/s] 47%|████▋ | 173952/371472 [2:55:36<16:14:25, 3.38it/s] 47%|████▋ | 173953/371472 [2:55:36<16:09:05, 3.40it/s] 47%|████▋ | 173954/371472 [2:55:37<17:45:21, 3.09it/s] 47%|████▋ | 173955/371472 [2:55:37<16:57:21, 3.24it/s] 47%|████▋ | 173956/371472 [2:55:37<16:47:13, 3.27it/s] 47%|████▋ | 173957/371472 [2:55:37<16:58:22, 3.23it/s] 47%|████▋ | 173958/371472 [2:55:38<16:41:54, 3.29it/s] 47%|████▋ | 173959/371472 [2:55:38<16:50:21, 3.26it/s] 47%|████▋ | 173960/371472 [2:55:38<16:33:02, 3.31it/s] {'loss': 2.9758, 'learning_rate': 5.787885970393672e-07, 'epoch': 7.49} + 47%|████▋ | 173960/371472 [2:55:38<16:33:02, 3.31it/s] 47%|████▋ | 173961/371472 [2:55:39<17:11:59, 3.19it/s] 47%|████▋ | 173962/371472 [2:55:39<17:38:18, 3.11it/s] 47%|████▋ | 173963/371472 [2:55:39<16:55:05, 3.24it/s] 47%|████▋ | 173964/371472 [2:55:40<17:16:33, 3.18it/s] 47%|████▋ | 173965/371472 [2:55:40<16:54:03, 3.25it/s] 47%|████▋ | 173966/371472 [2:55:40<16:39:55, 3.29it/s] 47%|████▋ | 173967/371472 [2:55:40<16:23:16, 3.35it/s] 47%|████▋ | 173968/371472 [2:55:41<16:13:21, 3.38it/s] 47%|████▋ | 173969/371472 [2:55:41<16:35:47, 3.31it/s] 47%|████▋ | 173970/371472 [2:55:41<16:25:40, 3.34it/s] 47%|████▋ | 173971/371472 [2:55:42<16:13:54, 3.38it/s] 47%|████▋ | 173972/371472 [2:55:42<15:52:23, 3.46it/s] 47%|████▋ | 173973/371472 [2:55:42<15:45:06, 3.48it/s] 47%|████▋ | 173974/371472 [2:55:42<15:21:38, 3.57it/s] 47%|████▋ | 173975/371472 [2:55:43<16:50:09, 3.26it/s] 47%|████▋ | 173976/371472 [2:55:43<16:30:41, 3.32it/s] 47%|████▋ | 173977/371472 [2:55:43<16:23:18, 3.35it/s] 47%|████▋ | 173978/371472 [2:55:44<16:56:13, 3.24it/s] 47%|████▋ | 173979/371472 [2:55:44<17:14:09, 3.18it/s] 47%|████▋ | 173980/371472 [2:55:44<16:57:43, 3.23it/s] {'loss': 3.07, 'learning_rate': 5.787401150638884e-07, 'epoch': 7.49} + 47%|████▋ | 173980/371472 [2:55:44<16:57:43, 3.23it/s] 47%|████▋ | 173981/371472 [2:55:45<17:21:54, 3.16it/s] 47%|████▋ | 173982/371472 [2:55:45<16:41:49, 3.29it/s] 47%|████▋ | 173983/371472 [2:55:45<16:26:14, 3.34it/s] 47%|████▋ | 173984/371472 [2:55:46<16:04:35, 3.41it/s] 47%|████▋ | 173985/371472 [2:55:46<16:07:51, 3.40it/s] 47%|████▋ | 173986/371472 [2:55:46<15:53:35, 3.45it/s] 47%|████▋ | 173987/371472 [2:55:46<15:48:22, 3.47it/s] 47%|████▋ | 173988/371472 [2:55:47<15:35:37, 3.52it/s] 47%|████▋ | 173989/371472 [2:55:47<16:12:53, 3.38it/s] 47%|████▋ | 173990/371472 [2:55:47<16:03:01, 3.42it/s] 47%|████▋ | 173991/371472 [2:55:48<16:00:39, 3.43it/s] 47%|████▋ | 173992/371472 [2:55:48<16:02:48, 3.42it/s] 47%|████▋ | 173993/371472 [2:55:48<18:46:03, 2.92it/s] 47%|████▋ | 173994/371472 [2:55:49<17:36:06, 3.12it/s] 47%|████▋ | 173995/371472 [2:55:49<17:21:27, 3.16it/s] 47%|████▋ | 173996/371472 [2:55:49<16:48:42, 3.26it/s] 47%|██��█▋ | 173997/371472 [2:55:50<16:33:28, 3.31it/s] 47%|████▋ | 173998/371472 [2:55:50<17:29:11, 3.14it/s] 47%|████▋ | 173999/371472 [2:55:50<16:41:39, 3.29it/s] 47%|████▋ | 174000/371472 [2:55:50<16:58:58, 3.23it/s] {'loss': 2.9814, 'learning_rate': 5.786916330884096e-07, 'epoch': 7.49} + 47%|████▋ | 174000/371472 [2:55:50<16:58:58, 3.23it/s] 47%|████▋ | 174001/371472 [2:55:51<16:45:31, 3.27it/s] 47%|████▋ | 174002/371472 [2:55:51<19:34:08, 2.80it/s] 47%|████▋ | 174003/371472 [2:55:52<19:19:05, 2.84it/s] 47%|████▋ | 174004/371472 [2:55:52<18:47:58, 2.92it/s] 47%|████▋ | 174005/371472 [2:55:52<17:51:09, 3.07it/s] 47%|████▋ | 174006/371472 [2:55:52<16:54:23, 3.24it/s] 47%|████▋ | 174007/371472 [2:55:53<16:38:59, 3.29it/s] 47%|████▋ | 174008/371472 [2:55:53<16:10:33, 3.39it/s] 47%|████▋ | 174009/371472 [2:55:53<15:51:19, 3.46it/s] 47%|████▋ | 174010/371472 [2:55:54<15:57:16, 3.44it/s] 47%|████▋ | 174011/371472 [2:55:54<16:00:15, 3.43it/s] 47%|████▋ | 174012/371472 [2:55:54<19:27:11, 2.82it/s] 47%|████▋ | 174013/371472 [2:55:55<18:10:59, 3.02it/s] 47%|████▋ | 174014/371472 [2:55:55<18:17:53, 3.00it/s] 47%|████▋ | 174015/371472 [2:55:55<17:38:43, 3.11it/s] 47%|████▋ | 174016/371472 [2:55:56<16:49:20, 3.26it/s] 47%|████▋ | 174017/371472 [2:55:56<16:31:14, 3.32it/s] 47%|████▋ | 174018/371472 [2:55:56<16:04:49, 3.41it/s] 47%|████▋ | 174019/371472 [2:55:56<16:10:24, 3.39it/s] 47%|████▋ | 174020/371472 [2:55:57<16:28:13, 3.33it/s] {'loss': 2.7575, 'learning_rate': 5.786431511129308e-07, 'epoch': 7.5} + 47%|████▋ | 174020/371472 [2:55:57<16:28:13, 3.33it/s] 47%|████▋ | 174021/371472 [2:55:57<16:16:14, 3.37it/s] 47%|████▋ | 174022/371472 [2:55:57<16:30:55, 3.32it/s] 47%|████▋ | 174023/371472 [2:55:58<16:33:16, 3.31it/s] 47%|████▋ | 174024/371472 [2:55:58<16:54:47, 3.24it/s] 47%|████▋ | 174025/371472 [2:55:58<16:31:43, 3.32it/s] 47%|████▋ | 174026/371472 [2:55:59<16:03:44, 3.41it/s] 47%|████▋ | 174027/371472 [2:55:59<15:41:21, 3.50it/s] 47%|████▋ | 174028/371472 [2:55:59<15:44:12, 3.49it/s] 47%|████▋ | 174029/371472 [2:55:59<16:09:54, 3.39it/s] 47%|████▋ | 174030/371472 [2:56:00<16:21:02, 3.35it/s] 47%|████▋ | 174031/371472 [2:56:00<17:06:35, 3.21it/s] 47%|████▋ | 174032/371472 [2:56:00<16:40:30, 3.29it/s] 47%|████▋ | 174033/371472 [2:56:01<17:15:37, 3.18it/s] 47%|████▋ | 174034/371472 [2:56:01<17:05:23, 3.21it/s] 47%|████▋ | 174035/371472 [2:56:01<17:06:38, 3.21it/s] 47%|████▋ | 174036/371472 [2:56:02<17:09:47, 3.20it/s] 47%|████▋ | 174037/371472 [2:56:02<17:27:15, 3.14it/s] 47%|████▋ | 174038/371472 [2:56:02<17:20:06, 3.16it/s] 47%|████▋ | 174039/371472 [2:56:03<17:11:36, 3.19it/s] 47%|████▋ | 174040/371472 [2:56:03<18:05:49, 3.03it/s] {'loss': 3.0069, 'learning_rate': 5.785946691374517e-07, 'epoch': 7.5} + 47%|████▋ | 174040/371472 [2:56:03<18:05:49, 3.03it/s] 47%|████▋ | 174041/371472 [2:56:03<17:59:38, 3.05it/s] 47%|████▋ | 174042/371472 [2:56:04<17:16:12, 3.18it/s] 47%|████▋ | 174043/371472 [2:56:04<17:27:21, 3.14it/s] 47%|████▋ | 174044/371472 [2:56:04<17:33:23, 3.12it/s] 47%|████▋ | 174045/371472 [2:56:04<16:57:36, 3.23it/s] 47%|████▋ | 174046/371472 [2:56:05<16:38:05, 3.30it/s] 47%|████▋ | 174047/371472 [2:56:05<16:41:46, 3.28it/s] 47%|████▋ | 174048/371472 [2:56:05<16:32:51, 3.31it/s] 47%|████▋ | 174049/371472 [2:56:06<16:58:05, 3.23it/s] 47%|████▋ | 174050/371472 [2:56:06<16:49:09, 3.26it/s] 47%|████▋ | 174051/371472 [2:56:06<16:19:09, 3.36it/s] 47%|████▋ | 174052/371472 [2:56:07<16:26:16, 3.34it/s] 47%|████▋ | 174053/371472 [2:56:07<16:46:33, 3.27it/s] 47%|████▋ | 174054/371472 [2:56:07<16:30:56, 3.32it/s] 47%|████▋ | 174055/371472 [2:56:07<16:34:00, 3.31it/s] 47%|████▋ | 174056/371472 [2:56:08<16:32:12, 3.32it/s] 47%|████▋ | 174057/371472 [2:56:08<16:24:03, 3.34it/s] 47%|████▋ | 174058/371472 [2:56:08<16:05:58, 3.41it/s] 47%|████▋ | 174059/371472 [2:56:09<15:33:59, 3.52it/s] 47%|████▋ | 174060/371472 [2:56:09<15:40:03, 3.50it/s] {'loss': 2.8659, 'learning_rate': 5.785461871619728e-07, 'epoch': 7.5} + 47%|████▋ | 174060/371472 [2:56:09<15:40:03, 3.50it/s] 47%|████▋ | 174061/371472 [2:56:09<15:31:44, 3.53it/s] 47%|████▋ | 174062/371472 [2:56:10<17:30:46, 3.13it/s] 47%|████▋ | 174063/371472 [2:56:10<17:43:46, 3.09it/s] 47%|████▋ | 174064/371472 [2:56:10<16:58:52, 3.23it/s] 47%|████▋ | 174065/371472 [2:56:10<16:36:04, 3.30it/s] 47%|████▋ | 174066/371472 [2:56:11<16:20:06, 3.36it/s] 47%|████▋ | 174067/371472 [2:56:11<16:55:23, 3.24it/s] 47%|████▋ | 174068/371472 [2:56:11<16:33:53, 3.31it/s] 47%|████▋ | 174069/371472 [2:56:12<16:42:51, 3.28it/s] 47%|████▋ | 174070/371472 [2:56:12<17:04:19, 3.21it/s] 47%|████▋ | 174071/371472 [2:56:12<16:55:10, 3.24it/s] 47%|████▋ | 174072/371472 [2:56:13<17:39:14, 3.11it/s] 47%|████▋ | 174073/371472 [2:56:13<17:48:49, 3.08it/s] 47%|████▋ | 174074/371472 [2:56:13<18:08:50, 3.02it/s] 47%|████▋ | 174075/371472 [2:56:14<18:25:18, 2.98it/s] 47%|████▋ | 174076/371472 [2:56:14<17:56:34, 3.06it/s] 47%|████▋ | 174077/371472 [2:56:14<17:18:26, 3.17it/s] 47%|████▋ | 174078/371472 [2:56:15<17:17:48, 3.17it/s] 47%|████▋ | 174079/371472 [2:56:15<16:45:57, 3.27it/s] 47%|████▋ | 174080/371472 [2:56:15<16:26:25, 3.34it/s] {'loss': 3.0161, 'learning_rate': 5.78497705186494e-07, 'epoch': 7.5} + 47%|████▋ | 174080/371472 [2:56:15<16:26:25, 3.34it/s] 47%|████▋ | 174081/371472 [2:56:15<15:58:57, 3.43it/s] 47%|████▋ | 174082/371472 [2:56:16<16:01:40, 3.42it/s] 47%|████▋ | 174083/371472 [2:56:16<15:41:05, 3.50it/s] 47%|████▋ | 174084/371472 [2:56:16<15:38:04, 3.51it/s] 47%|████▋ | 174085/371472 [2:56:17<15:31:11, 3.53it/s] 47%|████▋ | 174086/371472 [2:56:17<15:31:26, 3.53it/s] 47%|████▋ | 174087/371472 [2:56:17<15:14:54, 3.60it/s] 47%|████▋ | 174088/371472 [2:56:17<15:43:11, 3.49it/s] 47%|████▋ | 174089/371472 [2:56:18<15:58:34, 3.43it/s] 47%|████▋ | 174090/371472 [2:56:18<15:44:16, 3.48it/s] 47%|████▋ | 174091/371472 [2:56:18<16:01:17, 3.42it/s] 47%|████▋ | 174092/371472 [2:56:19<15:53:34, 3.45it/s] 47%|████▋ | 174093/371472 [2:56:19<15:45:50, 3.48it/s] 47%|████▋ | 174094/371472 [2:56:19<15:50:37, 3.46it/s] 47%|████▋ | 174095/371472 [2:56:19<15:43:56, 3.48it/s] 47%|████▋ | 174096/371472 [2:56:20<16:58:05, 3.23it/s] 47%|████▋ | 174097/371472 [2:56:20<16:39:40, 3.29it/s] 47%|████▋ | 174098/371472 [2:56:20<16:17:38, 3.36it/s] 47%|████▋ | 174099/371472 [2:56:21<15:57:59, 3.43it/s] 47%|████▋ | 174100/371472 [2:56:21<15:40:33, 3.50it/s] {'loss': 2.936, 'learning_rate': 5.784492232110151e-07, 'epoch': 7.5} + 47%|████▋ | 174100/371472 [2:56:21<15:40:33, 3.50it/s] 47%|████▋ | 174101/371472 [2:56:21<16:05:17, 3.41it/s] 47%|████▋ | 174102/371472 [2:56:22<16:49:36, 3.26it/s] 47%|████▋ | 174103/371472 [2:56:22<16:39:50, 3.29it/s] 47%|████▋ | 174104/371472 [2:56:22<16:09:23, 3.39it/s] 47%|████▋ | 174105/371472 [2:56:22<16:21:14, 3.35it/s] 47%|████▋ | 174106/371472 [2:56:23<16:32:21, 3.31it/s] 47%|████▋ | 174107/371472 [2:56:23<15:45:07, 3.48it/s] 47%|████▋ | 174108/371472 [2:56:23<18:21:30, 2.99it/s] 47%|████▋ | 174109/371472 [2:56:24<17:24:24, 3.15it/s] 47%|████▋ | 174110/371472 [2:56:24<16:58:42, 3.23it/s] 47%|████▋ | 174111/371472 [2:56:24<16:31:37, 3.32it/s] 47%|████▋ | 174112/371472 [2:56:25<16:27:29, 3.33it/s] 47%|████▋ | 174113/371472 [2:56:25<16:13:46, 3.38it/s] 47%|████▋ | 174114/371472 [2:56:25<17:32:02, 3.13it/s] 47%|████▋ | 174115/371472 [2:56:26<17:12:03, 3.19it/s] 47%|████▋ | 174116/371472 [2:56:26<16:31:30, 3.32it/s] 47%|████▋ | 174117/371472 [2:56:26<17:41:05, 3.10it/s] 47%|████▋ | 174118/371472 [2:56:27<17:17:47, 3.17it/s] 47%|████▋ | 174119/371472 [2:56:27<16:49:59, 3.26it/s] 47%|████▋ | 174120/371472 [2:56:27<17:15:46, 3.18it/s] {'loss': 2.9952, 'learning_rate': 5.784007412355361e-07, 'epoch': 7.5} + 47%|████▋ | 174120/371472 [2:56:27<17:15:46, 3.18it/s] 47%|███���▋ | 174121/371472 [2:56:27<17:03:25, 3.21it/s] 47%|████▋ | 174122/371472 [2:56:28<16:41:52, 3.28it/s] 47%|████▋ | 174123/371472 [2:56:28<16:36:26, 3.30it/s] 47%|████▋ | 174124/371472 [2:56:28<16:14:43, 3.37it/s] 47%|████▋ | 174125/371472 [2:56:29<16:04:07, 3.41it/s] 47%|████▋ | 174126/371472 [2:56:29<15:44:27, 3.48it/s] 47%|████▋ | 174127/371472 [2:56:29<17:02:49, 3.22it/s] 47%|████▋ | 174128/371472 [2:56:30<17:24:22, 3.15it/s] 47%|████▋ | 174129/371472 [2:56:30<16:56:45, 3.23it/s] 47%|████▋ | 174130/371472 [2:56:30<17:15:10, 3.18it/s] 47%|████▋ | 174131/371472 [2:56:30<17:02:17, 3.22it/s] 47%|████▋ | 174132/371472 [2:56:31<16:30:28, 3.32it/s] 47%|████▋ | 174133/371472 [2:56:31<16:13:31, 3.38it/s] 47%|████▋ | 174134/371472 [2:56:31<15:54:01, 3.45it/s] 47%|████▋ | 174135/371472 [2:56:32<15:42:46, 3.49it/s] 47%|████▋ | 174136/371472 [2:56:32<15:46:49, 3.47it/s] 47%|████▋ | 174137/371472 [2:56:32<15:44:53, 3.48it/s] 47%|████▋ | 174138/371472 [2:56:32<15:25:07, 3.56it/s] 47%|████▋ | 174139/371472 [2:56:33<15:56:58, 3.44it/s] 47%|████▋ | 174140/371472 [2:56:33<16:48:13, 3.26it/s] {'loss': 2.8454, 'learning_rate': 5.783522592600573e-07, 'epoch': 7.5} + 47%|████▋ | 174140/371472 [2:56:33<16:48:13, 3.26it/s] 47%|████▋ | 174141/371472 [2:56:33<16:04:50, 3.41it/s] 47%|████▋ | 174142/371472 [2:56:34<17:01:18, 3.22it/s] 47%|████▋ | 174143/371472 [2:56:34<17:08:28, 3.20it/s] 47%|████▋ | 174144/371472 [2:56:34<16:52:58, 3.25it/s] 47%|████▋ | 174145/371472 [2:56:35<16:31:12, 3.32it/s] 47%|████▋ | 174146/371472 [2:56:35<16:27:08, 3.33it/s] 47%|████▋ | 174147/371472 [2:56:35<17:11:48, 3.19it/s] 47%|████▋ | 174148/371472 [2:56:36<18:01:18, 3.04it/s] 47%|████▋ | 174149/371472 [2:56:36<17:53:14, 3.06it/s] 47%|████▋ | 174150/371472 [2:56:36<17:13:43, 3.18it/s] 47%|████▋ | 174151/371472 [2:56:37<18:01:30, 3.04it/s] 47%|████▋ | 174152/371472 [2:56:37<18:17:21, 3.00it/s] 47%|████▋ | 174153/371472 [2:56:37<17:41:50, 3.10it/s] 47%|████▋ | 174154/371472 [2:56:38<17:30:57, 3.13it/s] 47%|████▋ | 174155/371472 [2:56:38<17:01:01, 3.22it/s] 47%|████▋ | 174156/371472 [2:56:38<16:37:18, 3.30it/s] 47%|████▋ | 174157/371472 [2:56:38<17:14:32, 3.18it/s] 47%|████▋ | 174158/371472 [2:56:39<16:56:15, 3.24it/s] 47%|████▋ | 174159/371472 [2:56:39<16:55:52, 3.24it/s] 47%|████▋ | 174160/371472 [2:56:39<17:59:07, 3.05it/s] {'loss': 2.9106, 'learning_rate': 5.783037772845785e-07, 'epoch': 7.5} + 47%|████▋ | 174160/371472 [2:56:39<17:59:07, 3.05it/s] 47%|████▋ | 174161/371472 [2:56:40<17:14:35, 3.18it/s] 47%|████▋ | 174162/371472 [2:56:40<16:36:01, 3.30it/s] 47%|████▋ | 174163/371472 [2:56:40<17:42:05, 3.10it/s] 47%|████▋ | 174164/371472 [2:56:41<17:20:14, 3.16it/s] 47%|████▋ | 174165/371472 [2:56:41<17:02:34, 3.22it/s] 47%|████▋ | 174166/371472 [2:56:41<16:41:17, 3.28it/s] 47%|████▋ | 174167/371472 [2:56:42<16:34:06, 3.31it/s] 47%|████▋ | 174168/371472 [2:56:42<16:44:30, 3.27it/s] 47%|████▋ | 174169/371472 [2:56:42<17:03:41, 3.21it/s] 47%|████▋ | 174170/371472 [2:56:43<16:56:27, 3.24it/s] 47%|████▋ | 174171/371472 [2:56:43<16:50:52, 3.25it/s] 47%|████▋ | 174172/371472 [2:56:43<17:05:57, 3.21it/s] 47%|████▋ | 174173/371472 [2:56:43<17:00:16, 3.22it/s] 47%|████▋ | 174174/371472 [2:56:44<16:34:59, 3.30it/s] 47%|████▋ | 174175/371472 [2:56:44<16:29:18, 3.32it/s] 47%|████▋ | 174176/371472 [2:56:44<16:24:32, 3.34it/s] 47%|████▋ | 174177/371472 [2:56:45<16:45:02, 3.27it/s] 47%|████▋ | 174178/371472 [2:56:45<16:48:44, 3.26it/s] 47%|████▋ | 174179/371472 [2:56:45<16:30:04, 3.32it/s] 47%|████▋ | 174180/371472 [2:56:46<16:07:15, 3.40it/s] {'loss': 2.8405, 'learning_rate': 5.782552953090996e-07, 'epoch': 7.5} + 47%|████▋ | 174180/371472 [2:56:46<16:07:15, 3.40it/s] 47%|████▋ | 174181/371472 [2:56:46<16:31:14, 3.32it/s] 47%|████▋ | 174182/371472 [2:56:46<16:33:17, 3.31it/s] 47%|████▋ | 174183/371472 [2:56:46<16:24:23, 3.34it/s] 47%|████▋ | 174184/371472 [2:56:47<16:16:15, 3.37it/s] 47%|████▋ | 174185/371472 [2:56:47<16:19:42, 3.36it/s] 47%|████▋ | 174186/371472 [2:56:47<17:24:11, 3.15it/s] 47%|████▋ | 174187/371472 [2:56:48<17:38:36, 3.11it/s] 47%|████▋ | 174188/371472 [2:56:48<17:14:36, 3.18it/s] 47%|████▋ | 174189/371472 [2:56:48<16:46:00, 3.27it/s] 47%|████▋ | 174190/371472 [2:56:49<16:36:16, 3.30it/s] 47%|████▋ | 174191/371472 [2:56:49<16:48:22, 3.26it/s] 47%|████▋ | 174192/371472 [2:56:49<16:41:03, 3.28it/s] 47%|████▋ | 174193/371472 [2:56:49<16:07:28, 3.40it/s] 47%|████▋ | 174194/371472 [2:56:50<16:07:50, 3.40it/s] 47%|████▋ | 174195/371472 [2:56:50<16:19:26, 3.36it/s] 47%|████▋ | 174196/371472 [2:56:50<16:27:05, 3.33it/s] 47%|████▋ | 174197/371472 [2:56:51<16:23:56, 3.34it/s] 47%|████▋ | 174198/371472 [2:56:51<16:32:30, 3.31it/s] 47%|████▋ | 174199/371472 [2:56:51<16:39:54, 3.29it/s] 47%|████▋ | 174200/371472 [2:56:52<16:33:43, 3.31it/s] {'loss': 2.7486, 'learning_rate': 5.782068133336205e-07, 'epoch': 7.5} + 47%|████▋ | 174200/371472 [2:56:52<16:33:43, 3.31it/s] 47%|████▋ | 174201/371472 [2:56:52<16:19:39, 3.36it/s] 47%|████▋ | 174202/371472 [2:56:52<16:33:00, 3.31it/s] 47%|████▋ | 174203/371472 [2:56:53<16:50:15, 3.25it/s] 47%|████▋ | 174204/371472 [2:56:53<16:34:45, 3.31it/s] 47%|████▋ | 174205/371472 [2:56:53<16:22:31, 3.35it/s] 47%|████▋ | 174206/371472 [2:56:53<16:19:18, 3.36it/s] 47%|████▋ | 174207/371472 [2:56:54<15:56:18, 3.44it/s] 47%|████▋ | 174208/371472 [2:56:54<16:41:07, 3.28it/s] 47%|████▋ | 174209/371472 [2:56:54<16:15:40, 3.37it/s] 47%|████▋ | 174210/371472 [2:56:55<17:33:06, 3.12it/s] 47%|████▋ | 174211/371472 [2:56:55<17:27:45, 3.14it/s] 47%|████▋ | 174212/371472 [2:56:55<16:33:04, 3.31it/s] 47%|████▋ | 174213/371472 [2:56:56<16:22:44, 3.35it/s] 47%|████▋ | 174214/371472 [2:56:56<16:07:50, 3.40it/s] 47%|████▋ | 174215/371472 [2:56:56<16:45:54, 3.27it/s] 47%|████▋ | 174216/371472 [2:56:57<18:00:21, 3.04it/s] 47%|████▋ | 174217/371472 [2:56:57<17:32:09, 3.12it/s] 47%|████▋ | 174218/371472 [2:56:57<18:03:47, 3.03it/s] 47%|████▋ | 174219/371472 [2:56:58<18:33:53, 2.95it/s] 47%|████▋ | 174220/371472 [2:56:58<17:37:27, 3.11it/s] {'loss': 2.8409, 'learning_rate': 5.781583313581417e-07, 'epoch': 7.5} + 47%|████▋ | 174220/371472 [2:56:58<17:37:27, 3.11it/s] 47%|████▋ | 174221/371472 [2:56:58<17:32:05, 3.12it/s] 47%|████▋ | 174222/371472 [2:56:58<17:02:32, 3.22it/s] 47%|████▋ | 174223/371472 [2:56:59<16:52:39, 3.25it/s] 47%|████▋ | 174224/371472 [2:56:59<16:40:49, 3.28it/s] 47%|████▋ | 174225/371472 [2:56:59<16:34:44, 3.30it/s] 47%|████▋ | 174226/371472 [2:57:00<16:26:52, 3.33it/s] 47%|████▋ | 174227/371472 [2:57:00<16:14:45, 3.37it/s] 47%|████▋ | 174228/371472 [2:57:00<15:56:31, 3.44it/s] 47%|████▋ | 174229/371472 [2:57:00<15:42:29, 3.49it/s] 47%|████▋ | 174230/371472 [2:57:01<15:34:02, 3.52it/s] 47%|████▋ | 174231/371472 [2:57:01<15:41:02, 3.49it/s] 47%|████▋ | 174232/371472 [2:57:01<15:39:26, 3.50it/s] 47%|████▋ | 174233/371472 [2:57:02<15:14:13, 3.60it/s] 47%|████▋ | 174234/371472 [2:57:02<15:22:56, 3.56it/s] 47%|████▋ | 174235/371472 [2:57:02<16:59:23, 3.22it/s] 47%|████▋ | 174236/371472 [2:57:03<16:35:19, 3.30it/s] 47%|████▋ | 174237/371472 [2:57:03<16:16:39, 3.37it/s] 47%|████▋ | 174238/371472 [2:57:03<16:05:06, 3.41it/s] 47%|████▋ | 174239/371472 [2:57:03<15:47:51, 3.47it/s] 47%|████▋ | 174240/371472 [2:57:04<16:17:20, 3.36it/s] {'loss': 2.9866, 'learning_rate': 5.781098493826629e-07, 'epoch': 7.5} + 47%|████▋ | 174240/371472 [2:57:04<16:17:20, 3.36it/s] 47%|████▋ | 174241/371472 [2:57:04<16:23:37, 3.34it/s] 47%|████▋ | 174242/371472 [2:57:04<16:03:27, 3.41it/s] 47%|████▋ | 174243/371472 [2:57:05<16:15:21, 3.37it/s] 47%|████▋ | 174244/371472 [2:57:05<15:56:27, 3.44it/s] 47%|████▋ | 174245/371472 [2:57:05<16:01:14, 3.42it/s] 47%|████▋ | 174246/371472 [2:57:05<15:35:37, 3.51it/s] 47%|████▋ | 174247/371472 [2:57:06<15:37:50, 3.50it/s] 47%|████▋ | 174248/371472 [2:57:06<15:42:30, 3.49it/s] 47%|████▋ | 174249/371472 [2:57:06<17:28:54, 3.13it/s] 47%|████▋ | 174250/371472 [2:57:07<17:15:14, 3.18it/s] 47%|████▋ | 174251/371472 [2:57:07<16:32:44, 3.31it/s] 47%|████▋ | 174252/371472 [2:57:07<16:21:34, 3.35it/s] 47%|████▋ | 174253/371472 [2:57:08<16:59:42, 3.22it/s] 47%|████▋ | 174254/371472 [2:57:08<16:58:41, 3.23it/s] 47%|████▋ | 174255/371472 [2:57:08<16:27:14, 3.33it/s] 47%|████▋ | 174256/371472 [2:57:08<16:40:52, 3.28it/s] 47%|████▋ | 174257/371472 [2:57:09<17:06:56, 3.20it/s] 47%|████▋ | 174258/371472 [2:57:09<16:39:00, 3.29it/s] 47%|████▋ | 174259/371472 [2:57:09<16:19:10, 3.36it/s] 47%|████▋ | 174260/371472 [2:57:10<17:09:11, 3.19it/s] {'loss': 2.8109, 'learning_rate': 5.780613674071839e-07, 'epoch': 7.51} + 47%|████▋ | 174260/371472 [2:57:10<17:09:11, 3.19it/s] 47%|████▋ | 174261/371472 [2:57:10<17:06:28, 3.20it/s] 47%|████▋ | 174262/371472 [2:57:10<16:41:08, 3.28it/s] 47%|████▋ | 174263/371472 [2:57:11<17:18:37, 3.16it/s] 47%|████▋ | 174264/371472 [2:57:11<16:52:50, 3.25it/s] 47%|████▋ | 174265/371472 [2:57:11<16:34:41, 3.30it/s] 47%|████▋ | 174266/371472 [2:57:12<16:06:41, 3.40it/s] 47%|████▋ | 174267/371472 [2:57:12<15:55:21, 3.44it/s] 47%|████▋ | 174268/371472 [2:57:12<16:06:57, 3.40it/s] 47%|████▋ | 174269/371472 [2:57:12<16:12:46, 3.38it/s] 47%|████▋ | 174270/371472 [2:57:13<15:57:09, 3.43it/s] 47%|████▋ | 174271/371472 [2:57:13<16:27:30, 3.33it/s] 47%|████▋ | 174272/371472 [2:57:13<16:21:44, 3.35it/s] 47%|████▋ | 174273/371472 [2:57:14<16:45:43, 3.27it/s] 47%|████▋ | 174274/371472 [2:57:14<16:25:43, 3.33it/s] 47%|████▋ | 174275/371472 [2:57:14<17:33:05, 3.12it/s] 47%|████▋ | 174276/371472 [2:57:15<18:14:41, 3.00it/s] 47%|████▋ | 174277/371472 [2:57:15<17:47:29, 3.08it/s] 47%|████▋ | 174278/371472 [2:57:15<17:11:27, 3.19it/s] 47%|████▋ | 174279/371472 [2:57:16<16:53:43, 3.24it/s] 47%|████▋ | 174280/371472 [2:57:16<16:55:13, 3.24it/s] {'loss': 2.8109, 'learning_rate': 5.78012885431705e-07, 'epoch': 7.51} + 47%|████▋ | 174280/371472 [2:57:16<16:55:13, 3.24it/s] 47%|████▋ | 174281/371472 [2:57:16<17:41:10, 3.10it/s] 47%|████▋ | 174282/371472 [2:57:17<17:20:33, 3.16it/s] 47%|████▋ | 174283/371472 [2:57:17<16:48:05, 3.26it/s] 47%|████▋ | 174284/371472 [2:57:17<16:59:06, 3.22it/s] 47%|████▋ | 174285/371472 [2:57:17<16:27:54, 3.33it/s] 47%|████▋ | 174286/371472 [2:57:18<16:24:26, 3.34it/s] 47%|████▋ | 174287/371472 [2:57:18<16:19:38, 3.35it/s] 47%|████▋ | 174288/371472 [2:57:18<16:09:16, 3.39it/s] 47%|████▋ | 174289/371472 [2:57:19<16:02:12, 3.42it/s] 47%|████▋ | 174290/371472 [2:57:19<15:56:39, 3.44it/s] 47%|████▋ | 174291/371472 [2:57:19<16:04:42, 3.41it/s] 47%|████▋ | 174292/371472 [2:57:19<15:47:27, 3.47it/s] 47%|████▋ | 174293/371472 [2:57:20<16:44:48, 3.27it/s] 47%|████▋ | 174294/371472 [2:57:20<16:49:38, 3.25it/s] 47%|████▋ | 174295/371472 [2:57:20<16:11:27, 3.38it/s] 47%|████▋ | 174296/371472 [2:57:21<15:58:09, 3.43it/s] 47%|████▋ | 174297/371472 [2:57:21<16:08:30, 3.39it/s] 47%|████▋ | 174298/371472 [2:57:21<15:53:12, 3.45it/s] 47%|████▋ | 174299/371472 [2:57:22<16:04:00, 3.41it/s] 47%|████▋ | 174300/371472 [2:57:22<15:56:41, 3.43it/s] {'loss': 2.9757, 'learning_rate': 5.779644034562262e-07, 'epoch': 7.51} + 47%|████▋ | 174300/371472 [2:57:22<15:56:41, 3.43it/s] 47%|████▋ | 174301/371472 [2:57:22<15:47:09, 3.47it/s] 47%|████▋ | 174302/371472 [2:57:22<15:49:43, 3.46it/s] 47%|████▋ | 174303/371472 [2:57:23<16:02:10, 3.42it/s] 47%|████▋ | 174304/371472 [2:57:23<15:40:59, 3.49it/s] 47%|████▋ | 174305/371472 [2:57:23<15:46:00, 3.47it/s] 47%|████▋ | 174306/371472 [2:57:24<15:28:47, 3.54it/s] 47%|████▋ | 174307/371472 [2:57:24<15:15:41, 3.59it/s] 47%|████▋ | 174308/371472 [2:57:24<16:24:49, 3.34it/s] 47%|████▋ | 174309/371472 [2:57:24<16:23:13, 3.34it/s] 47%|████▋ | 174310/371472 [2:57:25<16:15:39, 3.37it/s] 47%|████▋ | 174311/371472 [2:57:25<15:41:03, 3.49it/s] 47%|████▋ | 174312/371472 [2:57:25<15:36:51, 3.51it/s] 47%|████▋ | 174313/371472 [2:57:26<15:31:26, 3.53it/s] 47%|████▋ | 174314/371472 [2:57:26<15:20:04, 3.57it/s] 47%|████▋ | 174315/371472 [2:57:26<15:22:45, 3.56it/s] 47%|████▋ | 174316/371472 [2:57:26<16:14:34, 3.37it/s] 47%|████▋ | 174317/371472 [2:57:27<16:05:58, 3.40it/s] 47%|████▋ | 174318/371472 [2:57:27<16:37:29, 3.29it/s] 47%|████▋ | 174319/371472 [2:57:27<16:03:08, 3.41it/s] 47%|████▋ | 174320/371472 [2:57:28<17:17:51, 3.17it/s] {'loss': 2.9165, 'learning_rate': 5.779159214807473e-07, 'epoch': 7.51} + 47%|████▋ | 174320/371472 [2:57:28<17:17:51, 3.17it/s] 47%|████▋ | 174321/371472 [2:57:28<16:50:16, 3.25it/s] 47%|████▋ | 174322/371472 [2:57:28<16:36:20, 3.30it/s] 47%|████▋ | 174323/371472 [2:57:29<16:12:30, 3.38it/s] 47%|████▋ | 174324/371472 [2:57:29<16:02:18, 3.41it/s] 47%|████▋ | 174325/371472 [2:57:29<15:37:39, 3.50it/s] 47%|████▋ | 174326/371472 [2:57:29<15:15:19, 3.59it/s] 47%|████▋ | 174327/371472 [2:57:30<15:32:46, 3.52it/s] 47%|████▋ | 174328/371472 [2:57:30<15:27:05, 3.54it/s] 47%|████▋ | 174329/371472 [2:57:30<16:12:34, 3.38it/s] 47%|████▋ | 174330/371472 [2:57:31<17:11:21, 3.19it/s] 47%|████▋ | 174331/371472 [2:57:31<17:03:24, 3.21it/s] 47%|████▋ | 174332/371472 [2:57:31<16:33:35, 3.31it/s] 47%|████▋ | 174333/371472 [2:57:31<16:07:59, 3.39it/s] 47%|████▋ | 174334/371472 [2:57:32<16:14:32, 3.37it/s] 47%|████▋ | 174335/371472 [2:57:32<15:46:30, 3.47it/s] 47%|████▋ | 174336/371472 [2:57:32<15:52:44, 3.45it/s] 47%|████▋ | 174337/371472 [2:57:33<15:55:04, 3.44it/s] 47%|████▋ | 174338/371472 [2:57:33<16:19:23, 3.35it/s] 47%|████▋ | 174339/371472 [2:57:33<16:20:22, 3.35it/s] 47%|████▋ | 174340/371472 [2:57:34<16:25:11, 3.33it/s] {'loss': 3.0805, 'learning_rate': 5.778674395052683e-07, 'epoch': 7.51} + 47%|████▋ | 174340/371472 [2:57:34<16:25:11, 3.33it/s] 47%|████▋ | 174341/371472 [2:57:34<16:02:41, 3.41it/s] 47%|████▋ | 174342/371472 [2:57:34<15:54:03, 3.44it/s] 47%|████▋ | 174343/371472 [2:57:34<15:43:14, 3.48it/s] 47%|████▋ | 174344/371472 [2:57:35<15:27:03, 3.54it/s] 47%|████▋ | 174345/371472 [2:57:35<15:20:00, 3.57it/s] 47%|████▋ | 174346/371472 [2:57:35<15:29:13, 3.54it/s] 47%|████▋ | 174347/371472 [2:57:36<15:19:16, 3.57it/s] 47%|████▋ | 174348/371472 [2:57:36<15:21:15, 3.57it/s] 47%|████▋ | 174349/371472 [2:57:36<17:35:51, 3.11it/s] 47%|████▋ | 174350/371472 [2:57:36<17:08:00, 3.20it/s] 47%|████▋ | 174351/371472 [2:57:37<17:04:18, 3.21it/s] 47%|████▋ | 174352/371472 [2:57:37<16:49:07, 3.26it/s] 47%|████▋ | 174353/371472 [2:57:38<18:32:51, 2.95it/s] 47%|████▋ | 174354/371472 [2:57:38<20:57:39, 2.61it/s] 47%|████▋ | 174355/371472 [2:57:38<19:26:13, 2.82it/s] 47%|████▋ | 174356/371472 [2:57:39<18:49:33, 2.91it/s] 47%|████▋ | 174357/371472 [2:57:39<18:06:29, 3.02it/s] 47%|████▋ | 174358/371472 [2:57:39<17:36:27, 3.11it/s] 47%|████▋ | 174359/371472 [2:57:39<17:04:48, 3.21it/s] 47%|████▋ | 174360/371472 [2:57:40<16:47:38, 3.26it/s] {'loss': 3.0664, 'learning_rate': 5.778189575297894e-07, 'epoch': 7.51} + 47%|████▋ | 174360/371472 [2:57:40<16:47:38, 3.26it/s] 47%|████▋ | 174361/371472 [2:57:40<16:34:52, 3.30it/s] 47%|████▋ | 174362/371472 [2:57:40<16:25:02, 3.34it/s] 47%|████▋ | 174363/371472 [2:57:41<16:28:51, 3.32it/s] 47%|████▋ | 174364/371472 [2:57:41<16:33:10, 3.31it/s] 47%|████▋ | 174365/371472 [2:57:41<16:52:33, 3.24it/s] 47%|████▋ | 174366/371472 [2:57:42<16:26:34, 3.33it/s] 47%|████▋ | 174367/371472 [2:57:42<17:11:41, 3.18it/s] 47%|████▋ | 174368/371472 [2:57:42<16:53:22, 3.24it/s] 47%|████▋ | 174369/371472 [2:57:43<16:49:39, 3.25it/s] 47%|████▋ | 174370/371472 [2:57:43<16:29:11, 3.32it/s] 47%|████▋ | 174371/371472 [2:57:43<16:06:28, 3.40it/s] 47%|████▋ | 174372/371472 [2:57:43<15:51:44, 3.45it/s] 47%|████▋ | 174373/371472 [2:57:44<15:59:37, 3.42it/s] 47%|████▋ | 174374/371472 [2:57:44<17:05:53, 3.20it/s] 47%|████▋ | 174375/371472 [2:57:44<17:38:21, 3.10it/s] 47%|████▋ | 174376/371472 [2:57:45<17:01:33, 3.22it/s] 47%|████▋ | 174377/371472 [2:57:45<16:41:53, 3.28it/s] 47%|████▋ | 174378/371472 [2:57:45<17:41:28, 3.09it/s] 47%|████▋ | 174379/371472 [2:57:46<16:47:27, 3.26it/s] 47%|████▋ | 174380/371472 [2:57:46<17:34:46, 3.11it/s] {'loss': 2.7602, 'learning_rate': 5.777704755543106e-07, 'epoch': 7.51} + 47%|████▋ | 174380/371472 [2:57:46<17:34:46, 3.11it/s] 47%|████▋ | 174381/371472 [2:57:46<17:38:47, 3.10it/s] 47%|████▋ | 174382/371472 [2:57:47<17:32:40, 3.12it/s] 47%|████▋ | 174383/371472 [2:57:47<16:59:28, 3.22it/s] 47%|████▋ | 174384/371472 [2:57:47<17:01:02, 3.22it/s] 47%|████▋ | 174385/371472 [2:57:48<17:20:29, 3.16it/s] 47%|████▋ | 174386/371472 [2:57:48<18:05:19, 3.03it/s] 47%|████▋ | 174387/371472 [2:57:48<17:30:40, 3.13it/s] 47%|████▋ | 174388/371472 [2:57:48<17:06:14, 3.20it/s] 47%|████▋ | 174389/371472 [2:57:49<16:43:04, 3.27it/s] 47%|████▋ | 174390/371472 [2:57:49<16:42:08, 3.28it/s] 47%|████▋ | 174391/371472 [2:57:49<16:43:41, 3.27it/s] 47%|████▋ | 174392/371472 [2:57:50<17:01:05, 3.22it/s] 47%|████▋ | 174393/371472 [2:57:50<17:36:56, 3.11it/s] 47%|████▋ | 174394/371472 [2:57:50<17:17:57, 3.16it/s] 47%|████▋ | 174395/371472 [2:57:51<16:50:42, 3.25it/s] 47%|████▋ | 174396/371472 [2:57:51<16:46:04, 3.26it/s] 47%|████▋ | 174397/371472 [2:57:51<16:39:42, 3.29it/s] 47%|████▋ | 174398/371472 [2:57:52<17:42:43, 3.09it/s] 47%|████▋ | 174399/371472 [2:57:52<17:11:46, 3.18it/s] 47%|████▋ | 174400/371472 [2:57:52<17:03:12, 3.21it/s] {'loss': 2.8023, 'learning_rate': 5.777219935788318e-07, 'epoch': 7.51} + 47%|████▋ | 174400/371472 [2:57:52<17:03:12, 3.21it/s] 47%|████▋ | 174401/371472 [2:57:52<16:41:35, 3.28it/s] 47%|████▋ | 174402/371472 [2:57:53<16:09:14, 3.39it/s] 47%|████▋ | 174403/371472 [2:57:53<16:35:09, 3.30it/s] 47%|████▋ | 174404/371472 [2:57:53<16:12:54, 3.38it/s] 47%|████▋ | 174405/371472 [2:57:54<16:05:12, 3.40it/s] 47%|████▋ | 174406/371472 [2:57:54<16:42:22, 3.28it/s] 47%|████▋ | 174407/371472 [2:57:54<16:56:07, 3.23it/s] 47%|████▋ | 174408/371472 [2:57:55<16:35:49, 3.30it/s] 47%|████▋ | 174409/371472 [2:57:55<16:59:08, 3.22it/s] 47%|████▋ | 174410/371472 [2:57:55<17:33:44, 3.12it/s] 47%|████▋ | 174411/371472 [2:57:56<16:56:00, 3.23it/s] 47%|████▋ | 174412/371472 [2:57:56<16:57:48, 3.23it/s] 47%|████▋ | 174413/371472 [2:57:56<17:05:35, 3.20it/s] 47%|████▋ | 174414/371472 [2:57:56<16:16:51, 3.36it/s] 47%|████▋ | 174415/371472 [2:57:57<16:07:28, 3.39it/s] 47%|████▋ | 174416/371472 [2:57:57<16:01:42, 3.42it/s] 47%|████▋ | 174417/371472 [2:57:57<16:14:01, 3.37it/s] 47%|████▋ | 174418/371472 [2:57:58<16:33:18, 3.31it/s] 47%|████▋ | 174419/371472 [2:57:58<16:53:32, 3.24it/s] 47%|████▋ | 174420/371472 [2:57:58<16:45:51, 3.27it/s] {'loss': 2.9864, 'learning_rate': 5.776735116033528e-07, 'epoch': 7.51} + 47%|████▋ | 174420/371472 [2:57:58<16:45:51, 3.27it/s] 47%|████▋ | 174421/371472 [2:57:59<16:28:12, 3.32it/s] 47%|████▋ | 174422/371472 [2:57:59<16:05:13, 3.40it/s] 47%|████▋ | 174423/371472 [2:57:59<16:56:53, 3.23it/s] 47%|████▋ | 174424/371472 [2:57:59<16:50:53, 3.25it/s] 47%|████▋ | 174425/371472 [2:58:00<17:25:56, 3.14it/s] 47%|████▋ | 174426/371472 [2:58:00<16:43:22, 3.27it/s] 47%|████▋ | 174427/371472 [2:58:00<17:18:28, 3.16it/s] 47%|████▋ | 174428/371472 [2:58:01<17:28:04, 3.13it/s] 47%|████▋ | 174429/371472 [2:58:01<17:10:04, 3.19it/s] 47%|████▋ | 174430/371472 [2:58:01<16:14:08, 3.37it/s] 47%|████▋ | 174431/371472 [2:58:02<17:54:33, 3.06it/s] 47%|████▋ | 174432/371472 [2:58:02<17:30:45, 3.13it/s] 47%|████▋ | 174433/371472 [2:58:02<16:53:44, 3.24it/s] 47%|████▋ | 174434/371472 [2:58:03<16:34:27, 3.30it/s] 47%|████▋ | 174435/371472 [2:58:03<16:06:10, 3.40it/s] 47%|████▋ | 174436/371472 [2:58:03<16:00:13, 3.42it/s] 47%|████▋ | 174437/371472 [2:58:03<15:45:05, 3.47it/s] 47%|████▋ | 174438/371472 [2:58:04<15:53:40, 3.44it/s] 47%|████▋ | 174439/371472 [2:58:04<15:53:17, 3.44it/s] 47%|████▋ | 174440/371472 [2:58:04<15:52:02, 3.45it/s] {'loss': 2.9893, 'learning_rate': 5.776250296278738e-07, 'epoch': 7.51} + 47%|████▋ | 174440/371472 [2:58:04<15:52:02, 3.45it/s] 47%|████▋ | 174441/371472 [2:58:05<18:09:24, 3.01it/s] 47%|████▋ | 174442/371472 [2:58:05<17:31:15, 3.12it/s] 47%|████▋ | 174443/371472 [2:58:05<16:44:17, 3.27it/s] 47%|████▋ | 174444/371472 [2:58:06<16:29:08, 3.32it/s] 47%|████▋ | 174445/371472 [2:58:06<16:18:06, 3.36it/s] 47%|████▋ | 174446/371472 [2:58:06<16:41:58, 3.28it/s] 47%|████▋ | 174447/371472 [2:58:07<16:59:22, 3.22it/s] 47%|████▋ | 174448/371472 [2:58:07<16:16:03, 3.36it/s] 47%|████▋ | 174449/371472 [2:58:07<15:54:37, 3.44it/s] 47%|████▋ | 174450/371472 [2:58:07<15:54:43, 3.44it/s] 47%|████▋ | 174451/371472 [2:58:08<16:23:15, 3.34it/s] 47%|████▋ | 174452/371472 [2:58:08<16:02:25, 3.41it/s] 47%|████▋ | 174453/371472 [2:58:08<15:33:36, 3.52it/s] 47%|████▋ | 174454/371472 [2:58:09<15:36:00, 3.51it/s] 47%|████▋ | 174455/371472 [2:58:09<15:36:41, 3.51it/s] 47%|████▋ | 174456/371472 [2:58:09<15:04:06, 3.63it/s] 47%|████▋ | 174457/371472 [2:58:09<15:28:05, 3.54it/s] 47%|████▋ | 174458/371472 [2:58:10<15:32:18, 3.52it/s] 47%|████▋ | 174459/371472 [2:58:10<15:46:16, 3.47it/s] 47%|████▋ | 174460/371472 [2:58:10<16:13:01, 3.37it/s] {'loss': 2.889, 'learning_rate': 5.77576547652395e-07, 'epoch': 7.51} + 47%|████▋ | 174460/371472 [2:58:10<16:13:01, 3.37it/s] 47%|████▋ | 174461/371472 [2:58:11<15:50:40, 3.45it/s] 47%|████▋ | 174462/371472 [2:58:11<15:49:32, 3.46it/s] 47%|████▋ | 174463/371472 [2:58:11<16:14:13, 3.37it/s] 47%|████▋ | 174464/371472 [2:58:11<16:31:45, 3.31it/s] 47%|████▋ | 174465/371472 [2:58:12<16:03:45, 3.41it/s] 47%|████▋ | 174466/371472 [2:58:12<16:18:52, 3.35it/s] 47%|████▋ | 174467/371472 [2:58:12<16:10:55, 3.38it/s] 47%|████▋ | 174468/371472 [2:58:13<17:00:39, 3.22it/s] 47%|████▋ | 174469/371472 [2:58:13<16:25:08, 3.33it/s] 47%|████▋ | 174470/371472 [2:58:13<16:03:53, 3.41it/s] 47%|████▋ | 174471/371472 [2:58:14<16:04:15, 3.41it/s] 47%|████▋ | 174472/371472 [2:58:14<17:34:43, 3.11it/s] 47%|████▋ | 174473/371472 [2:58:14<17:13:11, 3.18it/s] 47%|████▋ | 174474/371472 [2:58:14<16:27:33, 3.32it/s] 47%|████▋ | 174475/371472 [2:58:15<16:00:29, 3.42it/s] 47%|████▋ | 174476/371472 [2:58:15<15:49:47, 3.46it/s] 47%|████▋ | 174477/371472 [2:58:15<16:03:20, 3.41it/s] 47%|████▋ | 174478/371472 [2:58:16<15:42:14, 3.48it/s] 47%|████▋ | 174479/371472 [2:58:16<15:51:27, 3.45it/s] 47%|████▋ | 174480/371472 [2:58:16<16:10:08, 3.38it/s] {'loss': 3.0151, 'learning_rate': 5.77528065676916e-07, 'epoch': 7.52} + 47%|████▋ | 174480/371472 [2:58:16<16:10:08, 3.38it/s] 47%|████▋ | 174481/371472 [2:58:16<16:16:58, 3.36it/s] 47%|████▋ | 174482/371472 [2:58:17<16:13:00, 3.37it/s] 47%|████▋ | 174483/371472 [2:58:17<16:04:23, 3.40it/s] 47%|████▋ | 174484/371472 [2:58:17<17:30:14, 3.13it/s] 47%|████▋ | 174485/371472 [2:58:18<17:15:37, 3.17it/s] 47%|████▋ | 174486/371472 [2:58:18<18:29:53, 2.96it/s] 47%|████▋ | 174487/371472 [2:58:19<19:29:28, 2.81it/s] 47%|████▋ | 174488/371472 [2:58:19<21:03:33, 2.60it/s] 47%|████▋ | 174489/371472 [2:58:19<19:40:04, 2.78it/s] 47%|████▋ | 174490/371472 [2:58:20<18:59:34, 2.88it/s] 47%|████▋ | 174491/371472 [2:58:20<18:09:55, 3.01it/s] 47%|████▋ | 174492/371472 [2:58:20<17:40:54, 3.09it/s] 47%|████▋ | 174493/371472 [2:58:21<17:43:27, 3.09it/s] 47%|████▋ | 174494/371472 [2:58:21<17:05:20, 3.20it/s] 47%|████▋ | 174495/371472 [2:58:21<16:59:06, 3.22it/s] 47%|████▋ | 174496/371472 [2:58:21<16:44:19, 3.27it/s] 47%|████▋ | 174497/371472 [2:58:22<16:04:01, 3.41it/s] 47%|████▋ | 174498/371472 [2:58:22<16:06:56, 3.40it/s] 47%|████▋ | 174499/371472 [2:58:22<16:04:59, 3.40it/s] 47%|████▋ | 174500/371472 [2:58:23<15:43:10, 3.48it/s] {'loss': 2.9809, 'learning_rate': 5.774795837014371e-07, 'epoch': 7.52} + 47%|████▋ | 174500/371472 [2:58:23<15:43:10, 3.48it/s] 47%|████▋ | 174501/371472 [2:58:23<16:10:40, 3.38it/s] 47%|████▋ | 174502/371472 [2:58:23<15:56:13, 3.43it/s] 47%|████▋ | 174503/371472 [2:58:23<15:23:56, 3.55it/s] 47%|████▋ | 174504/371472 [2:58:24<15:20:46, 3.57it/s] 47%|████▋ | 174505/371472 [2:58:24<15:35:02, 3.51it/s] 47%|████▋ | 174506/371472 [2:58:24<16:45:47, 3.26it/s] 47%|████▋ | 174507/371472 [2:58:25<16:19:53, 3.35it/s] 47%|████▋ | 174508/371472 [2:58:25<15:55:34, 3.44it/s] 47%|████▋ | 174509/371472 [2:58:25<15:45:03, 3.47it/s] 47%|████▋ | 174510/371472 [2:58:25<15:30:37, 3.53it/s] 47%|████▋ | 174511/371472 [2:58:26<15:36:04, 3.51it/s] 47%|████▋ | 174512/371472 [2:58:26<15:56:37, 3.43it/s] 47%|████▋ | 174513/371472 [2:58:26<16:20:39, 3.35it/s] 47%|████▋ | 174514/371472 [2:58:27<16:47:10, 3.26it/s] 47%|████▋ | 174515/371472 [2:58:27<16:46:14, 3.26it/s] 47%|████▋ | 174516/371472 [2:58:27<16:16:51, 3.36it/s] 47%|████▋ | 174517/371472 [2:58:28<16:14:34, 3.37it/s] 47%|████▋ | 174518/371472 [2:58:28<16:35:09, 3.30it/s] 47%|████▋ | 174519/371472 [2:58:28<16:05:16, 3.40it/s] 47%|████▋ | 174520/371472 [2:58:28<15:44:29, 3.48it/s] {'loss': 2.9486, 'learning_rate': 5.774311017259583e-07, 'epoch': 7.52} + 47%|████▋ | 174520/371472 [2:58:28<15:44:29, 3.48it/s] 47%|████▋ | 174521/371472 [2:58:29<16:13:53, 3.37it/s] 47%|████▋ | 174522/371472 [2:58:29<16:51:24, 3.25it/s] 47%|████▋ | 174523/371472 [2:58:29<16:20:25, 3.35it/s] 47%|████▋ | 174524/371472 [2:58:30<16:05:48, 3.40it/s] 47%|████▋ | 174525/371472 [2:58:30<16:01:25, 3.41it/s] 47%|████▋ | 174526/371472 [2:58:30<16:05:48, 3.40it/s] 47%|████▋ | 174527/371472 [2:58:31<15:59:10, 3.42it/s] 47%|████▋ | 174528/371472 [2:58:31<15:40:49, 3.49it/s] 47%|████▋ | 174529/371472 [2:58:31<15:19:30, 3.57it/s] 47%|████▋ | 174530/371472 [2:58:31<15:25:10, 3.55it/s] 47%|████▋ | 174531/371472 [2:58:32<15:50:48, 3.45it/s] 47%|████▋ | 174532/371472 [2:58:32<15:44:54, 3.47it/s] 47%|████▋ | 174533/371472 [2:58:32<16:00:21, 3.42it/s] 47%|████▋ | 174534/371472 [2:58:33<15:34:11, 3.51it/s] 47%|████▋ | 174535/371472 [2:58:33<15:28:28, 3.54it/s] 47%|████▋ | 174536/371472 [2:58:33<15:57:24, 3.43it/s] 47%|████▋ | 174537/371472 [2:58:33<15:59:56, 3.42it/s] 47%|████▋ | 174538/371472 [2:58:34<15:55:12, 3.44it/s] 47%|████▋ | 174539/371472 [2:58:34<15:47:17, 3.46it/s] 47%|████▋ | 174540/371472 [2:58:34<16:27:49, 3.32it/s] {'loss': 2.8693, 'learning_rate': 5.773826197504796e-07, 'epoch': 7.52} + 47%|████▋ | 174540/371472 [2:58:34<16:27:49, 3.32it/s] 47%|████▋ | 174541/371472 [2:58:35<17:10:37, 3.18it/s] 47%|████▋ | 174542/371472 [2:58:35<16:36:14, 3.29it/s] 47%|████▋ | 174543/371472 [2:58:35<17:08:31, 3.19it/s] 47%|████▋ | 174544/371472 [2:58:36<16:57:49, 3.22it/s] 47%|████▋ | 174545/371472 [2:58:36<16:38:01, 3.29it/s] 47%|████▋ | 174546/371472 [2:58:36<16:26:40, 3.33it/s] 47%|████▋ | 174547/371472 [2:58:36<16:13:00, 3.37it/s] 47%|████▋ | 174548/371472 [2:58:37<16:28:16, 3.32it/s] 47%|████▋ | 174549/371472 [2:58:37<16:15:44, 3.36it/s] 47%|████▋ | 174550/371472 [2:58:37<16:15:45, 3.36it/s] 47%|████▋ | 174551/371472 [2:58:38<16:51:41, 3.24it/s] 47%|████▋ | 174552/371472 [2:58:38<16:26:00, 3.33it/s] 47%|████▋ | 174553/371472 [2:58:38<16:01:57, 3.41it/s] 47%|████▋ | 174554/371472 [2:58:38<15:42:05, 3.48it/s] 47%|████▋ | 174555/371472 [2:58:39<16:07:57, 3.39it/s] 47%|████▋ | 174556/371472 [2:58:39<16:02:39, 3.41it/s] 47%|████▋ | 174557/371472 [2:58:39<16:17:52, 3.36it/s] 47%|████▋ | 174558/371472 [2:58:40<16:02:38, 3.41it/s] 47%|████▋ | 174559/371472 [2:58:40<16:01:08, 3.41it/s] 47%|████▋ | 174560/371472 [2:58:40<16:36:51, 3.29it/s] {'loss': 2.9246, 'learning_rate': 5.773341377750005e-07, 'epoch': 7.52} + 47%|████▋ | 174560/371472 [2:58:40<16:36:51, 3.29it/s] 47%|████▋ | 174561/371472 [2:58:41<16:05:39, 3.40it/s] 47%|████▋ | 174562/371472 [2:58:41<16:23:01, 3.34it/s] 47%|████▋ | 174563/371472 [2:58:41<16:06:42, 3.39it/s] 47%|████▋ | 174564/371472 [2:58:41<16:30:21, 3.31it/s] 47%|████▋ | 174565/371472 [2:58:42<16:35:27, 3.30it/s] 47%|████▋ | 174566/371472 [2:58:42<16:01:59, 3.41it/s] 47%|████▋ | 174567/371472 [2:58:42<15:54:29, 3.44it/s] 47%|████▋ | 174568/371472 [2:58:43<15:44:08, 3.48it/s] 47%|████▋ | 174569/371472 [2:58:43<15:53:07, 3.44it/s] 47%|████▋ | 174570/371472 [2:58:43<15:49:02, 3.46it/s] 47%|████▋ | 174571/371472 [2:58:43<15:43:45, 3.48it/s] 47%|████▋ | 174572/371472 [2:58:44<16:11:01, 3.38it/s] 47%|████▋ | 174573/371472 [2:58:44<16:13:34, 3.37it/s] 47%|████▋ | 174574/371472 [2:58:44<15:59:42, 3.42it/s] 47%|████▋ | 174575/371472 [2:58:45<15:49:12, 3.46it/s] 47%|████▋ | 174576/371472 [2:58:45<15:43:03, 3.48it/s] 47%|████▋ | 174577/371472 [2:58:45<15:58:21, 3.42it/s] 47%|████▋ | 174578/371472 [2:58:46<16:19:29, 3.35it/s] 47%|████▋ | 174579/371472 [2:58:46<16:03:07, 3.41it/s] 47%|████▋ | 174580/371472 [2:58:46<16:18:19, 3.35it/s] {'loss': 3.1529, 'learning_rate': 5.772856557995215e-07, 'epoch': 7.52} + 47%|████▋ | 174580/371472 [2:58:46<16:18:19, 3.35it/s] 47%|████▋ | 174581/371472 [2:58:46<16:28:31, 3.32it/s] 47%|████▋ | 174582/371472 [2:58:47<16:07:50, 3.39it/s] 47%|████▋ | 174583/371472 [2:58:47<16:48:45, 3.25it/s] 47%|████▋ | 174584/371472 [2:58:47<17:27:26, 3.13it/s] 47%|████▋ | 174585/371472 [2:58:48<17:07:06, 3.19it/s] 47%|████▋ | 174586/371472 [2:58:48<16:47:31, 3.26it/s] 47%|████▋ | 174587/371472 [2:58:48<17:38:24, 3.10it/s] 47%|████▋ | 174588/371472 [2:58:49<18:08:41, 3.01it/s] 47%|████▋ | 174589/371472 [2:58:49<18:49:19, 2.91it/s] 47%|████▋ | 174590/371472 [2:58:50<19:49:37, 2.76it/s] 47%|████▋ | 174591/371472 [2:58:50<19:46:10, 2.77it/s] 47%|████▋ | 174592/371472 [2:58:50<19:53:50, 2.75it/s] 47%|████▋ | 174593/371472 [2:58:51<20:47:41, 2.63it/s] 47%|████▋ | 174594/371472 [2:58:51<19:48:10, 2.76it/s] 47%|████▋ | 174595/371472 [2:58:51<19:26:07, 2.81it/s] 47%|████▋ | 174596/371472 [2:58:52<18:35:46, 2.94it/s] 47%|████▋ | 174597/371472 [2:58:52<17:58:31, 3.04it/s] 47%|████▋ | 174598/371472 [2:58:52<17:58:50, 3.04it/s] 47%|████▋ | 174599/371472 [2:58:53<18:20:34, 2.98it/s] 47%|████▋ | 174600/371472 [2:58:53<17:34:16, 3.11it/s] {'loss': 2.8535, 'learning_rate': 5.772371738240427e-07, 'epoch': 7.52} + 47%|████▋ | 174600/371472 [2:58:53<17:34:16, 3.11it/s] 47%|████▋ | 174601/371472 [2:58:53<16:54:52, 3.23it/s] 47%|████▋ | 174602/371472 [2:58:53<16:57:20, 3.23it/s] 47%|████▋ | 174603/371472 [2:58:54<16:27:33, 3.32it/s] 47%|████▋ | 174604/371472 [2:58:54<15:46:16, 3.47it/s] 47%|████▋ | 174605/371472 [2:58:54<15:55:56, 3.43it/s] 47%|████▋ | 174606/371472 [2:58:55<16:26:04, 3.33it/s] 47%|████▋ | 174607/371472 [2:58:55<16:21:22, 3.34it/s] 47%|████▋ | 174608/371472 [2:58:55<16:15:32, 3.36it/s] 47%|████▋ | 174609/371472 [2:58:56<16:10:38, 3.38it/s] 47%|████▋ | 174610/371472 [2:58:56<16:31:35, 3.31it/s] 47%|████▋ | 174611/371472 [2:58:56<16:30:00, 3.31it/s] 47%|████▋ | 174612/371472 [2:58:56<16:16:57, 3.36it/s] 47%|████▋ | 174613/371472 [2:58:57<16:26:17, 3.33it/s] 47%|████▋ | 174614/371472 [2:58:57<17:13:07, 3.18it/s] 47%|████▋ | 174615/371472 [2:58:57<16:39:50, 3.28it/s] 47%|████▋ | 174616/371472 [2:58:58<17:25:42, 3.14it/s] 47%|████▋ | 174617/371472 [2:58:58<16:49:12, 3.25it/s] 47%|████▋ | 174618/371472 [2:58:58<16:14:02, 3.37it/s] 47%|████▋ | 174619/371472 [2:58:59<16:01:58, 3.41it/s] 47%|████▋ | 174620/371472 [2:58:59<15:42:51, 3.48it/s] {'loss': 2.93, 'learning_rate': 5.771886918485639e-07, 'epoch': 7.52} + 47%|████▋ | 174620/371472 [2:58:59<15:42:51, 3.48it/s] 47%|████▋ | 174621/371472 [2:58:59<16:01:01, 3.41it/s] 47%|████▋ | 174622/371472 [2:58:59<15:44:24, 3.47it/s] 47%|████▋ | 174623/371472 [2:59:00<15:50:33, 3.45it/s] 47%|████▋ | 174624/371472 [2:59:00<15:50:53, 3.45it/s] 47%|████▋ | 174625/371472 [2:59:00<17:03:29, 3.21it/s] 47%|████▋ | 174626/371472 [2:59:01<16:16:33, 3.36it/s] 47%|████▋ | 174627/371472 [2:59:01<16:01:09, 3.41it/s] 47%|████▋ | 174628/371472 [2:59:01<16:11:15, 3.38it/s] 47%|████▋ | 174629/371472 [2:59:01<15:42:26, 3.48it/s] 47%|████▋ | 174630/371472 [2:59:02<15:44:55, 3.47it/s] 47%|████▋ | 174631/371472 [2:59:02<16:06:33, 3.39it/s] 47%|████▋ | 174632/371472 [2:59:02<16:15:54, 3.36it/s] 47%|████▋ | 174633/371472 [2:59:03<16:25:41, 3.33it/s] 47%|████▋ | 174634/371472 [2:59:03<16:16:51, 3.36it/s] 47%|████▋ | 174635/371472 [2:59:03<16:26:56, 3.32it/s] 47%|████▋ | 174636/371472 [2:59:04<16:29:24, 3.32it/s] 47%|████▋ | 174637/371472 [2:59:04<16:18:02, 3.35it/s] 47%|████▋ | 174638/371472 [2:59:04<16:17:29, 3.36it/s] 47%|████▋ | 174639/371472 [2:59:05<17:12:07, 3.18it/s] 47%|████▋ | 174640/371472 [2:59:05<17:32:37, 3.12it/s] {'loss': 2.8254, 'learning_rate': 5.771402098730849e-07, 'epoch': 7.52} + 47%|████▋ | 174640/371472 [2:59:05<17:32:37, 3.12it/s] 47%|████▋ | 174641/371472 [2:59:05<17:23:13, 3.14it/s] 47%|████▋ | 174642/371472 [2:59:05<17:08:00, 3.19it/s] 47%|████▋ | 174643/371472 [2:59:06<16:40:04, 3.28it/s] 47%|████▋ | 174644/371472 [2:59:06<16:45:03, 3.26it/s] 47%|████▋ | 174645/371472 [2:59:06<16:20:09, 3.35it/s] 47%|████▋ | 174646/371472 [2:59:07<15:59:37, 3.42it/s] 47%|████▋ | 174647/371472 [2:59:07<16:28:06, 3.32it/s] 47%|████▋ | 174648/371472 [2:59:07<17:03:45, 3.20it/s] 47%|████▋ | 174649/371472 [2:59:08<17:22:55, 3.15it/s] 47%|████▋ | 174650/371472 [2:59:08<16:55:47, 3.23it/s] 47%|████▋ | 174651/371472 [2:59:08<17:48:06, 3.07it/s] 47%|████▋ | 174652/371472 [2:59:09<17:00:59, 3.21it/s] 47%|████▋ | 174653/371472 [2:59:09<16:53:00, 3.24it/s] 47%|████▋ | 174654/371472 [2:59:09<16:48:26, 3.25it/s] 47%|████▋ | 174655/371472 [2:59:09<16:37:03, 3.29it/s] 47%|████▋ | 174656/371472 [2:59:10<16:09:12, 3.38it/s] 47%|████▋ | 174657/371472 [2:59:10<16:04:06, 3.40it/s] 47%|████▋ | 174658/371472 [2:59:10<16:27:28, 3.32it/s] 47%|████▋ | 174659/371472 [2:59:11<16:36:19, 3.29it/s] 47%|████▋ | 174660/371472 [2:59:11<16:24:20, 3.33it/s] {'loss': 3.1018, 'learning_rate': 5.77091727897606e-07, 'epoch': 7.52} + 47%|████▋ | 174660/371472 [2:59:11<16:24:20, 3.33it/s] 47%|████▋ | 174661/371472 [2:59:11<16:15:00, 3.36it/s] 47%|████▋ | 174662/371472 [2:59:12<16:20:32, 3.35it/s] 47%|████▋ | 174663/371472 [2:59:12<16:54:16, 3.23it/s] 47%|████▋ | 174664/371472 [2:59:12<16:52:05, 3.24it/s] 47%|████▋ | 174665/371472 [2:59:12<16:34:14, 3.30it/s] 47%|████▋ | 174666/371472 [2:59:13<17:03:27, 3.20it/s] 47%|████▋ | 174667/371472 [2:59:13<16:51:19, 3.24it/s] 47%|████▋ | 174668/371472 [2:59:13<16:57:18, 3.22it/s] 47%|████▋ | 174669/371472 [2:59:14<16:40:35, 3.28it/s] 47%|████▋ | 174670/371472 [2:59:14<16:54:50, 3.23it/s] 47%|████▋ | 174671/371472 [2:59:14<16:37:26, 3.29it/s] 47%|████▋ | 174672/371472 [2:59:15<15:57:27, 3.43it/s] 47%|████▋ | 174673/371472 [2:59:15<16:17:59, 3.35it/s] 47%|████▋ | 174674/371472 [2:59:15<15:58:09, 3.42it/s] 47%|████▋ | 174675/371472 [2:59:15<16:00:35, 3.41it/s] 47%|████▋ | 174676/371472 [2:59:16<17:02:27, 3.21it/s] 47%|████▋ | 174677/371472 [2:59:16<16:22:23, 3.34it/s] 47%|████▋ | 174678/371472 [2:59:16<16:59:52, 3.22it/s] 47%|████▋ | 174679/371472 [2:59:17<17:08:04, 3.19it/s] 47%|████▋ | 174680/371472 [2:59:17<16:43:58, 3.27it/s] {'loss': 3.12, 'learning_rate': 5.770432459221272e-07, 'epoch': 7.52} + 47%|████▋ | 174680/371472 [2:59:17<16:43:58, 3.27it/s] 47%|████▋ | 174681/371472 [2:59:17<16:31:41, 3.31it/s] 47%|████▋ | 174682/371472 [2:59:18<16:57:11, 3.22it/s] 47%|████▋ | 174683/371472 [2:59:18<16:27:03, 3.32it/s] 47%|████▋ | 174684/371472 [2:59:18<16:04:49, 3.40it/s] 47%|████▋ | 174685/371472 [2:59:19<17:07:05, 3.19it/s] 47%|████▋ | 174686/371472 [2:59:19<17:10:42, 3.18it/s] 47%|████▋ | 174687/371472 [2:59:19<17:52:00, 3.06it/s] 47%|████▋ | 174688/371472 [2:59:20<17:16:15, 3.16it/s] 47%|████▋ | 174689/371472 [2:59:20<16:55:19, 3.23it/s] 47%|████▋ | 174690/371472 [2:59:20<16:24:11, 3.33it/s] 47%|████▋ | 174691/371472 [2:59:20<15:46:28, 3.47it/s] 47%|████▋ | 174692/371472 [2:59:21<15:39:27, 3.49it/s] 47%|████▋ | 174693/371472 [2:59:21<15:57:32, 3.43it/s] 47%|████▋ | 174694/371472 [2:59:21<16:23:37, 3.33it/s] 47%|████▋ | 174695/371472 [2:59:22<16:26:52, 3.32it/s] 47%|████▋ | 174696/371472 [2:59:22<17:27:55, 3.13it/s] 47%|████▋ | 174697/371472 [2:59:22<16:49:00, 3.25it/s] 47%|████▋ | 174698/371472 [2:59:23<16:47:46, 3.25it/s] 47%|████▋ | 174699/371472 [2:59:23<16:26:09, 3.33it/s] 47%|████▋ | 174700/371472 [2:59:23<16:38:09, 3.29it/s] {'loss': 2.7816, 'learning_rate': 5.769947639466483e-07, 'epoch': 7.52} + 47%|████▋ | 174700/371472 [2:59:23<16:38:09, 3.29it/s] 47%|████▋ | 174701/371472 [2:59:23<17:17:46, 3.16it/s] 47%|████▋ | 174702/371472 [2:59:24<17:09:28, 3.19it/s] 47%|████▋ | 174703/371472 [2:59:24<18:15:52, 2.99it/s] 47%|████▋ | 174704/371472 [2:59:24<17:07:56, 3.19it/s] 47%|████▋ | 174705/371472 [2:59:25<17:06:19, 3.20it/s] 47%|████▋ | 174706/371472 [2:59:25<16:42:42, 3.27it/s] 47%|████▋ | 174707/371472 [2:59:25<17:45:46, 3.08it/s] 47%|████▋ | 174708/371472 [2:59:26<17:19:29, 3.15it/s] 47%|████▋ | 174709/371472 [2:59:26<17:14:18, 3.17it/s] 47%|████▋ | 174710/371472 [2:59:26<17:11:45, 3.18it/s] 47%|████▋ | 174711/371472 [2:59:27<16:41:07, 3.28it/s] 47%|████▋ | 174712/371472 [2:59:27<16:29:01, 3.32it/s] 47%|████▋ | 174713/371472 [2:59:27<16:44:45, 3.26it/s] 47%|████▋ | 174714/371472 [2:59:28<16:57:26, 3.22it/s] 47%|████▋ | 174715/371472 [2:59:28<16:05:38, 3.40it/s] 47%|████▋ | 174716/371472 [2:59:28<16:05:03, 3.40it/s] 47%|████▋ | 174717/371472 [2:59:28<16:11:55, 3.37it/s] 47%|████▋ | 174718/371472 [2:59:29<17:49:27, 3.07it/s] 47%|████▋ | 174719/371472 [2:59:29<17:37:59, 3.10it/s] 47%|████▋ | 174720/371472 [2:59:29<17:07:14, 3.19it/s] {'loss': 3.0391, 'learning_rate': 5.769462819711693e-07, 'epoch': 7.53} + 47%|████▋ | 174720/371472 [2:59:29<17:07:14, 3.19it/s] 47%|████▋ | 174721/371472 [2:59:30<16:52:03, 3.24it/s] 47%|████▋ | 174722/371472 [2:59:30<16:15:08, 3.36it/s] 47%|████▋ | 174723/371472 [2:59:30<16:45:59, 3.26it/s] 47%|████▋ | 174724/371472 [2:59:31<16:27:43, 3.32it/s] 47%|████▋ | 174725/371472 [2:59:31<16:25:23, 3.33it/s] 47%|████▋ | 174726/371472 [2:59:31<16:13:02, 3.37it/s] 47%|████▋ | 174727/371472 [2:59:31<15:54:03, 3.44it/s] 47%|████▋ | 174728/371472 [2:59:32<15:49:22, 3.45it/s] 47%|████▋ | 174729/371472 [2:59:32<16:28:32, 3.32it/s] 47%|████▋ | 174730/371472 [2:59:32<16:54:57, 3.23it/s] 47%|████▋ | 174731/371472 [2:59:33<17:11:55, 3.18it/s] 47%|████▋ | 174732/371472 [2:59:33<16:49:26, 3.25it/s] 47%|████▋ | 174733/371472 [2:59:33<16:20:17, 3.34it/s] 47%|████▋ | 174734/371472 [2:59:34<15:56:36, 3.43it/s] 47%|████▋ | 174735/371472 [2:59:34<16:08:56, 3.38it/s] 47%|████▋ | 174736/371472 [2:59:34<16:41:18, 3.27it/s] 47%|████▋ | 174737/371472 [2:59:34<16:20:16, 3.34it/s] 47%|████▋ | 174738/371472 [2:59:35<16:36:48, 3.29it/s] 47%|████▋ | 174739/371472 [2:59:35<16:14:35, 3.36it/s] 47%|████▋ | 174740/371472 [2:59:35<16:40:22, 3.28it/s] {'loss': 2.8462, 'learning_rate': 5.768977999956904e-07, 'epoch': 7.53} + 47%|████▋ | 174740/371472 [2:59:35<16:40:22, 3.28it/s] 47%|████▋ | 174741/371472 [2:59:36<16:21:14, 3.34it/s] 47%|████▋ | 174742/371472 [2:59:36<15:51:19, 3.45it/s] 47%|████▋ | 174743/371472 [2:59:36<16:11:37, 3.37it/s] 47%|████▋ | 174744/371472 [2:59:37<16:29:41, 3.31it/s] 47%|████▋ | 174745/371472 [2:59:37<16:09:30, 3.38it/s] 47%|████▋ | 174746/371472 [2:59:37<16:03:32, 3.40it/s] 47%|████▋ | 174747/371472 [2:59:37<16:38:51, 3.28it/s] 47%|████▋ | 174748/371472 [2:59:38<16:28:36, 3.32it/s] 47%|████▋ | 174749/371472 [2:59:38<18:12:41, 3.00it/s] 47%|████▋ | 174750/371472 [2:59:38<17:19:53, 3.15it/s] 47%|████▋ | 174751/371472 [2:59:39<16:18:52, 3.35it/s] 47%|████▋ | 174752/371472 [2:59:39<16:08:51, 3.38it/s] 47%|████▋ | 174753/371472 [2:59:39<16:16:14, 3.36it/s] 47%|████▋ | 174754/371472 [2:59:40<15:56:33, 3.43it/s] 47%|████▋ | 174755/371472 [2:59:40<15:31:23, 3.52it/s] 47%|████▋ | 174756/371472 [2:59:40<15:29:58, 3.53it/s] 47%|████▋ | 174757/371472 [2:59:40<15:11:38, 3.60it/s] 47%|████▋ | 174758/371472 [2:59:41<15:31:47, 3.52it/s] 47%|████▋ | 174759/371472 [2:59:41<16:30:30, 3.31it/s] 47%|████▋ | 174760/371472 [2:59:41<16:21:47, 3.34it/s] {'loss': 2.9654, 'learning_rate': 5.768493180202116e-07, 'epoch': 7.53} + 47%|████▋ | 174760/371472 [2:59:41<16:21:47, 3.34it/s] 47%|████▋ | 174761/371472 [2:59:42<15:49:16, 3.45it/s] 47%|████▋ | 174762/371472 [2:59:42<16:17:34, 3.35it/s] 47%|████▋ | 174763/371472 [2:59:42<17:27:19, 3.13it/s] 47%|████▋ | 174764/371472 [2:59:43<17:57:37, 3.04it/s] 47%|████▋ | 174765/371472 [2:59:43<17:46:55, 3.07it/s] 47%|████▋ | 174766/371472 [2:59:43<17:09:48, 3.18it/s] 47%|████▋ | 174767/371472 [2:59:44<16:24:09, 3.33it/s] 47%|████▋ | 174768/371472 [2:59:44<15:56:39, 3.43it/s] 47%|████▋ | 174769/371472 [2:59:44<17:22:55, 3.14it/s] 47%|████▋ | 174770/371472 [2:59:44<17:26:05, 3.13it/s] 47%|████▋ | 174771/371472 [2:59:45<17:32:50, 3.11it/s] 47%|████▋ | 174772/371472 [2:59:45<17:44:35, 3.08it/s] 47%|████▋ | 174773/371472 [2:59:45<17:29:22, 3.12it/s] 47%|████▋ | 174774/371472 [2:59:46<17:30:31, 3.12it/s] 47%|████▋ | 174775/371472 [2:59:46<18:50:41, 2.90it/s] 47%|████▋ | 174776/371472 [2:59:46<17:47:54, 3.07it/s] 47%|████▋ | 174777/371472 [2:59:47<17:07:25, 3.19it/s] 47%|████▋ | 174778/371472 [2:59:47<17:23:33, 3.14it/s] 47%|████▋ | 174779/371472 [2:59:47<16:56:01, 3.23it/s] 47%|████▋ | 174780/371472 [2:59:48<16:55:13, 3.23it/s] {'loss': 3.0049, 'learning_rate': 5.768008360447328e-07, 'epoch': 7.53} + 47%|████▋ | 174780/371472 [2:59:48<16:55:13, 3.23it/s] 47%|████▋ | 174781/371472 [2:59:48<17:41:58, 3.09it/s] 47%|████▋ | 174782/371472 [2:59:48<16:47:15, 3.25it/s] 47%|████▋ | 174783/371472 [2:59:49<16:43:16, 3.27it/s] 47%|████▋ | 174784/371472 [2:59:49<16:37:47, 3.29it/s] 47%|████▋ | 174785/371472 [2:59:49<16:10:51, 3.38it/s] 47%|████▋ | 174786/371472 [2:59:49<16:08:39, 3.38it/s] 47%|████▋ | 174787/371472 [2:59:50<16:25:53, 3.33it/s] 47%|████▋ | 174788/371472 [2:59:50<16:18:55, 3.35it/s] 47%|████▋ | 174789/371472 [2:59:50<16:44:05, 3.26it/s] 47%|████▋ | 174790/371472 [2:59:51<16:37:14, 3.29it/s] 47%|████▋ | 174791/371472 [2:59:51<15:52:06, 3.44it/s] 47%|████▋ | 174792/371472 [2:59:51<15:45:08, 3.47it/s] 47%|████▋ | 174793/371472 [2:59:52<15:27:27, 3.53it/s] 47%|████▋ | 174794/371472 [2:59:52<15:28:59, 3.53it/s] 47%|████▋ | 174795/371472 [2:59:52<15:51:26, 3.45it/s] 47%|████▋ | 174796/371472 [2:59:52<15:58:50, 3.42it/s] 47%|████▋ | 174797/371472 [2:59:53<16:34:16, 3.30it/s] 47%|████▋ | 174798/371472 [2:59:53<16:53:46, 3.23it/s] 47%|████▋ | 174799/371472 [2:59:53<16:26:04, 3.32it/s] 47%|████▋ | 174800/371472 [2:59:54<16:59:30, 3.22it/s] {'loss': 2.9603, 'learning_rate': 5.767523540692537e-07, 'epoch': 7.53} + 47%|████▋ | 174800/371472 [2:59:54<16:59:30, 3.22it/s] 47%|████▋ | 174801/371472 [2:59:54<16:43:49, 3.27it/s] 47%|████▋ | 174802/371472 [2:59:54<16:12:30, 3.37it/s] 47%|████▋ | 174803/371472 [2:59:55<16:37:20, 3.29it/s] 47%|████▋ | 174804/371472 [2:59:55<16:31:32, 3.31it/s] 47%|████▋ | 174805/371472 [2:59:55<16:28:46, 3.32it/s] 47%|████▋ | 174806/371472 [2:59:55<16:23:06, 3.33it/s] 47%|████▋ | 174807/371472 [2:59:56<16:07:06, 3.39it/s] 47%|████▋ | 174808/371472 [2:59:56<17:17:26, 3.16it/s] 47%|████▋ | 174809/371472 [2:59:56<16:24:40, 3.33it/s] 47%|████▋ | 174810/371472 [2:59:57<15:56:45, 3.43it/s] 47%|████▋ | 174811/371472 [2:59:57<17:03:21, 3.20it/s] 47%|████▋ | 174812/371472 [2:59:57<18:50:31, 2.90it/s] 47%|████▋ | 174813/371472 [2:59:58<18:18:10, 2.98it/s] 47%|████▋ | 174814/371472 [2:59:58<17:17:12, 3.16it/s] 47%|████▋ | 174815/371472 [2:59:58<18:19:26, 2.98it/s] 47%|████▋ | 174816/371472 [2:59:59<17:33:11, 3.11it/s] 47%|████▋ | 174817/371472 [2:59:59<17:05:40, 3.20it/s] 47%|████▋ | 174818/371472 [2:59:59<16:57:59, 3.22it/s] 47%|████▋ | 174819/371472 [3:00:00<16:24:31, 3.33it/s] 47%|████▋ | 174820/371472 [3:00:00<16:14:39, 3.36it/s] {'loss': 2.8927, 'learning_rate': 5.767038720937748e-07, 'epoch': 7.53} + 47%|████▋ | 174820/371472 [3:00:00<16:14:39, 3.36it/s] 47%|████▋ | 174821/371472 [3:00:00<16:30:19, 3.31it/s] 47%|████▋ | 174822/371472 [3:00:00<16:33:26, 3.30it/s] 47%|████▋ | 174823/371472 [3:00:01<15:58:43, 3.42it/s] 47%|████▋ | 174824/371472 [3:00:01<15:54:27, 3.43it/s] 47%|████▋ | 174825/371472 [3:00:01<15:41:03, 3.48it/s] 47%|████▋ | 174826/371472 [3:00:02<15:50:48, 3.45it/s] 47%|████▋ | 174827/371472 [3:00:02<15:58:22, 3.42it/s] 47%|████▋ | 174828/371472 [3:00:02<15:49:34, 3.45it/s] 47%|████▋ | 174829/371472 [3:00:02<15:37:55, 3.49it/s] 47%|████▋ | 174830/371472 [3:00:03<16:42:44, 3.27it/s] 47%|████▋ | 174831/371472 [3:00:03<17:27:24, 3.13it/s] 47%|████▋ | 174832/371472 [3:00:03<16:43:46, 3.26it/s] 47%|████▋ | 174833/371472 [3:00:04<16:02:59, 3.40it/s] 47%|████▋ | 174834/371472 [3:00:04<15:54:51, 3.43it/s] 47%|████▋ | 174835/371472 [3:00:04<15:58:12, 3.42it/s] 47%|████▋ | 174836/371472 [3:00:05<16:11:58, 3.37it/s] 47%|████▋ | 174837/371472 [3:00:05<16:29:46, 3.31it/s] 47%|████▋ | 174838/371472 [3:00:05<16:31:06, 3.31it/s] 47%|████▋ | 174839/371472 [3:00:06<17:49:26, 3.06it/s] 47%|████▋ | 174840/371472 [3:00:06<17:37:52, 3.10it/s] {'loss': 2.9327, 'learning_rate': 5.766553901182961e-07, 'epoch': 7.53} + 47%|████▋ | 174840/371472 [3:00:06<17:37:52, 3.10it/s] 47%|████▋ | 174841/371472 [3:00:06<17:17:21, 3.16it/s] 47%|████▋ | 174842/371472 [3:00:07<17:04:45, 3.20it/s] 47%|████▋ | 174843/371472 [3:00:07<17:06:50, 3.19it/s] 47%|████▋ | 174844/371472 [3:00:07<16:36:40, 3.29it/s] 47%|████▋ | 174845/371472 [3:00:07<16:20:53, 3.34it/s] 47%|████▋ | 174846/371472 [3:00:08<16:30:48, 3.31it/s] 47%|████▋ | 174847/371472 [3:00:08<16:14:29, 3.36it/s] 47%|████▋ | 174848/371472 [3:00:08<15:44:18, 3.47it/s] 47%|████▋ | 174849/371472 [3:00:09<15:38:44, 3.49it/s] 47%|████▋ | 174850/371472 [3:00:09<16:47:25, 3.25it/s] 47%|████▋ | 174851/371472 [3:00:09<16:04:44, 3.40it/s] 47%|████▋ | 174852/371472 [3:00:09<16:39:13, 3.28it/s] 47%|████▋ | 174853/371472 [3:00:10<17:43:15, 3.08it/s] 47%|████▋ | 174854/371472 [3:00:10<16:47:54, 3.25it/s] 47%|████▋ | 174855/371472 [3:00:10<16:34:39, 3.29it/s] 47%|████▋ | 174856/371472 [3:00:11<16:14:38, 3.36it/s] 47%|████▋ | 174857/371472 [3:00:11<16:39:26, 3.28it/s] 47%|████▋ | 174858/371472 [3:00:11<16:30:50, 3.31it/s] 47%|████▋ | 174859/371472 [3:00:12<16:19:26, 3.35it/s] 47%|████▋ | 174860/371472 [3:00:12<19:19:48, 2.83it/s] {'loss': 2.8319, 'learning_rate': 5.766069081428171e-07, 'epoch': 7.53} + 47%|████▋ | 174860/371472 [3:00:12<19:19:48, 2.83it/s] 47%|████▋ | 174861/371472 [3:00:12<18:17:38, 2.99it/s] 47%|████▋ | 174862/371472 [3:00:13<17:29:37, 3.12it/s] 47%|████▋ | 174863/371472 [3:00:13<17:50:17, 3.06it/s] 47%|████▋ | 174864/371472 [3:00:13<19:11:02, 2.85it/s] 47%|████▋ | 174865/371472 [3:00:14<18:06:19, 3.02it/s] 47%|████▋ | 174866/371472 [3:00:14<18:52:51, 2.89it/s] 47%|████▋ | 174867/371472 [3:00:14<17:42:00, 3.09it/s] 47%|████▋ | 174868/371472 [3:00:15<18:08:00, 3.01it/s] 47%|████▋ | 174869/371472 [3:00:15<17:41:13, 3.09it/s] 47%|████▋ | 174870/371472 [3:00:15<17:15:15, 3.17it/s] 47%|████▋ | 174871/371472 [3:00:16<16:50:36, 3.24it/s] 47%|████▋ | 174872/371472 [3:00:16<16:31:13, 3.31it/s] 47%|████▋ | 174873/371472 [3:00:16<16:17:12, 3.35it/s] 47%|████▋ | 174874/371472 [3:00:16<15:46:33, 3.46it/s] 47%|████▋ | 174875/371472 [3:00:17<15:59:07, 3.42it/s] 47%|████▋ | 174876/371472 [3:00:17<15:58:50, 3.42it/s] 47%|████▋ | 174877/371472 [3:00:17<16:28:48, 3.31it/s] 47%|████▋ | 174878/371472 [3:00:18<16:05:16, 3.39it/s] 47%|████▋ | 174879/371472 [3:00:18<16:07:52, 3.39it/s] 47%|████▋ | 174880/371472 [3:00:18<15:48:52, 3.45it/s] {'loss': 2.9311, 'learning_rate': 5.765584261673382e-07, 'epoch': 7.53} + 47%|████▋ | 174880/371472 [3:00:18<15:48:52, 3.45it/s] 47%|████▋ | 174881/371472 [3:00:18<15:39:08, 3.49it/s] 47%|████▋ | 174882/371472 [3:00:19<16:37:04, 3.29it/s] 47%|████▋ | 174883/371472 [3:00:19<16:46:49, 3.25it/s] 47%|████▋ | 174884/371472 [3:00:19<17:26:11, 3.13it/s] 47%|████▋ | 174885/371472 [3:00:20<17:04:00, 3.20it/s] 47%|████▋ | 174886/371472 [3:00:20<16:49:02, 3.25it/s] 47%|████▋ | 174887/371472 [3:00:20<16:40:18, 3.28it/s] 47%|████▋ | 174888/371472 [3:00:21<17:05:57, 3.19it/s] 47%|████▋ | 174889/371472 [3:00:21<17:41:06, 3.09it/s] 47%|████▋ | 174890/371472 [3:00:21<16:58:25, 3.22it/s] 47%|████▋ | 174891/371472 [3:00:22<16:27:10, 3.32it/s] 47%|████▋ | 174892/371472 [3:00:22<16:21:57, 3.34it/s] 47%|████▋ | 174893/371472 [3:00:22<16:12:41, 3.37it/s] 47%|████▋ | 174894/371472 [3:00:22<15:46:37, 3.46it/s] 47%|████▋ | 174895/371472 [3:00:23<15:43:47, 3.47it/s] 47%|████▋ | 174896/371472 [3:00:23<15:53:55, 3.43it/s] 47%|████▋ | 174897/371472 [3:00:23<16:21:13, 3.34it/s] 47%|████▋ | 174898/371472 [3:00:24<17:02:00, 3.21it/s] 47%|████▋ | 174899/371472 [3:00:24<17:27:18, 3.13it/s] 47%|████▋ | 174900/371472 [3:00:24<17:13:26, 3.17it/s] {'loss': 2.8435, 'learning_rate': 5.765099441918593e-07, 'epoch': 7.53} + 47%|████▋ | 174900/371472 [3:00:24<17:13:26, 3.17it/s] 47%|████▋ | 174901/371472 [3:00:25<16:58:39, 3.22it/s] 47%|████▋ | 174902/371472 [3:00:25<16:43:37, 3.26it/s] 47%|████▋ | 174903/371472 [3:00:25<17:37:12, 3.10it/s] 47%|████▋ | 174904/371472 [3:00:26<16:43:34, 3.26it/s] 47%|████▋ | 174905/371472 [3:00:26<16:26:21, 3.32it/s] 47%|████▋ | 174906/371472 [3:00:26<16:09:26, 3.38it/s] 47%|████▋ | 174907/371472 [3:00:26<16:33:16, 3.30it/s] 47%|████▋ | 174908/371472 [3:00:27<15:54:07, 3.43it/s] 47%|████▋ | 174909/371472 [3:00:27<15:48:14, 3.45it/s] 47%|████▋ | 174910/371472 [3:00:27<17:00:07, 3.21it/s] 47%|████▋ | 174911/371472 [3:00:28<16:51:11, 3.24it/s] 47%|████▋ | 174912/371472 [3:00:28<16:20:05, 3.34it/s] 47%|████▋ | 174913/371472 [3:00:28<16:32:45, 3.30it/s] 47%|████▋ | 174914/371472 [3:00:29<16:46:01, 3.26it/s] 47%|████▋ | 174915/371472 [3:00:29<16:34:29, 3.29it/s] 47%|████▋ | 174916/371472 [3:00:29<16:28:09, 3.32it/s] 47%|████▋ | 174917/371472 [3:00:29<16:18:57, 3.35it/s] 47%|████▋ | 174918/371472 [3:00:30<16:04:50, 3.40it/s] 47%|████▋ | 174919/371472 [3:00:30<15:40:51, 3.48it/s] 47%|████▋ | 174920/371472 [3:00:30<16:32:47, 3.30it/s] {'loss': 2.9389, 'learning_rate': 5.764614622163804e-07, 'epoch': 7.53} + 47%|████▋ | 174920/371472 [3:00:30<16:32:47, 3.30it/s] 47%|████▋ | 174921/371472 [3:00:31<16:40:55, 3.27it/s] 47%|████▋ | 174922/371472 [3:00:31<16:18:34, 3.35it/s] 47%|████▋ | 174923/371472 [3:00:31<16:13:33, 3.36it/s] 47%|████▋ | 174924/371472 [3:00:32<16:36:41, 3.29it/s] 47%|████▋ | 174925/371472 [3:00:32<16:05:17, 3.39it/s] 47%|████▋ | 174926/371472 [3:00:32<15:29:40, 3.52it/s] 47%|████▋ | 174927/371472 [3:00:32<15:40:25, 3.48it/s] 47%|████▋ | 174928/371472 [3:00:33<16:12:36, 3.37it/s] 47%|████▋ | 174929/371472 [3:00:33<16:22:30, 3.33it/s] 47%|████▋ | 174930/371472 [3:00:33<16:05:38, 3.39it/s] 47%|████▋ | 174931/371472 [3:00:34<16:00:47, 3.41it/s] 47%|████▋ | 174932/371472 [3:00:34<15:43:43, 3.47it/s] 47%|████▋ | 174933/371472 [3:00:34<16:07:48, 3.38it/s] 47%|████▋ | 174934/371472 [3:00:34<15:51:26, 3.44it/s] 47%|████▋ | 174935/371472 [3:00:35<16:13:00, 3.37it/s] 47%|████▋ | 174936/371472 [3:00:35<15:54:54, 3.43it/s] 47%|████▋ | 174937/371472 [3:00:35<15:54:09, 3.43it/s] 47%|████▋ | 174938/371472 [3:00:36<16:00:13, 3.41it/s] 47%|████▋ | 174939/371472 [3:00:36<16:10:28, 3.38it/s] 47%|████▋ | 174940/371472 [3:00:36<17:32:06, 3.11it/s] {'loss': 2.7082, 'learning_rate': 5.764129802409016e-07, 'epoch': 7.53} + 47%|████▋ | 174940/371472 [3:00:36<17:32:06, 3.11it/s] 47%|████▋ | 174941/371472 [3:00:37<17:23:21, 3.14it/s] 47%|████▋ | 174942/371472 [3:00:37<16:48:52, 3.25it/s] 47%|████▋ | 174943/371472 [3:00:37<16:49:26, 3.24it/s] 47%|████▋ | 174944/371472 [3:00:38<17:15:50, 3.16it/s] 47%|████▋ | 174945/371472 [3:00:38<18:06:03, 3.02it/s] 47%|████▋ | 174946/371472 [3:00:38<18:16:48, 2.99it/s] 47%|████▋ | 174947/371472 [3:00:39<17:06:48, 3.19it/s] 47%|████▋ | 174948/371472 [3:00:39<16:44:14, 3.26it/s] 47%|████▋ | 174949/371472 [3:00:39<16:42:39, 3.27it/s] 47%|████▋ | 174950/371472 [3:00:39<16:05:05, 3.39it/s] 47%|████▋ | 174951/371472 [3:00:40<16:14:09, 3.36it/s] 47%|████▋ | 174952/371472 [3:00:40<16:11:37, 3.37it/s] 47%|████▋ | 174953/371472 [3:00:40<15:46:34, 3.46it/s] 47%|████▋ | 174954/371472 [3:00:41<15:20:18, 3.56it/s] 47%|████▋ | 174955/371472 [3:00:41<15:39:57, 3.48it/s] 47%|████▋ | 174956/371472 [3:00:41<15:19:29, 3.56it/s] 47%|████▋ | 174957/371472 [3:00:41<15:14:18, 3.58it/s] 47%|████▋ | 174958/371472 [3:00:42<15:22:51, 3.55it/s] 47%|████▋ | 174959/371472 [3:00:42<16:00:44, 3.41it/s] 47%|████▋ | 174960/371472 [3:00:42<16:57:14, 3.22it/s] {'loss': 2.9937, 'learning_rate': 5.763644982654226e-07, 'epoch': 7.54} + 47%|████▋ | 174960/371472 [3:00:42<16:57:14, 3.22it/s] 47%|████▋ | 174961/371472 [3:00:43<16:46:42, 3.25it/s] 47%|████▋ | 174962/371472 [3:00:43<16:46:40, 3.25it/s] 47%|████▋ | 174963/371472 [3:00:43<16:43:53, 3.26it/s] 47%|████▋ | 174964/371472 [3:00:44<17:06:16, 3.19it/s] 47%|████▋ | 174965/371472 [3:00:44<16:31:38, 3.30it/s] 47%|████▋ | 174966/371472 [3:00:44<16:42:55, 3.27it/s] 47%|████▋ | 174967/371472 [3:00:45<17:45:44, 3.07it/s] 47%|████▋ | 174968/371472 [3:00:45<17:41:11, 3.09it/s] 47%|████▋ | 174969/371472 [3:00:45<17:07:57, 3.19it/s] 47%|████▋ | 174970/371472 [3:00:45<16:37:41, 3.28it/s] 47%|████▋ | 174971/371472 [3:00:46<16:33:05, 3.30it/s] 47%|████▋ | 174972/371472 [3:00:46<16:37:50, 3.28it/s] 47%|████▋ | 174973/371472 [3:00:46<16:12:06, 3.37it/s] 47%|████▋ | 174974/371472 [3:00:47<15:51:39, 3.44it/s] 47%|████▋ | 174975/371472 [3:00:47<15:43:13, 3.47it/s] 47%|████▋ | 174976/371472 [3:00:47<15:25:47, 3.54it/s] 47%|████▋ | 174977/371472 [3:00:48<16:16:34, 3.35it/s] 47%|████▋ | 174978/371472 [3:00:48<16:10:13, 3.38it/s] 47%|████▋ | 174979/371472 [3:00:48<15:59:09, 3.41it/s] 47%|████▋ | 174980/371472 [3:00:48<15:54:49, 3.43it/s] {'loss': 3.1888, 'learning_rate': 5.763160162899437e-07, 'epoch': 7.54} + 47%|████▋ | 174980/371472 [3:00:48<15:54:49, 3.43it/s] 47%|████▋ | 174981/371472 [3:00:49<16:42:17, 3.27it/s] 47%|████▋ | 174982/371472 [3:00:49<16:06:46, 3.39it/s] 47%|████▋ | 174983/371472 [3:00:49<15:54:48, 3.43it/s] 47%|████▋ | 174984/371472 [3:00:50<16:00:55, 3.41it/s] 47%|████▋ | 174985/371472 [3:00:50<16:48:16, 3.25it/s] 47%|████▋ | 174986/371472 [3:00:50<17:22:14, 3.14it/s] 47%|████▋ | 174987/371472 [3:00:51<17:21:50, 3.14it/s] 47%|████▋ | 174988/371472 [3:00:51<17:25:54, 3.13it/s] 47%|████▋ | 174989/371472 [3:00:51<17:21:21, 3.14it/s] 47%|████▋ | 174990/371472 [3:00:52<17:17:37, 3.16it/s] 47%|████▋ | 174991/371472 [3:00:52<17:25:29, 3.13it/s] 47%|████▋ | 174992/371472 [3:00:52<17:48:14, 3.07it/s] 47%|████▋ | 174993/371472 [3:00:52<17:26:29, 3.13it/s] 47%|████▋ | 174994/371472 [3:00:53<17:20:07, 3.15it/s] 47%|████▋ | 174995/371472 [3:00:53<17:40:39, 3.09it/s] 47%|████▋ | 174996/371472 [3:00:53<17:07:49, 3.19it/s] 47%|████▋ | 174997/371472 [3:00:54<17:06:53, 3.19it/s] 47%|████▋ | 174998/371472 [3:00:54<17:22:23, 3.14it/s] 47%|████▋ | 174999/371472 [3:00:54<17:44:07, 3.08it/s] 47%|████▋ | 175000/371472 [3:00:55<17:23:41, 3.14it/s] {'loss': 2.7724, 'learning_rate': 5.762675343144649e-07, 'epoch': 7.54} + 47%|████▋ | 175000/371472 [3:00:55<17:23:41, 3.14it/s] 47%|████▋ | 175001/371472 [3:00:55<17:40:01, 3.09it/s] 47%|████▋ | 175002/371472 [3:00:55<17:50:52, 3.06it/s] 47%|████▋ | 175003/371472 [3:00:56<17:25:11, 3.13it/s] 47%|████▋ | 175004/371472 [3:00:56<17:41:37, 3.08it/s] 47%|████▋ | 175005/371472 [3:00:56<18:17:28, 2.98it/s] 47%|████▋ | 175006/371472 [3:00:57<17:52:47, 3.05it/s] 47%|████▋ | 175007/371472 [3:00:57<17:12:39, 3.17it/s] 47%|████▋ | 175008/371472 [3:00:57<16:49:31, 3.24it/s] 47%|████▋ | 175009/371472 [3:00:58<16:34:58, 3.29it/s] 47%|████▋ | 175010/371472 [3:00:58<16:06:26, 3.39it/s] 47%|████▋ | 175011/371472 [3:00:58<16:05:39, 3.39it/s] 47%|████▋ | 175012/371472 [3:00:58<16:30:29, 3.31it/s] 47%|████▋ | 175013/371472 [3:00:59<16:25:12, 3.32it/s] 47%|████▋ | 175014/371472 [3:00:59<15:59:22, 3.41it/s] 47%|████▋ | 175015/371472 [3:00:59<18:08:49, 3.01it/s] 47%|████▋ | 175016/371472 [3:01:00<17:51:37, 3.06it/s] 47%|████▋ | 175017/371472 [3:01:00<17:08:40, 3.18it/s] 47%|████▋ | 175018/371472 [3:01:00<16:35:17, 3.29it/s] 47%|████▋ | 175019/371472 [3:01:01<16:24:39, 3.33it/s] 47%|████▋ | 175020/371472 [3:01:01<16:24:18, 3.33it/s] {'loss': 3.0143, 'learning_rate': 5.762190523389859e-07, 'epoch': 7.54} + 47%|████▋ | 175020/371472 [3:01:01<16:24:18, 3.33it/s] 47%|████▋ | 175021/371472 [3:01:01<16:39:32, 3.28it/s] 47%|████▋ | 175022/371472 [3:01:02<16:28:19, 3.31it/s] 47%|████▋ | 175023/371472 [3:01:02<16:28:10, 3.31it/s] 47%|████▋ | 175024/371472 [3:01:02<17:17:57, 3.15it/s] 47%|████▋ | 175025/371472 [3:01:02<16:38:14, 3.28it/s] 47%|████▋ | 175026/371472 [3:01:03<16:27:15, 3.32it/s] 47%|████▋ | 175027/371472 [3:01:03<16:28:17, 3.31it/s] 47%|████▋ | 175028/371472 [3:01:03<16:05:09, 3.39it/s] 47%|████▋ | 175029/371472 [3:01:04<15:53:55, 3.43it/s] 47%|████▋ | 175030/371472 [3:01:04<15:54:28, 3.43it/s] 47%|████▋ | 175031/371472 [3:01:04<16:11:11, 3.37it/s] 47%|████▋ | 175032/371472 [3:01:05<15:57:51, 3.42it/s] 47%|████▋ | 175033/371472 [3:01:05<15:52:34, 3.44it/s] 47%|████▋ | 175034/371472 [3:01:05<15:46:50, 3.46it/s] 47%|████▋ | 175035/371472 [3:01:05<16:13:12, 3.36it/s] 47%|████▋ | 175036/371472 [3:01:06<16:06:38, 3.39it/s] 47%|████▋ | 175037/371472 [3:01:06<16:05:17, 3.39it/s] 47%|████▋ | 175038/371472 [3:01:06<15:40:39, 3.48it/s] 47%|████▋ | 175039/371472 [3:01:07<15:37:31, 3.49it/s] 47%|████▋ | 175040/371472 [3:01:07<15:42:25, 3.47it/s] {'loss': 2.9051, 'learning_rate': 5.76170570363507e-07, 'epoch': 7.54} + 47%|████▋ | 175040/371472 [3:01:07<15:42:25, 3.47it/s] 47%|████▋ | 175041/371472 [3:01:07<15:27:45, 3.53it/s] 47%|████▋ | 175042/371472 [3:01:07<17:11:08, 3.17it/s] 47%|████▋ | 175043/371472 [3:01:08<16:52:38, 3.23it/s] 47%|████▋ | 175044/371472 [3:01:08<16:30:45, 3.30it/s] 47%|████▋ | 175045/371472 [3:01:08<16:16:52, 3.35it/s] 47%|████▋ | 175046/371472 [3:01:09<18:07:46, 3.01it/s] 47%|████▋ | 175047/371472 [3:01:09<17:38:51, 3.09it/s] 47%|████▋ | 175048/371472 [3:01:09<18:09:41, 3.00it/s] 47%|████▋ | 175049/371472 [3:01:10<17:29:22, 3.12it/s] 47%|████▋ | 175050/371472 [3:01:10<17:06:49, 3.19it/s] 47%|████▋ | 175051/371472 [3:01:10<18:53:35, 2.89it/s] 47%|████▋ | 175052/371472 [3:01:11<18:57:25, 2.88it/s] 47%|████▋ | 175053/371472 [3:01:11<17:40:56, 3.09it/s] 47%|████▋ | 175054/371472 [3:01:11<17:10:18, 3.18it/s] 47%|████▋ | 175055/371472 [3:01:12<16:43:58, 3.26it/s] 47%|████▋ | 175056/371472 [3:01:12<16:48:15, 3.25it/s] 47%|████▋ | 175057/371472 [3:01:12<16:08:40, 3.38it/s] 47%|████▋ | 175058/371472 [3:01:13<15:57:01, 3.42it/s] 47%|████▋ | 175059/371472 [3:01:13<15:43:39, 3.47it/s] 47%|████▋ | 175060/371472 [3:01:13<15:38:20, 3.49it/s] {'loss': 2.929, 'learning_rate': 5.761220883880281e-07, 'epoch': 7.54} + 47%|████▋ | 175060/371472 [3:01:13<15:38:20, 3.49it/s] 47%|████▋ | 175061/371472 [3:01:13<15:50:35, 3.44it/s] 47%|████▋ | 175062/371472 [3:01:14<15:55:55, 3.42it/s] 47%|████▋ | 175063/371472 [3:01:14<16:04:33, 3.39it/s] 47%|████▋ | 175064/371472 [3:01:14<16:28:24, 3.31it/s] 47%|████▋ | 175065/371472 [3:01:15<16:10:59, 3.37it/s] 47%|████▋ | 175066/371472 [3:01:15<16:39:23, 3.28it/s] 47%|████▋ | 175067/371472 [3:01:15<16:37:09, 3.28it/s] 47%|████▋ | 175068/371472 [3:01:15<16:25:32, 3.32it/s] 47%|████▋ | 175069/371472 [3:01:16<16:51:20, 3.24it/s] 47%|████▋ | 175070/371472 [3:01:16<16:41:10, 3.27it/s] 47%|████▋ | 175071/371472 [3:01:16<15:58:44, 3.41it/s] 47%|████▋ | 175072/371472 [3:01:17<15:36:23, 3.50it/s] 47%|████▋ | 175073/371472 [3:01:17<15:39:40, 3.48it/s] 47%|████▋ | 175074/371472 [3:01:17<15:37:40, 3.49it/s] 47%|████▋ | 175075/371472 [3:01:18<16:26:28, 3.32it/s] 47%|████▋ | 175076/371472 [3:01:18<17:18:45, 3.15it/s] 47%|████▋ | 175077/371472 [3:01:18<17:44:54, 3.07it/s] 47%|████▋ | 175078/371472 [3:01:19<17:02:21, 3.20it/s] 47%|████▋ | 175079/371472 [3:01:19<16:40:31, 3.27it/s] 47%|████▋ | 175080/371472 [3:01:19<16:45:19, 3.26it/s] {'loss': 2.7748, 'learning_rate': 5.760736064125494e-07, 'epoch': 7.54} + 47%|████▋ | 175080/371472 [3:01:19<16:45:19, 3.26it/s] 47%|████▋ | 175081/371472 [3:01:19<16:22:30, 3.33it/s] 47%|████▋ | 175082/371472 [3:01:20<16:21:34, 3.33it/s] 47%|████▋ | 175083/371472 [3:01:20<16:12:34, 3.37it/s] 47%|████▋ | 175084/371472 [3:01:20<16:32:03, 3.30it/s] 47%|████▋ | 175085/371472 [3:01:21<16:12:30, 3.37it/s] 47%|████▋ | 175086/371472 [3:01:21<16:34:12, 3.29it/s] 47%|████▋ | 175087/371472 [3:01:21<15:51:08, 3.44it/s] 47%|████▋ | 175088/371472 [3:01:21<15:29:12, 3.52it/s] 47%|████▋ | 175089/371472 [3:01:22<15:36:19, 3.50it/s] 47%|████▋ | 175090/371472 [3:01:22<15:40:22, 3.48it/s] 47%|████▋ | 175091/371472 [3:01:22<15:26:00, 3.53it/s] 47%|████▋ | 175092/371472 [3:01:23<15:59:32, 3.41it/s] 47%|████▋ | 175093/371472 [3:01:23<17:00:53, 3.21it/s] 47%|████▋ | 175094/371472 [3:01:23<16:51:33, 3.24it/s] 47%|████▋ | 175095/371472 [3:01:24<16:28:29, 3.31it/s] 47%|████▋ | 175096/371472 [3:01:24<16:38:33, 3.28it/s] 47%|████▋ | 175097/371472 [3:01:24<16:08:26, 3.38it/s] 47%|████▋ | 175098/371472 [3:01:24<16:19:26, 3.34it/s] 47%|████▋ | 175099/371472 [3:01:25<16:23:44, 3.33it/s] 47%|████▋ | 175100/371472 [3:01:25<16:10:20, 3.37it/s] {'loss': 2.927, 'learning_rate': 5.760251244370704e-07, 'epoch': 7.54} + 47%|████▋ | 175100/371472 [3:01:25<16:10:20, 3.37it/s] 47%|████▋ | 175101/371472 [3:01:25<16:57:35, 3.22it/s] 47%|████▋ | 175102/371472 [3:01:26<17:15:14, 3.16it/s] 47%|████▋ | 175103/371472 [3:01:26<16:56:53, 3.22it/s] 47%|████▋ | 175104/371472 [3:01:26<16:28:57, 3.31it/s] 47%|████▋ | 175105/371472 [3:01:27<17:07:50, 3.18it/s] 47%|████▋ | 175106/371472 [3:01:27<17:14:17, 3.16it/s] 47%|████▋ | 175107/371472 [3:01:27<17:10:51, 3.17it/s] 47%|████▋ | 175108/371472 [3:01:28<17:34:22, 3.10it/s] 47%|████▋ | 175109/371472 [3:01:28<17:05:40, 3.19it/s] 47%|████▋ | 175110/371472 [3:01:28<17:54:18, 3.05it/s] 47%|████▋ | 175111/371472 [3:01:29<17:34:42, 3.10it/s] 47%|████▋ | 175112/371472 [3:01:29<17:21:43, 3.14it/s] 47%|████▋ | 175113/371472 [3:01:29<17:15:00, 3.16it/s] 47%|████▋ | 175114/371472 [3:01:30<16:48:38, 3.24it/s] 47%|████▋ | 175115/371472 [3:01:30<16:38:28, 3.28it/s] 47%|████▋ | 175116/371472 [3:01:30<16:16:05, 3.35it/s] 47%|████▋ | 175117/371472 [3:01:30<15:41:46, 3.47it/s] 47%|████▋ | 175118/371472 [3:01:31<15:33:45, 3.50it/s] 47%|████▋ | 175119/371472 [3:01:31<15:42:30, 3.47it/s] 47%|████▋ | 175120/371472 [3:01:31<15:45:04, 3.46it/s] {'loss': 2.8946, 'learning_rate': 5.759766424615914e-07, 'epoch': 7.54} + 47%|████▋ | 175120/371472 [3:01:31<15:45:04, 3.46it/s] 47%|████▋ | 175121/371472 [3:01:32<16:12:16, 3.37it/s] 47%|████▋ | 175122/371472 [3:01:32<15:57:48, 3.42it/s] 47%|████▋ | 175123/371472 [3:01:32<15:49:21, 3.45it/s] 47%|████▋ | 175124/371472 [3:01:32<16:22:39, 3.33it/s] 47%|████▋ | 175125/371472 [3:01:33<16:02:31, 3.40it/s] 47%|████▋ | 175126/371472 [3:01:33<16:11:12, 3.37it/s] 47%|████▋ | 175127/371472 [3:01:33<16:24:39, 3.32it/s] 47%|████▋ | 175128/371472 [3:01:34<17:45:18, 3.07it/s] 47%|████▋ | 175129/371472 [3:01:34<17:09:09, 3.18it/s] 47%|████▋ | 175130/371472 [3:01:34<16:30:19, 3.30it/s] 47%|████▋ | 175131/371472 [3:01:35<16:33:17, 3.29it/s] 47%|████▋ | 175132/371472 [3:01:35<16:16:53, 3.35it/s] 47%|████▋ | 175133/371472 [3:01:35<16:22:50, 3.33it/s] 47%|████▋ | 175134/371472 [3:01:35<16:46:48, 3.25it/s] 47%|████▋ | 175135/371472 [3:01:36<16:24:34, 3.32it/s] 47%|████▋ | 175136/371472 [3:01:36<16:07:26, 3.38it/s] 47%|████▋ | 175137/371472 [3:01:36<16:32:05, 3.30it/s] 47%|████▋ | 175138/371472 [3:01:37<16:26:38, 3.32it/s] 47%|████▋ | 175139/371472 [3:01:37<16:23:58, 3.33it/s] 47%|████▋ | 175140/371472 [3:01:37<16:28:23, 3.31it/s] {'loss': 2.9457, 'learning_rate': 5.759281604861126e-07, 'epoch': 7.54} + 47%|████▋ | 175140/371472 [3:01:37<16:28:23, 3.31it/s] 47%|████▋ | 175141/371472 [3:01:38<16:27:25, 3.31it/s] 47%|████▋ | 175142/371472 [3:01:38<16:33:10, 3.29it/s] 47%|████▋ | 175143/371472 [3:01:38<16:49:26, 3.24it/s] 47%|████▋ | 175144/371472 [3:01:39<17:46:36, 3.07it/s] 47%|████▋ | 175145/371472 [3:01:39<17:35:42, 3.10it/s] 47%|████▋ | 175146/371472 [3:01:39<17:24:16, 3.13it/s] 47%|████▋ | 175147/371472 [3:01:39<16:55:05, 3.22it/s] 47%|████▋ | 175148/371472 [3:01:40<16:49:57, 3.24it/s] 47%|████▋ | 175149/371472 [3:01:40<16:33:58, 3.29it/s] 47%|████▋ | 175150/371472 [3:01:40<17:30:43, 3.11it/s] 47%|████▋ | 175151/371472 [3:01:41<16:49:27, 3.24it/s] 47%|████▋ | 175152/371472 [3:01:41<16:37:58, 3.28it/s] 47%|████▋ | 175153/371472 [3:01:41<16:26:57, 3.32it/s] 47%|████▋ | 175154/371472 [3:01:42<16:32:31, 3.30it/s] 47%|████▋ | 175155/371472 [3:01:42<17:13:09, 3.17it/s] 47%|████▋ | 175156/371472 [3:01:42<17:28:13, 3.12it/s] 47%|████▋ | 175157/371472 [3:01:43<19:29:37, 2.80it/s] 47%|████▋ | 175158/371472 [3:01:43<18:30:22, 2.95it/s] 47%|████▋ | 175159/371472 [3:01:43<18:03:09, 3.02it/s] 47%|████▋ | 175160/371472 [3:01:44<17:27:02, 3.12it/s] {'loss': 3.0025, 'learning_rate': 5.758796785106337e-07, 'epoch': 7.54} + 47%|████▋ | 175160/371472 [3:01:44<17:27:02, 3.12it/s] 47%|████▋ | 175161/371472 [3:01:44<16:58:39, 3.21it/s] 47%|████▋ | 175162/371472 [3:01:44<16:28:23, 3.31it/s] 47%|████▋ | 175163/371472 [3:01:45<16:42:01, 3.27it/s] 47%|████▋ | 175164/371472 [3:01:45<17:54:11, 3.05it/s] 47%|████▋ | 175165/371472 [3:01:45<17:15:26, 3.16it/s] 47%|████▋ | 175166/371472 [3:01:46<17:14:18, 3.16it/s] 47%|████▋ | 175167/371472 [3:01:46<18:30:52, 2.95it/s] 47%|████▋ | 175168/371472 [3:01:46<17:15:48, 3.16it/s] 47%|████▋ | 175169/371472 [3:01:46<17:26:16, 3.13it/s] 47%|████▋ | 175170/371472 [3:01:47<16:59:31, 3.21it/s] 47%|████▋ | 175171/371472 [3:01:47<16:35:46, 3.29it/s] 47%|████▋ | 175172/371472 [3:01:47<17:11:19, 3.17it/s] 47%|████▋ | 175173/371472 [3:01:48<17:34:16, 3.10it/s] 47%|████▋ | 175174/371472 [3:01:48<17:55:59, 3.04it/s] 47%|████▋ | 175175/371472 [3:01:48<17:27:02, 3.12it/s] 47%|████▋ | 175176/371472 [3:01:49<17:01:45, 3.20it/s] 47%|████▋ | 175177/371472 [3:01:49<17:27:18, 3.12it/s] 47%|████▋ | 175178/371472 [3:01:49<16:49:01, 3.24it/s] 47%|████▋ | 175179/371472 [3:01:50<17:37:32, 3.09it/s] 47%|████▋ | 175180/371472 [3:01:50<17:15:49, 3.16it/s] {'loss': 2.9123, 'learning_rate': 5.758311965351547e-07, 'epoch': 7.55} + 47%|████▋ | 175180/371472 [3:01:50<17:15:49, 3.16it/s] 47%|████▋ | 175181/371472 [3:01:50<17:16:57, 3.15it/s] 47%|████▋ | 175182/371472 [3:01:51<16:31:26, 3.30it/s] 47%|████▋ | 175183/371472 [3:01:51<16:02:53, 3.40it/s] 47%|████▋ | 175184/371472 [3:01:51<16:07:30, 3.38it/s] 47%|████▋ | 175185/371472 [3:01:51<17:06:37, 3.19it/s] 47%|████▋ | 175186/371472 [3:01:52<16:33:56, 3.29it/s] 47%|████▋ | 175187/371472 [3:01:52<16:44:07, 3.26it/s] 47%|████▋ | 175188/371472 [3:01:52<17:31:55, 3.11it/s] 47%|████▋ | 175189/371472 [3:01:53<17:29:49, 3.12it/s] 47%|████▋ | 175190/371472 [3:01:53<18:21:40, 2.97it/s] 47%|████▋ | 175191/371472 [3:01:53<17:56:35, 3.04it/s] 47%|████▋ | 175192/371472 [3:01:54<17:05:22, 3.19it/s] 47%|████▋ | 175193/371472 [3:01:54<16:45:44, 3.25it/s] 47%|████▋ | 175194/371472 [3:01:54<16:55:12, 3.22it/s] 47%|████▋ | 175195/371472 [3:01:55<17:17:28, 3.15it/s] 47%|████▋ | 175196/371472 [3:01:55<16:47:54, 3.25it/s] 47%|████▋ | 175197/371472 [3:01:55<16:26:57, 3.31it/s] 47%|████▋ | 175198/371472 [3:01:56<16:21:57, 3.33it/s] 47%|████▋ | 175199/371472 [3:01:56<16:26:07, 3.32it/s] 47%|████▋ | 175200/371472 [3:01:56<16:13:09, 3.36it/s] {'loss': 2.8583, 'learning_rate': 5.757827145596758e-07, 'epoch': 7.55} + 47%|████▋ | 175200/371472 [3:01:56<16:13:09, 3.36it/s] 47%|████▋ | 175201/371472 [3:01:56<16:40:13, 3.27it/s] 47%|████▋ | 175202/371472 [3:01:57<16:30:46, 3.30it/s] 47%|████▋ | 175203/371472 [3:01:57<16:37:27, 3.28it/s] 47%|████▋ | 175204/371472 [3:01:57<17:10:40, 3.17it/s] 47%|████▋ | 175205/371472 [3:01:58<17:13:26, 3.17it/s] 47%|████▋ | 175206/371472 [3:01:58<17:02:49, 3.20it/s] 47%|████▋ | 175207/371472 [3:01:58<17:06:08, 3.19it/s] 47%|████▋ | 175208/371472 [3:01:59<17:36:48, 3.10it/s] 47%|████▋ | 175209/371472 [3:01:59<17:38:14, 3.09it/s] 47%|████▋ | 175210/371472 [3:01:59<17:29:26, 3.12it/s] 47%|████▋ | 175211/371472 [3:02:00<16:41:03, 3.27it/s] 47%|████▋ | 175212/371472 [3:02:00<16:37:03, 3.28it/s] 47%|████▋ | 175213/371472 [3:02:00<16:14:46, 3.36it/s] 47%|████▋ | 175214/371472 [3:02:00<16:26:15, 3.32it/s] 47%|████▋ | 175215/371472 [3:02:01<16:36:40, 3.28it/s] 47%|████▋ | 175216/371472 [3:02:01<16:26:32, 3.32it/s] 47%|████▋ | 175217/371472 [3:02:01<16:09:16, 3.37it/s] 47%|████▋ | 175218/371472 [3:02:02<16:04:31, 3.39it/s] 47%|████▋ | 175219/371472 [3:02:02<16:05:57, 3.39it/s] 47%|████▋ | 175220/371472 [3:02:02<16:50:03, 3.24it/s] {'loss': 2.9453, 'learning_rate': 5.757342325841971e-07, 'epoch': 7.55} + 47%|████▋ | 175220/371472 [3:02:02<16:50:03, 3.24it/s] 47%|████▋ | 175221/371472 [3:02:03<16:25:14, 3.32it/s] 47%|████▋ | 175222/371472 [3:02:03<16:25:10, 3.32it/s] 47%|████▋ | 175223/371472 [3:02:03<16:44:12, 3.26it/s] 47%|████▋ | 175224/371472 [3:02:03<16:19:49, 3.34it/s] 47%|████▋ | 175225/371472 [3:02:04<16:27:43, 3.31it/s] 47%|████▋ | 175226/371472 [3:02:04<16:02:14, 3.40it/s] 47%|████▋ | 175227/371472 [3:02:04<16:04:33, 3.39it/s] 47%|████▋ | 175228/371472 [3:02:05<16:51:56, 3.23it/s] 47%|████▋ | 175229/371472 [3:02:05<16:38:06, 3.28it/s] 47%|████▋ | 175230/371472 [3:02:05<16:29:19, 3.31it/s] 47%|████▋ | 175231/371472 [3:02:06<17:11:15, 3.17it/s] 47%|████▋ | 175232/371472 [3:02:06<17:18:11, 3.15it/s] 47%|████▋ | 175233/371472 [3:02:06<16:56:31, 3.22it/s] 47%|████▋ | 175234/371472 [3:02:07<16:41:52, 3.26it/s] 47%|████▋ | 175235/371472 [3:02:07<16:30:15, 3.30it/s] 47%|████▋ | 175236/371472 [3:02:07<16:22:34, 3.33it/s] 47%|████▋ | 175237/371472 [3:02:07<16:30:40, 3.30it/s] 47%|████▋ | 175238/371472 [3:02:08<16:47:03, 3.25it/s] 47%|████▋ | 175239/371472 [3:02:08<16:25:55, 3.32it/s] 47%|████▋ | 175240/371472 [3:02:08<16:25:43, 3.32it/s] {'loss': 3.0417, 'learning_rate': 5.756857506087181e-07, 'epoch': 7.55} + 47%|████▋ | 175240/371472 [3:02:08<16:25:43, 3.32it/s] 47%|████▋ | 175241/371472 [3:02:09<16:41:15, 3.27it/s] 47%|████▋ | 175242/371472 [3:02:09<16:29:28, 3.31it/s] 47%|████▋ | 175243/371472 [3:02:09<16:13:05, 3.36it/s] 47%|████▋ | 175244/371472 [3:02:10<18:39:52, 2.92it/s] 47%|████▋ | 175245/371472 [3:02:10<17:46:11, 3.07it/s] 47%|████▋ | 175246/371472 [3:02:10<17:15:08, 3.16it/s] 47%|████▋ | 175247/371472 [3:02:11<16:56:24, 3.22it/s] 47%|████▋ | 175248/371472 [3:02:11<16:37:44, 3.28it/s] 47%|████▋ | 175249/371472 [3:02:11<16:35:53, 3.28it/s] 47%|████▋ | 175250/371472 [3:02:11<16:34:50, 3.29it/s] 47%|████▋ | 175251/371472 [3:02:12<16:33:02, 3.29it/s] 47%|████▋ | 175252/371472 [3:02:12<16:02:51, 3.40it/s] 47%|████▋ | 175253/371472 [3:02:12<17:31:38, 3.11it/s] 47%|████▋ | 175254/371472 [3:02:13<16:48:25, 3.24it/s] 47%|████▋ | 175255/371472 [3:02:13<17:01:59, 3.20it/s] 47%|████▋ | 175256/371472 [3:02:13<16:25:35, 3.32it/s] 47%|████▋ | 175257/371472 [3:02:14<16:36:20, 3.28it/s] 47%|████▋ | 175258/371472 [3:02:14<17:09:13, 3.18it/s] 47%|████▋ | 175259/371472 [3:02:14<16:24:07, 3.32it/s] 47%|████▋ | 175260/371472 [3:02:15<16:37:58, 3.28it/s] {'loss': 2.7906, 'learning_rate': 5.756372686332392e-07, 'epoch': 7.55} + 47%|████▋ | 175260/371472 [3:02:15<16:37:58, 3.28it/s] 47%|████▋ | 175261/371472 [3:02:15<16:37:39, 3.28it/s] 47%|████▋ | 175262/371472 [3:02:15<16:34:28, 3.29it/s] 47%|████▋ | 175263/371472 [3:02:15<16:13:55, 3.36it/s] 47%|████▋ | 175264/371472 [3:02:16<17:06:49, 3.18it/s] 47%|████▋ | 175265/371472 [3:02:16<16:40:15, 3.27it/s] 47%|████▋ | 175266/371472 [3:02:16<16:12:42, 3.36it/s] 47%|████▋ | 175267/371472 [3:02:17<16:05:09, 3.39it/s] 47%|████▋ | 175268/371472 [3:02:17<15:54:07, 3.43it/s] 47%|████▋ | 175269/371472 [3:02:17<15:55:18, 3.42it/s] 47%|████▋ | 175270/371472 [3:02:18<16:10:15, 3.37it/s] 47%|████▋ | 175271/371472 [3:02:18<16:37:59, 3.28it/s] 47%|████▋ | 175272/371472 [3:02:18<16:42:40, 3.26it/s] 47%|████▋ | 175273/371472 [3:02:19<17:15:55, 3.16it/s] 47%|████▋ | 175274/371472 [3:02:19<16:20:55, 3.33it/s] 47%|████▋ | 175275/371472 [3:02:19<15:48:28, 3.45it/s] 47%|████▋ | 175276/371472 [3:02:19<17:03:04, 3.20it/s] 47%|████▋ | 175277/371472 [3:02:20<17:59:17, 3.03it/s] 47%|████▋ | 175278/371472 [3:02:20<17:45:26, 3.07it/s] 47%|████▋ | 175279/371472 [3:02:20<17:58:14, 3.03it/s] 47%|████▋ | 175280/371472 [3:02:21<17:23:50, 3.13it/s] {'loss': 2.9301, 'learning_rate': 5.755887866577602e-07, 'epoch': 7.55} + 47%|████▋ | 175280/371472 [3:02:21<17:23:50, 3.13it/s] 47%|████▋ | 175281/371472 [3:02:21<17:10:39, 3.17it/s] 47%|████▋ | 175282/371472 [3:02:21<17:31:17, 3.11it/s] 47%|████▋ | 175283/371472 [3:02:22<17:04:40, 3.19it/s] 47%|████▋ | 175284/371472 [3:02:22<16:42:11, 3.26it/s] 47%|████▋ | 175285/371472 [3:02:22<16:17:36, 3.34it/s] 47%|████▋ | 175286/371472 [3:02:23<16:11:21, 3.37it/s] 47%|████▋ | 175287/371472 [3:02:23<15:46:56, 3.45it/s] 47%|████▋ | 175288/371472 [3:02:23<15:51:43, 3.44it/s] 47%|████▋ | 175289/371472 [3:02:23<15:44:24, 3.46it/s] 47%|████▋ | 175290/371472 [3:02:24<16:05:33, 3.39it/s] 47%|████▋ | 175291/371472 [3:02:24<17:25:50, 3.13it/s] 47%|████▋ | 175292/371472 [3:02:24<16:41:10, 3.27it/s] 47%|████▋ | 175293/371472 [3:02:25<16:40:31, 3.27it/s] 47%|████▋ | 175294/371472 [3:02:25<16:05:45, 3.39it/s] 47%|████▋ | 175295/371472 [3:02:25<15:51:32, 3.44it/s] 47%|████▋ | 175296/371472 [3:02:25<15:23:20, 3.54it/s] 47%|████▋ | 175297/371472 [3:02:26<15:28:14, 3.52it/s] 47%|████▋ | 175298/371472 [3:02:26<15:36:00, 3.49it/s] 47%|████▋ | 175299/371472 [3:02:26<15:31:46, 3.51it/s] 47%|████▋ | 175300/371472 [3:02:27<16:06:23, 3.38it/s] {'loss': 2.8961, 'learning_rate': 5.755403046822814e-07, 'epoch': 7.55} + 47%|████▋ | 175300/371472 [3:02:27<16:06:23, 3.38it/s] 47%|████▋ | 175301/371472 [3:02:27<15:59:12, 3.41it/s] 47%|████▋ | 175302/371472 [3:02:27<15:45:42, 3.46it/s] 47%|████▋ | 175303/371472 [3:02:28<15:57:33, 3.41it/s] 47%|████▋ | 175304/371472 [3:02:28<18:31:32, 2.94it/s] 47%|████▋ | 175305/371472 [3:02:28<17:24:31, 3.13it/s] 47%|████▋ | 175306/371472 [3:02:29<17:06:08, 3.19it/s] 47%|████▋ | 175307/371472 [3:02:29<16:54:09, 3.22it/s] 47%|████▋ | 175308/371472 [3:02:29<16:44:23, 3.26it/s] 47%|████▋ | 175309/371472 [3:02:29<17:17:48, 3.15it/s] 47%|████▋ | 175310/371472 [3:02:30<16:54:46, 3.22it/s] 47%|████▋ | 175311/371472 [3:02:30<16:54:32, 3.22it/s] 47%|████▋ | 175312/371472 [3:02:30<16:37:49, 3.28it/s] 47%|████▋ | 175313/371472 [3:02:31<16:35:27, 3.28it/s] 47%|████▋ | 175314/371472 [3:02:31<16:10:28, 3.37it/s] 47%|████▋ | 175315/371472 [3:02:31<16:36:45, 3.28it/s] 47%|████▋ | 175316/371472 [3:02:32<16:18:52, 3.34it/s] 47%|████▋ | 175317/371472 [3:02:32<17:13:22, 3.16it/s] 47%|████▋ | 175318/371472 [3:02:32<18:58:32, 2.87it/s] 47%|████▋ | 175319/371472 [3:02:33<17:42:04, 3.08it/s] 47%|████▋ | 175320/371472 [3:02:33<17:25:56, 3.13it/s] {'loss': 3.0848, 'learning_rate': 5.754918227068026e-07, 'epoch': 7.55} + 47%|████▋ | 175320/371472 [3:02:33<17:25:56, 3.13it/s] 47%|████▋ | 175321/371472 [3:02:33<17:19:59, 3.14it/s] 47%|████▋ | 175322/371472 [3:02:34<16:38:02, 3.28it/s] 47%|████▋ | 175323/371472 [3:02:34<16:08:06, 3.38it/s] 47%|████▋ | 175324/371472 [3:02:34<16:25:14, 3.32it/s] 47%|████▋ | 175325/371472 [3:02:34<16:18:55, 3.34it/s] 47%|████▋ | 175326/371472 [3:02:35<16:24:22, 3.32it/s] 47%|████▋ | 175327/371472 [3:02:35<16:27:22, 3.31it/s] 47%|████▋ | 175328/371472 [3:02:35<16:07:21, 3.38it/s] 47%|████▋ | 175329/371472 [3:02:36<15:49:28, 3.44it/s] 47%|████▋ | 175330/371472 [3:02:36<16:50:05, 3.24it/s] 47%|████▋ | 175331/371472 [3:02:36<17:00:19, 3.20it/s] 47%|████▋ | 175332/371472 [3:02:37<16:14:45, 3.35it/s] 47%|████▋ | 175333/371472 [3:02:37<18:15:20, 2.98it/s] 47%|████▋ | 175334/371472 [3:02:37<17:36:36, 3.09it/s] 47%|████▋ | 175335/371472 [3:02:38<17:43:48, 3.07it/s] 47%|████▋ | 175336/371472 [3:02:38<17:23:59, 3.13it/s] 47%|████▋ | 175337/371472 [3:02:38<17:09:25, 3.18it/s] 47%|████▋ | 175338/371472 [3:02:38<16:45:25, 3.25it/s] 47%|████▋ | 175339/371472 [3:02:39<16:50:28, 3.23it/s] 47%|████▋ | 175340/371472 [3:02:39<16:47:25, 3.24it/s] {'loss': 2.8408, 'learning_rate': 5.754433407313237e-07, 'epoch': 7.55} + 47%|████▋ | 175340/371472 [3:02:39<16:47:25, 3.24it/s] 47%|████▋ | 175341/371472 [3:02:39<16:51:09, 3.23it/s] 47%|████▋ | 175342/371472 [3:02:40<16:45:13, 3.25it/s] 47%|████▋ | 175343/371472 [3:02:40<17:34:48, 3.10it/s] 47%|████▋ | 175344/371472 [3:02:40<17:19:25, 3.14it/s] 47%|████▋ | 175345/371472 [3:02:41<17:14:21, 3.16it/s] 47%|████▋ | 175346/371472 [3:02:41<16:37:48, 3.28it/s] 47%|████▋ | 175347/371472 [3:02:41<16:22:14, 3.33it/s] 47%|████▋ | 175348/371472 [3:02:41<15:46:08, 3.45it/s] 47%|████▋ | 175349/371472 [3:02:42<15:35:43, 3.49it/s] 47%|████▋ | 175350/371472 [3:02:42<16:09:42, 3.37it/s] 47%|████▋ | 175351/371472 [3:02:42<16:13:58, 3.36it/s] 47%|████▋ | 175352/371472 [3:02:43<15:56:27, 3.42it/s] 47%|████▋ | 175353/371472 [3:02:43<16:05:42, 3.38it/s] 47%|████▋ | 175354/371472 [3:02:43<16:57:39, 3.21it/s] 47%|████▋ | 175355/371472 [3:02:44<16:54:49, 3.22it/s] 47%|████▋ | 175356/371472 [3:02:44<17:15:18, 3.16it/s] 47%|████▋ | 175357/371472 [3:02:44<16:40:04, 3.27it/s] 47%|████▋ | 175358/371472 [3:02:45<16:11:33, 3.36it/s] 47%|████▋ | 175359/371472 [3:02:45<16:58:07, 3.21it/s] 47%|████▋ | 175360/371472 [3:02:45<17:00:13, 3.20it/s] {'loss': 2.9714, 'learning_rate': 5.753948587558448e-07, 'epoch': 7.55} + 47%|████▋ | 175360/371472 [3:02:45<17:00:13, 3.20it/s] 47%|████▋ | 175361/371472 [3:02:45<16:25:41, 3.32it/s] 47%|████▋ | 175362/371472 [3:02:46<15:58:34, 3.41it/s] 47%|████▋ | 175363/371472 [3:02:46<16:03:38, 3.39it/s] 47%|████▋ | 175364/371472 [3:02:46<15:35:39, 3.49it/s] 47%|████▋ | 175365/371472 [3:02:47<15:40:04, 3.48it/s] 47%|████▋ | 175366/371472 [3:02:47<16:32:45, 3.29it/s] 47%|████▋ | 175367/371472 [3:02:47<16:21:13, 3.33it/s] 47%|████▋ | 175368/371472 [3:02:48<17:16:27, 3.15it/s] 47%|████▋ | 175369/371472 [3:02:48<16:39:14, 3.27it/s] 47%|████▋ | 175370/371472 [3:02:48<16:04:13, 3.39it/s] 47%|████▋ | 175371/371472 [3:02:48<15:49:29, 3.44it/s] 47%|████▋ | 175372/371472 [3:02:49<15:43:39, 3.46it/s] 47%|████▋ | 175373/371472 [3:02:49<15:29:52, 3.51it/s] 47%|████▋ | 175374/371472 [3:02:49<15:23:09, 3.54it/s] 47%|████▋ | 175375/371472 [3:02:50<16:11:04, 3.37it/s] 47%|████▋ | 175376/371472 [3:02:50<15:33:42, 3.50it/s] 47%|████▋ | 175377/371472 [3:02:50<15:46:34, 3.45it/s] 47%|████▋ | 175378/371472 [3:02:50<16:45:24, 3.25it/s] 47%|████▋ | 175379/371472 [3:02:51<16:56:46, 3.21it/s] 47%|████▋ | 175380/371472 [3:02:51<16:16:31, 3.35it/s] {'loss': 3.0606, 'learning_rate': 5.753463767803659e-07, 'epoch': 7.55} + 47%|████▋ | 175380/371472 [3:02:51<16:16:31, 3.35it/s] 47%|████▋ | 175381/371472 [3:02:51<16:17:23, 3.34it/s] 47%|████▋ | 175382/371472 [3:02:52<15:58:13, 3.41it/s] 47%|████▋ | 175383/371472 [3:02:52<15:57:48, 3.41it/s] 47%|████▋ | 175384/371472 [3:02:52<16:09:03, 3.37it/s] 47%|████▋ | 175385/371472 [3:02:53<16:02:18, 3.40it/s] 47%|████▋ | 175386/371472 [3:02:53<16:12:08, 3.36it/s] 47%|████▋ | 175387/371472 [3:02:53<16:29:21, 3.30it/s] 47%|████▋ | 175388/371472 [3:02:53<16:47:07, 3.24it/s] 47%|████▋ | 175389/371472 [3:02:54<16:08:29, 3.37it/s] 47%|████▋ | 175390/371472 [3:02:54<15:53:37, 3.43it/s] 47%|████▋ | 175391/371472 [3:02:54<16:04:27, 3.39it/s] 47%|████▋ | 175392/371472 [3:02:55<16:24:13, 3.32it/s] 47%|████▋ | 175393/371472 [3:02:55<16:17:57, 3.34it/s] 47%|████▋ | 175394/371472 [3:02:55<15:54:12, 3.42it/s] 47%|████▋ | 175395/371472 [3:02:56<15:51:34, 3.43it/s] 47%|████▋ | 175396/371472 [3:02:56<16:04:27, 3.39it/s] 47%|████▋ | 175397/371472 [3:02:56<16:50:50, 3.23it/s] 47%|████▋ | 175398/371472 [3:02:56<16:48:45, 3.24it/s] 47%|████▋ | 175399/371472 [3:02:57<17:39:53, 3.08it/s] 47%|████▋ | 175400/371472 [3:02:57<17:01:32, 3.20it/s] {'loss': 2.8411, 'learning_rate': 5.75297894804887e-07, 'epoch': 7.55} + 47%|████▋ | 175400/371472 [3:02:57<17:01:32, 3.20it/s] 47%|████▋ | 175401/371472 [3:02:57<16:40:37, 3.27it/s] 47%|████▋ | 175402/371472 [3:02:58<15:59:40, 3.41it/s] 47%|████▋ | 175403/371472 [3:02:58<15:52:48, 3.43it/s] 47%|████▋ | 175404/371472 [3:02:58<16:16:52, 3.35it/s] 47%|████▋ | 175405/371472 [3:02:59<15:55:15, 3.42it/s] 47%|████▋ | 175406/371472 [3:02:59<15:43:38, 3.46it/s] 47%|████▋ | 175407/371472 [3:02:59<15:33:48, 3.50it/s] 47%|████▋ | 175408/371472 [3:02:59<15:45:25, 3.46it/s] 47%|████▋ | 175409/371472 [3:03:00<15:37:23, 3.49it/s] 47%|████▋ | 175410/371472 [3:03:00<15:40:40, 3.47it/s] 47%|████▋ | 175411/371472 [3:03:00<16:04:07, 3.39it/s] 47%|████▋ | 175412/371472 [3:03:01<15:53:08, 3.43it/s] 47%|████▋ | 175413/371472 [3:03:01<16:14:23, 3.35it/s] 47%|████▋ | 175414/371472 [3:03:01<16:50:26, 3.23it/s] 47%|████▋ | 175415/371472 [3:03:02<17:47:44, 3.06it/s] 47%|████▋ | 175416/371472 [3:03:02<17:28:14, 3.12it/s] 47%|████▋ | 175417/371472 [3:03:02<16:42:56, 3.26it/s] 47%|████▋ | 175418/371472 [3:03:02<16:41:27, 3.26it/s] 47%|████▋ | 175419/371472 [3:03:03<16:28:22, 3.31it/s] 47%|████▋ | 175420/371472 [3:03:03<16:35:39, 3.28it/s] {'loss': 2.8904, 'learning_rate': 5.752494128294081e-07, 'epoch': 7.56} + 47%|████▋ | 175420/371472 [3:03:03<16:35:39, 3.28it/s] 47%|████▋ | 175421/371472 [3:03:03<16:22:14, 3.33it/s] 47%|████▋ | 175422/371472 [3:03:04<17:02:19, 3.20it/s] 47%|████▋ | 175423/371472 [3:03:04<16:51:41, 3.23it/s] 47%|████▋ | 175424/371472 [3:03:04<16:18:47, 3.34it/s] 47%|████▋ | 175425/371472 [3:03:05<16:01:23, 3.40it/s] 47%|████▋ | 175426/371472 [3:03:05<15:47:07, 3.45it/s] 47%|████▋ | 175427/371472 [3:03:05<16:06:55, 3.38it/s] 47%|████▋ | 175428/371472 [3:03:05<15:47:59, 3.45it/s] 47%|████▋ | 175429/371472 [3:03:06<16:16:14, 3.35it/s] 47%|████▋ | 175430/371472 [3:03:06<16:01:22, 3.40it/s] 47%|████▋ | 175431/371472 [3:03:06<16:16:02, 3.35it/s] 47%|████▋ | 175432/371472 [3:03:07<16:05:38, 3.38it/s] 47%|████▋ | 175433/371472 [3:03:07<16:48:55, 3.24it/s] 47%|████▋ | 175434/371472 [3:03:07<16:48:10, 3.24it/s] 47%|████▋ | 175435/371472 [3:03:08<17:41:49, 3.08it/s] 47%|████▋ | 175436/371472 [3:03:08<16:58:52, 3.21it/s] 47%|████▋ | 175437/371472 [3:03:08<16:33:03, 3.29it/s] 47%|████▋ | 175438/371472 [3:03:09<16:22:37, 3.33it/s] 47%|████▋ | 175439/371472 [3:03:09<16:41:28, 3.26it/s] 47%|████▋ | 175440/371472 [3:03:09<16:24:05, 3.32it/s] {'loss': 2.9668, 'learning_rate': 5.752009308539291e-07, 'epoch': 7.56} + 47%|████▋ | 175440/371472 [3:03:09<16:24:05, 3.32it/s] 47%|████▋ | 175441/371472 [3:03:09<16:35:53, 3.28it/s] 47%|████▋ | 175442/371472 [3:03:10<17:01:39, 3.20it/s] 47%|████▋ | 175443/371472 [3:03:10<20:31:31, 2.65it/s] 47%|████▋ | 175444/371472 [3:03:11<19:01:14, 2.86it/s] 47%|████▋ | 175445/371472 [3:03:11<17:55:07, 3.04it/s] 47%|████▋ | 175446/371472 [3:03:11<17:02:17, 3.20it/s] 47%|████▋ | 175447/371472 [3:03:11<16:16:48, 3.34it/s] 47%|████▋ | 175448/371472 [3:03:12<15:47:21, 3.45it/s] 47%|████▋ | 175449/371472 [3:03:12<15:43:37, 3.46it/s] 47%|████▋ | 175450/371472 [3:03:12<15:45:46, 3.45it/s] 47%|████▋ | 175451/371472 [3:03:13<15:48:15, 3.45it/s] 47%|████▋ | 175452/371472 [3:03:13<15:25:20, 3.53it/s] 47%|████▋ | 175453/371472 [3:03:13<15:52:34, 3.43it/s] 47%|████▋ | 175454/371472 [3:03:13<15:40:25, 3.47it/s] 47%|████▋ | 175455/371472 [3:03:14<15:48:22, 3.44it/s] 47%|████▋ | 175456/371472 [3:03:14<15:51:45, 3.43it/s] 47%|████▋ | 175457/371472 [3:03:14<15:41:02, 3.47it/s] 47%|████▋ | 175458/371472 [3:03:15<15:46:34, 3.45it/s] 47%|████▋ | 175459/371472 [3:03:15<15:35:48, 3.49it/s] 47%|████▋ | 175460/371472 [3:03:15<15:53:43, 3.43it/s] {'loss': 3.0131, 'learning_rate': 5.751524488784504e-07, 'epoch': 7.56} + 47%|████▋ | 175460/371472 [3:03:15<15:53:43, 3.43it/s] 47%|████▋ | 175461/371472 [3:03:15<16:07:58, 3.37it/s] 47%|████▋ | 175462/371472 [3:03:16<16:08:36, 3.37it/s] 47%|████▋ | 175463/371472 [3:03:16<17:39:16, 3.08it/s] 47%|████▋ | 175464/371472 [3:03:16<17:07:58, 3.18it/s] 47%|████▋ | 175465/371472 [3:03:17<16:48:42, 3.24it/s] 47%|████▋ | 175466/371472 [3:03:17<16:40:02, 3.27it/s] 47%|████▋ | 175467/371472 [3:03:17<16:21:22, 3.33it/s] 47%|████▋ | 175468/371472 [3:03:18<16:35:19, 3.28it/s] 47%|████▋ | 175469/371472 [3:03:18<16:50:12, 3.23it/s] 47%|████▋ | 175470/371472 [3:03:18<16:43:43, 3.25it/s] 47%|████▋ | 175471/371472 [3:03:19<16:17:44, 3.34it/s] 47%|████▋ | 175472/371472 [3:03:19<16:33:54, 3.29it/s] 47%|████▋ | 175473/371472 [3:03:19<17:02:49, 3.19it/s] 47%|████▋ | 175474/371472 [3:03:19<16:49:00, 3.24it/s] 47%|████▋ | 175475/371472 [3:03:20<17:01:49, 3.20it/s] 47%|████▋ | 175476/371472 [3:03:20<16:41:40, 3.26it/s] 47%|████▋ | 175477/371472 [3:03:20<16:51:38, 3.23it/s] 47%|████▋ | 175478/371472 [3:03:21<17:23:07, 3.13it/s] 47%|████▋ | 175479/371472 [3:03:21<16:45:00, 3.25it/s] 47%|████▋ | 175480/371472 [3:03:21<16:32:20, 3.29it/s] {'loss': 2.9878, 'learning_rate': 5.751039669029714e-07, 'epoch': 7.56} + 47%|████▋ | 175480/371472 [3:03:21<16:32:20, 3.29it/s] 47%|████▋ | 175481/371472 [3:03:22<15:58:03, 3.41it/s] 47%|████▋ | 175482/371472 [3:03:22<16:08:08, 3.37it/s] 47%|████▋ | 175483/371472 [3:03:22<15:58:53, 3.41it/s] 47%|████▋ | 175484/371472 [3:03:22<15:54:45, 3.42it/s] 47%|████▋ | 175485/371472 [3:03:23<15:31:36, 3.51it/s] 47%|████▋ | 175486/371472 [3:03:23<16:05:17, 3.38it/s] 47%|████▋ | 175487/371472 [3:03:23<15:52:19, 3.43it/s] 47%|████▋ | 175488/371472 [3:03:24<16:23:57, 3.32it/s] 47%|████▋ | 175489/371472 [3:03:24<15:55:19, 3.42it/s] 47%|████▋ | 175490/371472 [3:03:24<15:50:24, 3.44it/s] 47%|████▋ | 175491/371472 [3:03:25<15:50:47, 3.44it/s] 47%|████▋ | 175492/371472 [3:03:25<15:41:56, 3.47it/s] 47%|████▋ | 175493/371472 [3:03:25<15:52:53, 3.43it/s] 47%|████▋ | 175494/371472 [3:03:25<16:07:22, 3.38it/s] 47%|████▋ | 175495/371472 [3:03:26<16:23:34, 3.32it/s] 47%|████▋ | 175496/371472 [3:03:26<17:01:32, 3.20it/s] 47%|████▋ | 175497/371472 [3:03:26<16:37:36, 3.27it/s] 47%|████▋ | 175498/371472 [3:03:27<16:42:18, 3.26it/s] 47%|████▋ | 175499/371472 [3:03:27<16:39:44, 3.27it/s] 47%|████▋ | 175500/371472 [3:03:27<16:33:24, 3.29it/s] {'loss': 2.8644, 'learning_rate': 5.750554849274925e-07, 'epoch': 7.56} + 47%|████▋ | 175500/371472 [3:03:27<16:33:24, 3.29it/s] 47%|████▋ | 175501/371472 [3:03:28<16:42:39, 3.26it/s] 47%|████▋ | 175502/371472 [3:03:28<16:44:19, 3.25it/s] 47%|████▋ | 175503/371472 [3:03:28<16:22:13, 3.33it/s] 47%|████▋ | 175504/371472 [3:03:28<16:16:30, 3.34it/s] 47%|████▋ | 175505/371472 [3:03:29<16:01:09, 3.40it/s] 47%|████▋ | 175506/371472 [3:03:29<16:03:29, 3.39it/s] 47%|████▋ | 175507/371472 [3:03:29<16:16:41, 3.34it/s] 47%|████▋ | 175508/371472 [3:03:30<17:34:42, 3.10it/s] 47%|████▋ | 175509/371472 [3:03:30<17:11:54, 3.17it/s] 47%|████▋ | 175510/371472 [3:03:30<17:25:43, 3.12it/s] 47%|████▋ | 175511/371472 [3:03:31<17:26:16, 3.12it/s] 47%|████▋ | 175512/371472 [3:03:31<17:30:34, 3.11it/s] 47%|████▋ | 175513/371472 [3:03:31<18:11:07, 2.99it/s] 47%|████▋ | 175514/371472 [3:03:32<18:40:48, 2.91it/s] 47%|████▋ | 175515/371472 [3:03:32<19:36:16, 2.78it/s] 47%|████▋ | 175516/371472 [3:03:33<20:10:36, 2.70it/s] 47%|████▋ | 175517/371472 [3:03:33<20:05:22, 2.71it/s] 47%|████▋ | 175518/371472 [3:03:33<19:08:19, 2.84it/s] 47%|████▋ | 175519/371472 [3:03:33<18:12:15, 2.99it/s] 47%|████▋ | 175520/371472 [3:03:34<17:45:07, 3.07it/s] {'loss': 2.7475, 'learning_rate': 5.750070029520136e-07, 'epoch': 7.56} + 47%|████▋ | 175520/371472 [3:03:34<17:45:07, 3.07it/s] 47%|████▋ | 175521/371472 [3:03:34<17:26:47, 3.12it/s] 47%|████▋ | 175522/371472 [3:03:34<16:55:16, 3.22it/s] 47%|████▋ | 175523/371472 [3:03:35<16:26:23, 3.31it/s] 47%|████▋ | 175524/371472 [3:03:35<16:25:08, 3.32it/s] 47%|████▋ | 175525/371472 [3:03:35<16:19:30, 3.33it/s] 47%|████▋ | 175526/371472 [3:03:36<15:56:10, 3.42it/s] 47%|████▋ | 175527/371472 [3:03:36<16:22:39, 3.32it/s] 47%|████▋ | 175528/371472 [3:03:36<16:31:10, 3.29it/s] 47%|████▋ | 175529/371472 [3:03:36<16:36:34, 3.28it/s] 47%|████▋ | 175530/371472 [3:03:37<16:06:18, 3.38it/s] 47%|████▋ | 175531/371472 [3:03:37<15:55:50, 3.42it/s] 47%|████▋ | 175532/371472 [3:03:37<16:11:34, 3.36it/s] 47%|████▋ | 175533/371472 [3:03:38<16:18:43, 3.34it/s] 47%|████▋ | 175534/371472 [3:03:38<16:37:39, 3.27it/s] 47%|████▋ | 175535/371472 [3:03:38<16:32:14, 3.29it/s] 47%|████▋ | 175536/371472 [3:03:39<16:17:31, 3.34it/s] 47%|████▋ | 175537/371472 [3:03:39<17:24:51, 3.13it/s] 47%|████▋ | 175538/371472 [3:03:39<16:45:52, 3.25it/s] 47%|████▋ | 175539/371472 [3:03:39<16:14:44, 3.35it/s] 47%|████▋ | 175540/371472 [3:03:40<16:22:04, 3.33it/s] {'loss': 2.8831, 'learning_rate': 5.749585209765347e-07, 'epoch': 7.56} + 47%|████▋ | 175540/371472 [3:03:40<16:22:04, 3.33it/s] 47%|████▋ | 175541/371472 [3:03:40<16:31:15, 3.29it/s] 47%|████▋ | 175542/371472 [3:03:40<16:12:18, 3.36it/s] 47%|████▋ | 175543/371472 [3:03:41<16:03:23, 3.39it/s] 47%|████▋ | 175544/371472 [3:03:41<17:11:22, 3.17it/s] 47%|████▋ | 175545/371472 [3:03:41<17:46:28, 3.06it/s] 47%|████▋ | 175546/371472 [3:03:42<17:31:24, 3.11it/s] 47%|████▋ | 175547/371472 [3:03:42<17:24:46, 3.13it/s] 47%|████▋ | 175548/371472 [3:03:42<17:22:54, 3.13it/s] 47%|████▋ | 175549/371472 [3:03:43<16:55:59, 3.21it/s] 47%|████▋ | 175550/371472 [3:03:43<16:22:50, 3.32it/s] 47%|████▋ | 175551/371472 [3:03:43<16:13:52, 3.35it/s] 47%|████▋ | 175552/371472 [3:03:43<16:07:59, 3.37it/s] 47%|████▋ | 175553/371472 [3:03:44<15:52:40, 3.43it/s] 47%|████▋ | 175554/371472 [3:03:44<16:33:23, 3.29it/s] 47%|████▋ | 175555/371472 [3:03:44<16:01:03, 3.40it/s] 47%|████▋ | 175556/371472 [3:03:45<15:57:51, 3.41it/s] 47%|████▋ | 175557/371472 [3:03:45<16:51:56, 3.23it/s] 47%|████▋ | 175558/371472 [3:03:45<16:47:15, 3.24it/s] 47%|████▋ | 175559/371472 [3:03:46<17:18:57, 3.14it/s] 47%|████▋ | 175560/371472 [3:03:46<17:31:23, 3.11it/s] {'loss': 2.8582, 'learning_rate': 5.749100390010557e-07, 'epoch': 7.56} + 47%|████▋ | 175560/371472 [3:03:46<17:31:23, 3.11it/s] 47%|████▋ | 175561/371472 [3:03:46<17:36:08, 3.09it/s] 47%|████▋ | 175562/371472 [3:03:47<17:10:03, 3.17it/s] 47%|████▋ | 175563/371472 [3:03:47<16:39:01, 3.27it/s] 47%|████▋ | 175564/371472 [3:03:47<16:37:28, 3.27it/s] 47%|████▋ | 175565/371472 [3:03:48<16:50:05, 3.23it/s] 47%|████▋ | 175566/371472 [3:03:48<17:08:24, 3.17it/s] 47%|████▋ | 175567/371472 [3:03:48<17:21:47, 3.13it/s] 47%|████▋ | 175568/371472 [3:03:49<17:37:19, 3.09it/s] 47%|████▋ | 175569/371472 [3:03:49<17:03:42, 3.19it/s] 47%|████▋ | 175570/371472 [3:03:49<16:32:37, 3.29it/s] 47%|██���█▋ | 175571/371472 [3:03:49<16:01:32, 3.40it/s] 47%|████▋ | 175572/371472 [3:03:50<16:34:54, 3.28it/s] 47%|████▋ | 175573/371472 [3:03:50<16:53:36, 3.22it/s] 47%|████▋ | 175574/371472 [3:03:50<16:26:06, 3.31it/s] 47%|████▋ | 175575/371472 [3:03:51<16:37:32, 3.27it/s] 47%|████▋ | 175576/371472 [3:03:51<16:32:44, 3.29it/s] 47%|████▋ | 175577/371472 [3:03:51<16:25:42, 3.31it/s] 47%|████▋ | 175578/371472 [3:03:51<16:10:48, 3.36it/s] 47%|████▋ | 175579/371472 [3:03:52<15:59:38, 3.40it/s] 47%|████▋ | 175580/371472 [3:03:52<15:42:15, 3.46it/s] {'loss': 2.7638, 'learning_rate': 5.748615570255768e-07, 'epoch': 7.56} + 47%|████▋ | 175580/371472 [3:03:52<15:42:15, 3.46it/s] 47%|████▋ | 175581/371472 [3:03:52<15:38:45, 3.48it/s] 47%|████▋ | 175582/371472 [3:03:53<15:59:41, 3.40it/s] 47%|████▋ | 175583/371472 [3:03:53<15:45:31, 3.45it/s] 47%|████▋ | 175584/371472 [3:03:53<15:31:47, 3.50it/s] 47%|████▋ | 175585/371472 [3:03:53<15:27:32, 3.52it/s] 47%|████▋ | 175586/371472 [3:03:54<15:56:25, 3.41it/s] 47%|████▋ | 175587/371472 [3:03:54<16:08:26, 3.37it/s] 47%|████▋ | 175588/371472 [3:03:54<15:55:00, 3.42it/s] 47%|████▋ | 175589/371472 [3:03:55<16:37:13, 3.27it/s] 47%|████▋ | 175590/371472 [3:03:55<16:26:29, 3.31it/s] 47%|████▋ | 175591/371472 [3:03:55<16:13:41, 3.35it/s] 47%|████▋ | 175592/371472 [3:03:56<15:56:32, 3.41it/s] 47%|████▋ | 175593/371472 [3:03:56<16:20:02, 3.33it/s] 47%|████▋ | 175594/371472 [3:03:56<16:44:08, 3.25it/s] 47%|████▋ | 175595/371472 [3:03:57<16:32:06, 3.29it/s] 47%|████▋ | 175596/371472 [3:03:57<16:18:11, 3.34it/s] 47%|████▋ | 175597/371472 [3:03:57<15:57:09, 3.41it/s] 47%|████▋ | 175598/371472 [3:03:57<17:23:32, 3.13it/s] 47%|████▋ | 175599/371472 [3:03:58<17:02:53, 3.19it/s] 47%|████▋ | 175600/371472 [3:03:58<17:04:29, 3.19it/s] {'loss': 2.9603, 'learning_rate': 5.748130750500981e-07, 'epoch': 7.56} + 47%|████▋ | 175600/371472 [3:03:58<17:04:29, 3.19it/s] 47%|████▋ | 175601/371472 [3:03:58<17:01:40, 3.20it/s] 47%|████▋ | 175602/371472 [3:03:59<16:35:31, 3.28it/s] 47%|████▋ | 175603/371472 [3:03:59<17:01:42, 3.20it/s] 47%|████▋ | 175604/371472 [3:03:59<16:58:34, 3.20it/s] 47%|████▋ | 175605/371472 [3:04:00<17:09:36, 3.17it/s] 47%|████▋ | 175606/371472 [3:04:00<16:43:19, 3.25it/s] 47%|████▋ | 175607/371472 [3:04:00<16:12:59, 3.36it/s] 47%|████▋ | 175608/371472 [3:04:01<16:13:52, 3.35it/s] 47%|████▋ | 175609/371472 [3:04:01<15:59:54, 3.40it/s] 47%|████▋ | 175610/371472 [3:04:01<15:58:23, 3.41it/s] 47%|████▋ | 175611/371472 [3:04:01<15:28:24, 3.52it/s] 47%|████▋ | 175612/371472 [3:04:02<15:49:11, 3.44it/s] 47%|████▋ | 175613/371472 [3:04:02<15:48:40, 3.44it/s] 47%|████▋ | 175614/371472 [3:04:02<15:38:42, 3.48it/s] 47%|████▋ | 175615/371472 [3:04:03<15:32:06, 3.50it/s] 47%|████▋ | 175616/371472 [3:04:03<16:55:56, 3.21it/s] 47%|████▋ | 175617/371472 [3:04:03<17:10:54, 3.17it/s] 47%|████▋ | 175618/371472 [3:04:04<17:01:12, 3.20it/s] 47%|████▋ | 175619/371472 [3:04:04<17:28:49, 3.11it/s] 47%|████▋ | 175620/371472 [3:04:04<17:11:14, 3.17it/s] {'loss': 2.8423, 'learning_rate': 5.747645930746191e-07, 'epoch': 7.56} + 47%|████▋ | 175620/371472 [3:04:04<17:11:14, 3.17it/s] 47%|████▋ | 175621/371472 [3:04:05<17:39:24, 3.08it/s] 47%|████▋ | 175622/371472 [3:04:05<17:00:17, 3.20it/s] 47%|████▋ | 175623/371472 [3:04:05<17:51:46, 3.05it/s] 47%|████▋ | 175624/371472 [3:04:05<16:51:39, 3.23it/s] 47%|████▋ | 175625/371472 [3:04:06<17:56:00, 3.03it/s] 47%|████▋ | 175626/371472 [3:04:06<17:07:03, 3.18it/s] 47%|████▋ | 175627/371472 [3:04:06<16:35:23, 3.28it/s] 47%|████▋ | 175628/371472 [3:04:07<17:19:20, 3.14it/s] 47%|████▋ | 175629/371472 [3:04:07<17:27:16, 3.12it/s] 47%|████▋ | 175630/371472 [3:04:07<17:19:33, 3.14it/s] 47%|████▋ | 175631/371472 [3:04:08<17:06:32, 3.18it/s] 47%|████▋ | 175632/371472 [3:04:08<16:59:12, 3.20it/s] 47%|████▋ | 175633/371472 [3:04:08<16:36:36, 3.28it/s] 47%|████▋ | 175634/371472 [3:04:09<16:10:30, 3.36it/s] 47%|████▋ | 175635/371472 [3:04:09<17:17:25, 3.15it/s] 47%|████▋ | 175636/371472 [3:04:09<16:56:53, 3.21it/s] 47%|████▋ | 175637/371472 [3:04:10<16:55:04, 3.22it/s] 47%|████▋ | 175638/371472 [3:04:10<16:19:53, 3.33it/s] 47%|████▋ | 175639/371472 [3:04:10<15:44:03, 3.46it/s] 47%|████▋ | 175640/371472 [3:04:10<15:36:41, 3.48it/s] {'loss': 2.85, 'learning_rate': 5.747161110991402e-07, 'epoch': 7.57} + 47%|████▋ | 175640/371472 [3:04:10<15:36:41, 3.48it/s] 47%|████▋ | 175641/371472 [3:04:11<16:55:35, 3.21it/s] 47%|████▋ | 175642/371472 [3:04:11<16:35:07, 3.28it/s] 47%|████▋ | 175643/371472 [3:04:11<16:09:47, 3.37it/s] 47%|████▋ | 175644/371472 [3:04:12<15:52:52, 3.43it/s] 47%|████▋ | 175645/371472 [3:04:12<15:21:37, 3.54it/s] 47%|████▋ | 175646/371472 [3:04:12<15:24:16, 3.53it/s] 47%|████▋ | 175647/371472 [3:04:12<15:31:14, 3.50it/s] 47%|████▋ | 175648/371472 [3:04:13<15:16:55, 3.56it/s] 47%|████▋ | 175649/371472 [3:04:13<15:25:03, 3.53it/s] 47%|████▋ | 175650/371472 [3:04:13<15:36:15, 3.49it/s] 47%|████▋ | 175651/371472 [3:04:14<16:07:26, 3.37it/s] 47%|████▋ | 175652/371472 [3:04:14<17:09:32, 3.17it/s] 47%|████▋ | 175653/371472 [3:04:14<16:24:33, 3.31it/s] 47%|████▋ | 175654/371472 [3:04:14<16:00:43, 3.40it/s] 47%|████▋ | 175655/371472 [3:04:15<15:44:55, 3.45it/s] 47%|████▋ | 175656/371472 [3:04:15<15:31:12, 3.50it/s] 47%|████▋ | 175657/371472 [3:04:15<16:11:40, 3.36it/s] 47%|████▋ | 175658/371472 [3:04:16<15:58:08, 3.41it/s] 47%|████▋ | 175659/371472 [3:04:16<16:13:15, 3.35it/s] 47%|████▋ | 175660/371472 [3:04:16<16:12:01, 3.36it/s] {'loss': 2.834, 'learning_rate': 5.746676291236613e-07, 'epoch': 7.57} + 47%|████▋ | 175660/371472 [3:04:16<16:12:01, 3.36it/s] 47%|████▋ | 175661/371472 [3:04:17<16:04:19, 3.38it/s] 47%|████▋ | 175662/371472 [3:04:17<16:23:32, 3.32it/s] 47%|████▋ | 175663/371472 [3:04:17<17:14:55, 3.15it/s] 47%|████▋ | 175664/371472 [3:04:17<16:43:58, 3.25it/s] 47%|████▋ | 175665/371472 [3:04:18<16:09:39, 3.37it/s] 47%|████▋ | 175666/371472 [3:04:18<16:06:13, 3.38it/s] 47%|████▋ | 175667/371472 [3:04:18<15:44:13, 3.46it/s] 47%|████▋ | 175668/371472 [3:04:19<15:44:09, 3.46it/s] 47%|████▋ | 175669/371472 [3:04:19<15:34:57, 3.49it/s] 47%|████▋ | 175670/371472 [3:04:19<15:38:56, 3.48it/s] 47%|████▋ | 175671/371472 [3:04:19<16:04:39, 3.38it/s] 47%|████▋ | 175672/371472 [3:04:20<15:58:27, 3.40it/s] 47%|████▋ | 175673/371472 [3:04:20<16:33:17, 3.29it/s] 47%|████▋ | 175674/371472 [3:04:20<16:23:36, 3.32it/s] 47%|████▋ | 175675/371472 [3:04:21<16:45:31, 3.25it/s] 47%|████▋ | 175676/371472 [3:04:21<17:09:10, 3.17it/s] 47%|████▋ | 175677/371472 [3:04:21<16:57:10, 3.21it/s] 47%|████▋ | 175678/371472 [3:04:22<17:10:17, 3.17it/s] 47%|████▋ | 175679/371472 [3:04:22<16:58:52, 3.20it/s] 47%|████▋ | 175680/371472 [3:04:22<16:35:48, 3.28it/s] {'loss': 2.7594, 'learning_rate': 5.746191471481823e-07, 'epoch': 7.57} + 47%|████▋ | 175680/371472 [3:04:22<16:35:48, 3.28it/s] 47%|████▋ | 175681/371472 [3:04:23<16:58:54, 3.20it/s] 47%|████▋ | 175682/371472 [3:04:23<16:50:10, 3.23it/s] 47%|████▋ | 175683/371472 [3:04:23<16:19:23, 3.33it/s] 47%|████▋ | 175684/371472 [3:04:23<16:07:34, 3.37it/s] 47%|████▋ | 175685/371472 [3:04:24<16:03:01, 3.39it/s] 47%|████▋ | 175686/371472 [3:04:24<16:35:11, 3.28it/s] 47%|████▋ | 175687/371472 [3:04:24<16:19:27, 3.33it/s] 47%|████▋ | 175688/371472 [3:04:25<16:04:43, 3.38it/s] 47%|████▋ | 175689/371472 [3:04:25<15:52:08, 3.43it/s] 47%|████▋ | 175690/371472 [3:04:25<16:06:11, 3.38it/s] 47%|████▋ | 175691/371472 [3:04:26<15:45:30, 3.45it/s] 47%|████▋ | 175692/371472 [3:04:26<15:47:32, 3.44it/s] 47%|████▋ | 175693/371472 [3:04:26<15:50:45, 3.43it/s] 47%|████▋ | 175694/371472 [3:04:26<15:31:40, 3.50it/s] 47%|████▋ | 175695/371472 [3:04:27<16:42:17, 3.26it/s] 47%|████▋ | 175696/371472 [3:04:27<16:39:48, 3.26it/s] 47%|████▋ | 175697/371472 [3:04:27<16:50:41, 3.23it/s] 47%|████▋ | 175698/371472 [3:04:28<17:00:03, 3.20it/s] 47%|████▋ | 175699/371472 [3:04:28<16:24:46, 3.31it/s] 47%|████▋ | 175700/371472 [3:04:28<16:04:47, 3.38it/s] {'loss': 2.8926, 'learning_rate': 5.745706651727036e-07, 'epoch': 7.57} + 47%|████▋ | 175700/371472 [3:04:28<16:04:47, 3.38it/s] 47%|████▋ | 175701/371472 [3:04:29<15:54:52, 3.42it/s] 47%|████▋ | 175702/371472 [3:04:29<16:09:35, 3.37it/s] 47%|████▋ | 175703/371472 [3:04:29<15:59:00, 3.40it/s] 47%|████▋ | 175704/371472 [3:04:29<16:14:25, 3.35it/s] 47%|████▋ | 175705/371472 [3:04:30<16:49:11, 3.23it/s] 47%|████▋ | 175706/371472 [3:04:30<17:57:27, 3.03it/s] 47%|████▋ | 175707/371472 [3:04:30<17:02:43, 3.19it/s] 47%|████▋ | 175708/371472 [3:04:31<16:50:44, 3.23it/s] 47%|████▋ | 175709/371472 [3:04:31<16:37:50, 3.27it/s] 47%|████▋ | 175710/371472 [3:04:31<17:42:02, 3.07it/s] 47%|████▋ | 175711/371472 [3:04:32<17:07:27, 3.18it/s] 47%|████▋ | 175712/371472 [3:04:32<16:45:39, 3.24it/s] 47%|████▋ | 175713/371472 [3:04:32<16:29:46, 3.30it/s] 47%|████▋ | 175714/371472 [3:04:33<16:33:32, 3.28it/s] 47%|████▋ | 175715/371472 [3:04:33<16:53:16, 3.22it/s] 47%|████▋ | 175716/371472 [3:04:33<16:19:02, 3.33it/s] 47%|████▋ | 175717/371472 [3:04:33<16:00:17, 3.40it/s] 47%|████▋ | 175718/371472 [3:04:34<15:47:35, 3.44it/s] 47%|████▋ | 175719/371472 [3:04:34<15:30:57, 3.50it/s] 47%|████▋ | 175720/371472 [3:04:34<15:24:28, 3.53it/s] {'loss': 3.051, 'learning_rate': 5.745221831972247e-07, 'epoch': 7.57} + 47%|████▋ | 175720/371472 [3:04:34<15:24:28, 3.53it/s] 47%|████▋ | 175721/371472 [3:04:35<15:23:59, 3.53it/s] 47%|████▋ | 175722/371472 [3:04:35<16:21:44, 3.32it/s] 47%|████▋ | 175723/371472 [3:04:35<16:33:37, 3.28it/s] 47%|████▋ | 175724/371472 [3:04:36<17:24:03, 3.12it/s] 47%|████▋ | 175725/371472 [3:04:36<17:08:14, 3.17it/s] 47%|████▋ | 175726/371472 [3:04:36<17:40:24, 3.08it/s] 47%|████▋ | 175727/371472 [3:04:37<16:47:29, 3.24it/s] 47%|████▋ | 175728/371472 [3:04:37<16:07:45, 3.37it/s] 47%|████▋ | 175729/371472 [3:04:37<16:51:41, 3.22it/s] 47%|████▋ | 175730/371472 [3:04:37<17:00:48, 3.20it/s] 47%|████▋ | 175731/371472 [3:04:38<16:32:37, 3.29it/s] 47%|████▋ | 175732/371472 [3:04:38<17:54:56, 3.03it/s] 47%|████▋ | 175733/371472 [3:04:38<17:11:03, 3.16it/s] 47%|████▋ | 175734/371472 [3:04:39<16:31:46, 3.29it/s] 47%|████▋ | 175735/371472 [3:04:39<15:54:30, 3.42it/s] 47%|████▋ | 175736/371472 [3:04:39<15:51:36, 3.43it/s] 47%|████▋ | 175737/371472 [3:04:40<16:05:55, 3.38it/s] 47%|████▋ | 175738/371472 [3:04:40<15:53:15, 3.42it/s] 47%|████▋ | 175739/371472 [3:04:40<15:40:50, 3.47it/s] 47%|████▋ | 175740/371472 [3:04:40<15:54:00, 3.42it/s] {'loss': 2.8567, 'learning_rate': 5.744737012217458e-07, 'epoch': 7.57} + 47%|████▋ | 175740/371472 [3:04:40<15:54:00, 3.42it/s] 47%|████▋ | 175741/371472 [3:04:41<16:06:09, 3.38it/s] 47%|████▋ | 175742/371472 [3:04:41<18:31:32, 2.93it/s] 47%|████▋ | 175743/371472 [3:04:41<18:12:51, 2.98it/s] 47%|████▋ | 175744/371472 [3:04:42<17:05:55, 3.18it/s] 47%|████▋ | 175745/371472 [3:04:42<16:47:44, 3.24it/s] 47%|████▋ | 175746/371472 [3:04:42<16:52:13, 3.22it/s] 47%|████▋ | 175747/371472 [3:04:43<16:24:11, 3.31it/s] 47%|████▋ | 175748/371472 [3:04:43<16:27:48, 3.30it/s] 47%|████▋ | 175749/371472 [3:04:43<17:26:16, 3.12it/s] 47%|████▋ | 175750/371472 [3:04:44<16:41:01, 3.26it/s] 47%|████▋ | 175751/371472 [3:04:44<16:16:42, 3.34it/s] 47%|████▋ | 175752/371472 [3:04:44<16:37:17, 3.27it/s] 47%|████▋ | 175753/371472 [3:04:44<16:20:37, 3.33it/s] 47%|████▋ | 175754/371472 [3:04:45<17:02:00, 3.19it/s] 47%|████▋ | 175755/371472 [3:04:45<16:39:28, 3.26it/s] 47%|████▋ | 175756/371472 [3:04:45<16:33:45, 3.28it/s] 47%|████▋ | 175757/371472 [3:04:46<16:24:53, 3.31it/s] 47%|████▋ | 175758/371472 [3:04:46<17:12:09, 3.16it/s] 47%|████▋ | 175759/371472 [3:04:46<16:44:48, 3.25it/s] 47%|████▋ | 175760/371472 [3:04:47<16:27:24, 3.30it/s] {'loss': 2.794, 'learning_rate': 5.744252192462668e-07, 'epoch': 7.57} + 47%|████▋ | 175760/371472 [3:04:47<16:27:24, 3.30it/s] 47%|████▋ | 175761/371472 [3:04:47<16:47:21, 3.24it/s] 47%|████▋ | 175762/371472 [3:04:47<16:49:39, 3.23it/s] 47%|████▋ | 175763/371472 [3:04:48<16:51:43, 3.22it/s] 47%|████▋ | 175764/371472 [3:04:48<16:51:41, 3.22it/s] 47%|████▋ | 175765/371472 [3:04:48<16:29:55, 3.29it/s] 47%|████▋ | 175766/371472 [3:04:48<16:18:33, 3.33it/s] 47%|████▋ | 175767/371472 [3:04:49<16:00:59, 3.39it/s] 47%|████▋ | 175768/371472 [3:04:49<16:01:00, 3.39it/s] 47%|████▋ | 175769/371472 [3:04:49<15:55:48, 3.41it/s] 47%|████▋ | 175770/371472 [3:04:50<16:09:37, 3.36it/s] 47%|████▋ | 175771/371472 [3:04:50<16:29:13, 3.30it/s] 47%|████▋ | 175772/371472 [3:04:50<16:31:37, 3.29it/s] 47%|████▋ | 175773/371472 [3:04:51<17:19:24, 3.14it/s] 47%|████▋ | 175774/371472 [3:04:51<17:14:36, 3.15it/s] 47%|████▋ | 175775/371472 [3:04:51<16:31:09, 3.29it/s] 47%|████▋ | 175776/371472 [3:04:52<16:52:21, 3.22it/s] 47%|████▋ | 175777/371472 [3:04:52<16:17:58, 3.34it/s] 47%|████▋ | 175778/371472 [3:04:52<16:27:55, 3.30it/s] 47%|████▋ | 175779/371472 [3:04:52<16:04:30, 3.38it/s] 47%|████▋ | 175780/371472 [3:04:53<16:16:21, 3.34it/s] {'loss': 2.9003, 'learning_rate': 5.74376737270788e-07, 'epoch': 7.57} + 47%|████▋ | 175780/371472 [3:04:53<16:16:21, 3.34it/s] 47%|████▋ | 175781/371472 [3:04:53<15:58:41, 3.40it/s] 47%|████▋ | 175782/371472 [3:04:53<15:42:38, 3.46it/s] 47%|████▋ | 175783/371472 [3:04:54<15:42:02, 3.46it/s] 47%|████▋ | 175784/371472 [3:04:54<15:51:48, 3.43it/s] 47%|████▋ | 175785/371472 [3:04:54<15:45:54, 3.45it/s] 47%|████▋ | 175786/371472 [3:04:54<15:24:41, 3.53it/s] 47%|████▋ | 175787/371472 [3:04:55<15:09:12, 3.59it/s] 47%|████▋ | 175788/371472 [3:04:55<15:53:19, 3.42it/s] 47%|████▋ | 175789/371472 [3:04:55<16:31:40, 3.29it/s] 47%|████▋ | 175790/371472 [3:04:56<16:27:52, 3.30it/s] 47%|████▋ | 175791/371472 [3:04:56<16:15:03, 3.34it/s] 47%|████▋ | 175792/371472 [3:04:56<16:22:25, 3.32it/s] 47%|████▋ | 175793/371472 [3:04:56<15:55:29, 3.41it/s] 47%|████▋ | 175794/371472 [3:04:57<15:27:24, 3.52it/s] 47%|████▋ | 175795/371472 [3:04:57<15:07:30, 3.59it/s] 47%|████▋ | 175796/371472 [3:04:57<15:41:04, 3.47it/s] 47%|████▋ | 175797/371472 [3:04:58<16:55:53, 3.21it/s] 47%|████▋ | 175798/371472 [3:04:58<16:28:38, 3.30it/s] 47%|████▋ | 175799/371472 [3:04:58<15:55:37, 3.41it/s] 47%|████▋ | 175800/371472 [3:04:59<16:10:58, 3.36it/s] {'loss': 3.0987, 'learning_rate': 5.743282552953092e-07, 'epoch': 7.57} + 47%|████▋ | 175800/371472 [3:04:59<16:10:58, 3.36it/s] 47%|████▋ | 175801/371472 [3:04:59<15:52:15, 3.42it/s] 47%|████▋ | 175802/371472 [3:04:59<16:35:38, 3.28it/s] 47%|████▋ | 175803/371472 [3:04:59<16:16:18, 3.34it/s] 47%|████▋ | 175804/371472 [3:05:00<16:48:28, 3.23it/s] 47%|████▋ | 175805/371472 [3:05:00<16:44:30, 3.25it/s] 47%|████▋ | 175806/371472 [3:05:00<17:07:58, 3.17it/s] 47%|████▋ | 175807/371472 [3:05:01<16:40:08, 3.26it/s] 47%|████▋ | 175808/371472 [3:05:01<15:54:21, 3.42it/s] 47%|████▋ | 175809/371472 [3:05:01<15:37:05, 3.48it/s] 47%|████▋ | 175810/371472 [3:05:02<15:21:09, 3.54it/s] 47%|████▋ | 175811/371472 [3:05:02<15:11:30, 3.58it/s] 47%|████▋ | 175812/371472 [3:05:02<15:31:48, 3.50it/s] 47%|████▋ | 175813/371472 [3:05:02<16:12:25, 3.35it/s] 47%|████▋ | 175814/371472 [3:05:03<16:23:36, 3.32it/s] 47%|████▋ | 175815/371472 [3:05:03<17:43:38, 3.07it/s] 47%|████▋ | 175816/371472 [3:05:03<17:32:53, 3.10it/s] 47%|████▋ | 175817/371472 [3:05:04<18:43:46, 2.90it/s] 47%|████▋ | 175818/371472 [3:05:04<17:48:39, 3.05it/s] 47%|████▋ | 175819/371472 [3:05:04<17:31:42, 3.10it/s] 47%|████▋ | 175820/371472 [3:05:05<17:22:56, 3.13it/s] {'loss': 2.7817, 'learning_rate': 5.742797733198301e-07, 'epoch': 7.57} + 47%|████▋ | 175820/371472 [3:05:05<17:22:56, 3.13it/s] 47%|████▋ | 175821/371472 [3:05:05<17:14:37, 3.15it/s] 47%|████▋ | 175822/371472 [3:05:05<17:10:07, 3.17it/s] 47%|████▋ | 175823/371472 [3:05:06<16:38:23, 3.27it/s] 47%|████▋ | 175824/371472 [3:05:06<16:03:47, 3.38it/s] 47%|████▋ | 175825/371472 [3:05:06<15:53:38, 3.42it/s] 47%|████▋ | 175826/371472 [3:05:06<15:49:45, 3.43it/s] 47%|████▋ | 175827/371472 [3:05:07<15:57:25, 3.41it/s] 47%|████▋ | 175828/371472 [3:05:07<16:29:21, 3.30it/s] 47%|████▋ | 175829/371472 [3:05:07<16:48:44, 3.23it/s] 47%|████▋ | 175830/371472 [3:05:08<16:33:35, 3.28it/s] 47%|████▋ | 175831/371472 [3:05:08<16:25:52, 3.31it/s] 47%|████▋ | 175832/371472 [3:05:08<16:50:43, 3.23it/s] 47%|████▋ | 175833/371472 [3:05:09<16:16:43, 3.34it/s] 47%|████▋ | 175834/371472 [3:05:09<16:03:08, 3.39it/s] 47%|████▋ | 175835/371472 [3:05:09<15:47:15, 3.44it/s] 47%|████▋ | 175836/371472 [3:05:09<16:03:23, 3.38it/s] 47%|████▋ | 175837/371472 [3:05:10<16:45:43, 3.24it/s] 47%|████▋ | 175838/371472 [3:05:10<16:22:23, 3.32it/s] 47%|████▋ | 175839/371472 [3:05:10<16:22:32, 3.32it/s] 47%|████▋ | 175840/371472 [3:05:11<16:10:46, 3.36it/s] {'loss': 2.8617, 'learning_rate': 5.742312913443513e-07, 'epoch': 7.57} + 47%|████▋ | 175840/371472 [3:05:11<16:10:46, 3.36it/s] 47%|████▋ | 175841/371472 [3:05:11<15:57:16, 3.41it/s] 47%|████▋ | 175842/371472 [3:05:11<16:00:38, 3.39it/s] 47%|████▋ | 175843/371472 [3:05:12<15:42:59, 3.46it/s] 47%|████▋ | 175844/371472 [3:05:12<15:47:10, 3.44it/s] 47%|████▋ | 175845/371472 [3:05:12<15:26:38, 3.52it/s] 47%|████▋ | 175846/371472 [3:05:12<15:09:15, 3.59it/s] 47%|████▋ | 175847/371472 [3:05:13<15:23:21, 3.53it/s] 47%|████▋ | 175848/371472 [3:05:13<15:21:52, 3.54it/s] 47%|████▋ | 175849/371472 [3:05:13<15:19:22, 3.55it/s] 47%|████▋ | 175850/371472 [3:05:14<15:18:05, 3.55it/s] 47%|████▋ | 175851/371472 [3:05:14<15:23:04, 3.53it/s] 47%|████▋ | 175852/371472 [3:05:14<16:11:41, 3.36it/s] 47%|████▋ | 175853/371472 [3:05:14<15:39:53, 3.47it/s] 47%|████▋ | 175854/371472 [3:05:15<16:32:54, 3.28it/s] 47%|████▋ | 175855/371472 [3:05:15<16:07:20, 3.37it/s] 47%|████▋ | 175856/371472 [3:05:15<15:47:29, 3.44it/s] 47%|████▋ | 175857/371472 [3:05:16<16:16:59, 3.34it/s] 47%|████▋ | 175858/371472 [3:05:16<17:53:41, 3.04it/s] 47%|████▋ | 175859/371472 [3:05:16<17:00:30, 3.19it/s] 47%|████▋ | 175860/371472 [3:05:17<16:35:53, 3.27it/s] {'loss': 3.0271, 'learning_rate': 5.741828093688724e-07, 'epoch': 7.57} + 47%|████▋ | 175860/371472 [3:05:17<16:35:53, 3.27it/s] 47%|████▋ | 175861/371472 [3:05:17<17:26:20, 3.12it/s] 47%|████▋ | 175862/371472 [3:05:17<16:57:41, 3.20it/s] 47%|████▋ | 175863/371472 [3:05:18<16:48:13, 3.23it/s] 47%|████▋ | 175864/371472 [3:05:18<16:54:50, 3.21it/s] 47%|████▋ | 175865/371472 [3:05:18<16:45:15, 3.24it/s] 47%|████▋ | 175866/371472 [3:05:18<16:04:03, 3.38it/s] 47%|████▋ | 175867/371472 [3:05:19<16:36:21, 3.27it/s] 47%|████▋ | 175868/371472 [3:05:19<16:10:25, 3.36it/s] 47%|████▋ | 175869/371472 [3:05:19<16:03:47, 3.38it/s] 47%|████▋ | 175870/371472 [3:05:20<16:00:34, 3.39it/s] 47%|████▋ | 175871/371472 [3:05:20<15:59:00, 3.40it/s] 47%|████▋ | 175872/371472 [3:05:20<15:57:46, 3.40it/s] 47%|████▋ | 175873/371472 [3:05:21<16:02:48, 3.39it/s] 47%|████▋ | 175874/371472 [3:05:21<16:12:18, 3.35it/s] 47%|████▋ | 175875/371472 [3:05:21<15:59:09, 3.40it/s] 47%|████▋ | 175876/371472 [3:05:21<16:44:31, 3.25it/s] 47%|████▋ | 175877/371472 [3:05:22<16:23:18, 3.32it/s] 47%|████▋ | 175878/371472 [3:05:22<16:27:33, 3.30it/s] 47%|████▋ | 175879/371472 [3:05:22<16:07:45, 3.37it/s] 47%|████▋ | 175880/371472 [3:05:23<16:30:42, 3.29it/s] {'loss': 2.9359, 'learning_rate': 5.741343273933935e-07, 'epoch': 7.58} + 47%|████▋ | 175880/371472 [3:05:23<16:30:42, 3.29it/s] 47%|████▋ | 175881/371472 [3:05:23<16:35:07, 3.28it/s] 47%|████▋ | 175882/371472 [3:05:23<16:17:35, 3.33it/s] 47%|████▋ | 175883/371472 [3:05:24<16:23:48, 3.31it/s] 47%|████▋ | 175884/371472 [3:05:24<16:12:41, 3.35it/s] 47%|████▋ | 175885/371472 [3:05:24<16:21:51, 3.32it/s] 47%|████▋ | 175886/371472 [3:05:24<16:10:22, 3.36it/s] 47%|████▋ | 175887/371472 [3:05:25<16:08:12, 3.37it/s] 47%|████▋ | 175888/371472 [3:05:25<16:32:48, 3.28it/s] 47%|████▋ | 175889/371472 [3:05:25<16:35:33, 3.27it/s] 47%|████▋ | 175890/371472 [3:05:26<17:06:08, 3.18it/s] 47%|████▋ | 175891/371472 [3:05:26<17:11:57, 3.16it/s] 47%|████▋ | 175892/371472 [3:05:26<17:09:30, 3.17it/s] 47%|████▋ | 175893/371472 [3:05:27<16:50:00, 3.23it/s] 47%|████▋ | 175894/371472 [3:05:27<16:26:31, 3.30it/s] 47%|████▋ | 175895/371472 [3:05:27<16:18:33, 3.33it/s] 47%|████▋ | 175896/371472 [3:05:27<16:22:39, 3.32it/s] 47%|████▋ | 175897/371472 [3:05:28<16:10:55, 3.36it/s] 47%|████▋ | 175898/371472 [3:05:28<16:47:10, 3.24it/s] 47%|████▋ | 175899/371472 [3:05:28<17:08:00, 3.17it/s] 47%|████▋ | 175900/371472 [3:05:29<17:15:24, 3.15it/s] {'loss': 2.7748, 'learning_rate': 5.740858454179146e-07, 'epoch': 7.58} + 47%|████▋ | 175900/371472 [3:05:29<17:15:24, 3.15it/s] 47%|████▋ | 175901/371472 [3:05:29<17:11:53, 3.16it/s] 47%|████▋ | 175902/371472 [3:05:29<17:16:21, 3.15it/s] 47%|████▋ | 175903/371472 [3:05:30<17:16:14, 3.15it/s] 47%|████▋ | 175904/371472 [3:05:30<16:58:36, 3.20it/s] 47%|████▋ | 175905/371472 [3:05:30<16:28:27, 3.30it/s] 47%|████▋ | 175906/371472 [3:05:31<16:22:38, 3.32it/s] 47%|████▋ | 175907/371472 [3:05:31<15:38:20, 3.47it/s] 47%|████▋ | 175908/371472 [3:05:31<16:39:10, 3.26it/s] 47%|████▋ | 175909/371472 [3:05:32<16:36:03, 3.27it/s] 47%|████▋ | 175910/371472 [3:05:32<16:37:18, 3.27it/s] 47%|████▋ | 175911/371472 [3:05:32<16:36:47, 3.27it/s] 47%|████▋ | 175912/371472 [3:05:32<16:30:29, 3.29it/s] 47%|████▋ | 175913/371472 [3:05:33<17:06:26, 3.18it/s] 47%|████▋ | 175914/371472 [3:05:33<16:36:41, 3.27it/s] 47%|████▋ | 175915/371472 [3:05:33<16:01:37, 3.39it/s] 47%|████▋ | 175916/371472 [3:05:34<15:47:03, 3.44it/s] 47%|████▋ | 175917/371472 [3:05:34<16:51:17, 3.22it/s] 47%|████▋ | 175918/371472 [3:05:34<19:08:34, 2.84it/s] 47%|████▋ | 175919/371472 [3:05:35<18:12:44, 2.98it/s] 47%|████▋ | 175920/371472 [3:05:35<17:54:08, 3.03it/s] {'loss': 2.7792, 'learning_rate': 5.740373634424357e-07, 'epoch': 7.58} + 47%|████▋ | 175920/371472 [3:05:35<17:54:08, 3.03it/s] 47%|████▋ | 175921/371472 [3:05:35<17:50:04, 3.05it/s] 47%|████▋ | 175922/371472 [3:05:36<17:12:46, 3.16it/s] 47%|████▋ | 175923/371472 [3:05:36<17:07:41, 3.17it/s] 47%|████▋ | 175924/371472 [3:05:36<17:32:41, 3.10it/s] 47%|████▋ | 175925/371472 [3:05:37<16:43:19, 3.25it/s] 47%|████▋ | 175926/371472 [3:05:37<17:31:43, 3.10it/s] 47%|████▋ | 175927/371472 [3:05:37<17:04:11, 3.18it/s] 47%|████▋ | 175928/371472 [3:05:38<17:28:01, 3.11it/s] 47%|████▋ | 175929/371472 [3:05:38<16:50:49, 3.22it/s] 47%|████▋ | 175930/371472 [3:05:38<16:57:18, 3.20it/s] 47%|████▋ | 175931/371472 [3:05:38<16:20:14, 3.32it/s] 47%|████▋ | 175932/371472 [3:05:39<16:23:05, 3.32it/s] 47%|████▋ | 175933/371472 [3:05:39<16:12:50, 3.35it/s] 47%|████▋ | 175934/371472 [3:05:39<16:06:45, 3.37it/s] 47%|████▋ | 175935/371472 [3:05:40<16:08:30, 3.36it/s] 47%|████▋ | 175936/371472 [3:05:40<15:57:38, 3.40it/s] 47%|████▋ | 175937/371472 [3:05:40<15:52:44, 3.42it/s] 47%|████▋ | 175938/371472 [3:05:41<17:51:32, 3.04it/s] 47%|████▋ | 175939/371472 [3:05:41<17:01:20, 3.19it/s] 47%|████▋ | 175940/371472 [3:05:41<16:59:31, 3.20it/s] {'loss': 2.7557, 'learning_rate': 5.739888814669569e-07, 'epoch': 7.58} + 47%|████▋ | 175940/371472 [3:05:41<16:59:31, 3.20it/s] 47%|████▋ | 175941/371472 [3:05:42<17:09:13, 3.17it/s] 47%|████▋ | 175942/371472 [3:05:42<17:05:30, 3.18it/s] 47%|████▋ | 175943/371472 [3:05:42<17:11:34, 3.16it/s] 47%|████▋ | 175944/371472 [3:05:42<16:54:11, 3.21it/s] 47%|████▋ | 175945/371472 [3:05:43<16:03:36, 3.38it/s] 47%|████▋ | 175946/371472 [3:05:43<16:10:06, 3.36it/s] 47%|████▋ | 175947/371472 [3:05:43<16:00:04, 3.39it/s] 47%|████▋ | 175948/371472 [3:05:44<15:56:31, 3.41it/s] 47%|████▋ | 175949/371472 [3:05:44<16:02:52, 3.38it/s] 47%|████▋ | 175950/371472 [3:05:44<15:55:11, 3.41it/s] 47%|████▋ | 175951/371472 [3:05:44<16:06:55, 3.37it/s] 47%|████▋ | 175952/371472 [3:05:45<16:02:43, 3.38it/s] 47%|████▋ | 175953/371472 [3:05:45<16:00:58, 3.39it/s] 47%|████▋ | 175954/371472 [3:05:45<16:01:44, 3.39it/s] 47%|████▋ | 175955/371472 [3:05:46<15:53:59, 3.42it/s] 47%|████▋ | 175956/371472 [3:05:46<15:26:23, 3.52it/s] 47%|████▋ | 175957/371472 [3:05:46<15:36:22, 3.48it/s] 47%|████▋ | 175958/371472 [3:05:46<15:37:43, 3.47it/s] 47%|████▋ | 175959/371472 [3:05:47<15:41:11, 3.46it/s] 47%|████▋ | 175960/371472 [3:05:47<15:21:22, 3.54it/s] {'loss': 2.8995, 'learning_rate': 5.73940399491478e-07, 'epoch': 7.58} + 47%|████▋ | 175960/371472 [3:05:47<15:21:22, 3.54it/s] 47%|████▋ | 175961/371472 [3:05:47<15:34:38, 3.49it/s] 47%|████▋ | 175962/371472 [3:05:48<16:44:23, 3.24it/s] 47%|████▋ | 175963/371472 [3:05:48<16:16:27, 3.34it/s] 47%|████▋ | 175964/371472 [3:05:48<16:59:27, 3.20it/s] 47%|████▋ | 175965/371472 [3:05:49<16:42:40, 3.25it/s] 47%|████▋ | 175966/371472 [3:05:49<16:26:51, 3.30it/s] 47%|████▋ | 175967/371472 [3:05:49<16:09:41, 3.36it/s] 47%|████▋ | 175968/371472 [3:05:50<16:25:55, 3.30it/s] 47%|████▋ | 175969/371472 [3:05:50<15:58:33, 3.40it/s] 47%|████▋ | 175970/371472 [3:05:50<16:09:31, 3.36it/s] 47%|████▋ | 175971/371472 [3:05:50<15:31:58, 3.50it/s] 47%|████▋ | 175972/371472 [3:05:51<17:03:40, 3.18it/s] 47%|████▋ | 175973/371472 [3:05:51<16:26:02, 3.30it/s] 47%|████▋ | 175974/371472 [3:05:51<16:29:41, 3.29it/s] 47%|████▋ | 175975/371472 [3:05:52<16:01:24, 3.39it/s] 47%|████▋ | 175976/371472 [3:05:52<15:44:42, 3.45it/s] 47%|████▋ | 175977/371472 [3:05:52<15:48:22, 3.44it/s] 47%|████▋ | 175978/371472 [3:05:52<15:54:22, 3.41it/s] 47%|████▋ | 175979/371472 [3:05:53<15:48:26, 3.44it/s] 47%|████▋ | 175980/371472 [3:05:53<15:55:07, 3.41it/s] {'loss': 3.0177, 'learning_rate': 5.738919175159991e-07, 'epoch': 7.58} + 47%|████▋ | 175980/371472 [3:05:53<15:55:07, 3.41it/s] 47%|████▋ | 175981/371472 [3:05:53<16:18:39, 3.33it/s] 47%|████▋ | 175982/371472 [3:05:54<16:28:01, 3.30it/s] 47%|████▋ | 175983/371472 [3:05:54<16:03:25, 3.38it/s] 47%|████▋ | 175984/371472 [3:05:54<15:56:31, 3.41it/s] 47%|████▋ | 175985/371472 [3:05:55<16:12:02, 3.35it/s] 47%|████▋ | 175986/371472 [3:05:55<17:08:41, 3.17it/s] 47%|████▋ | 175987/371472 [3:05:55<16:37:05, 3.27it/s] 47%|████▋ | 175988/371472 [3:05:55<16:27:40, 3.30it/s] 47%|████▋ | 175989/371472 [3:05:56<17:01:38, 3.19it/s] 47%|████▋ | 175990/371472 [3:05:56<16:31:36, 3.29it/s] 47%|████▋ | 175991/371472 [3:05:56<16:26:40, 3.30it/s] 47%|████▋ | 175992/371472 [3:05:57<16:25:51, 3.30it/s] 47%|████▋ | 175993/371472 [3:05:57<16:00:44, 3.39it/s] 47%|████▋ | 175994/371472 [3:05:57<15:59:29, 3.40it/s] 47%|████▋ | 175995/371472 [3:05:58<16:50:00, 3.23it/s] 47%|████▋ | 175996/371472 [3:05:58<17:01:35, 3.19it/s] 47%|████▋ | 175997/371472 [3:05:58<16:27:33, 3.30it/s] 47%|████▋ | 175998/371472 [3:05:59<16:46:11, 3.24it/s] 47%|████▋ | 175999/371472 [3:05:59<16:10:48, 3.36it/s] 47%|████▋ | 176000/371472 [3:05:59<15:58:02, 3.40it/s] {'loss': 2.9495, 'learning_rate': 5.738434355405201e-07, 'epoch': 7.58} + 47%|████▋ | 176000/371472 [3:05:59<15:58:02, 3.40it/s] 47%|████▋ | 176001/371472 [3:05:59<15:49:08, 3.43it/s] 47%|████▋ | 176002/371472 [3:06:00<15:59:25, 3.40it/s] 47%|████▋ | 176003/371472 [3:06:00<16:12:04, 3.35it/s] 47%|████▋ | 176004/371472 [3:06:00<16:47:16, 3.23it/s] 47%|████▋ | 176005/371472 [3:06:01<18:53:46, 2.87it/s] 47%|████▋ | 176006/371472 [3:06:01<18:31:53, 2.93it/s] 47%|████▋ | 176007/371472 [3:06:01<17:29:09, 3.11it/s] 47%|████▋ | 176008/371472 [3:06:02<16:56:09, 3.21it/s] 47%|████▋ | 176009/371472 [3:06:02<16:20:31, 3.32it/s] 47%|████▋ | 176010/371472 [3:06:02<16:16:36, 3.34it/s] 47%|████▋ | 176011/371472 [3:06:03<15:42:39, 3.46it/s] 47%|███��▋ | 176012/371472 [3:06:03<15:28:54, 3.51it/s] 47%|████▋ | 176013/371472 [3:06:03<16:36:08, 3.27it/s] 47%|████▋ | 176014/371472 [3:06:03<16:26:16, 3.30it/s] 47%|████▋ | 176015/371472 [3:06:04<17:29:49, 3.10it/s] 47%|████▋ | 176016/371472 [3:06:04<17:09:28, 3.16it/s] 47%|████▋ | 176017/371472 [3:06:04<17:27:43, 3.11it/s] 47%|████▋ | 176018/371472 [3:06:05<16:42:51, 3.25it/s] 47%|████▋ | 176019/371472 [3:06:05<16:18:33, 3.33it/s] 47%|████▋ | 176020/371472 [3:06:05<16:58:03, 3.20it/s] {'loss': 3.1058, 'learning_rate': 5.737949535650413e-07, 'epoch': 7.58} + 47%|████▋ | 176020/371472 [3:06:05<16:58:03, 3.20it/s] 47%|████▋ | 176021/371472 [3:06:06<16:31:36, 3.29it/s] 47%|████▋ | 176022/371472 [3:06:06<17:04:18, 3.18it/s] 47%|████▋ | 176023/371472 [3:06:06<16:51:53, 3.22it/s] 47%|████▋ | 176024/371472 [3:06:07<16:21:47, 3.32it/s] 47%|████▋ | 176025/371472 [3:06:07<15:46:12, 3.44it/s] 47%|████▋ | 176026/371472 [3:06:07<15:49:50, 3.43it/s] 47%|████▋ | 176027/371472 [3:06:07<16:17:35, 3.33it/s] 47%|████▋ | 176028/371472 [3:06:08<15:48:10, 3.44it/s] 47%|████▋ | 176029/371472 [3:06:08<16:53:11, 3.21it/s] 47%|████▋ | 176030/371472 [3:06:08<16:49:00, 3.23it/s] 47%|████▋ | 176031/371472 [3:06:09<16:54:22, 3.21it/s] 47%|████▋ | 176032/371472 [3:06:09<16:17:22, 3.33it/s] 47%|████▋ | 176033/371472 [3:06:09<17:49:25, 3.05it/s] 47%|████▋ | 176034/371472 [3:06:10<18:35:17, 2.92it/s] 47%|████▋ | 176035/371472 [3:06:10<19:35:01, 2.77it/s] 47%|████▋ | 176036/371472 [3:06:10<19:39:39, 2.76it/s] 47%|████▋ | 176037/371472 [3:06:11<19:38:56, 2.76it/s] 47%|████▋ | 176038/371472 [3:06:11<18:27:37, 2.94it/s] 47%|████▋ | 176039/371472 [3:06:12<19:01:17, 2.85it/s] 47%|████▋ | 176040/371472 [3:06:12<18:47:36, 2.89it/s] {'loss': 2.9547, 'learning_rate': 5.737464715895624e-07, 'epoch': 7.58} + 47%|████▋ | 176040/371472 [3:06:12<18:47:36, 2.89it/s] 47%|████▋ | 176041/371472 [3:06:12<18:00:07, 3.02it/s] 47%|████▋ | 176042/371472 [3:06:12<18:03:19, 3.01it/s] 47%|████▋ | 176043/371472 [3:06:13<17:37:51, 3.08it/s] 47%|████▋ | 176044/371472 [3:06:13<17:30:59, 3.10it/s] 47%|████▋ | 176045/371472 [3:06:13<17:01:29, 3.19it/s] 47%|████▋ | 176046/371472 [3:06:14<16:40:26, 3.26it/s] 47%|████▋ | 176047/371472 [3:06:14<16:07:40, 3.37it/s] 47%|████▋ | 176048/371472 [3:06:14<16:01:47, 3.39it/s] 47%|████▋ | 176049/371472 [3:06:15<16:54:23, 3.21it/s] 47%|████▋ | 176050/371472 [3:06:15<16:25:02, 3.31it/s] 47%|████▋ | 176051/371472 [3:06:15<16:26:31, 3.30it/s] 47%|████▋ | 176052/371472 [3:06:15<15:58:43, 3.40it/s] 47%|████▋ | 176053/371472 [3:06:16<16:10:56, 3.35it/s] 47%|████▋ | 176054/371472 [3:06:16<16:38:30, 3.26it/s] 47%|████▋ | 176055/371472 [3:06:16<16:19:12, 3.33it/s] 47%|████▋ | 176056/371472 [3:06:17<17:41:44, 3.07it/s] 47%|████▋ | 176057/371472 [3:06:17<16:54:05, 3.21it/s] 47%|████▋ | 176058/371472 [3:06:17<16:49:32, 3.23it/s] 47%|████▋ | 176059/371472 [3:06:18<16:16:25, 3.34it/s] 47%|████▋ | 176060/371472 [3:06:18<15:39:11, 3.47it/s] {'loss': 2.9434, 'learning_rate': 5.736979896140834e-07, 'epoch': 7.58} + 47%|████▋ | 176060/371472 [3:06:18<15:39:11, 3.47it/s] 47%|████▋ | 176061/371472 [3:06:18<15:53:44, 3.41it/s] 47%|████▋ | 176062/371472 [3:06:18<15:44:39, 3.45it/s] 47%|████▋ | 176063/371472 [3:06:19<15:36:15, 3.48it/s] 47%|████▋ | 176064/371472 [3:06:19<15:36:07, 3.48it/s] 47%|████▋ | 176065/371472 [3:06:19<15:51:37, 3.42it/s] 47%|████▋ | 176066/371472 [3:06:20<15:38:23, 3.47it/s] 47%|████▋ | 176067/371472 [3:06:20<15:58:45, 3.40it/s] 47%|████▋ | 176068/371472 [3:06:20<16:35:43, 3.27it/s] 47%|████▋ | 176069/371472 [3:06:21<16:45:40, 3.24it/s] 47%|████▋ | 176070/371472 [3:06:21<16:34:49, 3.27it/s] 47%|████▋ | 176071/371472 [3:06:21<16:46:29, 3.24it/s] 47%|████▋ | 176072/371472 [3:06:22<17:16:23, 3.14it/s] 47%|████▋ | 176073/371472 [3:06:22<17:08:13, 3.17it/s] 47%|████▋ | 176074/371472 [3:06:22<17:14:10, 3.15it/s] 47%|████▋ | 176075/371472 [3:06:22<17:33:37, 3.09it/s] 47%|████▋ | 176076/371472 [3:06:23<16:38:06, 3.26it/s] 47%|████▋ | 176077/371472 [3:06:23<16:15:20, 3.34it/s] 47%|████▋ | 176078/371472 [3:06:23<16:05:27, 3.37it/s] 47%|████▋ | 176079/371472 [3:06:24<15:55:20, 3.41it/s] 47%|████▋ | 176080/371472 [3:06:24<15:47:46, 3.44it/s] {'loss': 2.9938, 'learning_rate': 5.736495076386046e-07, 'epoch': 7.58} + 47%|████▋ | 176080/371472 [3:06:24<15:47:46, 3.44it/s] 47%|████▋ | 176081/371472 [3:06:24<15:49:16, 3.43it/s] 47%|████▋ | 176082/371472 [3:06:24<15:42:48, 3.45it/s] 47%|████▋ | 176083/371472 [3:06:25<16:08:36, 3.36it/s] 47%|████▋ | 176084/371472 [3:06:25<16:40:32, 3.25it/s] 47%|████▋ | 176085/371472 [3:06:25<16:23:38, 3.31it/s] 47%|████▋ | 176086/371472 [3:06:26<16:52:40, 3.22it/s] 47%|████▋ | 176087/371472 [3:06:26<16:40:20, 3.26it/s] 47%|████▋ | 176088/371472 [3:06:26<16:15:56, 3.34it/s] 47%|████▋ | 176089/371472 [3:06:27<16:18:01, 3.33it/s] 47%|████▋ | 176090/371472 [3:06:27<16:12:00, 3.35it/s] 47%|████▋ | 176091/371472 [3:06:27<15:58:50, 3.40it/s] 47%|████▋ | 176092/371472 [3:06:28<16:20:08, 3.32it/s] 47%|████▋ | 176093/371472 [3:06:28<16:09:06, 3.36it/s] 47%|████▋ | 176094/371472 [3:06:28<16:05:05, 3.37it/s] 47%|████▋ | 176095/371472 [3:06:28<17:02:19, 3.19it/s] 47%|████▋ | 176096/371472 [3:06:29<16:45:15, 3.24it/s] 47%|████▋ | 176097/371472 [3:06:29<16:30:36, 3.29it/s] 47%|████▋ | 176098/371472 [3:06:29<16:15:21, 3.34it/s] 47%|████▋ | 176099/371472 [3:06:30<16:02:04, 3.38it/s] 47%|████▋ | 176100/371472 [3:06:30<15:55:40, 3.41it/s] {'loss': 2.8392, 'learning_rate': 5.736010256631257e-07, 'epoch': 7.58} + 47%|████▋ | 176100/371472 [3:06:30<15:55:40, 3.41it/s] 47%|████▋ | 176101/371472 [3:06:30<17:36:13, 3.08it/s] 47%|████▋ | 176102/371472 [3:06:31<17:05:23, 3.18it/s] 47%|████▋ | 176103/371472 [3:06:31<16:35:13, 3.27it/s] 47%|████▋ | 176104/371472 [3:06:31<16:12:22, 3.35it/s] 47%|████▋ | 176105/371472 [3:06:31<15:43:24, 3.45it/s] 47%|████▋ | 176106/371472 [3:06:32<15:57:42, 3.40it/s] 47%|████▋ | 176107/371472 [3:06:32<15:58:22, 3.40it/s] 47%|████▋ | 176108/371472 [3:06:32<15:54:51, 3.41it/s] 47%|████▋ | 176109/371472 [3:06:33<15:46:05, 3.44it/s] 47%|████▋ | 176110/371472 [3:06:33<16:21:55, 3.32it/s] 47%|████▋ | 176111/371472 [3:06:33<16:58:25, 3.20it/s] 47%|████▋ | 176112/371472 [3:06:34<16:30:33, 3.29it/s] 47%|████▋ | 176113/371472 [3:06:34<16:06:28, 3.37it/s] 47%|████▋ | 176114/371472 [3:06:34<15:55:01, 3.41it/s] 47%|████▋ | 176115/371472 [3:06:35<18:08:01, 2.99it/s] 47%|████▋ | 176116/371472 [3:06:35<17:03:50, 3.18it/s] 47%|████▋ | 176117/371472 [3:06:35<16:46:56, 3.23it/s] 47%|████▋ | 176118/371472 [3:06:35<17:32:39, 3.09it/s] 47%|████▋ | 176119/371472 [3:06:36<16:43:20, 3.25it/s] 47%|████▋ | 176120/371472 [3:06:36<17:10:22, 3.16it/s] {'loss': 2.8956, 'learning_rate': 5.735525436876468e-07, 'epoch': 7.59} + 47%|████▋ | 176120/371472 [3:06:36<17:10:22, 3.16it/s] 47%|████▋ | 176121/371472 [3:06:36<17:02:26, 3.18it/s] 47%|████▋ | 176122/371472 [3:06:37<16:55:03, 3.21it/s] 47%|████▋ | 176123/371472 [3:06:37<16:42:12, 3.25it/s] 47%|████▋ | 176124/371472 [3:06:37<17:32:13, 3.09it/s] 47%|████▋ | 176125/371472 [3:06:38<17:09:10, 3.16it/s] 47%|████▋ | 176126/371472 [3:06:38<16:52:37, 3.22it/s] 47%|████▋ | 176127/371472 [3:06:38<17:07:27, 3.17it/s] 47%|████▋ | 176128/371472 [3:06:39<16:59:19, 3.19it/s] 47%|████▋ | 176129/371472 [3:06:39<16:33:24, 3.28it/s] 47%|████▋ | 176130/371472 [3:06:39<16:32:58, 3.28it/s] 47%|████▋ | 176131/371472 [3:06:39<16:22:13, 3.31it/s] 47%|████▋ | 176132/371472 [3:06:40<16:27:10, 3.30it/s] 47%|████▋ | 176133/371472 [3:06:40<16:11:50, 3.35it/s] 47%|████▋ | 176134/371472 [3:06:40<16:11:08, 3.35it/s] 47%|████▋ | 176135/371472 [3:06:41<16:57:52, 3.20it/s] 47%|████▋ | 176136/371472 [3:06:41<17:15:31, 3.14it/s] 47%|████▋ | 176137/371472 [3:06:41<17:10:28, 3.16it/s] 47%|████▋ | 176138/371472 [3:06:42<16:49:27, 3.23it/s] 47%|████▋ | 176139/371472 [3:06:42<16:32:09, 3.28it/s] 47%|████▋ | 176140/371472 [3:06:42<16:18:00, 3.33it/s] {'loss': 2.7263, 'learning_rate': 5.735040617121678e-07, 'epoch': 7.59} + 47%|████▋ | 176140/371472 [3:06:42<16:18:00, 3.33it/s] 47%|████▋ | 176141/371472 [3:06:43<16:33:38, 3.28it/s] 47%|████▋ | 176142/371472 [3:06:43<16:31:23, 3.28it/s] 47%|████▋ | 176143/371472 [3:06:43<17:38:14, 3.08it/s] 47%|████▋ | 176144/371472 [3:06:44<17:45:08, 3.06it/s] 47%|████▋ | 176145/371472 [3:06:44<18:03:35, 3.00it/s] 47%|████▋ | 176146/371472 [3:06:44<18:28:56, 2.94it/s] 47%|████▋ | 176147/371472 [3:06:45<18:01:13, 3.01it/s] 47%|████▋ | 176148/371472 [3:06:45<17:37:55, 3.08it/s] 47%|████▋ | 176149/371472 [3:06:45<17:08:03, 3.17it/s] 47%|████▋ | 176150/371472 [3:06:45<16:47:51, 3.23it/s] 47%|████▋ | 176151/371472 [3:06:46<16:32:43, 3.28it/s] 47%|████▋ | 176152/371472 [3:06:46<16:52:55, 3.21it/s] 47%|████▋ | 176153/371472 [3:06:46<17:12:30, 3.15it/s] 47%|████▋ | 176154/371472 [3:06:47<16:56:50, 3.20it/s] 47%|████▋ | 176155/371472 [3:06:47<16:43:20, 3.24it/s] 47%|████▋ | 176156/371472 [3:06:47<17:47:49, 3.05it/s] 47%|████▋ | 176157/371472 [3:06:48<17:05:36, 3.17it/s] 47%|████▋ | 176158/371472 [3:06:48<17:09:22, 3.16it/s] 47%|████▋ | 176159/371472 [3:06:48<16:46:53, 3.23it/s] 47%|████▋ | 176160/371472 [3:06:49<16:35:28, 3.27it/s] {'loss': 2.8636, 'learning_rate': 5.73455579736689e-07, 'epoch': 7.59} + 47%|████▋ | 176160/371472 [3:06:49<16:35:28, 3.27it/s] 47%|████▋ | 176161/371472 [3:06:49<17:26:09, 3.11it/s] 47%|████▋ | 176162/371472 [3:06:49<16:46:21, 3.23it/s] 47%|████▋ | 176163/371472 [3:06:50<16:25:56, 3.30it/s] 47%|████▋ | 176164/371472 [3:06:50<16:32:13, 3.28it/s] 47%|████▋ | 176165/371472 [3:06:50<16:10:20, 3.35it/s] 47%|████▋ | 176166/371472 [3:06:51<18:13:05, 2.98it/s] 47%|████▋ | 176167/371472 [3:06:51<17:46:59, 3.05it/s] 47%|████▋ | 176168/371472 [3:06:51<16:45:26, 3.24it/s] 47%|████▋ | 176169/371472 [3:06:51<16:22:29, 3.31it/s] 47%|████▋ | 176170/371472 [3:06:52<15:58:20, 3.40it/s] 47%|████▋ | 176171/371472 [3:06:52<16:42:00, 3.25it/s] 47%|████▋ | 176172/371472 [3:06:52<17:32:55, 3.09it/s] 47%|████▋ | 176173/371472 [3:06:53<16:44:38, 3.24it/s] 47%|████▋ | 176174/371472 [3:06:53<16:31:11, 3.28it/s] 47%|████▋ | 176175/371472 [3:06:53<16:49:37, 3.22it/s] 47%|████▋ | 176176/371472 [3:06:54<16:21:08, 3.32it/s] 47%|████▋ | 176177/371472 [3:06:54<16:33:36, 3.28it/s] 47%|████▋ | 176178/371472 [3:06:54<16:02:57, 3.38it/s] 47%|████▋ | 176179/371472 [3:06:54<15:54:33, 3.41it/s] 47%|████▋ | 176180/371472 [3:06:55<16:14:15, 3.34it/s] {'loss': 2.9922, 'learning_rate': 5.734070977612101e-07, 'epoch': 7.59} + 47%|████▋ | 176180/371472 [3:06:55<16:14:15, 3.34it/s] 47%|████▋ | 176181/371472 [3:06:55<16:02:45, 3.38it/s] 47%|████▋ | 176182/371472 [3:06:55<15:54:56, 3.41it/s] 47%|████▋ | 176183/371472 [3:06:56<16:40:32, 3.25it/s] 47%|████▋ | 176184/371472 [3:06:56<16:06:40, 3.37it/s] 47%|████▋ | 176185/371472 [3:06:56<16:05:49, 3.37it/s] 47%|████▋ | 176186/371472 [3:06:57<16:20:20, 3.32it/s] 47%|████▋ | 176187/371472 [3:06:57<16:10:17, 3.35it/s] 47%|████▋ | 176188/371472 [3:06:57<15:53:27, 3.41it/s] 47%|████▋ | 176189/371472 [3:06:57<16:14:53, 3.34it/s] 47%|████▋ | 176190/371472 [3:06:58<17:31:11, 3.10it/s] 47%|████▋ | 176191/371472 [3:06:58<17:10:29, 3.16it/s] 47%|████▋ | 176192/371472 [3:06:58<17:21:37, 3.12it/s] 47%|████▋ | 176193/371472 [3:06:59<17:46:20, 3.05it/s] 47%|████▋ | 176194/371472 [3:06:59<17:16:15, 3.14it/s] 47%|████▋ | 176195/371472 [3:06:59<17:03:11, 3.18it/s] 47%|████▋ | 176196/371472 [3:07:00<16:55:11, 3.21it/s] 47%|████▋ | 176197/371472 [3:07:00<16:48:35, 3.23it/s] 47%|████▋ | 176198/371472 [3:07:00<16:33:44, 3.28it/s] 47%|████▋ | 176199/371472 [3:07:01<16:29:33, 3.29it/s] 47%|████▋ | 176200/371472 [3:07:01<17:34:25, 3.09it/s] {'loss': 2.8353, 'learning_rate': 5.733586157857311e-07, 'epoch': 7.59} + 47%|████▋ | 176200/371472 [3:07:01<17:34:25, 3.09it/s] 47%|████▋ | 176201/371472 [3:07:01<17:26:01, 3.11it/s] 47%|████▋ | 176202/371472 [3:07:02<16:51:42, 3.22it/s] 47%|████▋ | 176203/371472 [3:07:02<16:15:06, 3.34it/s] 47%|████▋ | 176204/371472 [3:07:02<16:11:24, 3.35it/s] 47%|████▋ | 176205/371472 [3:07:02<17:03:40, 3.18it/s] 47%|████▋ | 176206/371472 [3:07:03<16:35:51, 3.27it/s] 47%|████▋ | 176207/371472 [3:07:03<16:20:46, 3.32it/s] 47%|████▋ | 176208/371472 [3:07:03<16:17:09, 3.33it/s] 47%|████▋ | 176209/371472 [3:07:04<16:03:54, 3.38it/s] 47%|████▋ | 176210/371472 [3:07:04<16:10:44, 3.35it/s] 47%|████▋ | 176211/371472 [3:07:04<15:40:37, 3.46it/s] 47%|████▋ | 176212/371472 [3:07:05<15:39:35, 3.46it/s] 47%|████▋ | 176213/371472 [3:07:05<15:46:58, 3.44it/s] 47%|████▋ | 176214/371472 [3:07:05<15:31:37, 3.49it/s] 47%|████▋ | 176215/371472 [3:07:05<15:48:03, 3.43it/s] 47%|████▋ | 176216/371472 [3:07:06<15:23:28, 3.52it/s] 47%|████▋ | 176217/371472 [3:07:06<15:20:00, 3.54it/s] 47%|████▋ | 176218/371472 [3:07:06<15:14:55, 3.56it/s] 47%|████▋ | 176219/371472 [3:07:07<15:34:18, 3.48it/s] 47%|████▋ | 176220/371472 [3:07:07<15:39:08, 3.47it/s] {'loss': 2.9748, 'learning_rate': 5.733101338102522e-07, 'epoch': 7.59} + 47%|████▋ | 176220/371472 [3:07:07<15:39:08, 3.47it/s] 47%|████▋ | 176221/371472 [3:07:07<17:19:49, 3.13it/s] 47%|████▋ | 176222/371472 [3:07:08<18:01:09, 3.01it/s] 47%|████▋ | 176223/371472 [3:07:08<17:26:13, 3.11it/s] 47%|████▋ | 176224/371472 [3:07:08<17:43:31, 3.06it/s] 47%|████▋ | 176225/371472 [3:07:08<17:19:20, 3.13it/s] 47%|████▋ | 176226/371472 [3:07:09<16:43:50, 3.24it/s] 47%|████▋ | 176227/371472 [3:07:09<16:20:18, 3.32it/s] 47%|████▋ | 176228/371472 [3:07:09<17:32:43, 3.09it/s] 47%|████▋ | 176229/371472 [3:07:10<17:09:18, 3.16it/s] 47%|████▋ | 176230/371472 [3:07:10<16:46:17, 3.23it/s] 47%|████▋ | 176231/371472 [3:07:10<16:36:02, 3.27it/s] 47%|████▋ | 176232/371472 [3:07:11<16:54:27, 3.21it/s] 47%|████▋ | 176233/371472 [3:07:11<16:46:56, 3.23it/s] 47%|████▋ | 176234/371472 [3:07:11<16:12:32, 3.35it/s] 47%|████▋ | 176235/371472 [3:07:11<15:46:21, 3.44it/s] 47%|████▋ | 176236/371472 [3:07:12<15:28:44, 3.50it/s] 47%|████▋ | 176237/371472 [3:07:12<15:25:28, 3.52it/s] 47%|████▋ | 176238/371472 [3:07:12<15:40:21, 3.46it/s] 47%|████▋ | 176239/371472 [3:07:13<15:49:57, 3.43it/s] 47%|████▋ | 176240/371472 [3:07:13<16:27:53, 3.29it/s] {'loss': 2.8611, 'learning_rate': 5.732616518347734e-07, 'epoch': 7.59} + 47%|████▋ | 176240/371472 [3:07:13<16:27:53, 3.29it/s] 47%|████▋ | 176241/371472 [3:07:13<16:36:29, 3.27it/s] 47%|████▋ | 176242/371472 [3:07:14<16:39:22, 3.26it/s] 47%|████▋ | 176243/371472 [3:07:14<17:38:00, 3.08it/s] 47%|████▋ | 176244/371472 [3:07:14<17:02:31, 3.18it/s] 47%|████▋ | 176245/371472 [3:07:15<16:34:33, 3.27it/s] 47%|████▋ | 176246/371472 [3:07:15<16:52:49, 3.21it/s] 47%|████▋ | 176247/371472 [3:07:15<16:18:54, 3.32it/s] 47%|████▋ | 176248/371472 [3:07:15<15:55:19, 3.41it/s] 47%|████▋ | 176249/371472 [3:07:16<16:05:12, 3.37it/s] 47%|████▋ | 176250/371472 [3:07:16<15:39:15, 3.46it/s] 47%|████▋ | 176251/371472 [3:07:16<16:57:15, 3.20it/s] 47%|████▋ | 176252/371472 [3:07:17<17:06:42, 3.17it/s] 47%|████▋ | 176253/371472 [3:07:17<16:48:43, 3.23it/s] 47%|████▋ | 176254/371472 [3:07:17<16:43:35, 3.24it/s] 47%|████▋ | 176255/371472 [3:07:18<16:59:50, 3.19it/s] 47%|████▋ | 176256/371472 [3:07:18<17:05:59, 3.17it/s] 47%|████▋ | 176257/371472 [3:07:18<16:47:38, 3.23it/s] 47%|████▋ | 176258/371472 [3:07:19<16:25:18, 3.30it/s] 47%|████▋ | 176259/371472 [3:07:19<17:46:46, 3.05it/s] 47%|████▋ | 176260/371472 [3:07:19<17:05:17, 3.17it/s] {'loss': 3.0279, 'learning_rate': 5.732131698592945e-07, 'epoch': 7.59} + 47%|████▋ | 176260/371472 [3:07:19<17:05:17, 3.17it/s] 47%|████▋ | 176261/371472 [3:07:19<16:55:24, 3.20it/s] 47%|████▋ | 176262/371472 [3:07:20<18:32:50, 2.92it/s] 47%|████▋ | 176263/371472 [3:07:20<17:49:47, 3.04it/s] 47%|████▋ | 176264/371472 [3:07:21<18:03:30, 3.00it/s] 47%|████▋ | 176265/371472 [3:07:21<17:17:59, 3.13it/s] 47%|████▋ | 176266/371472 [3:07:21<16:52:51, 3.21it/s] 47%|████▋ | 176267/371472 [3:07:21<17:05:12, 3.17it/s] 47%|████▋ | 176268/371472 [3:07:22<17:46:26, 3.05it/s] 47%|████▋ | 176269/371472 [3:07:22<16:49:42, 3.22it/s] 47%|████▋ | 176270/371472 [3:07:22<17:29:09, 3.10it/s] 47%|████▋ | 176271/371472 [3:07:23<17:11:09, 3.16it/s] 47%|████▋ | 176272/371472 [3:07:23<16:38:07, 3.26it/s] 47%|████▋ | 176273/371472 [3:07:23<16:08:32, 3.36it/s] 47%|████▋ | 176274/371472 [3:07:24<16:09:16, 3.36it/s] 47%|████▋ | 176275/371472 [3:07:24<16:46:58, 3.23it/s] 47%|████▋ | 176276/371472 [3:07:24<16:27:40, 3.29it/s] 47%|████▋ | 176277/371472 [3:07:25<16:36:42, 3.26it/s] 47%|████▋ | 176278/371472 [3:07:25<16:18:45, 3.32it/s] 47%|████▋ | 176279/371472 [3:07:25<15:41:29, 3.46it/s] 47%|████▋ | 176280/371472 [3:07:25<15:24:27, 3.52it/s] {'loss': 2.7119, 'learning_rate': 5.731646878838156e-07, 'epoch': 7.59} + 47%|████▋ | 176280/371472 [3:07:25<15:24:27, 3.52it/s] 47%|████▋ | 176281/371472 [3:07:26<15:14:44, 3.56it/s] 47%|████▋ | 176282/371472 [3:07:26<15:25:39, 3.51it/s] 47%|████▋ | 176283/371472 [3:07:26<15:42:19, 3.45it/s] 47%|████▋ | 176284/371472 [3:07:27<16:22:38, 3.31it/s] 47%|████▋ | 176285/371472 [3:07:27<16:49:37, 3.22it/s] 47%|████▋ | 176286/371472 [3:07:27<16:15:20, 3.34it/s] 47%|████▋ | 176287/371472 [3:07:28<18:57:32, 2.86it/s] 47%|████▋ | 176288/371472 [3:07:28<22:31:01, 2.41it/s] 47%|████▋ | 176289/371472 [3:07:29<21:27:34, 2.53it/s] 47%|████▋ | 176290/371472 [3:07:29<19:33:57, 2.77it/s] 47%|████▋ | 176291/371472 [3:07:29<18:20:20, 2.96it/s] 47%|████▋ | 176292/371472 [3:07:29<17:23:40, 3.12it/s] 47%|████▋ | 176293/371472 [3:07:30<16:31:00, 3.28it/s] 47%|████▋ | 176294/371472 [3:07:30<16:21:39, 3.31it/s] 47%|████▋ | 176295/371472 [3:07:30<15:55:30, 3.40it/s] 47%|████▋ | 176296/371472 [3:07:31<15:48:35, 3.43it/s] 47%|████▋ | 176297/371472 [3:07:31<15:42:57, 3.45it/s] 47%|████▋ | 176298/371472 [3:07:31<15:36:27, 3.47it/s] 47%|████▋ | 176299/371472 [3:07:31<16:10:39, 3.35it/s] 47%|████▋ | 176300/371472 [3:07:32<16:34:41, 3.27it/s] {'loss': 2.784, 'learning_rate': 5.731162059083367e-07, 'epoch': 7.59} + 47%|████▋ | 176300/371472 [3:07:32<16:34:41, 3.27it/s] 47%|████▋ | 176301/371472 [3:07:32<16:19:55, 3.32it/s] 47%|████▋ | 176302/371472 [3:07:32<16:46:47, 3.23it/s] 47%|████▋ | 176303/371472 [3:07:33<17:17:19, 3.14it/s] 47%|████▋ | 176304/371472 [3:07:33<16:42:27, 3.24it/s] 47%|████▋ | 176305/371472 [3:07:33<16:26:59, 3.30it/s] 47%|████▋ | 176306/371472 [3:07:34<16:01:21, 3.38it/s] 47%|████▋ | 176307/371472 [3:07:34<16:25:14, 3.30it/s] 47%|████▋ | 176308/371472 [3:07:34<16:10:00, 3.35it/s] 47%|████▋ | 176309/371472 [3:07:34<16:52:30, 3.21it/s] 47%|████▋ | 176310/371472 [3:07:35<17:05:23, 3.17it/s] 47%|████▋ | 176311/371472 [3:07:35<16:44:25, 3.24it/s] 47%|████▋ | 176312/371472 [3:07:35<16:39:26, 3.25it/s] 47%|████▋ | 176313/371472 [3:07:36<18:09:10, 2.99it/s] 47%|████▋ | 176314/371472 [3:07:36<18:00:58, 3.01it/s] 47%|████▋ | 176315/371472 [3:07:36<17:12:21, 3.15it/s] 47%|████▋ | 176316/371472 [3:07:37<16:33:59, 3.27it/s] 47%|████▋ | 176317/371472 [3:07:37<15:51:22, 3.42it/s] 47%|████▋ | 176318/371472 [3:07:37<15:43:34, 3.45it/s] 47%|████▋ | 176319/371472 [3:07:38<16:01:54, 3.38it/s] 47%|████▋ | 176320/371472 [3:07:38<15:52:02, 3.42it/s] {'loss': 2.8745, 'learning_rate': 5.73067723932858e-07, 'epoch': 7.59} + 47%|████▋ | 176320/371472 [3:07:38<15:52:02, 3.42it/s] 47%|████▋ | 176321/371472 [3:07:38<15:57:51, 3.40it/s] 47%|████▋ | 176322/371472 [3:07:38<15:56:36, 3.40it/s] 47%|████▋ | 176323/371472 [3:07:39<15:39:17, 3.46it/s] 47%|████▋ | 176324/371472 [3:07:39<15:43:30, 3.45it/s] 47%|████▋ | 176325/371472 [3:07:39<15:31:38, 3.49it/s] 47%|████▋ | 176326/371472 [3:07:40<15:47:48, 3.43it/s] 47%|████▋ | 176327/371472 [3:07:40<15:56:10, 3.40it/s] 47%|████▋ | 176328/371472 [3:07:40<15:59:15, 3.39it/s] 47%|████▋ | 176329/371472 [3:07:40<16:08:48, 3.36it/s] 47%|████▋ | 176330/371472 [3:07:41<15:53:27, 3.41it/s] 47%|████▋ | 176331/371472 [3:07:41<15:51:54, 3.42it/s] 47%|████▋ | 176332/371472 [3:07:41<15:47:35, 3.43it/s] 47%|████▋ | 176333/371472 [3:07:42<15:28:28, 3.50it/s] 47%|████▋ | 176334/371472 [3:07:42<15:27:17, 3.51it/s] 47%|████▋ | 176335/371472 [3:07:42<16:39:16, 3.25it/s] 47%|████▋ | 176336/371472 [3:07:43<16:29:00, 3.29it/s] 47%|████▋ | 176337/371472 [3:07:43<16:11:13, 3.35it/s] 47%|████▋ | 176338/371472 [3:07:43<17:07:17, 3.17it/s] 47%|████▋ | 176339/371472 [3:07:44<17:08:10, 3.16it/s] 47%|████▋ | 176340/371472 [3:07:44<16:22:22, 3.31it/s] {'loss': 2.9571, 'learning_rate': 5.73019241957379e-07, 'epoch': 7.6} + 47%|████▋ | 176340/371472 [3:07:44<16:22:22, 3.31it/s] 47%|████▋ | 176341/371472 [3:07:44<16:38:44, 3.26it/s] 47%|████▋ | 176342/371472 [3:07:44<16:32:26, 3.28it/s] 47%|████▋ | 176343/371472 [3:07:45<16:54:10, 3.21it/s] 47%|████▋ | 176344/371472 [3:07:45<17:00:06, 3.19it/s] 47%|████▋ | 176345/371472 [3:07:45<16:20:04, 3.32it/s] 47%|████▋ | 176346/371472 [3:07:46<16:01:35, 3.38it/s] 47%|████▋ | 176347/371472 [3:07:46<15:44:49, 3.44it/s] 47%|████▋ | 176348/371472 [3:07:46<16:19:19, 3.32it/s] 47%|████▋ | 176349/371472 [3:07:47<16:49:33, 3.22it/s] 47%|████▋ | 176350/371472 [3:07:47<16:49:55, 3.22it/s] 47%|████▋ | 176351/371472 [3:07:47<16:15:43, 3.33it/s] 47%|████▋ | 176352/371472 [3:07:48<22:08:36, 2.45it/s] 47%|████▋ | 176353/371472 [3:07:48<20:39:39, 2.62it/s] 47%|████▋ | 176354/371472 [3:07:48<19:27:30, 2.79it/s] 47%|████▋ | 176355/371472 [3:07:49<17:58:55, 3.01it/s] 47%|████▋ | 176356/371472 [3:07:49<17:35:20, 3.08it/s] 47%|████▋ | 176357/371472 [3:07:49<17:10:03, 3.16it/s] 47%|████▋ | 176358/371472 [3:07:50<18:11:52, 2.98it/s] 47%|████▋ | 176359/371472 [3:07:50<17:38:45, 3.07it/s] 47%|████▋ | 176360/371472 [3:07:50<16:48:28, 3.22it/s] {'loss': 2.873, 'learning_rate': 5.729707599819e-07, 'epoch': 7.6} + 47%|████▋ | 176360/371472 [3:07:50<16:48:28, 3.22it/s] 47%|████▋ | 176361/371472 [3:07:51<16:28:29, 3.29it/s] 47%|████▋ | 176362/371472 [3:07:51<16:13:48, 3.34it/s] 47%|████▋ | 176363/371472 [3:07:51<16:07:22, 3.36it/s] 47%|████▋ | 176364/371472 [3:07:51<15:55:35, 3.40it/s] 47%|████▋ | 176365/371472 [3:07:52<17:10:15, 3.16it/s] 47%|████▋ | 176366/371472 [3:07:52<16:53:47, 3.21it/s] 47%|████▋ | 176367/371472 [3:07:52<16:21:43, 3.31it/s] 47%|████▋ | 176368/371472 [3:07:53<16:17:32, 3.33it/s] 47%|████▋ | 176369/371472 [3:07:53<15:46:18, 3.44it/s] 47%|████▋ | 176370/371472 [3:07:53<15:33:14, 3.48it/s] 47%|████▋ | 176371/371472 [3:07:53<15:41:19, 3.45it/s] 47%|████▋ | 176372/371472 [3:07:54<15:25:41, 3.51it/s] 47%|████▋ | 176373/371472 [3:07:54<16:12:27, 3.34it/s] 47%|████▋ | 176374/371472 [3:07:54<16:00:12, 3.39it/s] 47%|████▋ | 176375/371472 [3:07:55<16:21:28, 3.31it/s] 47%|████▋ | 176376/371472 [3:07:55<16:28:41, 3.29it/s] 47%|████▋ | 176377/371472 [3:07:55<16:16:53, 3.33it/s] 47%|████▋ | 176378/371472 [3:07:56<15:55:42, 3.40it/s] 47%|████▋ | 176379/371472 [3:07:56<16:14:55, 3.34it/s] 47%|████▋ | 176380/371472 [3:07:56<16:12:08, 3.34it/s] {'loss': 2.7703, 'learning_rate': 5.729222780064211e-07, 'epoch': 7.6} + 47%|████▋ | 176380/371472 [3:07:56<16:12:08, 3.34it/s] 47%|████▋ | 176381/371472 [3:07:56<16:27:24, 3.29it/s] 47%|████▋ | 176382/371472 [3:07:57<16:55:27, 3.20it/s] 47%|████▋ | 176383/371472 [3:07:57<16:25:03, 3.30it/s] 47%|████▋ | 176384/371472 [3:07:57<16:55:05, 3.20it/s] 47%|████▋ | 176385/371472 [3:07:58<16:12:41, 3.34it/s] 47%|████▋ | 176386/371472 [3:07:58<15:36:47, 3.47it/s] 47%|████▋ | 176387/371472 [3:07:58<15:32:53, 3.49it/s] 47%|████▋ | 176388/371472 [3:07:59<17:44:46, 3.05it/s] 47%|████▋ | 176389/371472 [3:07:59<17:24:21, 3.11it/s] 47%|████▋ | 176390/371472 [3:07:59<17:24:00, 3.11it/s] 47%|████▋ | 176391/371472 [3:08:00<17:30:48, 3.09it/s] 47%|████▋ | 176392/371472 [3:08:00<17:11:43, 3.15it/s] 47%|████▋ | 176393/371472 [3:08:00<17:02:59, 3.18it/s] 47%|████▋ | 176394/371472 [3:08:01<18:16:00, 2.97it/s] 47%|████▋ | 176395/371472 [3:08:01<17:26:48, 3.11it/s] 47%|████▋ | 176396/371472 [3:08:01<17:09:05, 3.16it/s] 47%|████▋ | 176397/371472 [3:08:02<19:41:18, 2.75it/s] 47%|████▋ | 176398/371472 [3:08:02<18:14:15, 2.97it/s] 47%|████▋ | 176399/371472 [3:08:02<17:57:56, 3.02it/s] 47%|████▋ | 176400/371472 [3:08:03<17:22:06, 3.12it/s] {'loss': 2.7918, 'learning_rate': 5.728737960309423e-07, 'epoch': 7.6} + 47%|████▋ | 176400/371472 [3:08:03<17:22:06, 3.12it/s] 47%|████▋ | 176401/371472 [3:08:03<16:55:34, 3.20it/s] 47%|████▋ | 176402/371472 [3:08:03<16:19:16, 3.32it/s] 47%|████▋ | 176403/371472 [3:08:03<16:06:49, 3.36it/s] 47%|████▋ | 176404/371472 [3:08:04<16:15:17, 3.33it/s] 47%|████▋ | 176405/371472 [3:08:04<16:20:23, 3.32it/s] 47%|████▋ | 176406/371472 [3:08:04<16:02:52, 3.38it/s] 47%|████▋ | 176407/371472 [3:08:05<16:19:21, 3.32it/s] 47%|████▋ | 176408/371472 [3:08:05<15:55:26, 3.40it/s] 47%|████▋ | 176409/371472 [3:08:05<16:03:19, 3.37it/s] 47%|████▋ | 176410/371472 [3:08:06<16:12:37, 3.34it/s] 47%|████▋ | 176411/371472 [3:08:06<15:55:39, 3.40it/s] 47%|████▋ | 176412/371472 [3:08:06<15:49:43, 3.42it/s] 47%|████▋ | 176413/371472 [3:08:06<15:27:34, 3.50it/s] 47%|████▋ | 176414/371472 [3:08:07<16:21:14, 3.31it/s] 47%|████▋ | 176415/371472 [3:08:07<16:40:54, 3.25it/s] 47%|████▋ | 176416/371472 [3:08:07<16:56:26, 3.20it/s] 47%|████▋ | 176417/371472 [3:08:08<16:40:20, 3.25it/s] 47%|████▋ | 176418/371472 [3:08:08<16:37:09, 3.26it/s] 47%|████▋ | 176419/371472 [3:08:08<16:44:01, 3.24it/s] 47%|████▋ | 176420/371472 [3:08:09<16:51:45, 3.21it/s] {'loss': 2.8746, 'learning_rate': 5.728253140554634e-07, 'epoch': 7.6} + 47%|████▋ | 176420/371472 [3:08:09<16:51:45, 3.21it/s] 47%|████▋ | 176421/371472 [3:08:09<17:02:31, 3.18it/s] 47%|████▋ | 176422/371472 [3:08:09<16:51:21, 3.21it/s] 47%|████▋ | 176423/371472 [3:08:10<17:08:23, 3.16it/s] 47%|████▋ | 176424/371472 [3:08:10<17:06:03, 3.17it/s] 47%|████▋ | 176425/371472 [3:08:10<16:30:58, 3.28it/s] 47%|████▋ | 176426/371472 [3:08:10<16:41:47, 3.24it/s] 47%|████▋ | 176427/371472 [3:08:11<16:19:03, 3.32it/s] 47%|████▋ | 176428/371472 [3:08:11<15:54:37, 3.41it/s] 47%|████▋ | 176429/371472 [3:08:11<15:38:59, 3.46it/s] 47%|████▋ | 176430/371472 [3:08:12<15:36:30, 3.47it/s] 47%|████▋ | 176431/371472 [3:08:12<15:44:01, 3.44it/s] 47%|████▋ | 176432/371472 [3:08:12<15:44:09, 3.44it/s] 47%|████▋ | 176433/371472 [3:08:12<15:33:05, 3.48it/s] 47%|████▋ | 176434/371472 [3:08:13<15:38:56, 3.46it/s] 47%|████▋ | 176435/371472 [3:08:13<15:34:33, 3.48it/s] 47%|████▋ | 176436/371472 [3:08:13<15:24:35, 3.52it/s] 47%|████▋ | 176437/371472 [3:08:14<15:16:55, 3.55it/s] 47%|████▋ | 176438/371472 [3:08:14<15:06:03, 3.59it/s] 47%|████▋ | 176439/371472 [3:08:14<15:02:28, 3.60it/s] 47%|████▋ | 176440/371472 [3:08:14<15:17:11, 3.54it/s] {'loss': 3.0421, 'learning_rate': 5.727768320799844e-07, 'epoch': 7.6} + 47%|████▋ | 176440/371472 [3:08:14<15:17:11, 3.54it/s] 47%|████▋ | 176441/371472 [3:08:15<15:13:27, 3.56it/s] 47%|████▋ | 176442/371472 [3:08:15<15:47:02, 3.43it/s] 47%|████▋ | 176443/371472 [3:08:15<16:00:59, 3.38it/s] 47%|████▋ | 176444/371472 [3:08:16<17:14:51, 3.14it/s] 47%|████▋ | 176445/371472 [3:08:16<16:52:32, 3.21it/s] 47%|████▋ | 176446/371472 [3:08:16<17:04:35, 3.17it/s] 47%|████▋ | 176447/371472 [3:08:17<17:05:31, 3.17it/s] 47%|████▋ | 176448/371472 [3:08:17<16:55:01, 3.20it/s] 47%|████▋ | 176449/371472 [3:08:17<16:56:30, 3.20it/s] 48%|████▊ | 176450/371472 [3:08:18<17:09:43, 3.16it/s] 48%|████▊ | 176451/371472 [3:08:18<16:42:49, 3.24it/s] 48%|████▊ | 176452/371472 [3:08:18<16:25:31, 3.30it/s] 48%|████▊ | 176453/371472 [3:08:18<16:05:14, 3.37it/s] 48%|████▊ | 176454/371472 [3:08:19<16:29:33, 3.28it/s] 48%|████▊ | 176455/371472 [3:08:19<16:38:56, 3.25it/s] 48%|████▊ | 176456/371472 [3:08:19<16:34:22, 3.27it/s] 48%|████▊ | 176457/371472 [3:08:20<16:38:31, 3.26it/s] 48%|████▊ | 176458/371472 [3:08:20<16:56:23, 3.20it/s] 48%|████▊ | 176459/371472 [3:08:20<16:38:13, 3.26it/s] 48%|████▊ | 176460/371472 [3:08:21<16:29:22, 3.29it/s] {'loss': 2.8362, 'learning_rate': 5.727283501045056e-07, 'epoch': 7.6} + 48%|████▊ | 176460/371472 [3:08:21<16:29:22, 3.29it/s] 48%|████▊ | 176461/371472 [3:08:21<16:21:45, 3.31it/s] 48%|████▊ | 176462/371472 [3:08:21<16:42:00, 3.24it/s] 48%|████▊ | 176463/371472 [3:08:22<16:18:39, 3.32it/s] 48%|████▊ | 176464/371472 [3:08:22<16:32:45, 3.27it/s] 48%|████▊ | 176465/371472 [3:08:22<16:08:27, 3.36it/s] 48%|████▊ | 176466/371472 [3:08:22<16:13:44, 3.34it/s] 48%|████▊ | 176467/371472 [3:08:23<17:25:02, 3.11it/s] 48%|████▊ | 176468/371472 [3:08:23<17:16:35, 3.14it/s] 48%|████▊ | 176469/371472 [3:08:23<17:42:44, 3.06it/s] 48%|████▊ | 176470/371472 [3:08:24<17:18:21, 3.13it/s] 48%|████▊ | 176471/371472 [3:08:24<16:49:02, 3.22it/s] 48%|████▊ | 176472/371472 [3:08:24<16:41:05, 3.25it/s] 48%|████▊ | 176473/371472 [3:08:25<16:18:22, 3.32it/s] 48%|████▊ | 176474/371472 [3:08:25<16:43:58, 3.24it/s] 48%|████▊ | 176475/371472 [3:08:25<16:54:16, 3.20it/s] 48%|████▊ | 176476/371472 [3:08:26<16:45:24, 3.23it/s] 48%|████▊ | 176477/371472 [3:08:26<16:28:01, 3.29it/s] 48%|████▊ | 176478/371472 [3:08:26<16:41:34, 3.24it/s] 48%|████▊ | 176479/371472 [3:08:26<16:20:19, 3.32it/s] 48%|████▊ | 176480/371472 [3:08:27<15:58:23, 3.39it/s] {'loss': 2.9434, 'learning_rate': 5.726798681290267e-07, 'epoch': 7.6} + 48%|████▊ | 176480/371472 [3:08:27<15:58:23, 3.39it/s] 48%|████▊ | 176481/371472 [3:08:27<16:11:17, 3.35it/s] 48%|████▊ | 176482/371472 [3:08:27<16:08:19, 3.36it/s] 48%|████▊ | 176483/371472 [3:08:28<16:41:55, 3.24it/s] 48%|████▊ | 176484/371472 [3:08:28<16:06:09, 3.36it/s] 48%|████▊ | 176485/371472 [3:08:28<15:45:54, 3.44it/s] 48%|████▊ | 176486/371472 [3:08:29<15:40:11, 3.46it/s] 48%|████▊ | 176487/371472 [3:08:29<15:28:33, 3.50it/s] 48%|████▊ | 176488/371472 [3:08:29<15:41:38, 3.45it/s] 48%|████▊ | 176489/371472 [3:08:29<15:56:44, 3.40it/s] 48%|████▊ | 176490/371472 [3:08:30<15:54:54, 3.40it/s] 48%|████▊ | 176491/371472 [3:08:30<15:47:39, 3.43it/s] 48%|████▊ | 176492/371472 [3:08:30<15:36:11, 3.47it/s] 48%|████▊ | 176493/371472 [3:08:31<16:38:28, 3.25it/s] 48%|████▊ | 176494/371472 [3:08:31<16:04:50, 3.37it/s] 48%|████▊ | 176495/371472 [3:08:31<15:58:46, 3.39it/s] 48%|████▊ | 176496/371472 [3:08:31<16:29:02, 3.29it/s] 48%|████▊ | 176497/371472 [3:08:32<16:07:15, 3.36it/s] 48%|████▊ | 176498/371472 [3:08:32<16:05:06, 3.37it/s] 48%|████▊ | 176499/371472 [3:08:32<15:56:21, 3.40it/s] 48%|████▊ | 176500/371472 [3:08:33<16:04:29, 3.37it/s] {'loss': 2.7924, 'learning_rate': 5.726313861535478e-07, 'epoch': 7.6} + 48%|████▊ | 176500/371472 [3:08:33<16:04:29, 3.37it/s] 48%|████▊ | 176501/371472 [3:08:33<15:37:24, 3.47it/s] 48%|████▊ | 176502/371472 [3:08:33<15:35:58, 3.47it/s] 48%|████▊ | 176503/371472 [3:08:33<15:20:53, 3.53it/s] 48%|████▊ | 176504/371472 [3:08:34<15:26:22, 3.51it/s] 48%|████▊ | 176505/371472 [3:08:34<16:14:34, 3.33it/s] 48%|████▊ | 176506/371472 [3:08:34<17:09:35, 3.16it/s] 48%|████▊ | 176507/371472 [3:08:35<16:37:52, 3.26it/s] 48%|████▊ | 176508/371472 [3:08:35<16:21:26, 3.31it/s] 48%|████▊ | 176509/371472 [3:08:35<16:12:16, 3.34it/s] 48%|████▊ | 176510/371472 [3:08:36<16:46:37, 3.23it/s] 48%|████▊ | 176511/371472 [3:08:36<17:21:52, 3.12it/s] 48%|████▊ | 176512/371472 [3:08:36<17:10:10, 3.15it/s] 48%|████▊ | 176513/371472 [3:08:37<16:18:05, 3.32it/s] 48%|████▊ | 176514/371472 [3:08:37<15:46:15, 3.43it/s] 48%|████▊ | 176515/371472 [3:08:37<15:59:38, 3.39it/s] 48%|████▊ | 176516/371472 [3:08:38<16:46:36, 3.23it/s] 48%|████▊ | 176517/371472 [3:08:38<16:37:42, 3.26it/s] 48%|████▊ | 176518/371472 [3:08:38<16:15:46, 3.33it/s] 48%|████▊ | 176519/371472 [3:08:38<16:16:05, 3.33it/s] 48%|████▊ | 176520/371472 [3:08:39<16:13:41, 3.34it/s] {'loss': 2.8914, 'learning_rate': 5.725829041780688e-07, 'epoch': 7.6} + 48%|████▊ | 176520/371472 [3:08:39<16:13:41, 3.34it/s] 48%|████▊ | 176521/371472 [3:08:39<16:16:10, 3.33it/s] 48%|████▊ | 176522/371472 [3:08:39<17:49:48, 3.04it/s] 48%|████▊ | 176523/371472 [3:08:40<17:10:47, 3.15it/s] 48%|████▊ | 176524/371472 [3:08:40<17:15:13, 3.14it/s] 48%|████▊ | 176525/371472 [3:08:40<16:40:11, 3.25it/s] 48%|████▊ | 176526/371472 [3:08:41<16:15:14, 3.33it/s] 48%|████▊ | 176527/371472 [3:08:41<16:01:52, 3.38it/s] 48%|████▊ | 176528/371472 [3:08:41<15:35:56, 3.47it/s] 48%|████▊ | 176529/371472 [3:08:41<15:26:54, 3.51it/s] 48%|████▊ | 176530/371472 [3:08:42<15:14:23, 3.55it/s] 48%|████▊ | 176531/371472 [3:08:42<15:19:47, 3.53it/s] 48%|████▊ | 176532/371472 [3:08:42<15:06:54, 3.58it/s] 48%|████▊ | 176533/371472 [3:08:43<15:17:57, 3.54it/s] 48%|████▊ | 176534/371472 [3:08:43<15:24:12, 3.52it/s] 48%|████▊ | 176535/371472 [3:08:43<15:36:07, 3.47it/s] 48%|████▊ | 176536/371472 [3:08:43<15:45:12, 3.44it/s] 48%|████▊ | 176537/371472 [3:08:44<15:54:41, 3.40it/s] 48%|████▊ | 176538/371472 [3:08:44<15:38:08, 3.46it/s] 48%|████▊ | 176539/371472 [3:08:44<16:10:20, 3.35it/s] 48%|████▊ | 176540/371472 [3:08:45<16:33:51, 3.27it/s] {'loss': 2.8746, 'learning_rate': 5.7253442220259e-07, 'epoch': 7.6} + 48%|████▊ | 176540/371472 [3:08:45<16:33:51, 3.27it/s] 48%|████▊ | 176541/371472 [3:08:45<15:58:32, 3.39it/s] 48%|████▊ | 176542/371472 [3:08:45<15:39:14, 3.46it/s] 48%|████▊ | 176543/371472 [3:08:45<15:45:17, 3.44it/s] 48%|████▊ | 176544/371472 [3:08:46<15:37:14, 3.47it/s] 48%|████▊ | 176545/371472 [3:08:46<15:33:15, 3.48it/s] 48%|████▊ | 176546/371472 [3:08:46<15:49:33, 3.42it/s] 48%|████▊ | 176547/371472 [3:08:47<15:50:29, 3.42it/s] 48%|████▊ | 176548/371472 [3:08:47<16:07:54, 3.36it/s] 48%|████▊ | 176549/371472 [3:08:47<16:18:11, 3.32it/s] 48%|████▊ | 176550/371472 [3:08:48<16:48:35, 3.22it/s] 48%|████▊ | 176551/371472 [3:08:48<16:41:48, 3.24it/s] 48%|████▊ | 176552/371472 [3:08:48<16:14:47, 3.33it/s] 48%|████▊ | 176553/371472 [3:08:48<16:23:15, 3.30it/s] 48%|████▊ | 176554/371472 [3:08:49<16:03:43, 3.37it/s] 48%|████▊ | 176555/371472 [3:08:49<15:52:01, 3.41it/s] 48%|████▊ | 176556/371472 [3:08:49<15:31:22, 3.49it/s] 48%|████▊ | 176557/371472 [3:08:50<16:10:52, 3.35it/s] 48%|████▊ | 176558/371472 [3:08:50<15:45:50, 3.43it/s] 48%|████▊ | 176559/371472 [3:08:50<15:23:34, 3.52it/s] 48%|████▊ | 176560/371472 [3:08:51<16:28:14, 3.29it/s] {'loss': 2.9561, 'learning_rate': 5.724859402271112e-07, 'epoch': 7.6} + 48%|████▊ | 176560/371472 [3:08:51<16:28:14, 3.29it/s] 48%|████▊ | 176561/371472 [3:08:51<16:11:20, 3.34it/s] 48%|████▊ | 176562/371472 [3:08:51<16:05:56, 3.36it/s] 48%|████▊ | 176563/371472 [3:08:51<15:25:04, 3.51it/s] 48%|████▊ | 176564/371472 [3:08:52<15:46:54, 3.43it/s] 48%|████▊ | 176565/371472 [3:08:52<15:15:24, 3.55it/s] 48%|████▊ | 176566/371472 [3:08:52<15:24:30, 3.51it/s] 48%|████▊ | 176567/371472 [3:08:53<16:01:48, 3.38it/s] 48%|████▊ | 176568/371472 [3:08:53<16:00:48, 3.38it/s] 48%|████▊ | 176569/371472 [3:08:53<16:16:08, 3.33it/s] 48%|████▊ | 176570/371472 [3:08:53<15:54:08, 3.40it/s] 48%|████▊ | 176571/371472 [3:08:54<15:55:57, 3.40it/s] 48%|████▊ | 176572/371472 [3:08:54<15:33:24, 3.48it/s] 48%|████▊ | 176573/371472 [3:08:54<15:26:37, 3.51it/s] 48%|████▊ | 176574/371472 [3:08:55<15:24:07, 3.51it/s] 48%|████▊ | 176575/371472 [3:08:55<15:20:02, 3.53it/s] 48%|████▊ | 176576/371472 [3:08:55<16:25:47, 3.30it/s] 48%|████▊ | 176577/371472 [3:08:55<16:07:38, 3.36it/s] 48%|████▊ | 176578/371472 [3:08:56<16:31:52, 3.27it/s] 48%|████▊ | 176579/371472 [3:08:56<16:21:11, 3.31it/s] 48%|████▊ | 176580/371472 [3:08:56<16:29:11, 3.28it/s] {'loss': 2.8022, 'learning_rate': 5.724374582516323e-07, 'epoch': 7.61} + 48%|████▊ | 176580/371472 [3:08:56<16:29:11, 3.28it/s] 48%|████▊ | 176581/371472 [3:08:57<16:19:28, 3.32it/s] 48%|████▊ | 176582/371472 [3:08:57<15:39:28, 3.46it/s] 48%|████▊ | 176583/371472 [3:08:57<15:39:56, 3.46it/s] 48%|████▊ | 176584/371472 [3:08:58<17:28:13, 3.10it/s] 48%|████▊ | 176585/371472 [3:08:58<18:02:21, 3.00it/s] 48%|████▊ | 176586/371472 [3:08:58<18:25:21, 2.94it/s] 48%|████▊ | 176587/371472 [3:08:59<17:31:11, 3.09it/s] 48%|████▊ | 176588/371472 [3:08:59<16:52:20, 3.21it/s] 48%|████▊ | 176589/371472 [3:08:59<17:26:40, 3.10it/s] 48%|████▊ | 176590/371472 [3:09:00<16:52:21, 3.21it/s] 48%|████▊ | 176591/371472 [3:09:00<16:31:19, 3.28it/s] 48%|████▊ | 176592/371472 [3:09:00<16:42:42, 3.24it/s] 48%|████▊ | 176593/371472 [3:09:00<16:35:13, 3.26it/s] 48%|████▊ | 176594/371472 [3:09:01<16:37:48, 3.26it/s] 48%|████▊ | 176595/371472 [3:09:01<16:10:19, 3.35it/s] 48%|████▊ | 176596/371472 [3:09:01<15:50:53, 3.42it/s] 48%|████▊ | 176597/371472 [3:09:02<15:39:11, 3.46it/s] 48%|████▊ | 176598/371472 [3:09:02<16:12:19, 3.34it/s] 48%|████▊ | 176599/371472 [3:09:02<15:53:36, 3.41it/s] 48%|████▊ | 176600/371472 [3:09:03<15:52:55, 3.41it/s] {'loss': 2.9256, 'learning_rate': 5.723889762761533e-07, 'epoch': 7.61} + 48%|████▊ | 176600/371472 [3:09:03<15:52:55, 3.41it/s] 48%|████▊ | 176601/371472 [3:09:03<15:34:03, 3.48it/s] 48%|████▊ | 176602/371472 [3:09:03<15:37:33, 3.46it/s] 48%|████▊ | 176603/371472 [3:09:03<15:45:29, 3.44it/s] 48%|████▊ | 176604/371472 [3:09:04<15:33:54, 3.48it/s] 48%|████▊ | 176605/371472 [3:09:04<15:25:24, 3.51it/s] 48%|████▊ | 176606/371472 [3:09:04<15:34:35, 3.48it/s] 48%|████▊ | 176607/371472 [3:09:05<15:37:00, 3.47it/s] 48%|████▊ | 176608/371472 [3:09:05<15:51:52, 3.41it/s] 48%|████▊ | 176609/371472 [3:09:05<15:40:04, 3.45it/s] 48%|████▊ | 176610/371472 [3:09:05<15:42:44, 3.44it/s] 48%|████▊ | 176611/371472 [3:09:06<16:00:08, 3.38it/s] 48%|████▊ | 176612/371472 [3:09:06<16:00:47, 3.38it/s] 48%|████▊ | 176613/371472 [3:09:06<17:26:29, 3.10it/s] 48%|████▊ | 176614/371472 [3:09:07<16:59:58, 3.18it/s] 48%|████▊ | 176615/371472 [3:09:07<17:18:02, 3.13it/s] 48%|████▊ | 176616/371472 [3:09:07<17:05:34, 3.17it/s] 48%|████▊ | 176617/371472 [3:09:08<16:47:47, 3.22it/s] 48%|████▊ | 176618/371472 [3:09:08<18:42:35, 2.89it/s] 48%|████▊ | 176619/371472 [3:09:08<18:02:03, 3.00it/s] 48%|████▊ | 176620/371472 [3:09:09<17:22:39, 3.11it/s] {'loss': 2.8818, 'learning_rate': 5.723404943006744e-07, 'epoch': 7.61} + 48%|████▊ | 176620/371472 [3:09:09<17:22:39, 3.11it/s] 48%|████▊ | 176621/371472 [3:09:09<17:02:37, 3.18it/s] 48%|████▊ | 176622/371472 [3:09:09<16:53:14, 3.21it/s] 48%|████▊ | 176623/371472 [3:09:10<16:41:14, 3.24it/s] 48%|████▊ | 176624/371472 [3:09:10<16:55:16, 3.20it/s] 48%|████▊ | 176625/371472 [3:09:10<17:48:34, 3.04it/s] 48%|████▊ | 176626/371472 [3:09:11<17:16:51, 3.13it/s] 48%|████▊ | 176627/371472 [3:09:11<16:53:14, 3.20it/s] 48%|████▊ | 176628/371472 [3:09:11<17:05:26, 3.17it/s] 48%|████▊ | 176629/371472 [3:09:11<16:49:27, 3.22it/s] 48%|████▊ | 176630/371472 [3:09:12<16:43:55, 3.23it/s] 48%|████▊ | 176631/371472 [3:09:12<16:20:46, 3.31it/s] 48%|████▊ | 176632/371472 [3:09:12<16:00:51, 3.38it/s] 48%|████▊ | 176633/371472 [3:09:13<15:49:20, 3.42it/s] 48%|████▊ | 176634/371472 [3:09:13<15:23:27, 3.52it/s] 48%|████▊ | 176635/371472 [3:09:13<15:35:11, 3.47it/s] 48%|████▊ | 176636/371472 [3:09:14<16:20:35, 3.31it/s] 48%|████▊ | 176637/371472 [3:09:14<16:42:22, 3.24it/s] 48%|████▊ | 176638/371472 [3:09:14<16:30:13, 3.28it/s] 48%|████▊ | 176639/371472 [3:09:14<16:30:12, 3.28it/s] 48%|████▊ | 176640/371472 [3:09:15<16:11:15, 3.34it/s] {'loss': 2.8612, 'learning_rate': 5.722920123251956e-07, 'epoch': 7.61} + 48%|████▊ | 176640/371472 [3:09:15<16:11:15, 3.34it/s] 48%|████▊ | 176641/371472 [3:09:15<16:18:24, 3.32it/s] 48%|████▊ | 176642/371472 [3:09:15<16:12:09, 3.34it/s] 48%|████▊ | 176643/371472 [3:09:16<16:27:15, 3.29it/s] 48%|████▊ | 176644/371472 [3:09:16<16:08:53, 3.35it/s] 48%|████▊ | 176645/371472 [3:09:16<15:48:10, 3.42it/s] 48%|████▊ | 176646/371472 [3:09:17<16:35:34, 3.26it/s] 48%|████▊ | 176647/371472 [3:09:17<16:06:13, 3.36it/s] 48%|████▊ | 176648/371472 [3:09:17<16:11:16, 3.34it/s] 48%|████▊ | 176649/371472 [3:09:17<16:24:20, 3.30it/s] 48%|████▊ | 176650/371472 [3:09:18<16:01:09, 3.38it/s] 48%|████▊ | 176651/371472 [3:09:18<15:56:09, 3.40it/s] 48%|████▊ | 176652/371472 [3:09:18<16:17:07, 3.32it/s] 48%|████▊ | 176653/371472 [3:09:19<16:33:37, 3.27it/s] 48%|████▊ | 176654/371472 [3:09:19<16:39:46, 3.25it/s] 48%|████▊ | 176655/371472 [3:09:19<16:21:38, 3.31it/s] 48%|████▊ | 176656/371472 [3:09:20<16:22:54, 3.30it/s] 48%|████▊ | 176657/371472 [3:09:20<15:59:02, 3.39it/s] 48%|████▊ | 176658/371472 [3:09:20<15:35:45, 3.47it/s] 48%|████▊ | 176659/371472 [3:09:20<15:29:40, 3.49it/s] 48%|████▊ | 176660/371472 [3:09:21<15:16:24, 3.54it/s] {'loss': 3.0052, 'learning_rate': 5.722435303497165e-07, 'epoch': 7.61} + 48%|████▊ | 176660/371472 [3:09:21<15:16:24, 3.54it/s] 48%|████▊ | 176661/371472 [3:09:21<15:54:14, 3.40it/s] 48%|████▊ | 176662/371472 [3:09:21<15:53:33, 3.40it/s] 48%|████▊ | 176663/371472 [3:09:22<16:22:16, 3.31it/s] 48%|████▊ | 176664/371472 [3:09:22<15:50:22, 3.42it/s] 48%|████▊ | 176665/371472 [3:09:22<15:47:21, 3.43it/s] 48%|████▊ | 176666/371472 [3:09:23<17:55:42, 3.02it/s] 48%|████▊ | 176667/371472 [3:09:23<17:00:01, 3.18it/s] 48%|████▊ | 176668/371472 [3:09:23<16:38:45, 3.25it/s] 48%|████▊ | 176669/371472 [3:09:23<16:31:08, 3.28it/s] 48%|████▊ | 176670/371472 [3:09:24<16:11:32, 3.34it/s] 48%|████▊ | 176671/371472 [3:09:24<15:48:28, 3.42it/s] 48%|████▊ | 176672/371472 [3:09:24<15:39:08, 3.46it/s] 48%|████▊ | 176673/371472 [3:09:25<15:41:52, 3.45it/s] 48%|████▊ | 176674/371472 [3:09:25<15:28:48, 3.50it/s] 48%|████▊ | 176675/371472 [3:09:25<15:42:39, 3.44it/s] 48%|████▊ | 176676/371472 [3:09:25<15:24:31, 3.51it/s] 48%|████▊ | 176677/371472 [3:09:26<16:05:19, 3.36it/s] 48%|████▊ | 176678/371472 [3:09:26<17:08:45, 3.16it/s] 48%|████▊ | 176679/371472 [3:09:26<16:49:18, 3.22it/s] 48%|████▊ | 176680/371472 [3:09:27<16:40:43, 3.24it/s] {'loss': 2.7427, 'learning_rate': 5.721950483742377e-07, 'epoch': 7.61} + 48%|████▊ | 176680/371472 [3:09:27<16:40:43, 3.24it/s] 48%|████▊ | 176681/371472 [3:09:27<16:40:46, 3.24it/s] 48%|████▊ | 176682/371472 [3:09:27<17:31:22, 3.09it/s] 48%|████▊ | 176683/371472 [3:09:28<17:53:04, 3.03it/s] 48%|████▊ | 176684/371472 [3:09:28<18:20:35, 2.95it/s] 48%|████▊ | 176685/371472 [3:09:28<17:46:31, 3.04it/s] 48%|████▊ | 176686/371472 [3:09:29<17:27:53, 3.10it/s] 48%|████▊ | 176687/371472 [3:09:29<16:48:09, 3.22it/s] 48%|████▊ | 176688/371472 [3:09:29<16:40:32, 3.24it/s] 48%|████▊ | 176689/371472 [3:09:30<16:25:44, 3.29it/s] 48%|████▊ | 176690/371472 [3:09:30<16:10:49, 3.34it/s] 48%|████▊ | 176691/371472 [3:09:30<15:55:39, 3.40it/s] 48%|████▊ | 176692/371472 [3:09:31<17:14:41, 3.14it/s] 48%|████▊ | 176693/371472 [3:09:31<16:34:12, 3.27it/s] 48%|████▊ | 176694/371472 [3:09:31<16:12:45, 3.34it/s] 48%|████▊ | 176695/371472 [3:09:31<16:42:32, 3.24it/s] 48%|████▊ | 176696/371472 [3:09:32<16:52:36, 3.21it/s] 48%|████▊ | 176697/371472 [3:09:32<16:38:11, 3.25it/s] 48%|████▊ | 176698/371472 [3:09:32<16:41:23, 3.24it/s] 48%|████▊ | 176699/371472 [3:09:33<16:12:22, 3.34it/s] 48%|████▊ | 176700/371472 [3:09:33<16:52:41, 3.21it/s] {'loss': 2.946, 'learning_rate': 5.721465663987589e-07, 'epoch': 7.61} + 48%|████▊ | 176700/371472 [3:09:33<16:52:41, 3.21it/s] 48%|████▊ | 176701/371472 [3:09:33<16:21:40, 3.31it/s] 48%|████▊ | 176702/371472 [3:09:34<16:24:08, 3.30it/s] 48%|████▊ | 176703/371472 [3:09:34<16:45:37, 3.23it/s] 48%|████▊ | 176704/371472 [3:09:34<16:31:13, 3.27it/s] 48%|████▊ | 176705/371472 [3:09:34<16:23:07, 3.30it/s] 48%|████▊ | 176706/371472 [3:09:35<16:08:15, 3.35it/s] 48%|████▊ | 176707/371472 [3:09:35<15:52:14, 3.41it/s] 48%|████▊ | 176708/371472 [3:09:35<16:06:45, 3.36it/s] 48%|████▊ | 176709/371472 [3:09:36<15:58:23, 3.39it/s] 48%|████▊ | 176710/371472 [3:09:36<15:27:10, 3.50it/s] 48%|████▊ | 176711/371472 [3:09:36<15:52:58, 3.41it/s] 48%|████▊ | 176712/371472 [3:09:36<15:47:52, 3.42it/s] 48%|████▊ | 176713/371472 [3:09:37<15:32:11, 3.48it/s] 48%|████▊ | 176714/371472 [3:09:37<15:25:02, 3.51it/s] 48%|████▊ | 176715/371472 [3:09:37<16:23:02, 3.30it/s] 48%|████▊ | 176716/371472 [3:09:38<16:11:47, 3.34it/s] 48%|████▊ | 176717/371472 [3:09:38<16:28:26, 3.28it/s] 48%|████▊ | 176718/371472 [3:09:38<17:14:15, 3.14it/s] 48%|████▊ | 176719/371472 [3:09:39<16:56:37, 3.19it/s] 48%|████▊ | 176720/371472 [3:09:39<16:32:27, 3.27it/s] {'loss': 2.9249, 'learning_rate': 5.7209808442328e-07, 'epoch': 7.61} + 48%|████▊ | 176720/371472 [3:09:39<16:32:27, 3.27it/s] 48%|████▊ | 176721/371472 [3:09:39<16:24:02, 3.30it/s] 48%|████▊ | 176722/371472 [3:09:40<15:56:19, 3.39it/s] 48%|████▊ | 176723/371472 [3:09:40<15:28:40, 3.50it/s] 48%|████▊ | 176724/371472 [3:09:40<16:05:29, 3.36it/s] 48%|████▊ | 176725/371472 [3:09:40<16:07:50, 3.35it/s] 48%|████▊ | 176726/371472 [3:09:41<15:52:27, 3.41it/s] 48%|████▊ | 176727/371472 [3:09:41<16:22:21, 3.30it/s] 48%|████▊ | 176728/371472 [3:09:41<15:55:01, 3.40it/s] 48%|████▊ | 176729/371472 [3:09:42<16:31:07, 3.27it/s] 48%|████▊ | 176730/371472 [3:09:42<16:32:14, 3.27it/s] 48%|████▊ | 176731/371472 [3:09:42<15:59:40, 3.38it/s] 48%|████▊ | 176732/371472 [3:09:42<15:36:52, 3.46it/s] 48%|████▊ | 176733/371472 [3:09:43<15:46:22, 3.43it/s] 48%|████▊ | 176734/371472 [3:09:43<18:14:11, 2.97it/s] 48%|████▊ | 176735/371472 [3:09:43<17:20:28, 3.12it/s] 48%|████▊ | 176736/371472 [3:09:44<17:09:36, 3.15it/s] 48%|████▊ | 176737/371472 [3:09:44<16:35:54, 3.26it/s] 48%|████▊ | 176738/371472 [3:09:44<16:25:00, 3.29it/s] 48%|████▊ | 176739/371472 [3:09:45<16:10:23, 3.34it/s] 48%|████▊ | 176740/371472 [3:09:45<15:49:16, 3.42it/s] {'loss': 2.7948, 'learning_rate': 5.72049602447801e-07, 'epoch': 7.61} + 48%|████▊ | 176740/371472 [3:09:45<15:49:16, 3.42it/s] 48%|████▊ | 176741/371472 [3:09:45<16:36:25, 3.26it/s] 48%|████▊ | 176742/371472 [3:09:46<17:09:04, 3.15it/s] 48%|████▊ | 176743/371472 [3:09:46<17:09:46, 3.15it/s] 48%|████▊ | 176744/371472 [3:09:46<16:59:00, 3.18it/s] 48%|████▊ | 176745/371472 [3:09:47<17:12:16, 3.14it/s] 48%|████▊ | 176746/371472 [3:09:47<17:02:50, 3.17it/s] 48%|████▊ | 176747/371472 [3:09:47<17:09:52, 3.15it/s] 48%|████▊ | 176748/371472 [3:09:48<17:04:25, 3.17it/s] 48%|████▊ | 176749/371472 [3:09:48<16:43:13, 3.23it/s] 48%|████▊ | 176750/371472 [3:09:48<16:28:56, 3.28it/s] 48%|████▊ | 176751/371472 [3:09:48<16:16:26, 3.32it/s] 48%|████▊ | 176752/371472 [3:09:49<15:48:02, 3.42it/s] 48%|████▊ | 176753/371472 [3:09:49<15:22:38, 3.52it/s] 48%|████▊ | 176754/371472 [3:09:49<15:49:02, 3.42it/s] 48%|████▊ | 176755/371472 [3:09:50<17:08:59, 3.15it/s] 48%|████▊ | 176756/371472 [3:09:50<18:16:10, 2.96it/s] 48%|████▊ | 176757/371472 [3:09:50<18:35:14, 2.91it/s] 48%|████▊ | 176758/371472 [3:09:51<18:02:27, 3.00it/s] 48%|████▊ | 176759/371472 [3:09:51<17:33:08, 3.08it/s] 48%|████▊ | 176760/371472 [3:09:51<17:05:17, 3.17it/s] {'loss': 2.917, 'learning_rate': 5.720011204723221e-07, 'epoch': 7.61} + 48%|████▊ | 176760/371472 [3:09:51<17:05:17, 3.17it/s] 48%|████▊ | 176761/371472 [3:09:52<17:01:33, 3.18it/s] 48%|████▊ | 176762/371472 [3:09:52<16:24:26, 3.30it/s] 48%|████▊ | 176763/371472 [3:09:52<15:59:11, 3.38it/s] 48%|████▊ | 176764/371472 [3:09:52<16:46:30, 3.22it/s] 48%|████▊ | 176765/371472 [3:09:53<16:57:14, 3.19it/s] 48%|████▊ | 176766/371472 [3:09:53<16:28:55, 3.28it/s] 48%|████▊ | 176767/371472 [3:09:53<15:53:00, 3.41it/s] 48%|████▊ | 176768/371472 [3:09:54<17:41:21, 3.06it/s] 48%|████▊ | 176769/371472 [3:09:54<16:57:22, 3.19it/s] 48%|████▊ | 176770/371472 [3:09:54<16:37:24, 3.25it/s] 48%|████▊ | 176771/371472 [3:09:55<16:35:51, 3.26it/s] 48%|████▊ | 176772/371472 [3:09:55<19:23:57, 2.79it/s] 48%|████▊ | 176773/371472 [3:09:55<18:05:07, 2.99it/s] 48%|████▊ | 176774/371472 [3:09:56<17:53:10, 3.02it/s] 48%|████▊ | 176775/371472 [3:09:56<16:56:06, 3.19it/s] 48%|████▊ | 176776/371472 [3:09:56<17:17:27, 3.13it/s] 48%|████▊ | 176777/371472 [3:09:57<16:47:20, 3.22it/s] 48%|████▊ | 176778/371472 [3:09:57<16:15:14, 3.33it/s] 48%|████▊ | 176779/371472 [3:09:57<16:11:27, 3.34it/s] 48%|████▊ | 176780/371472 [3:09:58<17:24:02, 3.11it/s] {'loss': 2.9814, 'learning_rate': 5.719526384968433e-07, 'epoch': 7.61} + 48%|████▊ | 176780/371472 [3:09:58<17:24:02, 3.11it/s] 48%|████▊ | 176781/371472 [3:09:58<16:58:49, 3.18it/s] 48%|████▊ | 176782/371472 [3:09:58<16:49:10, 3.22it/s] 48%|████▊ | 176783/371472 [3:09:58<16:15:42, 3.33it/s] 48%|████▊ | 176784/371472 [3:09:59<17:16:25, 3.13it/s] 48%|████▊ | 176785/371472 [3:09:59<16:38:42, 3.25it/s] 48%|████▊ | 176786/371472 [3:09:59<16:26:01, 3.29it/s] 48%|████▊ | 176787/371472 [3:10:00<16:12:35, 3.34it/s] 48%|████▊ | 176788/371472 [3:10:00<16:15:23, 3.33it/s] 48%|████▊ | 176789/371472 [3:10:00<17:17:09, 3.13it/s] 48%|████▊ | 176790/371472 [3:10:01<16:47:05, 3.22it/s] 48%|████▊ | 176791/371472 [3:10:01<16:52:23, 3.20it/s] 48%|████▊ | 176792/371472 [3:10:01<16:21:57, 3.30it/s] 48%|████▊ | 176793/371472 [3:10:02<16:00:45, 3.38it/s] 48%|████▊ | 176794/371472 [3:10:02<15:49:52, 3.42it/s] 48%|████▊ | 176795/371472 [3:10:02<15:29:36, 3.49it/s] 48%|████▊ | 176796/371472 [3:10:02<15:44:36, 3.43it/s] 48%|████▊ | 176797/371472 [3:10:03<15:29:15, 3.49it/s] 48%|████▊ | 176798/371472 [3:10:03<16:07:23, 3.35it/s] 48%|████▊ | 176799/371472 [3:10:03<15:52:02, 3.41it/s] 48%|████▊ | 176800/371472 [3:10:04<16:42:55, 3.24it/s] {'loss': 2.8168, 'learning_rate': 5.719041565213644e-07, 'epoch': 7.62} + 48%|████▊ | 176800/371472 [3:10:04<16:42:55, 3.24it/s] 48%|████▊ | 176801/371472 [3:10:04<16:48:35, 3.22it/s] 48%|████▊ | 176802/371472 [3:10:04<16:43:15, 3.23it/s] 48%|████▊ | 176803/371472 [3:10:05<16:25:28, 3.29it/s] 48%|████▊ | 176804/371472 [3:10:05<16:17:29, 3.32it/s] 48%|████▊ | 176805/371472 [3:10:05<16:04:23, 3.36it/s] 48%|████▊ | 176806/371472 [3:10:05<17:19:57, 3.12it/s] 48%|████▊ | 176807/371472 [3:10:06<16:56:30, 3.19it/s] 48%|████▊ | 176808/371472 [3:10:06<16:22:46, 3.30it/s] 48%|████▊ | 176809/371472 [3:10:06<15:48:47, 3.42it/s] 48%|████▊ | 176810/371472 [3:10:07<17:03:41, 3.17it/s] 48%|████▊ | 176811/371472 [3:10:07<16:38:59, 3.25it/s] 48%|████▊ | 176812/371472 [3:10:07<16:13:28, 3.33it/s] 48%|████▊ | 176813/371472 [3:10:08<16:11:16, 3.34it/s] 48%|████▊ | 176814/371472 [3:10:08<18:20:42, 2.95it/s] 48%|████▊ | 176815/371472 [3:10:08<17:36:50, 3.07it/s] 48%|████▊ | 176816/371472 [3:10:09<16:46:40, 3.22it/s] 48%|████▊ | 176817/371472 [3:10:09<16:16:43, 3.32it/s] 48%|████▊ | 176818/371472 [3:10:09<17:02:00, 3.17it/s] 48%|████▊ | 176819/371472 [3:10:09<16:18:20, 3.32it/s] 48%|████▊ | 176820/371472 [3:10:10<16:00:05, 3.38it/s] {'loss': 2.9025, 'learning_rate': 5.718556745458854e-07, 'epoch': 7.62} + 48%|████▊ | 176820/371472 [3:10:10<16:00:05, 3.38it/s] 48%|████▊ | 176821/371472 [3:10:10<16:18:39, 3.31it/s] 48%|████▊ | 176822/371472 [3:10:10<15:50:15, 3.41it/s] 48%|████▊ | 176823/371472 [3:10:11<15:56:18, 3.39it/s] 48%|████▊ | 176824/371472 [3:10:11<15:40:48, 3.45it/s] 48%|████▊ | 176825/371472 [3:10:11<15:57:28, 3.39it/s] 48%|████▊ | 176826/371472 [3:10:11<15:48:03, 3.42it/s] 48%|████▊ | 176827/371472 [3:10:12<15:42:12, 3.44it/s] 48%|████▊ | 176828/371472 [3:10:12<16:32:16, 3.27it/s] 48%|████▊ | 176829/371472 [3:10:12<16:44:59, 3.23it/s] 48%|████▊ | 176830/371472 [3:10:13<16:18:32, 3.32it/s] 48%|████▊ | 176831/371472 [3:10:13<15:54:51, 3.40it/s] 48%|████▊ | 176832/371472 [3:10:13<16:46:12, 3.22it/s] 48%|████▊ | 176833/371472 [3:10:14<16:40:50, 3.24it/s] 48%|████▊ | 176834/371472 [3:10:14<17:02:28, 3.17it/s] 48%|████▊ | 176835/371472 [3:10:14<16:41:53, 3.24it/s] 48%|████▊ | 176836/371472 [3:10:15<16:00:29, 3.38it/s] 48%|████▊ | 176837/371472 [3:10:15<16:06:35, 3.36it/s] 48%|████▊ | 176838/371472 [3:10:15<16:34:20, 3.26it/s] 48%|████▊ | 176839/371472 [3:10:15<15:52:06, 3.41it/s] 48%|████▊ | 176840/371472 [3:10:16<15:45:37, 3.43it/s] {'loss': 2.9491, 'learning_rate': 5.718071925704066e-07, 'epoch': 7.62} + 48%|████▊ | 176840/371472 [3:10:16<15:45:37, 3.43it/s] 48%|████▊ | 176841/371472 [3:10:16<16:42:13, 3.24it/s] 48%|████▊ | 176842/371472 [3:10:16<16:00:50, 3.38it/s] 48%|████▊ | 176843/371472 [3:10:17<16:07:19, 3.35it/s] 48%|████▊ | 176844/371472 [3:10:17<15:50:37, 3.41it/s] 48%|████▊ | 176845/371472 [3:10:17<15:46:17, 3.43it/s] 48%|████▊ | 176846/371472 [3:10:17<15:44:19, 3.43it/s] 48%|████▊ | 176847/371472 [3:10:18<15:44:19, 3.43it/s] 48%|████▊ | 176848/371472 [3:10:18<15:54:25, 3.40it/s] 48%|████▊ | 176849/371472 [3:10:18<16:07:49, 3.35it/s] 48%|████▊ | 176850/371472 [3:10:19<16:07:05, 3.35it/s] 48%|████▊ | 176851/371472 [3:10:19<16:26:41, 3.29it/s] 48%|████▊ | 176852/371472 [3:10:19<15:49:26, 3.42it/s] 48%|████▊ | 176853/371472 [3:10:20<15:38:05, 3.46it/s] 48%|████▊ | 176854/371472 [3:10:20<15:36:39, 3.46it/s] 48%|████▊ | 176855/371472 [3:10:20<16:11:50, 3.34it/s] 48%|████▊ | 176856/371472 [3:10:21<17:13:24, 3.14it/s] 48%|████▊ | 176857/371472 [3:10:21<17:07:14, 3.16it/s] 48%|████▊ | 176858/371472 [3:10:21<17:04:06, 3.17it/s] 48%|████▊ | 176859/371472 [3:10:21<17:06:22, 3.16it/s] 48%|████▊ | 176860/371472 [3:10:22<16:50:42, 3.21it/s] {'loss': 3.0033, 'learning_rate': 5.717587105949277e-07, 'epoch': 7.62} + 48%|████▊ | 176860/371472 [3:10:22<16:50:42, 3.21it/s] 48%|████▊ | 176861/371472 [3:10:22<16:23:36, 3.30it/s] 48%|████▊ | 176862/371472 [3:10:22<17:12:41, 3.14it/s] 48%|████▊ | 176863/371472 [3:10:23<16:36:57, 3.25it/s] 48%|████▊ | 176864/371472 [3:10:23<15:52:21, 3.41it/s] 48%|████▊ | 176865/371472 [3:10:23<17:06:08, 3.16it/s] 48%|████▊ | 176866/371472 [3:10:24<16:21:00, 3.31it/s] 48%|████▊ | 176867/371472 [3:10:24<16:06:37, 3.36it/s] 48%|████▊ | 176868/371472 [3:10:24<16:05:37, 3.36it/s] 48%|████▊ | 176869/371472 [3:10:24<15:48:40, 3.42it/s] 48%|████▊ | 176870/371472 [3:10:25<15:40:17, 3.45it/s] 48%|████▊ | 176871/371472 [3:10:25<15:42:31, 3.44it/s] 48%|████▊ | 176872/371472 [3:10:25<15:36:51, 3.46it/s] 48%|████▊ | 176873/371472 [3:10:26<15:27:55, 3.50it/s] 48%|████▊ | 176874/371472 [3:10:26<15:17:46, 3.53it/s] 48%|████▊ | 176875/371472 [3:10:26<15:30:21, 3.49it/s] 48%|████▊ | 176876/371472 [3:10:26<15:15:24, 3.54it/s] 48%|████▊ | 176877/371472 [3:10:27<15:31:15, 3.48it/s] 48%|████▊ | 176878/371472 [3:10:27<15:29:01, 3.49it/s] 48%|████▊ | 176879/371472 [3:10:27<16:04:01, 3.36it/s] 48%|████▊ | 176880/371472 [3:10:28<16:24:02, 3.30it/s] {'loss': 3.0039, 'learning_rate': 5.717102286194488e-07, 'epoch': 7.62} + 48%|████▊ | 176880/371472 [3:10:28<16:24:02, 3.30it/s] 48%|████▊ | 176881/371472 [3:10:28<15:56:52, 3.39it/s] 48%|████▊ | 176882/371472 [3:10:28<15:34:59, 3.47it/s] 48%|████▊ | 176883/371472 [3:10:29<15:41:15, 3.45it/s] 48%|████▊ | 176884/371472 [3:10:29<15:25:43, 3.50it/s] 48%|████▊ | 176885/371472 [3:10:29<16:16:16, 3.32it/s] 48%|████▊ | 176886/371472 [3:10:29<16:20:04, 3.31it/s] 48%|████▊ | 176887/371472 [3:10:30<16:27:55, 3.28it/s] 48%|████▊ | 176888/371472 [3:10:30<15:58:20, 3.38it/s] 48%|████▊ | 176889/371472 [3:10:30<15:43:06, 3.44it/s] 48%|████▊ | 176890/371472 [3:10:31<15:42:26, 3.44it/s] 48%|████▊ | 176891/371472 [3:10:31<15:45:42, 3.43it/s] 48%|████▊ | 176892/371472 [3:10:31<15:36:36, 3.46it/s] 48%|████▊ | 176893/371472 [3:10:31<15:27:25, 3.50it/s] 48%|████▊ | 176894/371472 [3:10:32<15:00:35, 3.60it/s] 48%|████▊ | 176895/371472 [3:10:32<15:07:01, 3.58it/s] 48%|████▊ | 176896/371472 [3:10:32<15:50:00, 3.41it/s] 48%|████▊ | 176897/371472 [3:10:33<16:21:29, 3.30it/s] 48%|████▊ | 176898/371472 [3:10:33<16:03:33, 3.37it/s] 48%|████▊ | 176899/371472 [3:10:33<16:02:35, 3.37it/s] 48%|████▊ | 176900/371472 [3:10:34<15:58:14, 3.38it/s] {'loss': 3.0975, 'learning_rate': 5.716617466439698e-07, 'epoch': 7.62} + 48%|████▊ | 176900/371472 [3:10:34<15:58:14, 3.38it/s] 48%|████▊ | 176901/371472 [3:10:34<15:28:51, 3.49it/s] 48%|████▊ | 176902/371472 [3:10:34<15:05:08, 3.58it/s] 48%|████▊ | 176903/371472 [3:10:34<15:27:51, 3.49it/s] 48%|████▊ | 176904/371472 [3:10:35<16:05:31, 3.36it/s] 48%|████▊ | 176905/371472 [3:10:35<16:01:10, 3.37it/s] 48%|████▊ | 176906/371472 [3:10:35<16:09:02, 3.35it/s] 48%|████▊ | 176907/371472 [3:10:36<16:49:16, 3.21it/s] 48%|████▊ | 176908/371472 [3:10:36<17:21:43, 3.11it/s] 48%|████▊ | 176909/371472 [3:10:36<16:33:50, 3.26it/s] 48%|████▊ | 176910/371472 [3:10:36<16:14:05, 3.33it/s] 48%|████▊ | 176911/371472 [3:10:37<16:27:49, 3.28it/s] 48%|████▊ | 176912/371472 [3:10:37<16:10:15, 3.34it/s] 48%|████▊ | 176913/371472 [3:10:37<16:24:12, 3.29it/s] 48%|████▊ | 176914/371472 [3:10:38<16:16:20, 3.32it/s] 48%|████▊ | 176915/371472 [3:10:38<16:18:55, 3.31it/s] 48%|████▊ | 176916/371472 [3:10:38<15:52:36, 3.40it/s] 48%|████▊ | 176917/371472 [3:10:39<15:43:50, 3.44it/s] 48%|████▊ | 176918/371472 [3:10:39<15:33:40, 3.47it/s] 48%|████▊ | 176919/371472 [3:10:39<15:22:17, 3.52it/s] 48%|████▊ | 176920/371472 [3:10:39<15:44:18, 3.43it/s] {'loss': 2.8998, 'learning_rate': 5.71613264668491e-07, 'epoch': 7.62} + 48%|████▊ | 176920/371472 [3:10:39<15:44:18, 3.43it/s] 48%|████▊ | 176921/371472 [3:10:40<15:56:10, 3.39it/s] 48%|████▊ | 176922/371472 [3:10:40<16:25:30, 3.29it/s] 48%|████▊ | 176923/371472 [3:10:40<16:38:44, 3.25it/s] 48%|████▊ | 176924/371472 [3:10:41<16:11:19, 3.34it/s] 48%|████▊ | 176925/371472 [3:10:41<15:43:23, 3.44it/s] 48%|████▊ | 176926/371472 [3:10:41<15:46:20, 3.43it/s] 48%|████▊ | 176927/371472 [3:10:42<16:50:43, 3.21it/s] 48%|████▊ | 176928/371472 [3:10:42<16:43:17, 3.23it/s] 48%|████▊ | 176929/371472 [3:10:42<16:17:59, 3.32it/s] 48%|████▊ | 176930/371472 [3:10:42<15:53:18, 3.40it/s] 48%|████▊ | 176931/371472 [3:10:43<15:41:56, 3.44it/s] 48%|████▊ | 176932/371472 [3:10:43<16:17:46, 3.32it/s] 48%|████▊ | 176933/371472 [3:10:43<16:15:50, 3.32it/s] 48%|████▊ | 176934/371472 [3:10:44<16:04:44, 3.36it/s] 48%|████▊ | 176935/371472 [3:10:44<17:08:26, 3.15it/s] 48%|████▊ | 176936/371472 [3:10:44<16:46:48, 3.22it/s] 48%|████▊ | 176937/371472 [3:10:45<16:15:40, 3.32it/s] 48%|████▊ | 176938/371472 [3:10:45<16:12:10, 3.34it/s] 48%|████▊ | 176939/371472 [3:10:45<15:51:48, 3.41it/s] 48%|████▊ | 176940/371472 [3:10:45<15:48:33, 3.42it/s] {'loss': 2.8901, 'learning_rate': 5.715647826930122e-07, 'epoch': 7.62} + 48%|████▊ | 176940/371472 [3:10:45<15:48:33, 3.42it/s] 48%|████▊ | 176941/371472 [3:10:46<15:46:51, 3.42it/s] 48%|████▊ | 176942/371472 [3:10:46<15:53:20, 3.40it/s] 48%|████▊ | 176943/371472 [3:10:46<16:34:12, 3.26it/s] 48%|████▊ | 176944/371472 [3:10:47<16:20:04, 3.31it/s] 48%|████▊ | 176945/371472 [3:10:47<16:33:23, 3.26it/s] 48%|████▊ | 176946/371472 [3:10:47<16:44:41, 3.23it/s] 48%|████▊ | 176947/371472 [3:10:48<16:30:45, 3.27it/s] 48%|████▊ | 176948/371472 [3:10:48<16:04:41, 3.36it/s] 48%|████▊ | 176949/371472 [3:10:48<15:55:15, 3.39it/s] 48%|████▊ | 176950/371472 [3:10:48<16:16:02, 3.32it/s] 48%|████▊ | 176951/371472 [3:10:49<15:44:27, 3.43it/s] 48%|████▊ | 176952/371472 [3:10:49<15:19:46, 3.52it/s] 48%|████▊ | 176953/371472 [3:10:49<16:26:32, 3.29it/s] 48%|████▊ | 176954/371472 [3:10:50<16:10:00, 3.34it/s] 48%|████▊ | 176955/371472 [3:10:50<16:17:02, 3.32it/s] 48%|████▊ | 176956/371472 [3:10:50<16:10:31, 3.34it/s] 48%|████▊ | 176957/371472 [3:10:51<15:46:59, 3.42it/s] 48%|████▊ | 176958/371472 [3:10:51<15:38:54, 3.45it/s] 48%|████▊ | 176959/371472 [3:10:51<15:33:11, 3.47it/s] 48%|████▊ | 176960/371472 [3:10:51<15:33:01, 3.47it/s] {'loss': 2.8183, 'learning_rate': 5.715163007175333e-07, 'epoch': 7.62} + 48%|████▊ | 176960/371472 [3:10:51<15:33:01, 3.47it/s] 48%|████▊ | 176961/371472 [3:10:52<15:30:38, 3.48it/s] 48%|████▊ | 176962/371472 [3:10:52<15:39:56, 3.45it/s] 48%|████▊ | 176963/371472 [3:10:52<15:51:41, 3.41it/s] 48%|████▊ | 176964/371472 [3:10:53<16:27:52, 3.28it/s] 48%|████▊ | 176965/371472 [3:10:53<16:26:18, 3.29it/s] 48%|████▊ | 176966/371472 [3:10:53<16:43:55, 3.23it/s] 48%|████▊ | 176967/371472 [3:10:54<16:17:15, 3.32it/s] 48%|████▊ | 176968/371472 [3:10:54<16:31:41, 3.27it/s] 48%|████▊ | 176969/371472 [3:10:54<16:06:54, 3.35it/s] 48%|████▊ | 176970/371472 [3:10:54<15:45:03, 3.43it/s] 48%|████▊ | 176971/371472 [3:10:55<15:46:28, 3.43it/s] 48%|████▊ | 176972/371472 [3:10:55<15:29:11, 3.49it/s] 48%|████▊ | 176973/371472 [3:10:55<15:42:07, 3.44it/s] 48%|████▊ | 176974/371472 [3:10:56<15:49:51, 3.41it/s] 48%|████▊ | 176975/371472 [3:10:56<15:49:57, 3.41it/s] 48%|████▊ | 176976/371472 [3:10:56<15:36:35, 3.46it/s] 48%|████▊ | 176977/371472 [3:10:56<16:22:57, 3.30it/s] 48%|████▊ | 176978/371472 [3:10:57<17:30:38, 3.09it/s] 48%|████▊ | 176979/371472 [3:10:57<17:12:50, 3.14it/s] 48%|████▊ | 176980/371472 [3:10:57<17:04:34, 3.16it/s] {'loss': 2.7321, 'learning_rate': 5.714678187420543e-07, 'epoch': 7.62} + 48%|████▊ | 176980/371472 [3:10:57<17:04:34, 3.16it/s] 48%|████▊ | 176981/371472 [3:10:58<17:44:54, 3.04it/s] 48%|████▊ | 176982/371472 [3:10:58<17:04:39, 3.16it/s] 48%|████▊ | 176983/371472 [3:10:58<16:39:24, 3.24it/s] 48%|████▊ | 176984/371472 [3:10:59<16:12:18, 3.33it/s] 48%|████▊ | 176985/371472 [3:10:59<16:03:56, 3.36it/s] 48%|████▊ | 176986/371472 [3:10:59<16:12:49, 3.33it/s] 48%|████▊ | 176987/371472 [3:11:00<16:06:41, 3.35it/s] 48%|████▊ | 176988/371472 [3:11:00<16:15:29, 3.32it/s] 48%|████▊ | 176989/371472 [3:11:00<17:02:27, 3.17it/s] 48%|████▊ | 176990/371472 [3:11:01<17:07:00, 3.16it/s] 48%|████▊ | 176991/371472 [3:11:01<16:53:44, 3.20it/s] 48%|████▊ | 176992/371472 [3:11:01<16:47:34, 3.22it/s] 48%|████▊ | 176993/371472 [3:11:01<16:20:38, 3.31it/s] 48%|████▊ | 176994/371472 [3:11:02<16:14:58, 3.32it/s] 48%|████▊ | 176995/371472 [3:11:02<16:51:01, 3.21it/s] 48%|████▊ | 176996/371472 [3:11:02<17:50:20, 3.03it/s] 48%|████▊ | 176997/371472 [3:11:03<17:27:00, 3.10it/s] 48%|████▊ | 176998/371472 [3:11:03<20:03:52, 2.69it/s] 48%|████▊ | 176999/371472 [3:11:03<18:30:48, 2.92it/s] 48%|████▊ | 177000/371472 [3:11:04<17:39:15, 3.06it/s] {'loss': 2.7715, 'learning_rate': 5.714193367665754e-07, 'epoch': 7.62} + 48%|████▊ | 177000/371472 [3:11:04<17:39:15, 3.06it/s] 48%|████▊ | 177001/371472 [3:11:04<16:57:05, 3.19it/s] 48%|████▊ | 177002/371472 [3:11:04<16:28:39, 3.28it/s] 48%|████▊ | 177003/371472 [3:11:05<16:13:46, 3.33it/s] 48%|████▊ | 177004/371472 [3:11:05<16:41:23, 3.24it/s] 48%|████▊ | 177005/371472 [3:11:05<16:19:08, 3.31it/s] 48%|████▊ | 177006/371472 [3:11:06<15:48:51, 3.42it/s] 48%|████▊ | 177007/371472 [3:11:06<15:36:25, 3.46it/s] 48%|████▊ | 177008/371472 [3:11:06<16:14:35, 3.33it/s] 48%|████▊ | 177009/371472 [3:11:06<15:34:38, 3.47it/s] 48%|████▊ | 177010/371472 [3:11:07<15:34:06, 3.47it/s] 48%|████▊ | 177011/371472 [3:11:07<15:40:52, 3.44it/s] 48%|████▊ | 177012/371472 [3:11:07<15:56:41, 3.39it/s] 48%|████▊ | 177013/371472 [3:11:08<16:16:59, 3.32it/s] 48%|████▊ | 177014/371472 [3:11:08<15:52:18, 3.40it/s] 48%|████▊ | 177015/371472 [3:11:08<15:58:42, 3.38it/s] 48%|████▊ | 177016/371472 [3:11:08<16:15:28, 3.32it/s] 48%|████▊ | 177017/371472 [3:11:09<16:19:07, 3.31it/s] 48%|████▊ | 177018/371472 [3:11:09<15:54:28, 3.40it/s] 48%|████▊ | 177019/371472 [3:11:09<15:48:40, 3.42it/s] 48%|████▊ | 177020/371472 [3:11:10<15:46:31, 3.42it/s] {'loss': 2.9246, 'learning_rate': 5.713708547910966e-07, 'epoch': 7.62} + 48%|████▊ | 177020/371472 [3:11:10<15:46:31, 3.42it/s] 48%|████▊ | 177021/371472 [3:11:10<15:34:56, 3.47it/s] 48%|████▊ | 177022/371472 [3:11:10<16:11:16, 3.34it/s] 48%|████▊ | 177023/371472 [3:11:11<17:01:06, 3.17it/s] 48%|████▊ | 177024/371472 [3:11:11<16:34:13, 3.26it/s] 48%|████▊ | 177025/371472 [3:11:11<16:24:39, 3.29it/s] 48%|████▊ | 177026/371472 [3:11:11<16:00:58, 3.37it/s] 48%|████▊ | 177027/371472 [3:11:12<16:02:12, 3.37it/s] 48%|████▊ | 177028/371472 [3:11:12<15:41:59, 3.44it/s] 48%|████▊ | 177029/371472 [3:11:12<15:36:48, 3.46it/s] 48%|████▊ | 177030/371472 [3:11:13<15:36:17, 3.46it/s] 48%|████▊ | 177031/371472 [3:11:13<15:26:25, 3.50it/s] 48%|████▊ | 177032/371472 [3:11:13<16:33:06, 3.26it/s] 48%|████▊ | 177033/371472 [3:11:14<16:27:37, 3.28it/s] 48%|████▊ | 177034/371472 [3:11:14<16:32:19, 3.27it/s] 48%|████▊ | 177035/371472 [3:11:14<17:23:56, 3.10it/s] 48%|████▊ | 177036/371472 [3:11:15<17:06:07, 3.16it/s] 48%|████▊ | 177037/371472 [3:11:15<16:11:53, 3.33it/s] 48%|████▊ | 177038/371472 [3:11:15<15:48:35, 3.42it/s] 48%|████▊ | 177039/371472 [3:11:15<15:32:59, 3.47it/s] 48%|████▊ | 177040/371472 [3:11:16<15:37:18, 3.46it/s] {'loss': 2.8889, 'learning_rate': 5.713223728156176e-07, 'epoch': 7.63} + 48%|████▊ | 177040/371472 [3:11:16<15:37:18, 3.46it/s] 48%|████▊ | 177041/371472 [3:11:16<16:35:14, 3.26it/s] 48%|████▊ | 177042/371472 [3:11:16<16:34:04, 3.26it/s] 48%|████▊ | 177043/371472 [3:11:17<15:51:58, 3.40it/s] 48%|████▊ | 177044/371472 [3:11:17<15:59:19, 3.38it/s] 48%|████▊ | 177045/371472 [3:11:17<16:42:12, 3.23it/s] 48%|████▊ | 177046/371472 [3:11:18<19:50:59, 2.72it/s] 48%|████▊ | 177047/371472 [3:11:18<18:44:22, 2.88it/s] 48%|████▊ | 177048/371472 [3:11:18<17:42:02, 3.05it/s] 48%|████▊ | 177049/371472 [3:11:19<17:06:24, 3.16it/s] 48%|████▊ | 177050/371472 [3:11:19<16:12:29, 3.33it/s] 48%|████▊ | 177051/371472 [3:11:19<16:07:12, 3.35it/s] 48%|████▊ | 177052/371472 [3:11:19<16:40:14, 3.24it/s] 48%|████▊ | 177053/371472 [3:11:20<16:53:14, 3.20it/s] 48%|████▊ | 177054/371472 [3:11:20<16:30:20, 3.27it/s] 48%|████▊ | 177055/371472 [3:11:20<16:01:14, 3.37it/s] 48%|████▊ | 177056/371472 [3:11:21<16:31:11, 3.27it/s] 48%|████▊ | 177057/371472 [3:11:21<16:26:02, 3.29it/s] 48%|████▊ | 177058/371472 [3:11:21<16:38:12, 3.25it/s] 48%|████▊ | 177059/371472 [3:11:22<17:57:33, 3.01it/s] 48%|████▊ | 177060/371472 [3:11:22<17:17:27, 3.12it/s] {'loss': 2.9614, 'learning_rate': 5.712738908401386e-07, 'epoch': 7.63} + 48%|████▊ | 177060/371472 [3:11:22<17:17:27, 3.12it/s] 48%|████▊ | 177061/371472 [3:11:22<16:53:44, 3.20it/s] 48%|████▊ | 177062/371472 [3:11:23<16:29:51, 3.27it/s] 48%|████▊ | 177063/371472 [3:11:23<16:32:32, 3.26it/s] 48%|████▊ | 177064/371472 [3:11:23<16:08:59, 3.34it/s] 48%|████▊ | 177065/371472 [3:11:23<16:14:15, 3.33it/s] 48%|████▊ | 177066/371472 [3:11:24<16:00:13, 3.37it/s] 48%|████▊ | 177067/371472 [3:11:24<16:16:08, 3.32it/s] 48%|████▊ | 177068/371472 [3:11:24<16:34:08, 3.26it/s] 48%|████▊ | 177069/371472 [3:11:25<16:20:29, 3.30it/s] 48%|████▊ | 177070/371472 [3:11:25<16:11:18, 3.34it/s] 48%|████▊ | 177071/371472 [3:11:25<16:45:43, 3.22it/s] 48%|████▊ | 177072/371472 [3:11:26<16:07:24, 3.35it/s] 48%|████▊ | 177073/371472 [3:11:26<16:24:05, 3.29it/s] 48%|████▊ | 177074/371472 [3:11:26<16:38:45, 3.24it/s] 48%|████▊ | 177075/371472 [3:11:27<17:08:52, 3.15it/s] 48%|████▊ | 177076/371472 [3:11:27<16:40:09, 3.24it/s] 48%|████▊ | 177077/371472 [3:11:27<16:38:39, 3.24it/s] 48%|████▊ | 177078/371472 [3:11:27<16:27:56, 3.28it/s] 48%|████▊ | 177079/371472 [3:11:28<16:46:57, 3.22it/s] 48%|████▊ | 177080/371472 [3:11:28<16:24:51, 3.29it/s] {'loss': 2.9824, 'learning_rate': 5.712254088646599e-07, 'epoch': 7.63} + 48%|████▊ | 177080/371472 [3:11:28<16:24:51, 3.29it/s] 48%|████▊ | 177081/371472 [3:11:28<16:25:52, 3.29it/s] 48%|████▊ | 177082/371472 [3:11:29<16:13:05, 3.33it/s] 48%|████▊ | 177083/371472 [3:11:29<16:03:41, 3.36it/s] 48%|████▊ | 177084/371472 [3:11:29<15:55:29, 3.39it/s] 48%|████▊ | 177085/371472 [3:11:29<15:45:38, 3.43it/s] 48%|████▊ | 177086/371472 [3:11:30<16:04:50, 3.36it/s] 48%|████▊ | 177087/371472 [3:11:30<15:43:40, 3.43it/s] 48%|████▊ | 177088/371472 [3:11:30<16:05:02, 3.36it/s] 48%|████▊ | 177089/371472 [3:11:31<15:50:05, 3.41it/s] 48%|████▊ | 177090/371472 [3:11:31<15:32:15, 3.48it/s] 48%|████▊ | 177091/371472 [3:11:31<15:19:29, 3.52it/s] 48%|████▊ | 177092/371472 [3:11:32<15:24:28, 3.50it/s] 48%|████▊ | 177093/371472 [3:11:32<15:13:00, 3.55it/s] 48%|████▊ | 177094/371472 [3:11:32<15:33:00, 3.47it/s] 48%|████▊ | 177095/371472 [3:11:32<16:19:58, 3.31it/s] 48%|████▊ | 177096/371472 [3:11:33<16:13:42, 3.33it/s] 48%|████▊ | 177097/371472 [3:11:33<15:57:06, 3.38it/s] 48%|████▊ | 177098/371472 [3:11:33<15:50:05, 3.41it/s] 48%|████▊ | 177099/371472 [3:11:34<15:31:48, 3.48it/s] 48%|████▊ | 177100/371472 [3:11:34<15:33:21, 3.47it/s] {'loss': 2.917, 'learning_rate': 5.71176926889181e-07, 'epoch': 7.63} + 48%|████▊ | 177100/371472 [3:11:34<15:33:21, 3.47it/s] 48%|████▊ | 177101/371472 [3:11:34<15:41:42, 3.44it/s] 48%|████▊ | 177102/371472 [3:11:34<15:48:54, 3.41it/s] 48%|████▊ | 177103/371472 [3:11:35<15:36:35, 3.46it/s] 48%|████▊ | 177104/371472 [3:11:35<15:32:46, 3.47it/s] 48%|████▊ | 177105/371472 [3:11:35<15:54:38, 3.39it/s] 48%|████▊ | 177106/371472 [3:11:36<16:00:26, 3.37it/s] 48%|████▊ | 177107/371472 [3:11:36<15:54:48, 3.39it/s] 48%|████▊ | 177108/371472 [3:11:36<15:43:58, 3.43it/s] 48%|████▊ | 177109/371472 [3:11:37<15:48:39, 3.41it/s] 48%|████▊ | 177110/371472 [3:11:37<15:47:34, 3.42it/s] 48%|████▊ | 177111/371472 [3:11:37<15:31:30, 3.48it/s] 48%|████▊ | 177112/371472 [3:11:37<15:57:07, 3.38it/s] 48%|████▊ | 177113/371472 [3:11:38<15:38:15, 3.45it/s] 48%|████▊ | 177114/371472 [3:11:38<15:30:32, 3.48it/s] 48%|████▊ | 177115/371472 [3:11:38<15:34:49, 3.47it/s] 48%|████▊ | 177116/371472 [3:11:39<15:15:56, 3.54it/s] 48%|████▊ | 177117/371472 [3:11:39<15:27:08, 3.49it/s] 48%|████▊ | 177118/371472 [3:11:39<15:44:15, 3.43it/s] 48%|████▊ | 177119/371472 [3:11:39<15:52:03, 3.40it/s] 48%|████▊ | 177120/371472 [3:11:40<15:41:50, 3.44it/s] {'loss': 3.0267, 'learning_rate': 5.71128444913702e-07, 'epoch': 7.63} + 48%|████▊ | 177120/371472 [3:11:40<15:41:50, 3.44it/s] 48%|████▊ | 177121/371472 [3:11:40<16:34:42, 3.26it/s] 48%|████▊ | 177122/371472 [3:11:40<16:37:21, 3.25it/s] 48%|████▊ | 177123/371472 [3:11:41<16:17:41, 3.31it/s] 48%|████▊ | 177124/371472 [3:11:41<16:15:16, 3.32it/s] 48%|████▊ | 177125/371472 [3:11:41<17:09:13, 3.15it/s] 48%|████▊ | 177126/371472 [3:11:42<16:48:06, 3.21it/s] 48%|████▊ | 177127/371472 [3:11:42<17:47:54, 3.03it/s] 48%|████▊ | 177128/371472 [3:11:42<17:23:41, 3.10it/s] 48%|████▊ | 177129/371472 [3:11:43<16:50:36, 3.21it/s] 48%|████▊ | 177130/371472 [3:11:43<16:32:31, 3.26it/s] 48%|████▊ | 177131/371472 [3:11:43<16:15:50, 3.32it/s] 48%|████▊ | 177132/371472 [3:11:43<16:10:09, 3.34it/s] 48%|████▊ | 177133/371472 [3:11:44<15:50:40, 3.41it/s] 48%|████▊ | 177134/371472 [3:11:44<15:28:25, 3.49it/s] 48%|████▊ | 177135/371472 [3:11:44<15:26:44, 3.49it/s] 48%|████▊ | 177136/371472 [3:11:45<15:42:57, 3.43it/s] 48%|████▊ | 177137/371472 [3:11:45<15:43:41, 3.43it/s] 48%|████▊ | 177138/371472 [3:11:45<16:52:22, 3.20it/s] 48%|████▊ | 177139/371472 [3:11:46<16:41:28, 3.23it/s] 48%|████▊ | 177140/371472 [3:11:46<16:18:35, 3.31it/s] {'loss': 2.9144, 'learning_rate': 5.710799629382231e-07, 'epoch': 7.63} + 48%|████▊ | 177140/371472 [3:11:46<16:18:35, 3.31it/s] 48%|████▊ | 177141/371472 [3:11:46<17:44:59, 3.04it/s] 48%|████▊ | 177142/371472 [3:11:46<16:50:42, 3.20it/s] 48%|████▊ | 177143/371472 [3:11:47<16:55:43, 3.19it/s] 48%|████▊ | 177144/371472 [3:11:47<16:21:23, 3.30it/s] 48%|████▊ | 177145/371472 [3:11:47<16:15:53, 3.32it/s] 48%|████▊ | 177146/371472 [3:11:48<17:39:59, 3.06it/s] 48%|████▊ | 177147/371472 [3:11:48<17:57:17, 3.01it/s] 48%|████▊ | 177148/371472 [3:11:48<17:25:33, 3.10it/s] 48%|████▊ | 177149/371472 [3:11:49<16:59:32, 3.18it/s] 48%|████▊ | 177150/371472 [3:11:49<16:59:06, 3.18it/s] 48%|████▊ | 177151/371472 [3:11:49<16:34:32, 3.26it/s] 48%|████▊ | 177152/371472 [3:11:50<16:30:21, 3.27it/s] 48%|████▊ | 177153/371472 [3:11:50<16:29:12, 3.27it/s] 48%|████▊ | 177154/371472 [3:11:50<16:14:20, 3.32it/s] 48%|████▊ | 177155/371472 [3:11:50<16:18:04, 3.31it/s] 48%|████▊ | 177156/371472 [3:11:51<16:20:52, 3.30it/s] 48%|████▊ | 177157/371472 [3:11:51<16:33:12, 3.26it/s] 48%|████▊ | 177158/371472 [3:11:51<15:49:16, 3.41it/s] 48%|████▊ | 177159/371472 [3:11:52<16:11:41, 3.33it/s] 48%|████▊ | 177160/371472 [3:11:52<16:06:12, 3.35it/s] {'loss': 2.7737, 'learning_rate': 5.710314809627443e-07, 'epoch': 7.63} + 48%|████▊ | 177160/371472 [3:11:52<16:06:12, 3.35it/s] 48%|████▊ | 177161/371472 [3:11:52<16:41:47, 3.23it/s] 48%|████▊ | 177162/371472 [3:11:53<16:03:36, 3.36it/s] 48%|████▊ | 177163/371472 [3:11:53<16:33:28, 3.26it/s] 48%|████▊ | 177164/371472 [3:11:53<16:11:36, 3.33it/s] 48%|████▊ | 177165/371472 [3:11:54<16:16:34, 3.32it/s] 48%|████▊ | 177166/371472 [3:11:54<18:03:17, 2.99it/s] 48%|████▊ | 177167/371472 [3:11:54<18:15:41, 2.96it/s] 48%|████▊ | 177168/371472 [3:11:55<17:23:06, 3.10it/s] 48%|████▊ | 177169/371472 [3:11:55<16:41:13, 3.23it/s] 48%|████▊ | 177170/371472 [3:11:55<16:33:04, 3.26it/s] 48%|████▊ | 177171/371472 [3:11:55<17:19:05, 3.12it/s] 48%|████▊ | 177172/371472 [3:11:56<17:56:16, 3.01it/s] 48%|████▊ | 177173/371472 [3:11:56<17:39:28, 3.06it/s] 48%|████▊ | 177174/371472 [3:11:56<17:26:54, 3.09it/s] 48%|████▊ | 177175/371472 [3:11:57<16:55:22, 3.19it/s] 48%|████▊ | 177176/371472 [3:11:57<16:51:31, 3.20it/s] 48%|████▊ | 177177/371472 [3:11:57<16:45:41, 3.22it/s] 48%|████▊ | 177178/371472 [3:11:58<16:36:03, 3.25it/s] 48%|████▊ | 177179/371472 [3:11:58<16:09:55, 3.34it/s] 48%|████▊ | 177180/371472 [3:11:58<17:05:27, 3.16it/s] {'loss': 2.9193, 'learning_rate': 5.709829989872654e-07, 'epoch': 7.63} + 48%|████▊ | 177180/371472 [3:11:58<17:05:27, 3.16it/s] 48%|████▊ | 177181/371472 [3:11:59<16:28:44, 3.28it/s] 48%|████▊ | 177182/371472 [3:11:59<16:29:18, 3.27it/s] 48%|████▊ | 177183/371472 [3:11:59<16:24:08, 3.29it/s] 48%|████▊ | 177184/371472 [3:11:59<16:09:50, 3.34it/s] 48%|████▊ | 177185/371472 [3:12:00<16:28:44, 3.27it/s] 48%|████▊ | 177186/371472 [3:12:00<16:06:26, 3.35it/s] 48%|████▊ | 177187/371472 [3:12:00<15:57:41, 3.38it/s] 48%|████▊ | 177188/371472 [3:12:01<15:49:48, 3.41it/s] 48%|████▊ | 177189/371472 [3:12:01<15:16:37, 3.53it/s] 48%|████▊ | 177190/371472 [3:12:01<15:30:49, 3.48it/s] 48%|████▊ | 177191/371472 [3:12:02<15:30:04, 3.48it/s] 48%|████▊ | 177192/371472 [3:12:02<15:15:28, 3.54it/s] 48%|████▊ | 177193/371472 [3:12:02<16:15:48, 3.32it/s] 48%|████▊ | 177194/371472 [3:12:02<16:10:04, 3.34it/s] 48%|████▊ | 177195/371472 [3:12:03<16:03:51, 3.36it/s] 48%|████▊ | 177196/371472 [3:12:03<16:05:42, 3.35it/s] 48%|████▊ | 177197/371472 [3:12:03<16:47:05, 3.22it/s] 48%|████▊ | 177198/371472 [3:12:04<16:56:58, 3.18it/s] 48%|████▊ | 177199/371472 [3:12:04<18:07:48, 2.98it/s] 48%|████▊ | 177200/371472 [3:12:04<17:16:28, 3.12it/s] {'loss': 2.9529, 'learning_rate': 5.709345170117864e-07, 'epoch': 7.63} + 48%|████▊ | 177200/371472 [3:12:04<17:16:28, 3.12it/s] 48%|████▊ | 177201/371472 [3:12:05<17:04:40, 3.16it/s] 48%|████▊ | 177202/371472 [3:12:05<17:12:28, 3.14it/s] 48%|████▊ | 177203/371472 [3:12:05<17:48:55, 3.03it/s] 48%|████▊ | 177204/371472 [3:12:06<17:22:07, 3.11it/s] 48%|████▊ | 177205/371472 [3:12:06<17:40:01, 3.05it/s] 48%|████▊ | 177206/371472 [3:12:06<17:03:58, 3.16it/s] 48%|████▊ | 177207/371472 [3:12:07<18:39:44, 2.89it/s] 48%|████▊ | 177208/371472 [3:12:07<17:19:27, 3.11it/s] 48%|████▊ | 177209/371472 [3:12:07<16:46:57, 3.22it/s] 48%|████▊ | 177210/371472 [3:12:08<16:47:48, 3.21it/s] 48%|████▊ | 177211/371472 [3:12:08<16:23:27, 3.29it/s] 48%|████▊ | 177212/371472 [3:12:08<15:49:47, 3.41it/s] 48%|████▊ | 177213/371472 [3:12:08<15:33:53, 3.47it/s] 48%|████▊ | 177214/371472 [3:12:09<15:49:46, 3.41it/s] 48%|████▊ | 177215/371472 [3:12:09<15:58:16, 3.38it/s] 48%|████▊ | 177216/371472 [3:12:09<15:26:54, 3.49it/s] 48%|████▊ | 177217/371472 [3:12:10<15:33:18, 3.47it/s] 48%|████▊ | 177218/371472 [3:12:10<16:13:54, 3.32it/s] 48%|████▊ | 177219/371472 [3:12:10<16:22:56, 3.29it/s] 48%|████▊ | 177220/371472 [3:12:10<16:02:03, 3.37it/s] {'loss': 2.8482, 'learning_rate': 5.708860350363076e-07, 'epoch': 7.63} + 48%|████▊ | 177220/371472 [3:12:10<16:02:03, 3.37it/s] 48%|████▊ | 177221/371472 [3:12:11<15:51:25, 3.40it/s] 48%|████▊ | 177222/371472 [3:12:11<15:38:28, 3.45it/s] 48%|████▊ | 177223/371472 [3:12:11<16:29:38, 3.27it/s] 48%|████▊ | 177224/371472 [3:12:12<17:38:46, 3.06it/s] 48%|████▊ | 177225/371472 [3:12:12<16:36:44, 3.25it/s] 48%|████▊ | 177226/371472 [3:12:12<16:04:55, 3.36it/s] 48%|████▊ | 177227/371472 [3:12:13<15:58:31, 3.38it/s] 48%|████▊ | 177228/371472 [3:12:13<18:47:52, 2.87it/s] 48%|████▊ | 177229/371472 [3:12:13<17:53:29, 3.02it/s] 48%|████▊ | 177230/371472 [3:12:14<17:18:49, 3.12it/s] 48%|████▊ | 177231/371472 [3:12:14<17:02:20, 3.17it/s] 48%|████▊ | 177232/371472 [3:12:14<16:31:48, 3.26it/s] 48%|████▊ | 177233/371472 [3:12:15<16:33:16, 3.26it/s] 48%|████▊ | 177234/371472 [3:12:15<16:12:20, 3.33it/s] 48%|████▊ | 177235/371472 [3:12:15<16:03:45, 3.36it/s] 48%|████▊ | 177236/371472 [3:12:15<15:56:19, 3.39it/s] 48%|████▊ | 177237/371472 [3:12:16<15:50:19, 3.41it/s] 48%|████▊ | 177238/371472 [3:12:16<16:25:26, 3.29it/s] 48%|████▊ | 177239/371472 [3:12:16<17:22:44, 3.10it/s] 48%|████▊ | 177240/371472 [3:12:17<16:56:37, 3.18it/s] {'loss': 2.8155, 'learning_rate': 5.708375530608287e-07, 'epoch': 7.63} + 48%|████▊ | 177240/371472 [3:12:17<16:56:37, 3.18it/s] 48%|████▊ | 177241/371472 [3:12:17<17:29:11, 3.09it/s] 48%|████▊ | 177242/371472 [3:12:17<17:08:32, 3.15it/s] 48%|████▊ | 177243/371472 [3:12:18<16:42:31, 3.23it/s] 48%|████▊ | 177244/371472 [3:12:18<16:17:28, 3.31it/s] 48%|████▊ | 177245/371472 [3:12:18<15:37:58, 3.45it/s] 48%|████▊ | 177246/371472 [3:12:18<15:11:06, 3.55it/s] 48%|████▊ | 177247/371472 [3:12:19<16:17:14, 3.31it/s] 48%|████▊ | 177248/371472 [3:12:19<16:02:07, 3.36it/s] 48%|████▊ | 177249/371472 [3:12:19<15:32:51, 3.47it/s] 48%|████▊ | 177250/371472 [3:12:20<16:06:50, 3.35it/s] 48%|████▊ | 177251/371472 [3:12:20<15:37:59, 3.45it/s] 48%|████▊ | 177252/371472 [3:12:20<15:06:56, 3.57it/s] 48%|████▊ | 177253/371472 [3:12:20<15:17:28, 3.53it/s] 48%|████▊ | 177254/371472 [3:12:21<15:17:58, 3.53it/s] 48%|████▊ | 177255/371472 [3:12:21<15:54:36, 3.39it/s] 48%|████▊ | 177256/371472 [3:12:21<16:13:11, 3.33it/s] 48%|████▊ | 177257/371472 [3:12:22<15:50:21, 3.41it/s] 48%|████▊ | 177258/371472 [3:12:22<15:41:34, 3.44it/s] 48%|████▊ | 177259/371472 [3:12:22<15:41:58, 3.44it/s] 48%|████▊ | 177260/371472 [3:12:23<15:54:52, 3.39it/s] {'loss': 2.8975, 'learning_rate': 5.707890710853497e-07, 'epoch': 7.63} + 48%|████▊ | 177260/371472 [3:12:23<15:54:52, 3.39it/s] 48%|████▊ | 177261/371472 [3:12:23<15:57:26, 3.38it/s] 48%|████▊ | 177262/371472 [3:12:23<15:32:52, 3.47it/s] 48%|████▊ | 177263/371472 [3:12:23<15:18:04, 3.53it/s] 48%|████▊ | 177264/371472 [3:12:24<15:34:52, 3.46it/s] 48%|████▊ | 177265/371472 [3:12:24<17:12:02, 3.14it/s] 48%|████▊ | 177266/371472 [3:12:24<16:58:44, 3.18it/s] 48%|████▊ | 177267/371472 [3:12:25<16:32:18, 3.26it/s] 48%|████▊ | 177268/371472 [3:12:25<17:06:26, 3.15it/s] 48%|████▊ | 177269/371472 [3:12:25<16:48:37, 3.21it/s] 48%|████▊ | 177270/371472 [3:12:26<16:23:47, 3.29it/s] 48%|████▊ | 177271/371472 [3:12:26<17:40:42, 3.05it/s] 48%|█���██▊ | 177272/371472 [3:12:26<16:57:40, 3.18it/s] 48%|████▊ | 177273/371472 [3:12:27<16:32:08, 3.26it/s] 48%|████▊ | 177274/371472 [3:12:27<16:31:06, 3.27it/s] 48%|████▊ | 177275/371472 [3:12:27<16:23:29, 3.29it/s] 48%|████▊ | 177276/371472 [3:12:27<16:47:54, 3.21it/s] 48%|████▊ | 177277/371472 [3:12:28<16:32:12, 3.26it/s] 48%|████▊ | 177278/371472 [3:12:28<16:15:38, 3.32it/s] 48%|████▊ | 177279/371472 [3:12:28<15:58:51, 3.38it/s] 48%|████▊ | 177280/371472 [3:12:29<16:06:46, 3.35it/s] {'loss': 2.7884, 'learning_rate': 5.707405891098708e-07, 'epoch': 7.64} + 48%|████▊ | 177280/371472 [3:12:29<16:06:46, 3.35it/s] 48%|████▊ | 177281/371472 [3:12:29<16:03:45, 3.36it/s] 48%|████▊ | 177282/371472 [3:12:29<15:52:15, 3.40it/s] 48%|████▊ | 177283/371472 [3:12:30<16:42:47, 3.23it/s] 48%|████▊ | 177284/371472 [3:12:30<15:58:04, 3.38it/s] 48%|████▊ | 177285/371472 [3:12:30<17:27:53, 3.09it/s] 48%|████▊ | 177286/371472 [3:12:31<16:32:39, 3.26it/s] 48%|████▊ | 177287/371472 [3:12:31<15:56:25, 3.38it/s] 48%|████▊ | 177288/371472 [3:12:31<15:47:00, 3.42it/s] 48%|████▊ | 177289/371472 [3:12:31<15:48:18, 3.41it/s] 48%|████▊ | 177290/371472 [3:12:32<15:46:40, 3.42it/s] 48%|████▊ | 177291/371472 [3:12:32<15:56:13, 3.38it/s] 48%|████▊ | 177292/371472 [3:12:32<15:59:28, 3.37it/s] 48%|████▊ | 177293/371472 [3:12:33<15:35:26, 3.46it/s] 48%|████▊ | 177294/371472 [3:12:33<15:26:32, 3.49it/s] 48%|████▊ | 177295/371472 [3:12:33<16:32:24, 3.26it/s] 48%|████▊ | 177296/371472 [3:12:33<16:38:31, 3.24it/s] 48%|████▊ | 177297/371472 [3:12:34<15:58:50, 3.38it/s] 48%|████▊ | 177298/371472 [3:12:34<15:56:36, 3.38it/s] 48%|████▊ | 177299/371472 [3:12:34<15:37:08, 3.45it/s] 48%|████▊ | 177300/371472 [3:12:35<15:24:32, 3.50it/s] {'loss': 2.857, 'learning_rate': 5.70692107134392e-07, 'epoch': 7.64} + 48%|████▊ | 177300/371472 [3:12:35<15:24:32, 3.50it/s] 48%|████▊ | 177301/371472 [3:12:35<15:41:18, 3.44it/s] 48%|████▊ | 177302/371472 [3:12:35<15:32:50, 3.47it/s] 48%|████▊ | 177303/371472 [3:12:36<16:41:56, 3.23it/s] 48%|████▊ | 177304/371472 [3:12:36<17:15:16, 3.13it/s] 48%|████▊ | 177305/371472 [3:12:36<17:02:37, 3.16it/s] 48%|████▊ | 177306/371472 [3:12:36<16:55:49, 3.19it/s] 48%|████▊ | 177307/371472 [3:12:37<16:14:19, 3.32it/s] 48%|████▊ | 177308/371472 [3:12:37<16:19:51, 3.30it/s] 48%|████▊ | 177309/371472 [3:12:37<16:25:48, 3.28it/s] 48%|████▊ | 177310/371472 [3:12:38<16:02:30, 3.36it/s] 48%|████▊ | 177311/371472 [3:12:38<16:14:41, 3.32it/s] 48%|████▊ | 177312/371472 [3:12:38<16:01:35, 3.37it/s] 48%|████▊ | 177313/371472 [3:12:39<17:06:51, 3.15it/s] 48%|████▊ | 177314/371472 [3:12:39<16:39:55, 3.24it/s] 48%|████▊ | 177315/371472 [3:12:39<16:59:22, 3.17it/s] 48%|████▊ | 177316/371472 [3:12:40<16:20:58, 3.30it/s] 48%|████▊ | 177317/371472 [3:12:40<16:17:44, 3.31it/s] 48%|████▊ | 177318/371472 [3:12:40<16:08:50, 3.34it/s] 48%|████▊ | 177319/371472 [3:12:40<16:24:29, 3.29it/s] 48%|████▊ | 177320/371472 [3:12:41<16:34:23, 3.25it/s] {'loss': 2.8511, 'learning_rate': 5.706436251589132e-07, 'epoch': 7.64} + 48%|████▊ | 177320/371472 [3:12:41<16:34:23, 3.25it/s] 48%|████▊ | 177321/371472 [3:12:41<16:07:31, 3.34it/s] 48%|████▊ | 177322/371472 [3:12:41<15:41:09, 3.44it/s] 48%|████▊ | 177323/371472 [3:12:42<15:33:27, 3.47it/s] 48%|████▊ | 177324/371472 [3:12:42<16:00:21, 3.37it/s] 48%|████▊ | 177325/371472 [3:12:42<15:46:21, 3.42it/s] 48%|████▊ | 177326/371472 [3:12:43<16:23:32, 3.29it/s] 48%|████▊ | 177327/371472 [3:12:43<16:23:16, 3.29it/s] 48%|████▊ | 177328/371472 [3:12:43<16:13:15, 3.32it/s] 48%|████▊ | 177329/371472 [3:12:43<17:09:35, 3.14it/s] 48%|████▊ | 177330/371472 [3:12:44<16:41:35, 3.23it/s] 48%|████▊ | 177331/371472 [3:12:44<16:04:30, 3.35it/s] 48%|████▊ | 177332/371472 [3:12:44<16:10:19, 3.33it/s] 48%|████▊ | 177333/371472 [3:12:45<16:01:40, 3.36it/s] 48%|████▊ | 177334/371472 [3:12:45<15:53:43, 3.39it/s] 48%|████▊ | 177335/371472 [3:12:45<16:36:48, 3.25it/s] 48%|████▊ | 177336/371472 [3:12:46<16:20:07, 3.30it/s] 48%|████▊ | 177337/371472 [3:12:46<16:12:14, 3.33it/s] 48%|████▊ | 177338/371472 [3:12:46<16:29:06, 3.27it/s] 48%|████▊ | 177339/371472 [3:12:46<16:13:59, 3.32it/s] 48%|████▊ | 177340/371472 [3:12:47<16:37:15, 3.24it/s] {'loss': 2.9179, 'learning_rate': 5.705951431834342e-07, 'epoch': 7.64} + 48%|████▊ | 177340/371472 [3:12:47<16:37:15, 3.24it/s] 48%|████▊ | 177341/371472 [3:12:47<15:56:56, 3.38it/s] 48%|████▊ | 177342/371472 [3:12:47<16:35:50, 3.25it/s] 48%|████▊ | 177343/371472 [3:12:48<16:46:13, 3.22it/s] 48%|████▊ | 177344/371472 [3:12:48<16:23:10, 3.29it/s] 48%|████▊ | 177345/371472 [3:12:48<16:26:10, 3.28it/s] 48%|████▊ | 177346/371472 [3:12:49<17:14:57, 3.13it/s] 48%|████▊ | 177347/371472 [3:12:49<16:54:14, 3.19it/s] 48%|████▊ | 177348/371472 [3:12:49<16:36:28, 3.25it/s] 48%|████▊ | 177349/371472 [3:12:50<16:31:52, 3.26it/s] 48%|████▊ | 177350/371472 [3:12:50<16:20:45, 3.30it/s] 48%|████▊ | 177351/371472 [3:12:50<16:10:46, 3.33it/s] 48%|████▊ | 177352/371472 [3:12:50<16:04:46, 3.35it/s] 48%|████▊ | 177353/371472 [3:12:51<16:58:39, 3.18it/s] 48%|████▊ | 177354/371472 [3:12:51<16:21:45, 3.30it/s] 48%|████▊ | 177355/371472 [3:12:51<15:58:49, 3.37it/s] 48%|████▊ | 177356/371472 [3:12:52<15:57:31, 3.38it/s] 48%|████▊ | 177357/371472 [3:12:52<15:52:29, 3.40it/s] 48%|████▊ | 177358/371472 [3:12:52<15:54:32, 3.39it/s] 48%|████▊ | 177359/371472 [3:12:52<15:45:56, 3.42it/s] 48%|████▊ | 177360/371472 [3:12:53<15:43:57, 3.43it/s] {'loss': 2.796, 'learning_rate': 5.705466612079553e-07, 'epoch': 7.64} + 48%|████▊ | 177360/371472 [3:12:53<15:43:57, 3.43it/s] 48%|████▊ | 177361/371472 [3:12:53<15:53:12, 3.39it/s] 48%|████▊ | 177362/371472 [3:12:53<15:52:42, 3.40it/s] 48%|████▊ | 177363/371472 [3:12:54<15:44:04, 3.43it/s] 48%|████▊ | 177364/371472 [3:12:54<15:36:18, 3.46it/s] 48%|████▊ | 177365/371472 [3:12:54<15:44:59, 3.42it/s] 48%|████▊ | 177366/371472 [3:12:55<15:46:47, 3.42it/s] 48%|████▊ | 177367/371472 [3:12:55<15:19:05, 3.52it/s] 48%|████▊ | 177368/371472 [3:12:55<15:34:26, 3.46it/s] 48%|████▊ | 177369/371472 [3:12:55<15:19:51, 3.52it/s] 48%|████▊ | 177370/371472 [3:12:56<15:30:35, 3.48it/s] 48%|████▊ | 177371/371472 [3:12:56<15:25:58, 3.49it/s] 48%|████▊ | 177372/371472 [3:12:56<15:36:37, 3.45it/s] 48%|████▊ | 177373/371472 [3:12:57<15:33:13, 3.47it/s] 48%|████▊ | 177374/371472 [3:12:57<15:50:32, 3.40it/s] 48%|████▊ | 177375/371472 [3:12:57<15:21:45, 3.51it/s] 48%|████▊ | 177376/371472 [3:12:57<15:41:29, 3.44it/s] 48%|████▊ | 177377/371472 [3:12:58<15:30:17, 3.48it/s] 48%|████▊ | 177378/371472 [3:12:58<15:47:39, 3.41it/s] 48%|████▊ | 177379/371472 [3:12:58<16:32:24, 3.26it/s] 48%|████▊ | 177380/371472 [3:12:59<17:15:05, 3.13it/s] {'loss': 3.001, 'learning_rate': 5.704981792324764e-07, 'epoch': 7.64} + 48%|████▊ | 177380/371472 [3:12:59<17:15:05, 3.13it/s] 48%|████▊ | 177381/371472 [3:12:59<17:33:28, 3.07it/s] 48%|████▊ | 177382/371472 [3:12:59<17:08:37, 3.14it/s] 48%|████▊ | 177383/371472 [3:13:00<17:34:29, 3.07it/s] 48%|████▊ | 177384/371472 [3:13:00<17:09:10, 3.14it/s] 48%|████▊ | 177385/371472 [3:13:00<16:21:40, 3.30it/s] 48%|████▊ | 177386/371472 [3:13:01<17:07:18, 3.15it/s] 48%|████▊ | 177387/371472 [3:13:01<16:33:43, 3.26it/s] 48%|████▊ | 177388/371472 [3:13:01<17:23:30, 3.10it/s] 48%|████▊ | 177389/371472 [3:13:02<16:40:57, 3.23it/s] 48%|████▊ | 177390/371472 [3:13:02<16:15:58, 3.31it/s] 48%|████▊ | 177391/371472 [3:13:02<17:12:11, 3.13it/s] 48%|████▊ | 177392/371472 [3:13:02<16:39:21, 3.24it/s] 48%|████▊ | 177393/371472 [3:13:03<17:01:57, 3.17it/s] 48%|████▊ | 177394/371472 [3:13:03<16:42:45, 3.23it/s] 48%|████▊ | 177395/371472 [3:13:03<16:15:23, 3.32it/s] 48%|████▊ | 177396/371472 [3:13:04<15:57:44, 3.38it/s] 48%|████▊ | 177397/371472 [3:13:04<15:51:22, 3.40it/s] 48%|████▊ | 177398/371472 [3:13:04<16:31:06, 3.26it/s] 48%|████▊ | 177399/371472 [3:13:05<15:58:57, 3.37it/s] 48%|████▊ | 177400/371472 [3:13:05<16:25:25, 3.28it/s] {'loss': 2.7894, 'learning_rate': 5.704496972569976e-07, 'epoch': 7.64} + 48%|████▊ | 177400/371472 [3:13:05<16:25:25, 3.28it/s] 48%|████▊ | 177401/371472 [3:13:05<16:03:13, 3.36it/s] 48%|████▊ | 177402/371472 [3:13:05<15:50:35, 3.40it/s] 48%|████▊ | 177403/371472 [3:13:06<15:47:28, 3.41it/s] 48%|████▊ | 177404/371472 [3:13:06<15:34:40, 3.46it/s] 48%|████▊ | 177405/371472 [3:13:06<15:49:21, 3.41it/s] 48%|████▊ | 177406/371472 [3:13:07<16:33:30, 3.26it/s] 48%|████▊ | 177407/371472 [3:13:07<16:39:13, 3.24it/s] 48%|████▊ | 177408/371472 [3:13:07<16:32:11, 3.26it/s] 48%|████▊ | 177409/371472 [3:13:08<17:23:02, 3.10it/s] 48%|████▊ | 177410/371472 [3:13:08<16:58:11, 3.18it/s] 48%|████▊ | 177411/371472 [3:13:08<16:36:38, 3.25it/s] 48%|████▊ | 177412/371472 [3:13:09<16:31:28, 3.26it/s] 48%|████▊ | 177413/371472 [3:13:09<16:12:18, 3.33it/s] 48%|████▊ | 177414/371472 [3:13:09<15:56:57, 3.38it/s] 48%|████▊ | 177415/371472 [3:13:09<15:53:45, 3.39it/s] 48%|████▊ | 177416/371472 [3:13:10<15:56:30, 3.38it/s] 48%|████▊ | 177417/371472 [3:13:10<17:41:43, 3.05it/s] 48%|████▊ | 177418/371472 [3:13:10<17:57:08, 3.00it/s] 48%|████▊ | 177419/371472 [3:13:11<16:55:17, 3.19it/s] 48%|████▊ | 177420/371472 [3:13:11<16:31:46, 3.26it/s] {'loss': 2.9977, 'learning_rate': 5.704012152815186e-07, 'epoch': 7.64} + 48%|████▊ | 177420/371472 [3:13:11<16:31:46, 3.26it/s] 48%|████▊ | 177421/371472 [3:13:11<16:22:27, 3.29it/s] 48%|████▊ | 177422/371472 [3:13:12<16:06:00, 3.35it/s] 48%|████▊ | 177423/371472 [3:13:12<16:10:38, 3.33it/s] 48%|████▊ | 177424/371472 [3:13:12<16:13:20, 3.32it/s] 48%|████▊ | 177425/371472 [3:13:12<16:10:23, 3.33it/s] 48%|████▊ | 177426/371472 [3:13:13<15:48:02, 3.41it/s] 48%|████▊ | 177427/371472 [3:13:13<15:33:50, 3.46it/s] 48%|████▊ | 177428/371472 [3:13:13<15:39:23, 3.44it/s] 48%|████▊ | 177429/371472 [3:13:14<16:03:41, 3.36it/s] 48%|████▊ | 177430/371472 [3:13:14<15:47:13, 3.41it/s] 48%|████▊ | 177431/371472 [3:13:14<15:52:57, 3.39it/s] 48%|████▊ | 177432/371472 [3:13:14<15:52:09, 3.40it/s] 48%|████▊ | 177433/371472 [3:13:15<15:43:59, 3.43it/s] 48%|████▊ | 177434/371472 [3:13:15<15:59:53, 3.37it/s] 48%|████▊ | 177435/371472 [3:13:15<16:09:03, 3.34it/s] 48%|████▊ | 177436/371472 [3:13:16<15:43:22, 3.43it/s] 48%|████▊ | 177437/371472 [3:13:16<16:00:31, 3.37it/s] 48%|████▊ | 177438/371472 [3:13:16<15:50:07, 3.40it/s] 48%|████▊ | 177439/371472 [3:13:17<15:56:55, 3.38it/s] 48%|████▊ | 177440/371472 [3:13:17<16:10:33, 3.33it/s] {'loss': 2.8482, 'learning_rate': 5.703527333060397e-07, 'epoch': 7.64} + 48%|████▊ | 177440/371472 [3:13:17<16:10:33, 3.33it/s] 48%|████▊ | 177441/371472 [3:13:17<16:09:26, 3.34it/s] 48%|████▊ | 177442/371472 [3:13:17<16:24:51, 3.28it/s] 48%|████▊ | 177443/371472 [3:13:18<16:27:15, 3.28it/s] 48%|████▊ | 177444/371472 [3:13:18<15:56:18, 3.38it/s] 48%|████▊ | 177445/371472 [3:13:18<16:54:48, 3.19it/s] 48%|████▊ | 177446/371472 [3:13:19<16:26:39, 3.28it/s] 48%|████▊ | 177447/371472 [3:13:19<16:42:18, 3.23it/s] 48%|████▊ | 177448/371472 [3:13:19<16:09:36, 3.34it/s] 48%|████▊ | 177449/371472 [3:13:20<15:46:57, 3.41it/s] 48%|████▊ | 177450/371472 [3:13:20<15:34:58, 3.46it/s] 48%|████▊ | 177451/371472 [3:13:20<16:00:07, 3.37it/s] 48%|████▊ | 177452/371472 [3:13:20<16:06:47, 3.34it/s] 48%|████▊ | 177453/371472 [3:13:21<15:44:32, 3.42it/s] 48%|████▊ | 177454/371472 [3:13:21<15:33:57, 3.46it/s] 48%|████▊ | 177455/371472 [3:13:21<15:34:07, 3.46it/s] 48%|████▊ | 177456/371472 [3:13:22<15:16:55, 3.53it/s] 48%|████▊ | 177457/371472 [3:13:22<15:37:05, 3.45it/s] 48%|████▊ | 177458/371472 [3:13:22<15:31:47, 3.47it/s] 48%|████▊ | 177459/371472 [3:13:23<17:25:47, 3.09it/s] 48%|████▊ | 177460/371472 [3:13:23<16:49:26, 3.20it/s] {'loss': 2.9358, 'learning_rate': 5.703042513305609e-07, 'epoch': 7.64} + 48%|████▊ | 177460/371472 [3:13:23<16:49:26, 3.20it/s] 48%|████▊ | 177461/371472 [3:13:23<17:02:51, 3.16it/s] 48%|████▊ | 177462/371472 [3:13:24<17:51:57, 3.02it/s] 48%|████▊ | 177463/371472 [3:13:24<17:12:09, 3.13it/s] 48%|████▊ | 177464/371472 [3:13:24<16:44:57, 3.22it/s] 48%|████▊ | 177465/371472 [3:13:25<17:51:42, 3.02it/s] 48%|████▊ | 177466/371472 [3:13:25<16:43:53, 3.22it/s] 48%|████▊ | 177467/371472 [3:13:25<16:26:32, 3.28it/s] 48%|████▊ | 177468/371472 [3:13:25<15:55:12, 3.39it/s] 48%|████▊ | 177469/371472 [3:13:26<16:14:31, 3.32it/s] 48%|████▊ | 177470/371472 [3:13:26<16:00:35, 3.37it/s] 48%|████▊ | 177471/371472 [3:13:26<15:40:29, 3.44it/s] 48%|████▊ | 177472/371472 [3:13:27<15:24:31, 3.50it/s] 48%|████▊ | 177473/371472 [3:13:27<15:05:05, 3.57it/s] 48%|████▊ | 177474/371472 [3:13:27<15:13:58, 3.54it/s] 48%|████▊ | 177475/371472 [3:13:27<15:23:01, 3.50it/s] 48%|████▊ | 177476/371472 [3:13:28<15:56:41, 3.38it/s] 48%|████▊ | 177477/371472 [3:13:28<15:58:53, 3.37it/s] 48%|████▊ | 177478/371472 [3:13:28<16:04:37, 3.35it/s] 48%|████▊ | 177479/371472 [3:13:29<15:59:02, 3.37it/s] 48%|████▊ | 177480/371472 [3:13:29<16:03:15, 3.36it/s] {'loss': 2.9128, 'learning_rate': 5.702557693550819e-07, 'epoch': 7.64} + 48%|████▊ | 177480/371472 [3:13:29<16:03:15, 3.36it/s] 48%|████▊ | 177481/371472 [3:13:29<15:55:22, 3.38it/s] 48%|████▊ | 177482/371472 [3:13:29<15:46:31, 3.42it/s] 48%|████▊ | 177483/371472 [3:13:30<15:44:29, 3.42it/s] 48%|████▊ | 177484/371472 [3:13:30<16:52:05, 3.19it/s] 48%|████▊ | 177485/371472 [3:13:30<17:15:35, 3.12it/s] 48%|████▊ | 177486/371472 [3:13:31<18:13:59, 2.96it/s] 48%|████▊ | 177487/371472 [3:13:31<18:19:19, 2.94it/s] 48%|████▊ | 177488/371472 [3:13:31<17:44:12, 3.04it/s] 48%|████▊ | 177489/371472 [3:13:32<17:18:28, 3.11it/s] 48%|████▊ | 177490/371472 [3:13:32<16:41:42, 3.23it/s] 48%|████▊ | 177491/371472 [3:13:32<16:38:42, 3.24it/s] 48%|████▊ | 177492/371472 [3:13:33<16:17:17, 3.31it/s] 48%|████▊ | 177493/371472 [3:13:33<16:36:57, 3.24it/s] 48%|████▊ | 177494/371472 [3:13:33<17:33:52, 3.07it/s] 48%|████▊ | 177495/371472 [3:13:34<17:02:02, 3.16it/s] 48%|████▊ | 177496/371472 [3:13:34<16:47:03, 3.21it/s] 48%|████▊ | 177497/371472 [3:13:34<17:18:57, 3.11it/s] 48%|████▊ | 177498/371472 [3:13:35<17:30:31, 3.08it/s] 48%|████▊ | 177499/371472 [3:13:35<17:29:13, 3.08it/s] 48%|████▊ | 177500/371472 [3:13:35<18:10:22, 2.96it/s] {'loss': 2.8842, 'learning_rate': 5.70207287379603e-07, 'epoch': 7.65} + 48%|████▊ | 177500/371472 [3:13:35<18:10:22, 2.96it/s] 48%|████▊ | 177501/371472 [3:13:36<17:25:14, 3.09it/s] 48%|████▊ | 177502/371472 [3:13:36<16:51:20, 3.20it/s] 48%|████▊ | 177503/371472 [3:13:36<17:15:31, 3.12it/s] 48%|████▊ | 177504/371472 [3:13:37<17:08:42, 3.14it/s] 48%|████▊ | 177505/371472 [3:13:37<16:40:24, 3.23it/s] 48%|████▊ | 177506/371472 [3:13:37<16:27:21, 3.27it/s] 48%|████▊ | 177507/371472 [3:13:37<16:09:00, 3.34it/s] 48%|████▊ | 177508/371472 [3:13:38<16:17:47, 3.31it/s] 48%|████▊ | 177509/371472 [3:13:38<15:58:14, 3.37it/s] 48%|████▊ | 177510/371472 [3:13:38<15:38:18, 3.45it/s] 48%|████▊ | 177511/371472 [3:13:39<15:27:38, 3.48it/s] 48%|████▊ | 177512/371472 [3:13:39<15:50:36, 3.40it/s] 48%|████▊ | 177513/371472 [3:13:39<15:51:30, 3.40it/s] 48%|████▊ | 177514/371472 [3:13:39<15:56:09, 3.38it/s] 48%|████▊ | 177515/371472 [3:13:40<15:56:08, 3.38it/s] 48%|████▊ | 177516/371472 [3:13:40<15:42:04, 3.43it/s] 48%|████▊ | 177517/371472 [3:13:40<15:22:50, 3.50it/s] 48%|████▊ | 177518/371472 [3:13:41<15:12:34, 3.54it/s] 48%|████▊ | 177519/371472 [3:13:41<15:05:19, 3.57it/s] 48%|████▊ | 177520/371472 [3:13:41<15:44:46, 3.42it/s] {'loss': 2.9111, 'learning_rate': 5.701588054041241e-07, 'epoch': 7.65} + 48%|████▊ | 177520/371472 [3:13:41<15:44:46, 3.42it/s] 48%|████▊ | 177521/371472 [3:13:41<15:46:47, 3.41it/s] 48%|████▊ | 177522/371472 [3:13:42<15:43:08, 3.43it/s] 48%|████▊ | 177523/371472 [3:13:42<16:01:21, 3.36it/s] 48%|████▊ | 177524/371472 [3:13:42<15:54:34, 3.39it/s] 48%|████▊ | 177525/371472 [3:13:43<15:47:21, 3.41it/s] 48%|████▊ | 177526/371472 [3:13:43<15:35:10, 3.46it/s] 48%|████▊ | 177527/371472 [3:13:43<15:22:28, 3.50it/s] 48%|████▊ | 177528/371472 [3:13:43<15:26:37, 3.49it/s] 48%|████▊ | 177529/371472 [3:13:44<15:33:55, 3.46it/s] 48%|████▊ | 177530/371472 [3:13:44<16:14:00, 3.32it/s] 48%|████▊ | 177531/371472 [3:13:44<15:59:59, 3.37it/s] 48%|████▊ | 177532/371472 [3:13:45<15:39:53, 3.44it/s] 48%|████▊ | 177533/371472 [3:13:45<15:44:12, 3.42it/s] 48%|████▊ | 177534/371472 [3:13:45<15:26:54, 3.49it/s] 48%|████▊ | 177535/371472 [3:13:46<15:25:46, 3.49it/s] 48%|████▊ | 177536/371472 [3:13:46<15:46:01, 3.42it/s] 48%|████▊ | 177537/371472 [3:13:46<16:13:58, 3.32it/s] 48%|████▊ | 177538/371472 [3:13:46<15:46:23, 3.42it/s] 48%|████▊ | 177539/371472 [3:13:47<17:05:49, 3.15it/s] 48%|████▊ | 177540/371472 [3:13:47<16:56:31, 3.18it/s] {'loss': 3.0995, 'learning_rate': 5.701103234286453e-07, 'epoch': 7.65} + 48%|████▊ | 177540/371472 [3:13:47<16:56:31, 3.18it/s] 48%|████▊ | 177541/371472 [3:13:47<16:48:06, 3.21it/s] 48%|████▊ | 177542/371472 [3:13:48<16:39:04, 3.24it/s] 48%|████▊ | 177543/371472 [3:13:48<16:22:57, 3.29it/s] 48%|████▊ | 177544/371472 [3:13:48<16:19:47, 3.30it/s] 48%|████▊ | 177545/371472 [3:13:49<16:32:48, 3.26it/s] 48%|████▊ | 177546/371472 [3:13:49<16:03:42, 3.35it/s] 48%|████▊ | 177547/371472 [3:13:49<16:08:01, 3.34it/s] 48%|████▊ | 177548/371472 [3:13:50<16:12:00, 3.33it/s] 48%|████▊ | 177549/371472 [3:13:50<16:43:53, 3.22it/s] 48%|████▊ | 177550/371472 [3:13:50<15:59:54, 3.37it/s] 48%|████▊ | 177551/371472 [3:13:50<15:42:58, 3.43it/s] 48%|████▊ | 177552/371472 [3:13:51<15:34:03, 3.46it/s] 48%|████▊ | 177553/371472 [3:13:51<15:32:42, 3.47it/s] 48%|████▊ | 177554/371472 [3:13:51<15:18:08, 3.52it/s] 48%|████▊ | 177555/371472 [3:13:52<15:09:58, 3.55it/s] 48%|████▊ | 177556/371472 [3:13:52<16:00:14, 3.37it/s] 48%|████▊ | 177557/371472 [3:13:52<15:54:37, 3.39it/s] 48%|████▊ | 177558/371472 [3:13:52<15:30:04, 3.47it/s] 48%|████▊ | 177559/371472 [3:13:53<15:31:39, 3.47it/s] 48%|████▊ | 177560/371472 [3:13:53<15:11:43, 3.54it/s] {'loss': 2.993, 'learning_rate': 5.700618414531665e-07, 'epoch': 7.65} + 48%|████▊ | 177560/371472 [3:13:53<15:11:43, 3.54it/s] 48%|████▊ | 177561/371472 [3:13:53<15:16:00, 3.53it/s] 48%|████▊ | 177562/371472 [3:13:54<15:32:05, 3.47it/s] 48%|████▊ | 177563/371472 [3:13:54<15:58:32, 3.37it/s] 48%|████▊ | 177564/371472 [3:13:54<15:23:52, 3.50it/s] 48%|████▊ | 177565/371472 [3:13:54<15:43:42, 3.42it/s] 48%|████▊ | 177566/371472 [3:13:55<15:55:38, 3.38it/s] 48%|████▊ | 177567/371472 [3:13:55<16:15:41, 3.31it/s] 48%|████▊ | 177568/371472 [3:13:55<16:43:08, 3.22it/s] 48%|████▊ | 177569/371472 [3:13:56<16:26:31, 3.28it/s] 48%|████▊ | 177570/371472 [3:13:56<15:45:57, 3.42it/s] 48%|████▊ | 177571/371472 [3:13:56<15:51:52, 3.40it/s] 48%|████▊ | 177572/371472 [3:13:57<15:55:30, 3.38it/s] 48%|████▊ | 177573/371472 [3:13:57<15:36:28, 3.45it/s] 48%|████▊ | 177574/371472 [3:13:57<15:38:05, 3.44it/s] 48%|████▊ | 177575/371472 [3:13:57<15:48:02, 3.41it/s] 48%|████▊ | 177576/371472 [3:13:58<15:52:55, 3.39it/s] 48%|████▊ | 177577/371472 [3:13:58<15:48:21, 3.41it/s] 48%|████▊ | 177578/371472 [3:13:58<15:47:24, 3.41it/s] 48%|████▊ | 177579/371472 [3:13:59<16:04:28, 3.35it/s] 48%|████▊ | 177580/371472 [3:13:59<16:05:14, 3.35it/s] {'loss': 2.9807, 'learning_rate': 5.700133594776876e-07, 'epoch': 7.65} + 48%|████▊ | 177580/371472 [3:13:59<16:05:14, 3.35it/s] 48%|████▊ | 177581/371472 [3:13:59<16:17:46, 3.30it/s] 48%|████▊ | 177582/371472 [3:14:00<15:58:49, 3.37it/s] 48%|████▊ | 177583/371472 [3:14:00<15:36:12, 3.45it/s] 48%|████▊ | 177584/371472 [3:14:00<15:36:50, 3.45it/s] 48%|████▊ | 177585/371472 [3:14:00<17:26:15, 3.09it/s] 48%|████▊ | 177586/371472 [3:14:01<16:54:11, 3.19it/s] 48%|████▊ | 177587/371472 [3:14:01<16:31:44, 3.26it/s] 48%|████▊ | 177588/371472 [3:14:01<16:26:07, 3.28it/s] 48%|████▊ | 177589/371472 [3:14:02<16:50:23, 3.20it/s] 48%|████▊ | 177590/371472 [3:14:02<17:23:00, 3.10it/s] 48%|████▊ | 177591/371472 [3:14:02<16:56:25, 3.18it/s] 48%|████▊ | 177592/371472 [3:14:03<16:18:16, 3.30it/s] 48%|████▊ | 177593/371472 [3:14:03<16:23:31, 3.29it/s] 48%|████▊ | 177594/371472 [3:14:03<16:31:15, 3.26it/s] 48%|████▊ | 177595/371472 [3:14:04<16:36:38, 3.24it/s] 48%|████▊ | 177596/371472 [3:14:04<16:36:28, 3.24it/s] 48%|████▊ | 177597/371472 [3:14:04<16:31:54, 3.26it/s] 48%|████▊ | 177598/371472 [3:14:04<16:25:25, 3.28it/s] 48%|████▊ | 177599/371472 [3:14:05<16:53:36, 3.19it/s] 48%|████▊ | 177600/371472 [3:14:05<17:00:11, 3.17it/s] {'loss': 2.8282, 'learning_rate': 5.699648775022086e-07, 'epoch': 7.65} + 48%|████▊ | 177600/371472 [3:14:05<17:00:11, 3.17it/s] 48%|████▊ | 177601/371472 [3:14:05<16:38:36, 3.24it/s] 48%|████▊ | 177602/371472 [3:14:06<16:34:21, 3.25it/s] 48%|████▊ | 177603/371472 [3:14:06<16:34:42, 3.25it/s] 48%|████▊ | 177604/371472 [3:14:06<15:58:33, 3.37it/s] 48%|████▊ | 177605/371472 [3:14:07<16:59:26, 3.17it/s] 48%|████▊ | 177606/371472 [3:14:07<16:42:33, 3.22it/s] 48%|████▊ | 177607/371472 [3:14:07<16:14:12, 3.32it/s] 48%|████▊ | 177608/371472 [3:14:08<16:20:42, 3.29it/s] 48%|████▊ | 177609/371472 [3:14:08<16:10:02, 3.33it/s] 48%|████▊ | 177610/371472 [3:14:08<15:54:08, 3.39it/s] 48%|████▊ | 177611/371472 [3:14:08<15:34:39, 3.46it/s] 48%|████▊ | 177612/371472 [3:14:09<15:35:09, 3.46it/s] 48%|████▊ | 177613/371472 [3:14:09<15:28:42, 3.48it/s] 48%|████▊ | 177614/371472 [3:14:09<15:33:36, 3.46it/s] 48%|████▊ | 177615/371472 [3:14:10<16:35:55, 3.24it/s] 48%|████▊ | 177616/371472 [3:14:10<16:11:16, 3.33it/s] 48%|████▊ | 177617/371472 [3:14:10<16:08:31, 3.34it/s] 48%|████▊ | 177618/371472 [3:14:10<15:57:56, 3.37it/s] 48%|████▊ | 177619/371472 [3:14:11<16:30:36, 3.26it/s] 48%|████▊ | 177620/371472 [3:14:11<16:08:38, 3.34it/s] {'loss': 2.8604, 'learning_rate': 5.699163955267297e-07, 'epoch': 7.65} + 48%|████▊ | 177620/371472 [3:14:11<16:08:38, 3.34it/s] 48%|████▊ | 177621/371472 [3:14:11<17:00:53, 3.16it/s] 48%|████▊ | 177622/371472 [3:14:12<16:17:30, 3.31it/s] 48%|████▊ | 177623/371472 [3:14:12<16:10:47, 3.33it/s] 48%|████▊ | 177624/371472 [3:14:12<16:19:56, 3.30it/s] 48%|████▊ | 177625/371472 [3:14:13<16:02:39, 3.36it/s] 48%|████▊ | 177626/371472 [3:14:13<16:02:35, 3.36it/s] 48%|████▊ | 177627/371472 [3:14:13<15:56:50, 3.38it/s] 48%|████▊ | 177628/371472 [3:14:14<16:25:31, 3.28it/s] 48%|████▊ | 177629/371472 [3:14:14<16:02:04, 3.36it/s] 48%|████▊ | 177630/371472 [3:14:14<15:50:31, 3.40it/s] 48%|████▊ | 177631/371472 [3:14:14<15:39:20, 3.44it/s] 48%|████▊ | 177632/371472 [3:14:15<16:26:17, 3.28it/s] 48%|████▊ | 177633/371472 [3:14:15<16:48:04, 3.20it/s] 48%|████▊ | 177634/371472 [3:14:15<16:30:33, 3.26it/s] 48%|████▊ | 177635/371472 [3:14:16<15:57:12, 3.38it/s] 48%|████▊ | 177636/371472 [3:14:16<15:35:01, 3.46it/s] 48%|████▊ | 177637/371472 [3:14:16<15:37:00, 3.45it/s] 48%|████▊ | 177638/371472 [3:14:16<15:55:08, 3.38it/s] 48%|████▊ | 177639/371472 [3:14:17<15:41:56, 3.43it/s] 48%|████▊ | 177640/371472 [3:14:17<16:16:36, 3.31it/s] {'loss': 2.8404, 'learning_rate': 5.69867913551251e-07, 'epoch': 7.65} + 48%|████▊ | 177640/371472 [3:14:17<16:16:36, 3.31it/s] 48%|████▊ | 177641/371472 [3:14:17<16:14:54, 3.31it/s] 48%|████▊ | 177642/371472 [3:14:18<16:26:45, 3.27it/s] 48%|████▊ | 177643/371472 [3:14:18<16:44:00, 3.22it/s] 48%|████▊ | 177644/371472 [3:14:18<16:25:31, 3.28it/s] 48%|████▊ | 177645/371472 [3:14:19<15:55:01, 3.38it/s] 48%|████▊ | 177646/371472 [3:14:19<16:22:35, 3.29it/s] 48%|████▊ | 177647/371472 [3:14:19<16:32:17, 3.26it/s] 48%|████▊ | 177648/371472 [3:14:20<17:09:53, 3.14it/s] 48%|████▊ | 177649/371472 [3:14:20<16:55:30, 3.18it/s] 48%|████▊ | 177650/371472 [3:14:20<16:26:21, 3.28it/s] 48%|████▊ | 177651/371472 [3:14:20<16:16:21, 3.31it/s] 48%|████▊ | 177652/371472 [3:14:21<15:53:25, 3.39it/s] 48%|████▊ | 177653/371472 [3:14:21<16:05:55, 3.34it/s] 48%|████▊ | 177654/371472 [3:14:21<16:12:51, 3.32it/s] 48%|████▊ | 177655/371472 [3:14:22<15:59:02, 3.37it/s] 48%|████▊ | 177656/371472 [3:14:22<15:35:58, 3.45it/s] 48%|████▊ | 177657/371472 [3:14:22<15:50:56, 3.40it/s] 48%|████▊ | 177658/371472 [3:14:23<15:55:14, 3.38it/s] 48%|████▊ | 177659/371472 [3:14:23<16:41:10, 3.23it/s] 48%|████▊ | 177660/371472 [3:14:23<16:21:45, 3.29it/s] {'loss': 2.8981, 'learning_rate': 5.698194315757719e-07, 'epoch': 7.65} + 48%|████▊ | 177660/371472 [3:14:23<16:21:45, 3.29it/s] 48%|████▊ | 177661/371472 [3:14:23<16:20:04, 3.30it/s] 48%|████▊ | 177662/371472 [3:14:24<15:48:22, 3.41it/s] 48%|████▊ | 177663/371472 [3:14:24<15:48:16, 3.41it/s] 48%|████▊ | 177664/371472 [3:14:24<15:27:04, 3.48it/s] 48%|████▊ | 177665/371472 [3:14:25<15:15:06, 3.53it/s] 48%|████▊ | 177666/371472 [3:14:25<15:36:21, 3.45it/s] 48%|████▊ | 177667/371472 [3:14:25<15:27:28, 3.48it/s] 48%|████▊ | 177668/371472 [3:14:25<15:18:19, 3.52it/s] 48%|████▊ | 177669/371472 [3:14:26<15:10:50, 3.55it/s] 48%|████▊ | 177670/371472 [3:14:26<15:25:07, 3.49it/s] 48%|████▊ | 177671/371472 [3:14:26<16:00:30, 3.36it/s] 48%|████▊ | 177672/371472 [3:14:27<17:16:46, 3.12it/s] 48%|████▊ | 177673/371472 [3:14:27<16:39:19, 3.23it/s] 48%|████▊ | 177674/371472 [3:14:27<16:13:12, 3.32it/s] 48%|████▊ | 177675/371472 [3:14:28<16:01:57, 3.36it/s] 48%|████▊ | 177676/371472 [3:14:28<15:44:12, 3.42it/s] 48%|████▊ | 177677/371472 [3:14:28<15:51:24, 3.39it/s] 48%|████▊ | 177678/371472 [3:14:28<16:16:04, 3.31it/s] 48%|████▊ | 177679/371472 [3:14:29<15:46:01, 3.41it/s] 48%|████▊ | 177680/371472 [3:14:29<15:41:21, 3.43it/s] {'loss': 2.8425, 'learning_rate': 5.69770949600293e-07, 'epoch': 7.65} + 48%|████▊ | 177680/371472 [3:14:29<15:41:21, 3.43it/s] 48%|████▊ | 177681/371472 [3:14:29<15:53:12, 3.39it/s] 48%|████▊ | 177682/371472 [3:14:30<15:50:02, 3.40it/s] 48%|████▊ | 177683/371472 [3:14:30<15:38:06, 3.44it/s] 48%|████▊ | 177684/371472 [3:14:30<15:28:22, 3.48it/s] 48%|████▊ | 177685/371472 [3:14:30<15:43:59, 3.42it/s] 48%|████▊ | 177686/371472 [3:14:31<15:56:14, 3.38it/s] 48%|████▊ | 177687/371472 [3:14:31<15:49:49, 3.40it/s] 48%|████▊ | 177688/371472 [3:14:31<15:34:16, 3.46it/s] 48%|████▊ | 177689/371472 [3:14:32<15:38:32, 3.44it/s] 48%|████▊ | 177690/371472 [3:14:32<17:31:23, 3.07it/s] 48%|████▊ | 177691/371472 [3:14:32<17:04:48, 3.15it/s] 48%|████▊ | 177692/371472 [3:14:33<17:10:36, 3.13it/s] 48%|████▊ | 177693/371472 [3:14:33<16:52:18, 3.19it/s] 48%|████▊ | 177694/371472 [3:14:33<17:16:18, 3.12it/s] 48%|████▊ | 177695/371472 [3:14:34<17:09:21, 3.14it/s] 48%|████▊ | 177696/371472 [3:14:34<16:46:22, 3.21it/s] 48%|████▊ | 177697/371472 [3:14:34<16:32:35, 3.25it/s] 48%|████▊ | 177698/371472 [3:14:34<16:09:38, 3.33it/s] 48%|████▊ | 177699/371472 [3:14:35<16:29:40, 3.26it/s] 48%|████▊ | 177700/371472 [3:14:35<15:54:32, 3.38it/s] {'loss': 2.9297, 'learning_rate': 5.697224676248142e-07, 'epoch': 7.65} + 48%|████▊ | 177700/371472 [3:14:35<15:54:32, 3.38it/s] 48%|████▊ | 177701/371472 [3:14:35<15:56:11, 3.38it/s] 48%|████▊ | 177702/371472 [3:14:36<15:33:18, 3.46it/s] 48%|████▊ | 177703/371472 [3:14:36<15:14:35, 3.53it/s] 48%|████▊ | 177704/371472 [3:14:36<15:03:05, 3.58it/s] 48%|████▊ | 177705/371472 [3:14:36<15:32:37, 3.46it/s] 48%|████▊ | 177706/371472 [3:14:37<16:02:34, 3.35it/s] 48%|████▊ | 177707/371472 [3:14:37<15:40:27, 3.43it/s] 48%|████▊ | 177708/371472 [3:14:37<16:01:05, 3.36it/s] 48%|████▊ | 177709/371472 [3:14:38<15:56:47, 3.38it/s] 48%|████▊ | 177710/371472 [3:14:38<16:53:28, 3.19it/s] 48%|████▊ | 177711/371472 [3:14:38<16:29:34, 3.26it/s] 48%|████▊ | 177712/371472 [3:14:39<16:58:36, 3.17it/s] 48%|████▊ | 177713/371472 [3:14:39<17:19:06, 3.11it/s] 48%|████▊ | 177714/371472 [3:14:39<17:48:34, 3.02it/s] 48%|████▊ | 177715/371472 [3:14:40<17:05:13, 3.15it/s] 48%|████▊ | 177716/371472 [3:14:40<16:57:46, 3.17it/s] 48%|████▊ | 177717/371472 [3:14:40<16:43:51, 3.22it/s] 48%|████▊ | 177718/371472 [3:14:41<17:23:13, 3.10it/s] 48%|████▊ | 177719/371472 [3:14:41<16:42:07, 3.22it/s] 48%|████▊ | 177720/371472 [3:14:41<17:20:29, 3.10it/s] {'loss': 2.9438, 'learning_rate': 5.696739856493352e-07, 'epoch': 7.65} + 48%|████▊ | 177720/371472 [3:14:41<17:20:29, 3.10it/s] 48%|████▊ | 177721/371472 [3:14:42<16:40:36, 3.23it/s] 48%|████▊ | 177722/371472 [3:14:42<17:30:10, 3.07it/s] 48%|████▊ | 177723/371472 [3:14:42<16:59:40, 3.17it/s] 48%|████▊ | 177724/371472 [3:14:42<16:39:56, 3.23it/s] 48%|████▊ | 177725/371472 [3:14:43<16:50:06, 3.20it/s] 48%|████▊ | 177726/371472 [3:14:43<16:46:37, 3.21it/s] 48%|████▊ | 177727/371472 [3:14:43<17:45:16, 3.03it/s] 48%|████▊ | 177728/371472 [3:14:44<18:00:37, 2.99it/s] 48%|████▊ | 177729/371472 [3:14:44<17:32:03, 3.07it/s] 48%|████▊ | 177730/371472 [3:14:44<17:06:30, 3.15it/s] 48%|████▊ | 177731/371472 [3:14:45<16:19:00, 3.30it/s] 48%|████▊ | 177732/371472 [3:14:45<16:39:19, 3.23it/s] 48%|████▊ | 177733/371472 [3:14:45<16:24:40, 3.28it/s] 48%|████▊ | 177734/371472 [3:14:46<16:13:43, 3.32it/s] 48%|████▊ | 177735/371472 [3:14:46<16:36:27, 3.24it/s] 48%|████▊ | 177736/371472 [3:14:46<16:20:08, 3.29it/s] 48%|████▊ | 177737/371472 [3:14:47<16:19:49, 3.30it/s] 48%|████▊ | 177738/371472 [3:14:47<15:52:11, 3.39it/s] 48%|████▊ | 177739/371472 [3:14:47<15:49:24, 3.40it/s] 48%|████▊ | 177740/371472 [3:14:47<15:50:19, 3.40it/s] {'loss': 2.8202, 'learning_rate': 5.696255036738563e-07, 'epoch': 7.66} + 48%|████▊ | 177740/371472 [3:14:47<15:50:19, 3.40it/s] 48%|████▊ | 177741/371472 [3:14:48<16:11:39, 3.32it/s] 48%|████▊ | 177742/371472 [3:14:48<15:31:57, 3.46it/s] 48%|████▊ | 177743/371472 [3:14:48<15:33:35, 3.46it/s] 48%|████▊ | 177744/371472 [3:14:49<15:56:25, 3.38it/s] 48%|████▊ | 177745/371472 [3:14:49<15:44:27, 3.42it/s] 48%|████▊ | 177746/371472 [3:14:49<15:56:41, 3.37it/s] 48%|████▊ | 177747/371472 [3:14:49<15:48:11, 3.41it/s] 48%|████▊ | 177748/371472 [3:14:50<15:19:59, 3.51it/s] 48%|████▊ | 177749/371472 [3:14:50<15:28:20, 3.48it/s] 48%|████▊ | 177750/371472 [3:14:50<15:29:12, 3.47it/s] 48%|████▊ | 177751/371472 [3:14:51<15:14:45, 3.53it/s] 48%|████▊ | 177752/371472 [3:14:51<15:17:08, 3.52it/s] 48%|████▊ | 177753/371472 [3:14:51<15:41:02, 3.43it/s] 48%|████▊ | 177754/371472 [3:14:52<16:46:08, 3.21it/s] 48%|████▊ | 177755/371472 [3:14:52<17:01:37, 3.16it/s] 48%|████▊ | 177756/371472 [3:14:52<16:22:56, 3.28it/s] 48%|████▊ | 177757/371472 [3:14:52<16:34:31, 3.25it/s] 48%|████▊ | 177758/371472 [3:14:53<15:51:38, 3.39it/s] 48%|████▊ | 177759/371472 [3:14:53<16:01:54, 3.36it/s] 48%|████▊ | 177760/371472 [3:14:53<16:05:43, 3.34it/s] {'loss': 2.9952, 'learning_rate': 5.695770216983774e-07, 'epoch': 7.66} + 48%|████▊ | 177760/371472 [3:14:53<16:05:43, 3.34it/s] 48%|████▊ | 177761/371472 [3:14:54<16:16:20, 3.31it/s] 48%|████▊ | 177762/371472 [3:14:54<16:56:32, 3.18it/s] 48%|████▊ | 177763/371472 [3:14:54<16:50:44, 3.19it/s] 48%|████▊ | 177764/371472 [3:14:55<16:38:50, 3.23it/s] 48%|████▊ | 177765/371472 [3:14:55<17:29:43, 3.08it/s] 48%|████▊ | 177766/371472 [3:14:55<17:18:48, 3.11it/s] 48%|████▊ | 177767/371472 [3:14:56<16:29:41, 3.26it/s] 48%|████▊ | 177768/371472 [3:14:56<16:15:12, 3.31it/s] 48%|████▊ | 177769/371472 [3:14:56<16:13:37, 3.32it/s] 48%|████▊ | 177770/371472 [3:14:56<16:07:21, 3.34it/s] 48%|████▊ | 177771/371472 [3:14:57<17:19:40, 3.11it/s] 48%|████▊ | 177772/371472 [3:14:57<16:50:06, 3.20it/s] 48%|████▊ | 177773/371472 [3:14:57<16:33:41, 3.25it/s] 48%|████▊ | 177774/371472 [3:14:58<18:27:37, 2.91it/s] 48%|████▊ | 177775/371472 [3:14:58<17:25:18, 3.09it/s] 48%|████▊ | 177776/371472 [3:14:58<18:07:20, 2.97it/s] 48%|████▊ | 177777/371472 [3:14:59<17:06:21, 3.15it/s] 48%|████▊ | 177778/371472 [3:14:59<16:51:18, 3.19it/s] 48%|████▊ | 177779/371472 [3:14:59<16:22:40, 3.29it/s] 48%|████▊ | 177780/371472 [3:15:00<16:08:41, 3.33it/s] {'loss': 2.8149, 'learning_rate': 5.695285397228986e-07, 'epoch': 7.66} + 48%|████▊ | 177780/371472 [3:15:00<16:08:41, 3.33it/s] 48%|████▊ | 177781/371472 [3:15:00<16:06:34, 3.34it/s] 48%|████▊ | 177782/371472 [3:15:00<16:03:35, 3.35it/s] 48%|████▊ | 177783/371472 [3:15:01<16:33:39, 3.25it/s] 48%|████▊ | 177784/371472 [3:15:01<16:02:16, 3.35it/s] 48%|████▊ | 177785/371472 [3:15:01<15:57:25, 3.37it/s] 48%|████▊ | 177786/371472 [3:15:01<15:55:35, 3.38it/s] 48%|████▊ | 177787/371472 [3:15:02<15:34:37, 3.45it/s] 48%|████▊ | 177788/371472 [3:15:02<15:15:44, 3.53it/s] 48%|████▊ | 177789/371472 [3:15:02<15:14:09, 3.53it/s] 48%|████▊ | 177790/371472 [3:15:02<15:24:23, 3.49it/s] 48%|████▊ | 177791/371472 [3:15:03<15:22:11, 3.50it/s] 48%|████▊ | 177792/371472 [3:15:03<15:07:19, 3.56it/s] 48%|████▊ | 177793/371472 [3:15:03<15:09:04, 3.55it/s] 48%|████▊ | 177794/371472 [3:15:04<15:10:43, 3.54it/s] 48%|████▊ | 177795/371472 [3:15:04<16:05:42, 3.34it/s] 48%|████▊ | 177796/371472 [3:15:04<16:02:10, 3.35it/s] 48%|████▊ | 177797/371472 [3:15:05<16:05:47, 3.34it/s] 48%|████▊ | 177798/371472 [3:15:05<15:43:35, 3.42it/s] 48%|████▊ | 177799/371472 [3:15:05<16:07:50, 3.34it/s] 48%|████▊ | 177800/371472 [3:15:05<16:29:46, 3.26it/s] {'loss': 2.9931, 'learning_rate': 5.694800577474196e-07, 'epoch': 7.66} + 48%|████▊ | 177800/371472 [3:15:05<16:29:46, 3.26it/s] 48%|████▊ | 177801/371472 [3:15:06<16:39:27, 3.23it/s] 48%|████▊ | 177802/371472 [3:15:06<16:38:27, 3.23it/s] 48%|████▊ | 177803/371472 [3:15:06<16:22:20, 3.29it/s] 48%|████▊ | 177804/371472 [3:15:07<16:07:12, 3.34it/s] 48%|████▊ | 177805/371472 [3:15:07<15:55:05, 3.38it/s] 48%|████▊ | 177806/371472 [3:15:07<16:25:14, 3.28it/s] 48%|████▊ | 177807/371472 [3:15:08<16:53:02, 3.19it/s] 48%|████▊ | 177808/371472 [3:15:08<16:22:05, 3.29it/s] 48%|████▊ | 177809/371472 [3:15:08<16:43:21, 3.22it/s] 48%|████▊ | 177810/371472 [3:15:09<16:53:08, 3.19it/s] 48%|████▊ | 177811/371472 [3:15:09<16:52:43, 3.19it/s] 48%|████▊ | 177812/371472 [3:15:09<16:48:42, 3.20it/s] 48%|████▊ | 177813/371472 [3:15:10<17:01:03, 3.16it/s] 48%|████▊ | 177814/371472 [3:15:10<16:29:13, 3.26it/s] 48%|████▊ | 177815/371472 [3:15:10<16:08:46, 3.33it/s] 48%|████▊ | 177816/371472 [3:15:10<15:55:48, 3.38it/s] 48%|████▊ | 177817/371472 [3:15:11<16:00:28, 3.36it/s] 48%|████▊ | 177818/371472 [3:15:11<16:16:17, 3.31it/s] 48%|████▊ | 177819/371472 [3:15:11<16:12:46, 3.32it/s] 48%|████▊ | 177820/371472 [3:15:12<16:22:15, 3.29it/s] {'loss': 2.8799, 'learning_rate': 5.694315757719407e-07, 'epoch': 7.66} + 48%|████▊ | 177820/371472 [3:15:12<16:22:15, 3.29it/s] 48%|████▊ | 177821/371472 [3:15:12<16:31:04, 3.26it/s] 48%|████▊ | 177822/371472 [3:15:12<19:12:19, 2.80it/s] 48%|████▊ | 177823/371472 [3:15:13<19:12:50, 2.80it/s] 48%|████▊ | 177824/371472 [3:15:13<18:02:02, 2.98it/s] 48%|████▊ | 177825/371472 [3:15:13<17:27:38, 3.08it/s] 48%|████▊ | 177826/371472 [3:15:14<16:36:55, 3.24it/s] 48%|████▊ | 177827/371472 [3:15:14<16:03:31, 3.35it/s] 48%|████▊ | 177828/371472 [3:15:14<15:49:48, 3.40it/s] 48%|████▊ | 177829/371472 [3:15:14<16:03:35, 3.35it/s] 48%|████▊ | 177830/371472 [3:15:15<18:05:39, 2.97it/s] 48%|████▊ | 177831/371472 [3:15:15<17:29:20, 3.08it/s] 48%|████▊ | 177832/371472 [3:15:15<16:40:14, 3.23it/s] 48%|████▊ | 177833/371472 [3:15:16<16:28:05, 3.27it/s] 48%|████▊ | 177834/371472 [3:15:16<15:56:52, 3.37it/s] 48%|████▊ | 177835/371472 [3:15:16<16:34:09, 3.25it/s] 48%|████▊ | 177836/371472 [3:15:17<16:38:25, 3.23it/s] 48%|████▊ | 177837/371472 [3:15:17<16:39:34, 3.23it/s] 48%|████▊ | 177838/371472 [3:15:17<16:26:38, 3.27it/s] 48%|████▊ | 177839/371472 [3:15:18<16:25:45, 3.27it/s] 48%|████▊ | 177840/371472 [3:15:18<16:04:33, 3.35it/s] {'loss': 3.0778, 'learning_rate': 5.693830937964619e-07, 'epoch': 7.66} + 48%|████▊ | 177840/371472 [3:15:18<16:04:33, 3.35it/s] 48%|████▊ | 177841/371472 [3:15:18<16:43:48, 3.21it/s] 48%|████▊ | 177842/371472 [3:15:18<16:16:16, 3.31it/s] 48%|████▊ | 177843/371472 [3:15:19<16:23:02, 3.28it/s] 48%|████▊ | 177844/371472 [3:15:19<16:05:18, 3.34it/s] 48%|████▊ | 177845/371472 [3:15:19<15:54:21, 3.38it/s] 48%|████▊ | 177846/371472 [3:15:20<16:42:52, 3.22it/s] 48%|████▊ | 177847/371472 [3:15:20<16:37:30, 3.24it/s] 48%|████▊ | 177848/371472 [3:15:20<15:59:29, 3.36it/s] 48%|████▊ | 177849/371472 [3:15:21<15:49:23, 3.40it/s] 48%|████▊ | 177850/371472 [3:15:21<15:41:16, 3.43it/s] 48%|████▊ | 177851/371472 [3:15:21<15:57:07, 3.37it/s] 48%|████▊ | 177852/371472 [3:15:21<15:59:07, 3.36it/s] 48%|████▊ | 177853/371472 [3:15:22<15:51:18, 3.39it/s] 48%|████▊ | 177854/371472 [3:15:22<16:01:44, 3.36it/s] 48%|████▊ | 177855/371472 [3:15:22<15:57:19, 3.37it/s] 48%|████▊ | 177856/371472 [3:15:23<16:04:22, 3.35it/s] 48%|████▊ | 177857/371472 [3:15:23<15:45:27, 3.41it/s] 48%|████▊ | 177858/371472 [3:15:23<15:39:44, 3.43it/s] 48%|████▊ | 177859/371472 [3:15:24<15:50:47, 3.39it/s] 48%|████▊ | 177860/371472 [3:15:24<16:21:00, 3.29it/s] {'loss': 2.8611, 'learning_rate': 5.69334611820983e-07, 'epoch': 7.66} + 48%|████▊ | 177860/371472 [3:15:24<16:21:00, 3.29it/s] 48%|████▊ | 177861/371472 [3:15:24<16:20:57, 3.29it/s] 48%|████▊ | 177862/371472 [3:15:24<15:58:59, 3.36it/s] 48%|████▊ | 177863/371472 [3:15:25<15:49:34, 3.40it/s] 48%|████▊ | 177864/371472 [3:15:25<15:45:01, 3.41it/s] 48%|████▊ | 177865/371472 [3:15:25<16:23:08, 3.28it/s] 48%|████▊ | 177866/371472 [3:15:26<16:25:45, 3.27it/s] 48%|████▊ | 177867/371472 [3:15:26<15:52:21, 3.39it/s] 48%|████▊ | 177868/371472 [3:15:26<15:58:47, 3.37it/s] 48%|████▊ | 177869/371472 [3:15:27<16:26:31, 3.27it/s] 48%|████▊ | 177870/371472 [3:15:27<16:20:18, 3.29it/s] 48%|████▊ | 177871/371472 [3:15:27<16:11:08, 3.32it/s] 48%|████▊ | 177872/371472 [3:15:28<17:32:09, 3.07it/s] 48%|████▊ | 177873/371472 [3:15:28<17:23:47, 3.09it/s] 48%|████▊ | 177874/371472 [3:15:28<16:52:01, 3.19it/s] 48%|████▊ | 177875/371472 [3:15:29<19:04:21, 2.82it/s] 48%|████▊ | 177876/371472 [3:15:29<18:09:19, 2.96it/s] 48%|████▊ | 177877/371472 [3:15:29<16:58:29, 3.17it/s] 48%|████▊ | 177878/371472 [3:15:29<16:38:09, 3.23it/s] 48%|████▊ | 177879/371472 [3:15:30<16:46:24, 3.21it/s] 48%|████▊ | 177880/371472 [3:15:30<17:28:39, 3.08it/s] {'loss': 2.8026, 'learning_rate': 5.69286129845504e-07, 'epoch': 7.66} + 48%|████▊ | 177880/371472 [3:15:30<17:28:39, 3.08it/s] 48%|████▊ | 177881/371472 [3:15:30<17:02:43, 3.15it/s] 48%|████▊ | 177882/371472 [3:15:31<16:35:55, 3.24it/s] 48%|████▊ | 177883/371472 [3:15:31<18:07:32, 2.97it/s] 48%|████▊ | 177884/371472 [3:15:31<17:52:56, 3.01it/s] 48%|████▊ | 177885/371472 [3:15:32<16:57:45, 3.17it/s] 48%|████▊ | 177886/371472 [3:15:32<16:51:30, 3.19it/s] 48%|████▊ | 177887/371472 [3:15:32<16:24:04, 3.28it/s] 48%|████▊ | 177888/371472 [3:15:33<17:14:56, 3.12it/s] 48%|████▊ | 177889/371472 [3:15:33<18:02:38, 2.98it/s] 48%|████▊ | 177890/371472 [3:15:33<17:27:35, 3.08it/s] 48%|████▊ | 177891/371472 [3:15:34<17:04:12, 3.15it/s] 48%|████▊ | 177892/371472 [3:15:34<16:23:06, 3.28it/s] 48%|████▊ | 177893/371472 [3:15:34<15:57:05, 3.37it/s] 48%|████▊ | 177894/371472 [3:15:34<15:44:24, 3.42it/s] 48%|████▊ | 177895/371472 [3:15:35<15:26:43, 3.48it/s] 48%|████▊ | 177896/371472 [3:15:35<17:26:32, 3.08it/s] 48%|████▊ | 177897/371472 [3:15:35<17:04:15, 3.15it/s] 48%|████▊ | 177898/371472 [3:15:36<17:07:12, 3.14it/s] 48%|████▊ | 177899/371472 [3:15:36<17:10:04, 3.13it/s] 48%|████▊ | 177900/371472 [3:15:36<16:54:27, 3.18it/s] {'loss': 2.9164, 'learning_rate': 5.692376478700252e-07, 'epoch': 7.66} + 48%|████▊ | 177900/371472 [3:15:36<16:54:27, 3.18it/s] 48%|████▊ | 177901/371472 [3:15:37<16:39:43, 3.23it/s] 48%|████▊ | 177902/371472 [3:15:37<16:21:07, 3.29it/s] 48%|████▊ | 177903/371472 [3:15:37<16:22:58, 3.28it/s] 48%|████▊ | 177904/371472 [3:15:38<17:06:23, 3.14it/s] 48%|████▊ | 177905/371472 [3:15:38<16:58:05, 3.17it/s] 48%|████▊ | 177906/371472 [3:15:38<16:55:35, 3.18it/s] 48%|████▊ | 177907/371472 [3:15:39<16:14:11, 3.31it/s] 48%|████▊ | 177908/371472 [3:15:39<16:00:55, 3.36it/s] 48%|████▊ | 177909/371472 [3:15:39<15:52:13, 3.39it/s] 48%|████▊ | 177910/371472 [3:15:39<15:47:40, 3.40it/s] 48%|████▊ | 177911/371472 [3:15:40<17:04:57, 3.15it/s] 48%|████▊ | 177912/371472 [3:15:40<17:26:27, 3.08it/s] 48%|████▊ | 177913/371472 [3:15:40<16:39:46, 3.23it/s] 48%|████▊ | 177914/371472 [3:15:41<16:19:19, 3.29it/s] 48%|████▊ | 177915/371472 [3:15:41<16:46:34, 3.20it/s] 48%|████▊ | 177916/371472 [3:15:41<16:42:18, 3.22it/s] 48%|████▊ | 177917/371472 [3:15:42<16:20:55, 3.29it/s] 48%|████▊ | 177918/371472 [3:15:42<15:45:27, 3.41it/s] 48%|████▊ | 177919/371472 [3:15:42<15:39:30, 3.43it/s] 48%|████▊ | 177920/371472 [3:15:42<15:56:05, 3.37it/s] {'loss': 2.9282, 'learning_rate': 5.691891658945463e-07, 'epoch': 7.66} + 48%|████▊ | 177920/371472 [3:15:42<15:56:05, 3.37it/s] 48%|████▊ | 177921/371472 [3:15:43<16:10:05, 3.33it/s] 48%|████▊ | 177922/371472 [3:15:43<15:53:48, 3.38it/s] 48%|████▊ | 177923/371472 [3:15:43<15:33:26, 3.46it/s] 48%|████▊ | 177924/371472 [3:15:44<15:12:09, 3.54it/s] 48%|████▊ | 177925/371472 [3:15:44<15:12:47, 3.53it/s] 48%|████▊ | 177926/371472 [3:15:44<15:23:17, 3.49it/s] 48%|████▊ | 177927/371472 [3:15:45<15:48:12, 3.40it/s] 48%|████▊ | 177928/371472 [3:15:45<15:39:38, 3.43it/s] 48%|████▊ | 177929/371472 [3:15:45<15:55:04, 3.38it/s] 48%|████▊ | 177930/371472 [3:15:45<15:59:06, 3.36it/s] 48%|████▊ | 177931/371472 [3:15:46<15:45:52, 3.41it/s] 48%|████▊ | 177932/371472 [3:15:46<15:46:57, 3.41it/s] 48%|████▊ | 177933/371472 [3:15:46<15:26:47, 3.48it/s] 48%|████▊ | 177934/371472 [3:15:47<16:13:39, 3.31it/s] 48%|████▊ | 177935/371472 [3:15:47<15:51:43, 3.39it/s] 48%|████▊ | 177936/371472 [3:15:47<16:12:24, 3.32it/s] 48%|████▊ | 177937/371472 [3:15:48<16:46:55, 3.20it/s] 48%|████▊ | 177938/371472 [3:15:48<16:45:20, 3.21it/s] 48%|████▊ | 177939/371472 [3:15:48<17:46:13, 3.03it/s] 48%|████▊ | 177940/371472 [3:15:49<17:17:17, 3.11it/s] {'loss': 2.8347, 'learning_rate': 5.691406839190675e-07, 'epoch': 7.66} + 48%|████▊ | 177940/371472 [3:15:49<17:17:17, 3.11it/s] 48%|████▊ | 177941/371472 [3:15:49<18:00:08, 2.99it/s] 48%|████▊ | 177942/371472 [3:15:49<17:17:19, 3.11it/s] 48%|████▊ | 177943/371472 [3:15:49<17:05:31, 3.15it/s] 48%|████▊ | 177944/371472 [3:15:50<16:27:03, 3.27it/s] 48%|████▊ | 177945/371472 [3:15:50<16:25:08, 3.27it/s] 48%|████▊ | 177946/371472 [3:15:50<16:02:19, 3.35it/s] 48%|████▊ | 177947/371472 [3:15:51<15:58:36, 3.36it/s] 48%|████▊ | 177948/371472 [3:15:51<15:28:27, 3.47it/s] 48%|████▊ | 177949/371472 [3:15:51<15:15:13, 3.52it/s] 48%|████▊ | 177950/371472 [3:15:51<15:30:30, 3.47it/s] 48%|████▊ | 177951/371472 [3:15:52<16:05:19, 3.34it/s] 48%|████▊ | 177952/371472 [3:15:52<15:53:32, 3.38it/s] 48%|████▊ | 177953/371472 [3:15:52<16:28:33, 3.26it/s] 48%|████▊ | 177954/371472 [3:15:53<17:19:32, 3.10it/s] 48%|████▊ | 177955/371472 [3:15:53<16:55:11, 3.18it/s] 48%|████▊ | 177956/371472 [3:15:53<16:25:35, 3.27it/s] 48%|████▊ | 177957/371472 [3:15:54<16:14:18, 3.31it/s] 48%|████▊ | 177958/371472 [3:15:54<17:53:42, 3.00it/s] 48%|████▊ | 177959/371472 [3:15:54<17:04:01, 3.15it/s] 48%|████▊ | 177960/371472 [3:15:55<17:22:27, 3.09it/s] {'loss': 2.8105, 'learning_rate': 5.690922019435885e-07, 'epoch': 7.67} + 48%|████▊ | 177960/371472 [3:15:55<17:22:27, 3.09it/s] 48%|████▊ | 177961/371472 [3:15:55<16:52:27, 3.19it/s] 48%|████▊ | 177962/371472 [3:15:55<16:27:12, 3.27it/s] 48%|████▊ | 177963/371472 [3:15:56<16:10:46, 3.32it/s] 48%|████▊ | 177964/371472 [3:15:56<15:59:14, 3.36it/s] 48%|████▊ | 177965/371472 [3:15:56<16:00:30, 3.36it/s] 48%|████▊ | 177966/371472 [3:15:56<16:26:23, 3.27it/s] 48%|████▊ | 177967/371472 [3:15:57<17:11:08, 3.13it/s] 48%|████▊ | 177968/371472 [3:15:57<16:36:59, 3.23it/s] 48%|████▊ | 177969/371472 [3:15:57<17:19:46, 3.10it/s] 48%|████▊ | 177970/371472 [3:15:58<16:59:19, 3.16it/s] 48%|████▊ | 177971/371472 [3:15:58<16:39:02, 3.23it/s] 48%|████▊ | 177972/371472 [3:15:58<16:08:41, 3.33it/s] 48%|████▊ | 177973/371472 [3:15:59<15:52:09, 3.39it/s] 48%|████▊ | 177974/371472 [3:15:59<16:15:37, 3.31it/s] 48%|████▊ | 177975/371472 [3:15:59<16:40:02, 3.22it/s] 48%|████▊ | 177976/371472 [3:16:00<17:30:46, 3.07it/s] 48%|████▊ | 177977/371472 [3:16:00<16:48:28, 3.20it/s] 48%|████▊ | 177978/371472 [3:16:00<16:40:08, 3.22it/s] 48%|████▊ | 177979/371472 [3:16:00<16:36:07, 3.24it/s] 48%|████▊ | 177980/371472 [3:16:01<16:11:22, 3.32it/s] {'loss': 2.7934, 'learning_rate': 5.690437199681096e-07, 'epoch': 7.67} + 48%|████▊ | 177980/371472 [3:16:01<16:11:22, 3.32it/s] 48%|████▊ | 177981/371472 [3:16:01<16:03:39, 3.35it/s] 48%|████▊ | 177982/371472 [3:16:01<15:33:06, 3.46it/s] 48%|████▊ | 177983/371472 [3:16:02<15:15:15, 3.52it/s] 48%|████▊ | 177984/371472 [3:16:02<15:23:55, 3.49it/s] 48%|████▊ | 177985/371472 [3:16:02<17:31:21, 3.07it/s] 48%|████▊ | 177986/371472 [3:16:03<16:47:38, 3.20it/s] 48%|████▊ | 177987/371472 [3:16:03<16:24:00, 3.28it/s] 48%|████▊ | 177988/371472 [3:16:03<16:20:26, 3.29it/s] 48%|████▊ | 177989/371472 [3:16:03<16:01:19, 3.35it/s] 48%|████▊ | 177990/371472 [3:16:04<15:50:35, 3.39it/s] 48%|████▊ | 177991/371472 [3:16:04<15:31:37, 3.46it/s] 48%|████▊ | 177992/371472 [3:16:04<15:30:37, 3.47it/s] 48%|████▊ | 177993/371472 [3:16:05<15:46:35, 3.41it/s] 48%|████▊ | 177994/371472 [3:16:05<15:52:33, 3.39it/s] 48%|████▊ | 177995/371472 [3:16:05<15:47:03, 3.40it/s] 48%|████▊ | 177996/371472 [3:16:06<15:47:13, 3.40it/s] 48%|████▊ | 177997/371472 [3:16:06<17:43:47, 3.03it/s] 48%|████▊ | 177998/371472 [3:16:06<17:54:20, 3.00it/s] 48%|████▊ | 177999/371472 [3:16:07<17:55:10, 3.00it/s] 48%|████▊ | 178000/371472 [3:16:07<18:57:41, 2.83it/s] {'loss': 2.8627, 'learning_rate': 5.689952379926307e-07, 'epoch': 7.67} + 48%|████▊ | 178000/371472 [3:16:07<18:57:41, 2.83it/s] 48%|████▊ | 178001/371472 [3:16:07<19:02:41, 2.82it/s] 48%|████▊ | 178002/371472 [3:16:08<18:59:25, 2.83it/s] 48%|████▊ | 178003/371472 [3:16:08<17:33:19, 3.06it/s] 48%|████▊ | 178004/371472 [3:16:08<17:38:46, 3.05it/s] 48%|████▊ | 178005/371472 [3:16:09<17:26:02, 3.08it/s] 48%|████▊ | 178006/371472 [3:16:09<16:43:27, 3.21it/s] 48%|████▊ | 178007/371472 [3:16:09<16:26:28, 3.27it/s] 48%|████▊ | 178008/371472 [3:16:09<16:12:53, 3.31it/s] 48%|████▊ | 178009/371472 [3:16:10<16:17:46, 3.30it/s] 48%|████▊ | 178010/371472 [3:16:10<15:56:00, 3.37it/s] 48%|████▊ | 178011/371472 [3:16:10<15:45:01, 3.41it/s] 48%|████▊ | 178012/371472 [3:16:11<15:18:49, 3.51it/s] 48%|████▊ | 178013/371472 [3:16:11<15:10:21, 3.54it/s] 48%|████▊ | 178014/371472 [3:16:11<15:16:34, 3.52it/s] 48%|████▊ | 178015/371472 [3:16:11<15:32:17, 3.46it/s] 48%|████▊ | 178016/371472 [3:16:12<15:30:22, 3.47it/s] 48%|████▊ | 178017/371472 [3:16:12<15:14:24, 3.53it/s] 48%|████▊ | 178018/371472 [3:16:12<15:30:11, 3.47it/s] 48%|████▊ | 178019/371472 [3:16:13<16:13:54, 3.31it/s] 48%|████▊ | 178020/371472 [3:16:13<16:58:19, 3.17it/s] {'loss': 2.8653, 'learning_rate': 5.68946756017152e-07, 'epoch': 7.67} + 48%|████▊ | 178020/371472 [3:16:13<16:58:19, 3.17it/s] 48%|████▊ | 178021/371472 [3:16:13<16:54:11, 3.18it/s] 48%|████▊ | 178022/371472 [3:16:14<16:35:29, 3.24it/s] 48%|████▊ | 178023/371472 [3:16:14<16:42:38, 3.22it/s] 48%|████▊ | 178024/371472 [3:16:14<16:23:53, 3.28it/s] 48%|████▊ | 178025/371472 [3:16:15<16:04:15, 3.34it/s] 48%|████▊ | 178026/371472 [3:16:15<16:00:16, 3.36it/s] 48%|████▊ | 178027/371472 [3:16:15<15:50:15, 3.39it/s] 48%|████▊ | 178028/371472 [3:16:15<15:37:19, 3.44it/s] 48%|████▊ | 178029/371472 [3:16:16<15:15:24, 3.52it/s] 48%|████▊ | 178030/371472 [3:16:16<15:38:21, 3.44it/s] 48%|████▊ | 178031/371472 [3:16:16<16:13:00, 3.31it/s] 48%|████▊ | 178032/371472 [3:16:17<15:55:11, 3.38it/s] 48%|████▊ | 178033/371472 [3:16:17<16:08:46, 3.33it/s] 48%|████▊ | 178034/371472 [3:16:17<15:59:57, 3.36it/s] 48%|████▊ | 178035/371472 [3:16:18<16:34:14, 3.24it/s] 48%|████▊ | 178036/371472 [3:16:18<16:00:21, 3.36it/s] 48%|████▊ | 178037/371472 [3:16:18<15:34:01, 3.45it/s] 48%|████▊ | 178038/371472 [3:16:18<15:37:55, 3.44it/s] 48%|████▊ | 178039/371472 [3:16:19<15:38:58, 3.43it/s] 48%|████▊ | 178040/371472 [3:16:19<15:43:47, 3.42it/s] {'loss': 2.7763, 'learning_rate': 5.688982740416729e-07, 'epoch': 7.67} + 48%|████▊ | 178040/371472 [3:16:19<15:43:47, 3.42it/s] 48%|████▊ | 178041/371472 [3:16:19<16:05:54, 3.34it/s] 48%|████▊ | 178042/371472 [3:16:20<16:21:57, 3.28it/s] 48%|████▊ | 178043/371472 [3:16:20<16:46:18, 3.20it/s] 48%|████▊ | 178044/371472 [3:16:20<16:24:48, 3.27it/s] 48%|████▊ | 178045/371472 [3:16:20<16:15:42, 3.30it/s] 48%|████▊ | 178046/371472 [3:16:21<16:41:24, 3.22it/s] 48%|████▊ | 178047/371472 [3:16:21<17:18:53, 3.10it/s] 48%|████▊ | 178048/371472 [3:16:21<16:50:55, 3.19it/s] 48%|████▊ | 178049/371472 [3:16:22<16:54:50, 3.18it/s] 48%|████▊ | 178050/371472 [3:16:22<16:41:00, 3.22it/s] 48%|████▊ | 178051/371472 [3:16:22<16:28:35, 3.26it/s] 48%|████▊ | 178052/371472 [3:16:23<16:10:26, 3.32it/s] 48%|████▊ | 178053/371472 [3:16:23<16:30:24, 3.25it/s] 48%|████▊ | 178054/371472 [3:16:23<16:21:57, 3.28it/s] 48%|████▊ | 178055/371472 [3:16:24<16:37:40, 3.23it/s] 48%|████▊ | 178056/371472 [3:16:24<16:18:37, 3.29it/s] 48%|████▊ | 178057/371472 [3:16:24<16:28:55, 3.26it/s] 48%|████▊ | 178058/371472 [3:16:25<17:07:06, 3.14it/s] 48%|████▊ | 178059/371472 [3:16:25<16:57:51, 3.17it/s] 48%|████▊ | 178060/371472 [3:16:25<17:16:39, 3.11it/s] {'loss': 2.967, 'learning_rate': 5.68849792066194e-07, 'epoch': 7.67} + 48%|████▊ | 178060/371472 [3:16:25<17:16:39, 3.11it/s] 48%|████▊ | 178061/371472 [3:16:26<17:31:58, 3.06it/s] 48%|████▊ | 178062/371472 [3:16:26<17:24:07, 3.09it/s] 48%|████▊ | 178063/371472 [3:16:26<18:32:25, 2.90it/s] 48%|████▊ | 178064/371472 [3:16:27<17:27:53, 3.08it/s] 48%|████▊ | 178065/371472 [3:16:27<16:57:26, 3.17it/s] 48%|████▊ | 178066/371472 [3:16:27<17:04:49, 3.15it/s] 48%|████▊ | 178067/371472 [3:16:27<17:01:56, 3.15it/s] 48%|████▊ | 178068/371472 [3:16:28<16:36:26, 3.23it/s] 48%|████▊ | 178069/371472 [3:16:28<16:24:00, 3.28it/s] 48%|████▊ | 178070/371472 [3:16:28<16:04:32, 3.34it/s] 48%|████▊ | 178071/371472 [3:16:29<15:48:23, 3.40it/s] 48%|████▊ | 178072/371472 [3:16:29<16:00:03, 3.36it/s] 48%|████▊ | 178073/371472 [3:16:29<16:08:51, 3.33it/s] 48%|████▊ | 178074/371472 [3:16:30<16:08:22, 3.33it/s] 48%|████▊ | 178075/371472 [3:16:30<16:48:35, 3.20it/s] 48%|████▊ | 178076/371472 [3:16:30<16:35:42, 3.24it/s] 48%|████▊ | 178077/371472 [3:16:30<16:11:22, 3.32it/s] 48%|████▊ | 178078/371472 [3:16:31<15:57:29, 3.37it/s] 48%|████▊ | 178079/371472 [3:16:31<16:13:58, 3.31it/s] 48%|████▊ | 178080/371472 [3:16:31<15:31:19, 3.46it/s] {'loss': 2.8955, 'learning_rate': 5.688013100907152e-07, 'epoch': 7.67} + 48%|████▊ | 178080/371472 [3:16:31<15:31:19, 3.46it/s] 48%|████▊ | 178081/371472 [3:16:32<15:30:22, 3.46it/s] 48%|████▊ | 178082/371472 [3:16:32<15:36:15, 3.44it/s] 48%|████▊ | 178083/371472 [3:16:32<16:50:04, 3.19it/s] 48%|████▊ | 178084/371472 [3:16:33<16:24:31, 3.27it/s] 48%|████▊ | 178085/371472 [3:16:33<16:21:31, 3.28it/s] 48%|████▊ | 178086/371472 [3:16:33<16:51:31, 3.19it/s] 48%|████▊ | 178087/371472 [3:16:34<17:24:12, 3.09it/s] 48%|████▊ | 178088/371472 [3:16:34<16:46:16, 3.20it/s] 48%|████▊ | 178089/371472 [3:16:34<16:26:48, 3.27it/s] 48%|████▊ | 178090/371472 [3:16:34<16:22:24, 3.28it/s] 48%|████▊ | 178091/371472 [3:16:35<16:10:50, 3.32it/s] 48%|████▊ | 178092/371472 [3:16:35<15:55:30, 3.37it/s] 48%|████▊ | 178093/371472 [3:16:35<16:12:51, 3.31it/s] 48%|████▊ | 178094/371472 [3:16:36<15:43:26, 3.42it/s] 48%|████▊ | 178095/371472 [3:16:36<16:34:45, 3.24it/s] 48%|████▊ | 178096/371472 [3:16:36<16:32:07, 3.25it/s] 48%|████▊ | 178097/371472 [3:16:37<16:07:32, 3.33it/s] 48%|████▊ | 178098/371472 [3:16:37<17:40:55, 3.04it/s] 48%|████▊ | 178099/371472 [3:16:37<17:53:36, 3.00it/s] 48%|████▊ | 178100/371472 [3:16:38<18:19:55, 2.93it/s] {'loss': 2.9241, 'learning_rate': 5.687528281152362e-07, 'epoch': 7.67} + 48%|████▊ | 178100/371472 [3:16:38<18:19:55, 2.93it/s] 48%|████▊ | 178101/371472 [3:16:38<17:11:19, 3.12it/s] 48%|████▊ | 178102/371472 [3:16:38<16:38:44, 3.23it/s] 48%|████▊ | 178103/371472 [3:16:38<16:40:32, 3.22it/s] 48%|████▊ | 178104/371472 [3:16:39<16:40:58, 3.22it/s] 48%|████▊ | 178105/371472 [3:16:39<16:27:53, 3.26it/s] 48%|████▊ | 178106/371472 [3:16:39<16:17:49, 3.30it/s] 48%|████▊ | 178107/371472 [3:16:40<16:32:51, 3.25it/s] 48%|████▊ | 178108/371472 [3:16:40<17:01:32, 3.15it/s] 48%|████▊ | 178109/371472 [3:16:40<16:35:26, 3.24it/s] 48%|████▊ | 178110/371472 [3:16:41<15:59:45, 3.36it/s] 48%|████▊ | 178111/371472 [3:16:41<15:52:31, 3.38it/s] 48%|████▊ | 178112/371472 [3:16:41<15:31:00, 3.46it/s] 48%|████▊ | 178113/371472 [3:16:41<15:49:45, 3.39it/s] 48%|████▊ | 178114/371472 [3:16:42<15:28:49, 3.47it/s] 48%|████▊ | 178115/371472 [3:16:42<15:32:07, 3.46it/s] 48%|████▊ | 178116/371472 [3:16:42<15:36:47, 3.44it/s] 48%|████▊ | 178117/371472 [3:16:43<16:36:43, 3.23it/s] 48%|████▊ | 178118/371472 [3:16:43<15:52:48, 3.38it/s] 48%|████▊ | 178119/371472 [3:16:43<15:34:23, 3.45it/s] 48%|████▊ | 178120/371472 [3:16:43<15:02:13, 3.57it/s] {'loss': 2.9947, 'learning_rate': 5.687043461397573e-07, 'epoch': 7.67} + 48%|████▊ | 178120/371472 [3:16:43<15:02:13, 3.57it/s] 48%|████▊ | 178121/371472 [3:16:44<15:43:39, 3.41it/s] 48%|████▊ | 178122/371472 [3:16:44<16:16:49, 3.30it/s] 48%|████▊ | 178123/371472 [3:16:44<15:51:26, 3.39it/s] 48%|████▊ | 178124/371472 [3:16:45<15:41:42, 3.42it/s] 48%|████▊ | 178125/371472 [3:16:45<16:41:55, 3.22it/s] 48%|████▊ | 178126/371472 [3:16:45<16:25:57, 3.27it/s] 48%|████▊ | 178127/371472 [3:16:46<16:22:29, 3.28it/s] 48%|████▊ | 178128/371472 [3:16:46<16:12:32, 3.31it/s] 48%|████▊ | 178129/371472 [3:16:46<16:52:21, 3.18it/s] 48%|████▊ | 178130/371472 [3:16:47<16:00:47, 3.35it/s] 48%|████▊ | 178131/371472 [3:16:47<16:34:14, 3.24it/s] 48%|████▊ | 178132/371472 [3:16:47<16:50:18, 3.19it/s] 48%|████▊ | 178133/371472 [3:16:48<16:44:57, 3.21it/s] 48%|████▊ | 178134/371472 [3:16:48<15:58:57, 3.36it/s] 48%|████▊ | 178135/371472 [3:16:48<15:31:16, 3.46it/s] 48%|████▊ | 178136/371472 [3:16:48<16:44:21, 3.21it/s] 48%|████▊ | 178137/371472 [3:16:49<16:26:13, 3.27it/s] 48%|████▊ | 178138/371472 [3:16:49<16:02:50, 3.35it/s] 48%|████▊ | 178139/371472 [3:16:49<18:39:13, 2.88it/s] 48%|████▊ | 178140/371472 [3:16:50<19:01:35, 2.82it/s] {'loss': 2.7975, 'learning_rate': 5.686558641642784e-07, 'epoch': 7.67} + 48%|████▊ | 178140/371472 [3:16:50<19:01:35, 2.82it/s] 48%|████▊ | 178141/371472 [3:16:50<17:59:48, 2.98it/s] 48%|████▊ | 178142/371472 [3:16:50<17:26:46, 3.08it/s] 48%|████▊ | 178143/371472 [3:16:51<17:47:34, 3.02it/s] 48%|████▊ | 178144/371472 [3:16:51<17:05:36, 3.14it/s] 48%|████▊ | 178145/371472 [3:16:51<17:08:30, 3.13it/s] 48%|████▊ | 178146/371472 [3:16:52<16:34:28, 3.24it/s] 48%|████▊ | 178147/371472 [3:16:52<16:04:38, 3.34it/s] 48%|████▊ | 178148/371472 [3:16:52<16:05:40, 3.34it/s] 48%|████▊ | 178149/371472 [3:16:53<15:50:48, 3.39it/s] 48%|████▊ | 178150/371472 [3:16:53<16:12:48, 3.31it/s] 48%|████▊ | 178151/371472 [3:16:53<16:40:14, 3.22it/s] 48%|████▊ | 178152/371472 [3:16:53<16:41:01, 3.22it/s] 48%|████▊ | 178153/371472 [3:16:54<17:32:30, 3.06it/s] 48%|███��▊ | 178154/371472 [3:16:54<17:58:53, 2.99it/s] 48%|████▊ | 178155/371472 [3:16:55<17:39:04, 3.04it/s] 48%|████▊ | 178156/371472 [3:16:55<17:14:37, 3.11it/s] 48%|████▊ | 178157/371472 [3:16:55<16:33:42, 3.24it/s] 48%|████▊ | 178158/371472 [3:16:55<16:23:23, 3.28it/s] 48%|████▊ | 178159/371472 [3:16:56<16:13:17, 3.31it/s] 48%|████▊ | 178160/371472 [3:16:56<15:55:18, 3.37it/s] {'loss': 2.9721, 'learning_rate': 5.686073821887996e-07, 'epoch': 7.67} + 48%|████▊ | 178160/371472 [3:16:56<15:55:18, 3.37it/s] 48%|████▊ | 178161/371472 [3:16:56<15:34:29, 3.45it/s] 48%|████▊ | 178162/371472 [3:16:57<16:32:28, 3.25it/s] 48%|████▊ | 178163/371472 [3:16:57<16:27:52, 3.26it/s] 48%|████▊ | 178164/371472 [3:16:57<16:11:09, 3.32it/s] 48%|████▊ | 178165/371472 [3:16:58<18:25:20, 2.91it/s] 48%|████▊ | 178166/371472 [3:16:58<17:19:42, 3.10it/s] 48%|████▊ | 178167/371472 [3:16:58<17:20:13, 3.10it/s] 48%|████▊ | 178168/371472 [3:16:59<16:59:37, 3.16it/s] 48%|████▊ | 178169/371472 [3:16:59<16:31:57, 3.25it/s] 48%|████▊ | 178170/371472 [3:16:59<15:51:01, 3.39it/s] 48%|████▊ | 178171/371472 [3:16:59<15:59:24, 3.36it/s] 48%|████▊ | 178172/371472 [3:17:00<15:58:25, 3.36it/s] 48%|████▊ | 178173/371472 [3:17:00<15:23:43, 3.49it/s] 48%|████▊ | 178174/371472 [3:17:00<15:46:57, 3.40it/s] 48%|████▊ | 178175/371472 [3:17:01<15:51:22, 3.39it/s] 48%|████▊ | 178176/371472 [3:17:01<15:32:44, 3.45it/s] 48%|████▊ | 178177/371472 [3:17:01<15:26:34, 3.48it/s] 48%|████▊ | 178178/371472 [3:17:01<15:10:54, 3.54it/s] 48%|████▊ | 178179/371472 [3:17:02<15:31:45, 3.46it/s] 48%|████▊ | 178180/371472 [3:17:02<15:34:01, 3.45it/s] {'loss': 2.8841, 'learning_rate': 5.685589002133207e-07, 'epoch': 7.67} + 48%|████▊ | 178180/371472 [3:17:02<15:34:01, 3.45it/s] 48%|████▊ | 178181/371472 [3:17:02<15:39:21, 3.43it/s] 48%|████▊ | 178182/371472 [3:17:03<15:51:06, 3.39it/s] 48%|████▊ | 178183/371472 [3:17:03<16:45:39, 3.20it/s] 48%|████▊ | 178184/371472 [3:17:03<16:58:37, 3.16it/s] 48%|████▊ | 178185/371472 [3:17:04<17:54:14, 3.00it/s] 48%|████▊ | 178186/371472 [3:17:04<16:54:02, 3.18it/s] 48%|████▊ | 178187/371472 [3:17:04<16:28:27, 3.26it/s] 48%|████▊ | 178188/371472 [3:17:04<16:17:08, 3.30it/s] 48%|████▊ | 178189/371472 [3:17:05<16:27:59, 3.26it/s] 48%|████▊ | 178190/371472 [3:17:05<16:05:41, 3.34it/s] 48%|████▊ | 178191/371472 [3:17:05<16:12:56, 3.31it/s] 48%|████▊ | 178192/371472 [3:17:06<15:51:23, 3.39it/s] 48%|████▊ | 178193/371472 [3:17:06<15:17:25, 3.51it/s] 48%|████▊ | 178194/371472 [3:17:06<16:22:16, 3.28it/s] 48%|████▊ | 178195/371472 [3:17:07<17:13:29, 3.12it/s] 48%|████▊ | 178196/371472 [3:17:07<16:47:13, 3.20it/s] 48%|████▊ | 178197/371472 [3:17:07<16:33:07, 3.24it/s] 48%|████▊ | 178198/371472 [3:17:08<16:47:18, 3.20it/s] 48%|████▊ | 178199/371472 [3:17:08<16:01:49, 3.35it/s] 48%|████▊ | 178200/371472 [3:17:08<15:43:36, 3.41it/s] {'loss': 2.7844, 'learning_rate': 5.685104182378418e-07, 'epoch': 7.68} + 48%|████▊ | 178200/371472 [3:17:08<15:43:36, 3.41it/s] 48%|████▊ | 178201/371472 [3:17:08<17:14:28, 3.11it/s] 48%|████▊ | 178202/371472 [3:17:09<16:38:39, 3.23it/s] 48%|████▊ | 178203/371472 [3:17:09<16:30:39, 3.25it/s] 48%|████▊ | 178204/371472 [3:17:09<16:13:40, 3.31it/s] 48%|████▊ | 178205/371472 [3:17:10<15:37:24, 3.44it/s] 48%|████▊ | 178206/371472 [3:17:10<15:44:26, 3.41it/s] 48%|████▊ | 178207/371472 [3:17:10<16:12:23, 3.31it/s] 48%|████▊ | 178208/371472 [3:17:11<16:11:40, 3.31it/s] 48%|████▊ | 178209/371472 [3:17:11<16:08:32, 3.33it/s] 48%|████▊ | 178210/371472 [3:17:11<17:43:28, 3.03it/s] 48%|████▊ | 178211/371472 [3:17:12<17:02:17, 3.15it/s] 48%|████▊ | 178212/371472 [3:17:12<16:34:02, 3.24it/s] 48%|████▊ | 178213/371472 [3:17:12<16:01:34, 3.35it/s] 48%|████▊ | 178214/371472 [3:17:12<16:30:08, 3.25it/s] 48%|████▊ | 178215/371472 [3:17:13<16:53:10, 3.18it/s] 48%|████▊ | 178216/371472 [3:17:13<17:29:07, 3.07it/s] 48%|████▊ | 178217/371472 [3:17:13<16:44:29, 3.21it/s] 48%|████▊ | 178218/371472 [3:17:14<17:13:44, 3.12it/s] 48%|████▊ | 178219/371472 [3:17:14<16:45:51, 3.20it/s] 48%|████▊ | 178220/371472 [3:17:14<16:40:13, 3.22it/s] {'loss': 3.0574, 'learning_rate': 5.684619362623629e-07, 'epoch': 7.68} + 48%|████▊ | 178220/371472 [3:17:14<16:40:13, 3.22it/s] 48%|████▊ | 178221/371472 [3:17:15<16:33:21, 3.24it/s] 48%|████▊ | 178222/371472 [3:17:15<17:08:00, 3.13it/s] 48%|████▊ | 178223/371472 [3:17:15<17:19:58, 3.10it/s] 48%|████▊ | 178224/371472 [3:17:16<18:21:16, 2.92it/s] 48%|████▊ | 178225/371472 [3:17:16<18:29:30, 2.90it/s] 48%|████▊ | 178226/371472 [3:17:16<19:53:42, 2.70it/s] 48%|████▊ | 178227/371472 [3:17:17<18:29:31, 2.90it/s] 48%|████▊ | 178228/371472 [3:17:17<18:10:16, 2.95it/s] 48%|████▊ | 178229/371472 [3:17:17<17:29:00, 3.07it/s] 48%|████▊ | 178230/371472 [3:17:18<17:47:58, 3.02it/s] 48%|████▊ | 178231/371472 [3:17:18<17:20:22, 3.10it/s] 48%|████▊ | 178232/371472 [3:17:18<17:41:22, 3.03it/s] 48%|████▊ | 178233/371472 [3:17:19<17:02:50, 3.15it/s] 48%|████▊ | 178234/371472 [3:17:19<16:49:10, 3.19it/s] 48%|████▊ | 178235/371472 [3:17:19<16:10:48, 3.32it/s] 48%|████▊ | 178236/371472 [3:17:20<15:56:22, 3.37it/s] 48%|████▊ | 178237/371472 [3:17:20<15:54:07, 3.38it/s] 48%|████▊ | 178238/371472 [3:17:20<15:51:28, 3.38it/s] 48%|████▊ | 178239/371472 [3:17:20<15:40:04, 3.43it/s] 48%|████▊ | 178240/371472 [3:17:21<16:20:57, 3.28it/s] {'loss': 2.8605, 'learning_rate': 5.684134542868839e-07, 'epoch': 7.68} + 48%|████▊ | 178240/371472 [3:17:21<16:20:57, 3.28it/s] 48%|████▊ | 178241/371472 [3:17:21<16:47:20, 3.20it/s] 48%|████▊ | 178242/371472 [3:17:21<17:22:20, 3.09it/s] 48%|████▊ | 178243/371472 [3:17:22<17:18:01, 3.10it/s] 48%|████▊ | 178244/371472 [3:17:22<17:16:06, 3.11it/s] 48%|████▊ | 178245/371472 [3:17:22<16:44:25, 3.21it/s] 48%|████▊ | 178246/371472 [3:17:23<16:04:02, 3.34it/s] 48%|████▊ | 178247/371472 [3:17:23<16:01:02, 3.35it/s] 48%|████▊ | 178248/371472 [3:17:23<15:42:34, 3.42it/s] 48%|████▊ | 178249/371472 [3:17:23<15:14:16, 3.52it/s] 48%|████▊ | 178250/371472 [3:17:24<16:33:23, 3.24it/s] 48%|████▊ | 178251/371472 [3:17:24<16:05:46, 3.33it/s] 48%|████▊ | 178252/371472 [3:17:24<16:04:02, 3.34it/s] 48%|████▊ | 178253/371472 [3:17:25<15:48:21, 3.40it/s] 48%|████▊ | 178254/371472 [3:17:25<15:53:55, 3.38it/s] 48%|████▊ | 178255/371472 [3:17:25<16:19:32, 3.29it/s] 48%|████▊ | 178256/371472 [3:17:26<16:06:43, 3.33it/s] 48%|████▊ | 178257/371472 [3:17:26<15:59:10, 3.36it/s] 48%|████▊ | 178258/371472 [3:17:26<15:45:41, 3.41it/s] 48%|████▊ | 178259/371472 [3:17:26<15:52:42, 3.38it/s] 48%|████▊ | 178260/371472 [3:17:27<15:38:50, 3.43it/s] {'loss': 2.938, 'learning_rate': 5.68364972311405e-07, 'epoch': 7.68} + 48%|████▊ | 178260/371472 [3:17:27<15:38:50, 3.43it/s] 48%|████▊ | 178261/371472 [3:17:27<15:29:26, 3.46it/s] 48%|████▊ | 178262/371472 [3:17:27<16:27:31, 3.26it/s] 48%|████▊ | 178263/371472 [3:17:28<16:12:44, 3.31it/s] 48%|████▊ | 178264/371472 [3:17:28<15:35:01, 3.44it/s] 48%|████▊ | 178265/371472 [3:17:28<19:20:24, 2.77it/s] 48%|████▊ | 178266/371472 [3:17:29<18:59:56, 2.82it/s] 48%|████▊ | 178267/371472 [3:17:29<18:31:40, 2.90it/s] 48%|████▊ | 178268/371472 [3:17:29<18:28:03, 2.91it/s] 48%|████▊ | 178269/371472 [3:17:30<17:54:29, 3.00it/s] 48%|████▊ | 178270/371472 [3:17:30<17:27:53, 3.07it/s] 48%|████▊ | 178271/371472 [3:17:30<17:02:46, 3.15it/s] 48%|████▊ | 178272/371472 [3:17:31<17:01:32, 3.15it/s] 48%|████▊ | 178273/371472 [3:17:31<16:44:08, 3.21it/s] 48%|████▊ | 178274/371472 [3:17:31<17:08:05, 3.13it/s] 48%|████▊ | 178275/371472 [3:17:32<17:36:59, 3.05it/s] 48%|████▊ | 178276/371472 [3:17:32<16:48:18, 3.19it/s] 48%|████▊ | 178277/371472 [3:17:32<16:09:57, 3.32it/s] 48%|████▊ | 178278/371472 [3:17:33<16:23:05, 3.28it/s] 48%|████▊ | 178279/371472 [3:17:33<16:05:19, 3.34it/s] 48%|████▊ | 178280/371472 [3:17:33<16:00:16, 3.35it/s] {'loss': 2.8949, 'learning_rate': 5.683164903359261e-07, 'epoch': 7.68} + 48%|████▊ | 178280/371472 [3:17:33<16:00:16, 3.35it/s] 48%|████▊ | 178281/371472 [3:17:33<16:09:15, 3.32it/s] 48%|████▊ | 178282/371472 [3:17:34<16:08:58, 3.32it/s] 48%|████▊ | 178283/371472 [3:17:34<15:39:09, 3.43it/s] 48%|████▊ | 178284/371472 [3:17:34<17:05:59, 3.14it/s] 48%|████▊ | 178285/371472 [3:17:35<16:52:38, 3.18it/s] 48%|████▊ | 178286/371472 [3:17:35<16:23:08, 3.27it/s] 48%|████▊ | 178287/371472 [3:17:35<16:00:36, 3.35it/s] 48%|████▊ | 178288/371472 [3:17:36<15:38:41, 3.43it/s] 48%|████▊ | 178289/371472 [3:17:36<15:39:15, 3.43it/s] 48%|████▊ | 178290/371472 [3:17:36<15:14:08, 3.52it/s] 48%|████▊ | 178291/371472 [3:17:36<17:10:22, 3.12it/s] 48%|████▊ | 178292/371472 [3:17:37<17:44:53, 3.02it/s] 48%|████▊ | 178293/371472 [3:17:37<19:22:46, 2.77it/s] 48%|████▊ | 178294/371472 [3:17:38<19:34:53, 2.74it/s] 48%|████▊ | 178295/371472 [3:17:38<19:09:53, 2.80it/s] 48%|████▊ | 178296/371472 [3:17:38<18:23:13, 2.92it/s] 48%|████▊ | 178297/371472 [3:17:39<17:55:43, 2.99it/s] 48%|████▊ | 178298/371472 [3:17:39<17:14:02, 3.11it/s] 48%|████▊ | 178299/371472 [3:17:39<16:36:46, 3.23it/s] 48%|████▊ | 178300/371472 [3:17:39<16:10:21, 3.32it/s] {'loss': 2.8205, 'learning_rate': 5.682680083604473e-07, 'epoch': 7.68} + 48%|████▊ | 178300/371472 [3:17:39<16:10:21, 3.32it/s] 48%|████▊ | 178301/371472 [3:17:40<16:18:26, 3.29it/s] 48%|████▊ | 178302/371472 [3:17:40<18:46:16, 2.86it/s] 48%|████▊ | 178303/371472 [3:17:41<17:48:29, 3.01it/s] 48%|████▊ | 178304/371472 [3:17:41<17:18:03, 3.10it/s] 48%|████▊ | 178305/371472 [3:17:41<17:02:08, 3.15it/s] 48%|████▊ | 178306/371472 [3:17:41<17:02:23, 3.15it/s] 48%|████▊ | 178307/371472 [3:17:42<17:33:13, 3.06it/s] 48%|████▊ | 178308/371472 [3:17:42<17:38:18, 3.04it/s] 48%|████▊ | 178309/371472 [3:17:42<16:59:30, 3.16it/s] 48%|████▊ | 178310/371472 [3:17:43<16:47:14, 3.20it/s] 48%|████▊ | 178311/371472 [3:17:43<16:32:54, 3.24it/s] 48%|████▊ | 178312/371472 [3:17:43<16:00:56, 3.35it/s] 48%|████▊ | 178313/371472 [3:17:44<15:55:05, 3.37it/s] 48%|████▊ | 178314/371472 [3:17:44<16:01:32, 3.35it/s] 48%|████▊ | 178315/371472 [3:17:44<15:56:16, 3.37it/s] 48%|████▊ | 178316/371472 [3:17:44<15:55:24, 3.37it/s] 48%|████▊ | 178317/371472 [3:17:45<15:50:29, 3.39it/s] 48%|████▊ | 178318/371472 [3:17:45<16:05:12, 3.34it/s] 48%|████▊ | 178319/371472 [3:17:45<16:01:05, 3.35it/s] 48%|████▊ | 178320/371472 [3:17:46<17:50:36, 3.01it/s] {'loss': 2.8276, 'learning_rate': 5.682195263849684e-07, 'epoch': 7.68} + 48%|████▊ | 178320/371472 [3:17:46<17:50:36, 3.01it/s] 48%|████▊ | 178321/371472 [3:17:46<16:52:27, 3.18it/s] 48%|████▊ | 178322/371472 [3:17:46<16:23:58, 3.27it/s] 48%|████▊ | 178323/371472 [3:17:47<16:22:00, 3.28it/s] 48%|████▊ | 178324/371472 [3:17:47<16:11:07, 3.31it/s] 48%|████▊ | 178325/371472 [3:17:47<15:47:47, 3.40it/s] 48%|████▊ | 178326/371472 [3:17:48<16:57:28, 3.16it/s] 48%|████▊ | 178327/371472 [3:17:48<16:12:43, 3.31it/s] 48%|████▊ | 178328/371472 [3:17:48<15:58:56, 3.36it/s] 48%|████▊ | 178329/371472 [3:17:48<16:08:14, 3.32it/s] 48%|████▊ | 178330/371472 [3:17:49<15:46:56, 3.40it/s] 48%|████▊ | 178331/371472 [3:17:49<15:20:38, 3.50it/s] 48%|████▊ | 178332/371472 [3:17:49<15:52:55, 3.38it/s] 48%|████▊ | 178333/371472 [3:17:50<16:19:59, 3.28it/s] 48%|████▊ | 178334/371472 [3:17:50<15:49:57, 3.39it/s] 48%|████▊ | 178335/371472 [3:17:50<15:39:06, 3.43it/s] 48%|████▊ | 178336/371472 [3:17:51<17:42:04, 3.03it/s] 48%|████▊ | 178337/371472 [3:17:51<16:55:25, 3.17it/s] 48%|████▊ | 178338/371472 [3:17:51<16:03:43, 3.34it/s] 48%|████▊ | 178339/371472 [3:17:51<16:22:45, 3.28it/s] 48%|████▊ | 178340/371472 [3:17:52<16:02:40, 3.34it/s] {'loss': 2.9013, 'learning_rate': 5.681710444094895e-07, 'epoch': 7.68} + 48%|████▊ | 178340/371472 [3:17:52<16:02:40, 3.34it/s] 48%|████▊ | 178341/371472 [3:17:52<16:07:00, 3.33it/s] 48%|████▊ | 178342/371472 [3:17:52<16:48:05, 3.19it/s] 48%|████▊ | 178343/371472 [3:17:53<16:14:25, 3.30it/s] 48%|████▊ | 178344/371472 [3:17:53<15:51:14, 3.38it/s] 48%|████▊ | 178345/371472 [3:17:53<16:15:11, 3.30it/s] 48%|████▊ | 178346/371472 [3:17:54<16:18:59, 3.29it/s] 48%|████▊ | 178347/371472 [3:17:54<16:03:06, 3.34it/s] 48%|████▊ | 178348/371472 [3:17:54<15:56:25, 3.37it/s] 48%|████▊ | 178349/371472 [3:17:55<16:53:22, 3.18it/s] 48%|████▊ | 178350/371472 [3:17:55<16:21:48, 3.28it/s] 48%|████▊ | 178351/371472 [3:17:55<16:16:11, 3.30it/s] 48%|████▊ | 178352/371472 [3:17:55<15:46:34, 3.40it/s] 48%|████▊ | 178353/371472 [3:17:56<15:28:12, 3.47it/s] 48%|████▊ | 178354/371472 [3:17:56<16:26:56, 3.26it/s] 48%|████▊ | 178355/371472 [3:17:56<17:08:06, 3.13it/s] 48%|████▊ | 178356/371472 [3:17:57<16:09:06, 3.32it/s] 48%|████▊ | 178357/371472 [3:17:57<16:48:04, 3.19it/s] 48%|████▊ | 178358/371472 [3:17:57<16:34:43, 3.24it/s] 48%|████▊ | 178359/371472 [3:17:58<17:16:58, 3.10it/s] 48%|████▊ | 178360/371472 [3:17:58<16:58:09, 3.16it/s] {'loss': 3.0176, 'learning_rate': 5.681225624340106e-07, 'epoch': 7.68} + 48%|████▊ | 178360/371472 [3:17:58<16:58:09, 3.16it/s] 48%|████▊ | 178361/371472 [3:17:58<17:02:37, 3.15it/s] 48%|████▊ | 178362/371472 [3:17:59<17:33:11, 3.06it/s] 48%|████▊ | 178363/371472 [3:17:59<17:03:23, 3.14it/s] 48%|████▊ | 178364/371472 [3:17:59<17:28:22, 3.07it/s] 48%|████▊ | 178365/371472 [3:18:00<16:55:45, 3.17it/s] 48%|████▊ | 178366/371472 [3:18:00<16:47:09, 3.20it/s] 48%|████▊ | 178367/371472 [3:18:00<16:17:05, 3.29it/s] 48%|████▊ | 178368/371472 [3:18:00<16:58:19, 3.16it/s] 48%|████▊ | 178369/371472 [3:18:01<16:56:58, 3.16it/s] 48%|████▊ | 178370/371472 [3:18:01<16:25:03, 3.27it/s] 48%|████▊ | 178371/371472 [3:18:01<17:18:43, 3.10it/s] 48%|████▊ | 178372/371472 [3:18:02<16:54:26, 3.17it/s] 48%|████▊ | 178373/371472 [3:18:02<16:50:05, 3.19it/s] 48%|████▊ | 178374/371472 [3:18:02<16:33:22, 3.24it/s] 48%|████▊ | 178375/371472 [3:18:03<16:09:37, 3.32it/s] 48%|████▊ | 178376/371472 [3:18:03<15:52:50, 3.38it/s] 48%|████▊ | 178377/371472 [3:18:03<15:43:28, 3.41it/s] 48%|████▊ | 178378/371472 [3:18:03<15:40:06, 3.42it/s] 48%|████▊ | 178379/371472 [3:18:04<15:25:34, 3.48it/s] 48%|████▊ | 178380/371472 [3:18:04<15:15:27, 3.52it/s] {'loss': 2.8536, 'learning_rate': 5.680740804585317e-07, 'epoch': 7.68} + 48%|████▊ | 178380/371472 [3:18:04<15:15:27, 3.52it/s] 48%|████▊ | 178381/371472 [3:18:04<16:02:06, 3.34it/s] 48%|████▊ | 178382/371472 [3:18:05<15:56:11, 3.37it/s] 48%|████▊ | 178383/371472 [3:18:05<16:30:21, 3.25it/s] 48%|████▊ | 178384/371472 [3:18:05<16:07:45, 3.33it/s] 48%|████▊ | 178385/371472 [3:18:06<16:05:08, 3.33it/s] 48%|████▊ | 178386/371472 [3:18:06<16:03:19, 3.34it/s] 48%|████▊ | 178387/371472 [3:18:06<16:02:58, 3.34it/s] 48%|████▊ | 178388/371472 [3:18:06<16:03:53, 3.34it/s] 48%|████▊ | 178389/371472 [3:18:07<16:44:53, 3.20it/s] 48%|████▊ | 178390/371472 [3:18:07<16:35:05, 3.23it/s] 48%|████▊ | 178391/371472 [3:18:07<16:19:54, 3.28it/s] 48%|████▊ | 178392/371472 [3:18:08<16:06:35, 3.33it/s] 48%|████▊ | 178393/371472 [3:18:08<15:56:21, 3.36it/s] 48%|████▊ | 178394/371472 [3:18:08<15:36:09, 3.44it/s] 48%|████▊ | 178395/371472 [3:18:09<16:00:35, 3.35it/s] 48%|████▊ | 178396/371472 [3:18:09<16:05:56, 3.33it/s] 48%|████▊ | 178397/371472 [3:18:09<16:43:56, 3.21it/s] 48%|████▊ | 178398/371472 [3:18:09<16:17:26, 3.29it/s] 48%|████▊ | 178399/371472 [3:18:10<16:37:38, 3.23it/s] 48%|████▊ | 178400/371472 [3:18:10<17:15:35, 3.11it/s] {'loss': 2.9184, 'learning_rate': 5.680255984830529e-07, 'epoch': 7.68} + 48%|████▊ | 178400/371472 [3:18:10<17:15:35, 3.11it/s] 48%|████▊ | 178401/371472 [3:18:11<17:34:08, 3.05it/s] 48%|████▊ | 178402/371472 [3:18:11<16:47:32, 3.19it/s] 48%|████▊ | 178403/371472 [3:18:11<16:21:09, 3.28it/s] 48%|████▊ | 178404/371472 [3:18:11<16:14:10, 3.30it/s] 48%|████▊ | 178405/371472 [3:18:12<15:35:55, 3.44it/s] 48%|████▊ | 178406/371472 [3:18:12<15:19:58, 3.50it/s] 48%|████▊ | 178407/371472 [3:18:12<15:33:05, 3.45it/s] 48%|████▊ | 178408/371472 [3:18:13<15:39:51, 3.42it/s] 48%|████▊ | 178409/371472 [3:18:13<15:49:18, 3.39it/s] 48%|████▊ | 178410/371472 [3:18:13<15:48:25, 3.39it/s] 48%|████▊ | 178411/371472 [3:18:13<16:40:55, 3.21it/s] 48%|████▊ | 178412/371472 [3:18:14<17:06:34, 3.13it/s] 48%|████▊ | 178413/371472 [3:18:14<16:58:23, 3.16it/s] 48%|████▊ | 178414/371472 [3:18:14<16:38:24, 3.22it/s] 48%|████▊ | 178415/371472 [3:18:15<16:10:32, 3.32it/s] 48%|████▊ | 178416/371472 [3:18:15<15:51:45, 3.38it/s] 48%|████▊ | 178417/371472 [3:18:15<15:38:01, 3.43it/s] 48%|████▊ | 178418/371472 [3:18:16<15:30:42, 3.46it/s] 48%|████▊ | 178419/371472 [3:18:16<15:38:22, 3.43it/s] 48%|████▊ | 178420/371472 [3:18:16<15:30:20, 3.46it/s] {'loss': 2.7591, 'learning_rate': 5.67977116507574e-07, 'epoch': 7.68} + 48%|████▊ | 178420/371472 [3:18:16<15:30:20, 3.46it/s] 48%|████▊ | 178421/371472 [3:18:16<15:38:18, 3.43it/s] 48%|████▊ | 178422/371472 [3:18:17<15:34:07, 3.44it/s] 48%|████▊ | 178423/371472 [3:18:17<15:49:46, 3.39it/s] 48%|████▊ | 178424/371472 [3:18:17<16:05:22, 3.33it/s] 48%|████▊ | 178425/371472 [3:18:18<16:24:40, 3.27it/s] 48%|████▊ | 178426/371472 [3:18:18<15:53:53, 3.37it/s] 48%|████▊ | 178427/371472 [3:18:18<15:30:00, 3.46it/s] 48%|████▊ | 178428/371472 [3:18:18<15:26:02, 3.47it/s] 48%|████▊ | 178429/371472 [3:18:19<14:56:24, 3.59it/s] 48%|████▊ | 178430/371472 [3:18:19<14:44:39, 3.64it/s] 48%|████▊ | 178431/371472 [3:18:19<14:56:55, 3.59it/s] 48%|████▊ | 178432/371472 [3:18:20<15:00:46, 3.57it/s] 48%|████▊ | 178433/371472 [3:18:20<15:16:25, 3.51it/s] 48%|████▊ | 178434/371472 [3:18:20<15:43:43, 3.41it/s] 48%|████▊ | 178435/371472 [3:18:20<16:01:13, 3.35it/s] 48%|████▊ | 178436/371472 [3:18:21<15:59:04, 3.35it/s] 48%|████▊ | 178437/371472 [3:18:21<15:51:53, 3.38it/s] 48%|████▊ | 178438/371472 [3:18:21<15:59:56, 3.35it/s] 48%|████▊ | 178439/371472 [3:18:22<16:24:34, 3.27it/s] 48%|████▊ | 178440/371472 [3:18:22<16:14:57, 3.30it/s] {'loss': 2.9337, 'learning_rate': 5.67928634532095e-07, 'epoch': 7.69} + 48%|████▊ | 178440/371472 [3:18:22<16:14:57, 3.30it/s] 48%|████▊ | 178441/371472 [3:18:22<16:10:10, 3.32it/s] 48%|████▊ | 178442/371472 [3:18:23<16:55:46, 3.17it/s] 48%|████▊ | 178443/371472 [3:18:23<16:46:06, 3.20it/s] 48%|████▊ | 178444/371472 [3:18:23<16:13:51, 3.30it/s] 48%|████▊ | 178445/371472 [3:18:24<16:05:15, 3.33it/s] 48%|████▊ | 178446/371472 [3:18:24<15:58:34, 3.36it/s] 48%|████▊ | 178447/371472 [3:18:24<15:49:28, 3.39it/s] 48%|████▊ | 178448/371472 [3:18:24<16:13:20, 3.31it/s] 48%|████▊ | 178449/371472 [3:18:25<15:59:43, 3.35it/s] 48%|████▊ | 178450/371472 [3:18:25<16:54:30, 3.17it/s] 48%|████▊ | 178451/371472 [3:18:25<17:01:16, 3.15it/s] 48%|████▊ | 178452/371472 [3:18:26<20:49:01, 2.58it/s] 48%|████▊ | 178453/371472 [3:18:26<19:42:51, 2.72it/s] 48%|████▊ | 178454/371472 [3:18:27<18:22:22, 2.92it/s] 48%|████▊ | 178455/371472 [3:18:27<17:24:14, 3.08it/s] 48%|████▊ | 178456/371472 [3:18:27<16:55:01, 3.17it/s] 48%|████▊ | 178457/371472 [3:18:27<17:02:38, 3.15it/s] 48%|████▊ | 178458/371472 [3:18:28<16:32:43, 3.24it/s] 48%|████▊ | 178459/371472 [3:18:28<15:58:36, 3.36it/s] 48%|████▊ | 178460/371472 [3:18:28<15:53:15, 3.37it/s] {'loss': 2.878, 'learning_rate': 5.678801525566162e-07, 'epoch': 7.69} + 48%|████▊ | 178460/371472 [3:18:28<15:53:15, 3.37it/s] 48%|████▊ | 178461/371472 [3:18:29<15:32:59, 3.45it/s] 48%|████▊ | 178462/371472 [3:18:29<16:21:03, 3.28it/s] 48%|████▊ | 178463/371472 [3:18:29<16:27:39, 3.26it/s] 48%|████▊ | 178464/371472 [3:18:30<16:23:02, 3.27it/s] 48%|████▊ | 178465/371472 [3:18:30<15:45:17, 3.40it/s] 48%|████▊ | 178466/371472 [3:18:30<15:53:38, 3.37it/s] 48%|████▊ | 178467/371472 [3:18:30<15:35:59, 3.44it/s] 48%|████▊ | 178468/371472 [3:18:31<16:25:44, 3.26it/s] 48%|████▊ | 178469/371472 [3:18:31<16:33:34, 3.24it/s] 48%|████▊ | 178470/371472 [3:18:31<16:13:29, 3.30it/s] 48%|████▊ | 178471/371472 [3:18:32<16:05:01, 3.33it/s] 48%|████▊ | 178472/371472 [3:18:32<16:03:49, 3.34it/s] 48%|████▊ | 178473/371472 [3:18:32<15:32:53, 3.45it/s] 48%|████▊ | 178474/371472 [3:18:32<15:35:08, 3.44it/s] 48%|████▊ | 178475/371472 [3:18:33<16:00:21, 3.35it/s] 48%|████▊ | 178476/371472 [3:18:33<15:31:35, 3.45it/s] 48%|████▊ | 178477/371472 [3:18:33<16:21:27, 3.28it/s] 48%|████▊ | 178478/371472 [3:18:34<16:31:34, 3.24it/s] 48%|████▊ | 178479/371472 [3:18:34<16:03:37, 3.34it/s] 48%|████▊ | 178480/371472 [3:18:34<15:50:59, 3.38it/s] {'loss': 2.8357, 'learning_rate': 5.678316705811372e-07, 'epoch': 7.69} + 48%|████▊ | 178480/371472 [3:18:34<15:50:59, 3.38it/s] 48%|████▊ | 178481/371472 [3:18:35<16:30:27, 3.25it/s] 48%|████▊ | 178482/371472 [3:18:35<15:58:19, 3.36it/s] 48%|████▊ | 178483/371472 [3:18:35<15:49:57, 3.39it/s] 48%|████▊ | 178484/371472 [3:18:35<15:35:36, 3.44it/s] 48%|████▊ | 178485/371472 [3:18:36<15:18:01, 3.50it/s] 48%|████▊ | 178486/371472 [3:18:36<16:34:09, 3.24it/s] 48%|████▊ | 178487/371472 [3:18:36<16:43:41, 3.20it/s] 48%|████▊ | 178488/371472 [3:18:37<16:11:11, 3.31it/s] 48%|████▊ | 178489/371472 [3:18:37<15:55:32, 3.37it/s] 48%|████▊ | 178490/371472 [3:18:37<16:48:07, 3.19it/s] 48%|████▊ | 178491/371472 [3:18:38<17:36:33, 3.04it/s] 48%|████▊ | 178492/371472 [3:18:38<17:09:16, 3.12it/s] 48%|████▊ | 178493/371472 [3:18:38<16:42:29, 3.21it/s] 48%|████▊ | 178494/371472 [3:18:39<17:11:37, 3.12it/s] 48%|████▊ | 178495/371472 [3:18:39<16:51:16, 3.18it/s] 48%|████▊ | 178496/371472 [3:18:39<16:17:31, 3.29it/s] 48%|████▊ | 178497/371472 [3:18:40<16:15:41, 3.30it/s] 48%|████▊ | 178498/371472 [3:18:40<16:31:24, 3.24it/s] 48%|████▊ | 178499/371472 [3:18:40<17:07:14, 3.13it/s] 48%|████▊ | 178500/371472 [3:18:40<17:12:17, 3.12it/s] {'loss': 2.8828, 'learning_rate': 5.677831886056583e-07, 'epoch': 7.69} + 48%|████▊ | 178500/371472 [3:18:40<17:12:17, 3.12it/s] 48%|████▊ | 178501/371472 [3:18:41<16:53:11, 3.17it/s] 48%|████▊ | 178502/371472 [3:18:41<16:30:18, 3.25it/s] 48%|████▊ | 178503/371472 [3:18:41<17:03:55, 3.14it/s] 48%|████▊ | 178504/371472 [3:18:42<16:20:13, 3.28it/s] 48%|████▊ | 178505/371472 [3:18:42<16:29:00, 3.25it/s] 48%|████▊ | 178506/371472 [3:18:42<17:05:42, 3.14it/s] 48%|████▊ | 178507/371472 [3:18:43<16:53:02, 3.17it/s] 48%|████▊ | 178508/371472 [3:18:43<18:00:53, 2.98it/s] 48%|████▊ | 178509/371472 [3:18:43<17:09:33, 3.12it/s] 48%|████▊ | 178510/371472 [3:18:44<16:50:53, 3.18it/s] 48%|████▊ | 178511/371472 [3:18:44<16:20:30, 3.28it/s] 48%|████▊ | 178512/371472 [3:18:44<16:06:19, 3.33it/s] 48%|████▊ | 178513/371472 [3:18:45<16:33:38, 3.24it/s] 48%|████▊ | 178514/371472 [3:18:45<16:41:26, 3.21it/s] 48%|████▊ | 178515/371472 [3:18:45<16:28:46, 3.25it/s] 48%|████▊ | 178516/371472 [3:18:45<16:33:57, 3.24it/s] 48%|████▊ | 178517/371472 [3:18:46<15:58:20, 3.36it/s] 48%|████▊ | 178518/371472 [3:18:46<16:10:05, 3.32it/s] 48%|████▊ | 178519/371472 [3:18:46<16:00:32, 3.35it/s] 48%|████▊ | 178520/371472 [3:18:47<15:43:46, 3.41it/s] {'loss': 2.7581, 'learning_rate': 5.677347066301794e-07, 'epoch': 7.69} + 48%|████▊ | 178520/371472 [3:18:47<15:43:46, 3.41it/s] 48%|████▊ | 178521/371472 [3:18:47<15:35:13, 3.44it/s] 48%|████▊ | 178522/371472 [3:18:47<15:36:55, 3.43it/s] 48%|████▊ | 178523/371472 [3:18:48<16:04:41, 3.33it/s] 48%|████▊ | 178524/371472 [3:18:48<16:19:46, 3.28it/s] 48%|████▊ | 178525/371472 [3:18:48<16:44:02, 3.20it/s] 48%|████▊ | 178526/371472 [3:18:48<16:35:33, 3.23it/s] 48%|████▊ | 178527/371472 [3:18:49<17:07:54, 3.13it/s] 48%|████▊ | 178528/371472 [3:18:49<16:18:12, 3.29it/s] 48%|████▊ | 178529/371472 [3:18:49<16:24:43, 3.27it/s] 48%|████▊ | 178530/371472 [3:18:50<17:31:10, 3.06it/s] 48%|████▊ | 178531/371472 [3:18:50<17:38:14, 3.04it/s] 48%|████▊ | 178532/371472 [3:18:50<16:46:06, 3.20it/s] 48%|████▊ | 178533/371472 [3:18:51<16:13:55, 3.30it/s] 48%|████▊ | 178534/371472 [3:18:51<16:19:03, 3.28it/s] 48%|████▊ | 178535/371472 [3:18:51<16:08:16, 3.32it/s] 48%|████▊ | 178536/371472 [3:18:52<15:52:33, 3.38it/s] 48%|████▊ | 178537/371472 [3:18:52<15:31:13, 3.45it/s] 48%|████▊ | 178538/371472 [3:18:52<16:17:31, 3.29it/s] 48%|████▊ | 178539/371472 [3:18:52<15:48:47, 3.39it/s] 48%|████▊ | 178540/371472 [3:18:53<17:10:10, 3.12it/s] {'loss': 2.9381, 'learning_rate': 5.676862246547005e-07, 'epoch': 7.69} + 48%|████▊ | 178540/371472 [3:18:53<17:10:10, 3.12it/s] 48%|████▊ | 178541/371472 [3:18:53<16:44:07, 3.20it/s] 48%|████▊ | 178542/371472 [3:18:53<16:14:54, 3.30it/s] 48%|████▊ | 178543/371472 [3:18:54<15:48:48, 3.39it/s] 48%|████▊ | 178544/371472 [3:18:54<15:28:20, 3.46it/s] 48%|████▊ | 178545/371472 [3:18:54<15:42:34, 3.41it/s] 48%|████▊ | 178546/371472 [3:18:55<15:55:45, 3.36it/s] 48%|████▊ | 178547/371472 [3:18:55<15:43:00, 3.41it/s] 48%|████▊ | 178548/371472 [3:18:55<15:33:32, 3.44it/s] 48%|████▊ | 178549/371472 [3:18:55<15:29:16, 3.46it/s] 48%|████▊ | 178550/371472 [3:18:56<15:21:59, 3.49it/s] 48%|████▊ | 178551/371472 [3:18:56<15:19:23, 3.50it/s] 48%|████▊ | 178552/371472 [3:18:56<16:05:52, 3.33it/s] 48%|████▊ | 178553/371472 [3:18:57<16:20:03, 3.28it/s] 48%|████▊ | 178554/371472 [3:18:57<16:04:18, 3.33it/s] 48%|████▊ | 178555/371472 [3:18:57<16:28:49, 3.25it/s] 48%|████▊ | 178556/371472 [3:18:58<16:22:47, 3.27it/s] 48%|████▊ | 178557/371472 [3:18:58<16:04:00, 3.34it/s] 48%|████▊ | 178558/371472 [3:18:58<16:33:19, 3.24it/s] 48%|████▊ | 178559/371472 [3:18:58<16:22:06, 3.27it/s] 48%|████▊ | 178560/371472 [3:18:59<16:58:04, 3.16it/s] {'loss': 2.9568, 'learning_rate': 5.676377426792217e-07, 'epoch': 7.69} + 48%|████▊ | 178560/371472 [3:18:59<16:58:04, 3.16it/s] 48%|████▊ | 178561/371472 [3:18:59<17:22:54, 3.08it/s] 48%|████▊ | 178562/371472 [3:18:59<16:57:50, 3.16it/s] 48%|████▊ | 178563/371472 [3:19:00<16:21:41, 3.28it/s] 48%|████▊ | 178564/371472 [3:19:00<16:03:32, 3.34it/s] 48%|████▊ | 178565/371472 [3:19:00<15:53:54, 3.37it/s] 48%|████▊ | 178566/371472 [3:19:01<15:29:42, 3.46it/s] 48%|████▊ | 178567/371472 [3:19:01<16:28:00, 3.25it/s] 48%|████▊ | 178568/371472 [3:19:01<16:56:36, 3.16it/s] 48%|████▊ | 178569/371472 [3:19:02<17:38:24, 3.04it/s] 48%|████▊ | 178570/371472 [3:19:02<17:02:06, 3.15it/s] 48%|████▊ | 178571/371472 [3:19:02<16:26:41, 3.26it/s] 48%|████▊ | 178572/371472 [3:19:02<16:29:41, 3.25it/s] 48%|████▊ | 178573/371472 [3:19:03<16:03:14, 3.34it/s] 48%|████▊ | 178574/371472 [3:19:03<16:39:23, 3.22it/s] 48%|████▊ | 178575/371472 [3:19:03<16:15:42, 3.29it/s] 48%|████▊ | 178576/371472 [3:19:04<16:23:57, 3.27it/s] 48%|████▊ | 178577/371472 [3:19:04<15:53:11, 3.37it/s] 48%|████▊ | 178578/371472 [3:19:04<15:26:05, 3.47it/s] 48%|████▊ | 178579/371472 [3:19:05<15:37:00, 3.43it/s] 48%|████▊ | 178580/371472 [3:19:05<16:35:51, 3.23it/s] {'loss': 2.8587, 'learning_rate': 5.675892607037428e-07, 'epoch': 7.69} + 48%|████▊ | 178580/371472 [3:19:05<16:35:51, 3.23it/s] 48%|████▊ | 178581/371472 [3:19:05<17:07:48, 3.13it/s] 48%|████▊ | 178582/371472 [3:19:06<16:41:30, 3.21it/s] 48%|████▊ | 178583/371472 [3:19:06<16:18:51, 3.28it/s] 48%|████▊ | 178584/371472 [3:19:06<16:23:38, 3.27it/s] 48%|████▊ | 178585/371472 [3:19:06<16:00:37, 3.35it/s] 48%|████▊ | 178586/371472 [3:19:07<15:55:28, 3.36it/s] 48%|████▊ | 178587/371472 [3:19:07<15:58:33, 3.35it/s] 48%|████▊ | 178588/371472 [3:19:07<15:53:33, 3.37it/s] 48%|████▊ | 178589/371472 [3:19:08<16:24:38, 3.26it/s] 48%|████▊ | 178590/371472 [3:19:08<16:26:04, 3.26it/s] 48%|████▊ | 178591/371472 [3:19:08<16:15:44, 3.29it/s] 48%|████▊ | 178592/371472 [3:19:09<15:54:55, 3.37it/s] 48%|████▊ | 178593/371472 [3:19:09<15:43:09, 3.41it/s] 48%|████▊ | 178594/371472 [3:19:09<16:56:34, 3.16it/s] 48%|████��� | 178595/371472 [3:19:09<16:27:27, 3.26it/s] 48%|████▊ | 178596/371472 [3:19:10<16:52:30, 3.17it/s] 48%|████▊ | 178597/371472 [3:19:10<17:03:09, 3.14it/s] 48%|████▊ | 178598/371472 [3:19:10<16:56:56, 3.16it/s] 48%|████▊ | 178599/371472 [3:19:11<16:31:44, 3.24it/s] 48%|████▊ | 178600/371472 [3:19:11<16:35:42, 3.23it/s] {'loss': 3.0068, 'learning_rate': 5.675407787282639e-07, 'epoch': 7.69} + 48%|████▊ | 178600/371472 [3:19:11<16:35:42, 3.23it/s] 48%|████▊ | 178601/371472 [3:19:12<23:20:33, 2.30it/s] 48%|████▊ | 178602/371472 [3:19:12<21:19:36, 2.51it/s] 48%|████▊ | 178603/371472 [3:19:12<20:33:42, 2.61it/s] 48%|████▊ | 178604/371472 [3:19:13<19:19:12, 2.77it/s] 48%|████▊ | 178605/371472 [3:19:13<18:30:57, 2.89it/s] 48%|████▊ | 178606/371472 [3:19:13<17:38:22, 3.04it/s] 48%|████▊ | 178607/371472 [3:19:14<17:03:06, 3.14it/s] 48%|████▊ | 178608/371472 [3:19:14<16:26:00, 3.26it/s] 48%|████▊ | 178609/371472 [3:19:14<16:01:24, 3.34it/s] 48%|████▊ | 178610/371472 [3:19:14<15:59:24, 3.35it/s] 48%|████▊ | 178611/371472 [3:19:15<15:41:00, 3.42it/s] 48%|████▊ | 178612/371472 [3:19:15<15:40:28, 3.42it/s] 48%|████▊ | 178613/371472 [3:19:15<16:00:12, 3.35it/s] 48%|████▊ | 178614/371472 [3:19:16<16:09:29, 3.32it/s] 48%|████▊ | 178615/371472 [3:19:16<16:41:15, 3.21it/s] 48%|████▊ | 178616/371472 [3:19:16<16:32:25, 3.24it/s] 48%|████▊ | 178617/371472 [3:19:17<16:52:53, 3.17it/s] 48%|████▊ | 178618/371472 [3:19:17<16:22:00, 3.27it/s] 48%|████▊ | 178619/371472 [3:19:17<16:15:59, 3.29it/s] 48%|████▊ | 178620/371472 [3:19:18<16:37:24, 3.22it/s] {'loss': 2.8665, 'learning_rate': 5.674922967527849e-07, 'epoch': 7.69} + 48%|████▊ | 178620/371472 [3:19:18<16:37:24, 3.22it/s] 48%|████▊ | 178621/371472 [3:19:18<16:38:47, 3.22it/s] 48%|████▊ | 178622/371472 [3:19:18<17:40:08, 3.03it/s] 48%|████▊ | 178623/371472 [3:19:19<17:25:35, 3.07it/s] 48%|████▊ | 178624/371472 [3:19:19<17:17:26, 3.10it/s] 48%|████▊ | 178625/371472 [3:19:19<17:43:32, 3.02it/s] 48%|████▊ | 178626/371472 [3:19:20<17:09:45, 3.12it/s] 48%|████▊ | 178627/371472 [3:19:20<16:42:25, 3.21it/s] 48%|████▊ | 178628/371472 [3:19:20<16:09:08, 3.32it/s] 48%|████▊ | 178629/371472 [3:19:20<15:45:14, 3.40it/s] 48%|████▊ | 178630/371472 [3:19:21<15:46:55, 3.39it/s] 48%|████▊ | 178631/371472 [3:19:21<15:51:02, 3.38it/s] 48%|████▊ | 178632/371472 [3:19:21<15:49:30, 3.38it/s] 48%|████▊ | 178633/371472 [3:19:22<16:21:45, 3.27it/s] 48%|████▊ | 178634/371472 [3:19:22<16:12:51, 3.30it/s] 48%|████▊ | 178635/371472 [3:19:22<16:39:56, 3.21it/s] 48%|████▊ | 178636/371472 [3:19:22<16:22:15, 3.27it/s] 48%|████▊ | 178637/371472 [3:19:23<16:10:49, 3.31it/s] 48%|████▊ | 178638/371472 [3:19:23<16:09:59, 3.31it/s] 48%|████▊ | 178639/371472 [3:19:23<16:46:00, 3.19it/s] 48%|████▊ | 178640/371472 [3:19:24<16:32:51, 3.24it/s] {'loss': 2.9613, 'learning_rate': 5.674438147773062e-07, 'epoch': 7.69} + 48%|████▊ | 178640/371472 [3:19:24<16:32:51, 3.24it/s] 48%|████▊ | 178641/371472 [3:19:24<16:36:07, 3.23it/s] 48%|████▊ | 178642/371472 [3:19:24<16:52:34, 3.17it/s] 48%|████▊ | 178643/371472 [3:19:25<16:31:38, 3.24it/s] 48%|████▊ | 178644/371472 [3:19:25<16:27:10, 3.26it/s] 48%|████▊ | 178645/371472 [3:19:25<16:40:01, 3.21it/s] 48%|████▊ | 178646/371472 [3:19:26<15:59:29, 3.35it/s] 48%|████▊ | 178647/371472 [3:19:26<16:59:41, 3.15it/s] 48%|████▊ | 178648/371472 [3:19:26<16:47:45, 3.19it/s] 48%|████▊ | 178649/371472 [3:19:27<16:38:25, 3.22it/s] 48%|████▊ | 178650/371472 [3:19:27<16:20:33, 3.28it/s] 48%|████▊ | 178651/371472 [3:19:27<16:39:11, 3.22it/s] 48%|████▊ | 178652/371472 [3:19:27<17:22:15, 3.08it/s] 48%|████▊ | 178653/371472 [3:19:28<17:38:24, 3.04it/s] 48%|████▊ | 178654/371472 [3:19:28<17:07:47, 3.13it/s] 48%|████▊ | 178655/371472 [3:19:28<16:20:42, 3.28it/s] 48%|████▊ | 178656/371472 [3:19:29<16:01:03, 3.34it/s] 48%|████▊ | 178657/371472 [3:19:29<15:43:56, 3.40it/s] 48%|████▊ | 178658/371472 [3:19:29<15:22:36, 3.48it/s] 48%|████▊ | 178659/371472 [3:19:30<15:23:05, 3.48it/s] 48%|████▊ | 178660/371472 [3:19:30<15:11:35, 3.53it/s] {'loss': 3.003, 'learning_rate': 5.673953328018273e-07, 'epoch': 7.7} + 48%|████▊ | 178660/371472 [3:19:30<15:11:35, 3.53it/s] 48%|████▊ | 178661/371472 [3:19:30<15:07:20, 3.54it/s] 48%|████▊ | 178662/371472 [3:19:30<15:34:40, 3.44it/s] 48%|████▊ | 178663/371472 [3:19:31<15:12:59, 3.52it/s] 48%|████▊ | 178664/371472 [3:19:31<15:19:34, 3.49it/s] 48%|████▊ | 178665/371472 [3:19:31<16:11:48, 3.31it/s] 48%|████▊ | 178666/371472 [3:19:32<15:57:10, 3.36it/s] 48%|████▊ | 178667/371472 [3:19:32<15:50:33, 3.38it/s] 48%|████▊ | 178668/371472 [3:19:32<16:44:23, 3.20it/s] 48%|████▊ | 178669/371472 [3:19:33<16:29:24, 3.25it/s] 48%|████▊ | 178670/371472 [3:19:33<17:08:27, 3.12it/s] 48%|████▊ | 178671/371472 [3:19:33<16:59:41, 3.15it/s] 48%|████▊ | 178672/371472 [3:19:34<17:55:21, 2.99it/s] 48%|████▊ | 178673/371472 [3:19:34<16:59:03, 3.15it/s] 48%|████▊ | 178674/371472 [3:19:34<16:30:01, 3.25it/s] 48%|████▊ | 178675/371472 [3:19:34<16:13:11, 3.30it/s] 48%|████▊ | 178676/371472 [3:19:35<16:23:59, 3.27it/s] 48%|████▊ | 178677/371472 [3:19:35<15:48:26, 3.39it/s] 48%|████▊ | 178678/371472 [3:19:35<16:31:31, 3.24it/s] 48%|████▊ | 178679/371472 [3:19:36<17:14:20, 3.11it/s] 48%|████▊ | 178680/371472 [3:19:36<16:33:18, 3.23it/s] {'loss': 2.9981, 'learning_rate': 5.673468508263483e-07, 'epoch': 7.7} + 48%|████▊ | 178680/371472 [3:19:36<16:33:18, 3.23it/s] 48%|████▊ | 178681/371472 [3:19:36<16:21:48, 3.27it/s] 48%|████▊ | 178682/371472 [3:19:37<16:01:22, 3.34it/s] 48%|████▊ | 178683/371472 [3:19:37<15:50:58, 3.38it/s] 48%|████▊ | 178684/371472 [3:19:37<16:15:52, 3.29it/s] 48%|████▊ | 178685/371472 [3:19:37<16:23:10, 3.27it/s] 48%|████▊ | 178686/371472 [3:19:38<16:32:26, 3.24it/s] 48%|████▊ | 178687/371472 [3:19:38<15:59:43, 3.35it/s] 48%|████▊ | 178688/371472 [3:19:38<15:48:45, 3.39it/s] 48%|████▊ | 178689/371472 [3:19:39<15:32:13, 3.45it/s] 48%|████▊ | 178690/371472 [3:19:39<15:29:43, 3.46it/s] 48%|████▊ | 178691/371472 [3:19:39<15:46:16, 3.40it/s] 48%|████▊ | 178692/371472 [3:19:39<15:35:27, 3.43it/s] 48%|████▊ | 178693/371472 [3:19:40<15:32:03, 3.45it/s] 48%|████▊ | 178694/371472 [3:19:40<15:14:23, 3.51it/s] 48%|████▊ | 178695/371472 [3:19:40<15:24:20, 3.48it/s] 48%|████▊ | 178696/371472 [3:19:41<16:40:59, 3.21it/s] 48%|████▊ | 178697/371472 [3:19:41<16:53:41, 3.17it/s] 48%|████▊ | 178698/371472 [3:19:41<16:37:11, 3.22it/s] 48%|████▊ | 178699/371472 [3:19:42<16:17:20, 3.29it/s] 48%|████▊ | 178700/371472 [3:19:42<15:57:22, 3.36it/s] {'loss': 2.911, 'learning_rate': 5.672983688508694e-07, 'epoch': 7.7} + 48%|████▊ | 178700/371472 [3:19:42<15:57:22, 3.36it/s] 48%|████▊ | 178701/371472 [3:19:42<15:29:58, 3.45it/s] 48%|████▊ | 178702/371472 [3:19:42<15:28:43, 3.46it/s] 48%|████▊ | 178703/371472 [3:19:43<15:46:10, 3.40it/s] 48%|████▊ | 178704/371472 [3:19:43<15:41:33, 3.41it/s] 48%|████▊ | 178705/371472 [3:19:43<15:40:45, 3.42it/s] 48%|████▊ | 178706/371472 [3:19:44<16:15:56, 3.29it/s] 48%|████▊ | 178707/371472 [3:19:44<15:45:30, 3.40it/s] 48%|████▊ | 178708/371472 [3:19:44<15:55:53, 3.36it/s] 48%|████▊ | 178709/371472 [3:19:45<15:48:54, 3.39it/s] 48%|████▊ | 178710/371472 [3:19:45<15:39:32, 3.42it/s] 48%|████▊ | 178711/371472 [3:19:45<15:38:02, 3.42it/s] 48%|████▊ | 178712/371472 [3:19:45<16:20:36, 3.28it/s] 48%|████▊ | 178713/371472 [3:19:46<16:29:25, 3.25it/s] 48%|████▊ | 178714/371472 [3:19:46<16:27:53, 3.25it/s] 48%|████▊ | 178715/371472 [3:19:46<16:08:11, 3.32it/s] 48%|████▊ | 178716/371472 [3:19:47<15:46:36, 3.39it/s] 48%|████▊ | 178717/371472 [3:19:47<15:52:31, 3.37it/s] 48%|████▊ | 178718/371472 [3:19:47<16:24:33, 3.26it/s] 48%|████▊ | 178719/371472 [3:19:48<17:54:48, 2.99it/s] 48%|████▊ | 178720/371472 [3:19:48<17:33:51, 3.05it/s] {'loss': 3.0579, 'learning_rate': 5.672498868753906e-07, 'epoch': 7.7} + 48%|████▊ | 178720/371472 [3:19:48<17:33:51, 3.05it/s] 48%|████▊ | 178721/371472 [3:19:48<16:41:35, 3.21it/s] 48%|████▊ | 178722/371472 [3:19:49<17:10:51, 3.12it/s] 48%|████▊ | 178723/371472 [3:19:49<16:25:48, 3.26it/s] 48%|████▊ | 178724/371472 [3:19:49<15:44:37, 3.40it/s] 48%|████▊ | 178725/371472 [3:19:49<15:53:41, 3.37it/s] 48%|████▊ | 178726/371472 [3:19:50<15:36:00, 3.43it/s] 48%|████▊ | 178727/371472 [3:19:50<16:06:49, 3.32it/s] 48%|████▊ | 178728/371472 [3:19:50<17:56:31, 2.98it/s] 48%|████▊ | 178729/371472 [3:19:51<18:35:27, 2.88it/s] 48%|████▊ | 178730/371472 [3:19:51<17:43:51, 3.02it/s] 48%|████▊ | 178731/371472 [3:19:51<17:25:25, 3.07it/s] 48%|████▊ | 178732/371472 [3:19:52<17:06:29, 3.13it/s] 48%|████▊ | 178733/371472 [3:19:52<16:47:57, 3.19it/s] 48%|████▊ | 178734/371472 [3:19:52<16:42:30, 3.20it/s] 48%|████▊ | 178735/371472 [3:19:53<16:13:36, 3.30it/s] 48%|████▊ | 178736/371472 [3:19:53<16:06:33, 3.32it/s] 48%|████▊ | 178737/371472 [3:19:53<16:07:49, 3.32it/s] 48%|████▊ | 178738/371472 [3:19:54<16:26:11, 3.26it/s] 48%|████▊ | 178739/371472 [3:19:54<16:18:30, 3.28it/s] 48%|████▊ | 178740/371472 [3:19:54<16:42:33, 3.20it/s] {'loss': 2.8371, 'learning_rate': 5.672014048999116e-07, 'epoch': 7.7} + 48%|████▊ | 178740/371472 [3:19:54<16:42:33, 3.20it/s] 48%|████▊ | 178741/371472 [3:19:54<16:23:54, 3.26it/s] 48%|████▊ | 178742/371472 [3:19:55<16:06:37, 3.32it/s] 48%|████▊ | 178743/371472 [3:19:55<17:55:02, 2.99it/s] 48%|████▊ | 178744/371472 [3:19:56<18:19:25, 2.92it/s] 48%|████▊ | 178745/371472 [3:19:56<17:25:03, 3.07it/s] 48%|████▊ | 178746/371472 [3:19:56<16:29:36, 3.25it/s] 48%|████▊ | 178747/371472 [3:19:56<16:06:20, 3.32it/s] 48%|████▊ | 178748/371472 [3:19:57<15:40:44, 3.41it/s] 48%|████▊ | 178749/371472 [3:19:57<16:38:37, 3.22it/s] 48%|████▊ | 178750/371472 [3:19:57<16:15:54, 3.29it/s] 48%|████▊ | 178751/371472 [3:19:58<16:31:07, 3.24it/s] 48%|████▊ | 178752/371472 [3:19:58<16:06:11, 3.32it/s] 48%|████▊ | 178753/371472 [3:19:58<15:42:19, 3.41it/s] 48%|████▊ | 178754/371472 [3:19:58<15:27:04, 3.46it/s] 48%|████▊ | 178755/371472 [3:19:59<16:25:06, 3.26it/s] 48%|████▊ | 178756/371472 [3:19:59<16:09:56, 3.31it/s] 48%|████▊ | 178757/371472 [3:19:59<16:27:48, 3.25it/s] 48%|████▊ | 178758/371472 [3:20:00<16:31:05, 3.24it/s] 48%|████▊ | 178759/371472 [3:20:00<16:44:58, 3.20it/s] 48%|████▊ | 178760/371472 [3:20:00<16:47:44, 3.19it/s] {'loss': 2.9275, 'learning_rate': 5.671529229244327e-07, 'epoch': 7.7} + 48%|████▊ | 178760/371472 [3:20:00<16:47:44, 3.19it/s] 48%|████▊ | 178761/371472 [3:20:01<16:00:58, 3.34it/s] 48%|████▊ | 178762/371472 [3:20:01<17:08:49, 3.12it/s] 48%|████▊ | 178763/371472 [3:20:01<17:43:03, 3.02it/s] 48%|████▊ | 178764/371472 [3:20:02<16:55:14, 3.16it/s] 48%|████▊ | 178765/371472 [3:20:02<16:17:16, 3.29it/s] 48%|████▊ | 178766/371472 [3:20:02<16:56:00, 3.16it/s] 48%|████▊ | 178767/371472 [3:20:03<16:40:12, 3.21it/s] 48%|████▊ | 178768/371472 [3:20:03<16:15:06, 3.29it/s] 48%|████▊ | 178769/371472 [3:20:03<16:07:53, 3.32it/s] 48%|████▊ | 178770/371472 [3:20:04<17:09:45, 3.12it/s] 48%|████▊ | 178771/371472 [3:20:04<17:02:10, 3.14it/s] 48%|████▊ | 178772/371472 [3:20:04<16:31:58, 3.24it/s] 48%|████▊ | 178773/371472 [3:20:04<16:13:11, 3.30it/s] 48%|████▊ | 178774/371472 [3:20:05<16:02:42, 3.34it/s] 48%|████▊ | 178775/371472 [3:20:05<15:38:43, 3.42it/s] 48%|████▊ | 178776/371472 [3:20:05<15:53:06, 3.37it/s] 48%|████▊ | 178777/371472 [3:20:06<15:20:20, 3.49it/s] 48%|████▊ | 178778/371472 [3:20:06<14:48:51, 3.61it/s] 48%|████▊ | 178779/371472 [3:20:06<14:46:23, 3.62it/s] 48%|████▊ | 178780/371472 [3:20:06<15:33:30, 3.44it/s] {'loss': 2.8365, 'learning_rate': 5.671044409489539e-07, 'epoch': 7.7} + 48%|████▊ | 178780/371472 [3:20:06<15:33:30, 3.44it/s] 48%|████▊ | 178781/371472 [3:20:07<16:23:04, 3.27it/s] 48%|████▊ | 178782/371472 [3:20:07<16:47:05, 3.19it/s] 48%|████▊ | 178783/371472 [3:20:07<16:34:40, 3.23it/s] 48%|████▊ | 178784/371472 [3:20:08<16:34:22, 3.23it/s] 48%|████▊ | 178785/371472 [3:20:08<16:13:10, 3.30it/s] 48%|████▊ | 178786/371472 [3:20:08<16:31:34, 3.24it/s] 48%|████▊ | 178787/371472 [3:20:09<17:58:10, 2.98it/s] 48%|████▊ | 178788/371472 [3:20:09<17:16:07, 3.10it/s] 48%|████▊ | 178789/371472 [3:20:09<17:09:27, 3.12it/s] 48%|████▊ | 178790/371472 [3:20:10<16:37:56, 3.22it/s] 48%|████▊ | 178791/371472 [3:20:10<16:44:04, 3.20it/s] 48%|████▊ | 178792/371472 [3:20:10<16:50:11, 3.18it/s] 48%|████▊ | 178793/371472 [3:20:11<16:38:14, 3.22it/s] 48%|████▊ | 178794/371472 [3:20:11<17:38:28, 3.03it/s] 48%|████▊ | 178795/371472 [3:20:11<17:33:54, 3.05it/s] 48%|████▊ | 178796/371472 [3:20:12<17:17:17, 3.10it/s] 48%|████▊ | 178797/371472 [3:20:12<17:33:33, 3.05it/s] 48%|████▊ | 178798/371472 [3:20:12<16:44:40, 3.20it/s] 48%|████▊ | 178799/371472 [3:20:12<17:22:46, 3.08it/s] 48%|████▊ | 178800/371472 [3:20:13<16:38:12, 3.22it/s] {'loss': 2.7299, 'learning_rate': 5.670559589734749e-07, 'epoch': 7.7} + 48%|████▊ | 178800/371472 [3:20:13<16:38:12, 3.22it/s] 48%|████▊ | 178801/371472 [3:20:13<16:14:11, 3.30it/s] 48%|████▊ | 178802/371472 [3:20:13<17:36:53, 3.04it/s] 48%|████▊ | 178803/371472 [3:20:14<17:42:21, 3.02it/s] 48%|████▊ | 178804/371472 [3:20:14<18:01:16, 2.97it/s] 48%|████▊ | 178805/371472 [3:20:14<17:34:07, 3.05it/s] 48%|████▊ | 178806/371472 [3:20:15<17:12:56, 3.11it/s] 48%|████▊ | 178807/371472 [3:20:15<17:35:41, 3.04it/s] 48%|████▊ | 178808/371472 [3:20:15<16:36:03, 3.22it/s] 48%|████▊ | 178809/371472 [3:20:16<15:59:38, 3.35it/s] 48%|████▊ | 178810/371472 [3:20:16<15:51:53, 3.37it/s] 48%|████▊ | 178811/371472 [3:20:16<15:44:38, 3.40it/s] 48%|████▊ | 178812/371472 [3:20:17<16:26:40, 3.25it/s] 48%|████▊ | 178813/371472 [3:20:17<15:55:00, 3.36it/s] 48%|████▊ | 178814/371472 [3:20:17<16:50:39, 3.18it/s] 48%|████▊ | 178815/371472 [3:20:18<17:02:58, 3.14it/s] 48%|████▊ | 178816/371472 [3:20:18<16:28:28, 3.25it/s] 48%|████▊ | 178817/371472 [3:20:18<16:34:20, 3.23it/s] 48%|████▊ | 178818/371472 [3:20:18<16:34:22, 3.23it/s] 48%|████▊ | 178819/371472 [3:20:19<16:48:06, 3.19it/s] 48%|████▊ | 178820/371472 [3:20:19<18:16:17, 2.93it/s] {'loss': 2.7999, 'learning_rate': 5.67007476997996e-07, 'epoch': 7.7} + 48%|████▊ | 178820/371472 [3:20:19<18:16:17, 2.93it/s] 48%|████▊ | 178821/371472 [3:20:20<18:59:24, 2.82it/s] 48%|████▊ | 178822/371472 [3:20:20<19:17:33, 2.77it/s] 48%|████▊ | 178823/371472 [3:20:20<18:54:04, 2.83it/s] 48%|████▊ | 178824/371472 [3:20:21<18:52:13, 2.84it/s] 48%|████▊ | 178825/371472 [3:20:21<18:07:44, 2.95it/s] 48%|████▊ | 178826/371472 [3:20:21<17:23:13, 3.08it/s] 48%|████▊ | 178827/371472 [3:20:21<16:52:06, 3.17it/s] 48%|████▊ | 178828/371472 [3:20:22<17:06:56, 3.13it/s] 48%|████▊ | 178829/371472 [3:20:22<17:05:57, 3.13it/s] 48%|████▊ | 178830/371472 [3:20:22<16:43:12, 3.20it/s] 48%|████▊ | 178831/371472 [3:20:23<16:19:14, 3.28it/s] 48%|████▊ | 178832/371472 [3:20:23<16:25:24, 3.26it/s] 48%|████▊ | 178833/371472 [3:20:23<16:09:10, 3.31it/s] 48%|████▊ | 178834/371472 [3:20:24<16:01:45, 3.34it/s] 48%|████▊ | 178835/371472 [3:20:24<15:57:52, 3.35it/s] 48%|████▊ | 178836/371472 [3:20:24<15:34:42, 3.43it/s] 48%|████▊ | 178837/371472 [3:20:24<15:25:41, 3.47it/s] 48%|████▊ | 178838/371472 [3:20:25<15:14:23, 3.51it/s] 48%|████▊ | 178839/371472 [3:20:25<15:54:32, 3.36it/s] 48%|████▊ | 178840/371472 [3:20:25<17:03:51, 3.14it/s] {'loss': 3.0619, 'learning_rate': 5.66958995022517e-07, 'epoch': 7.7} + 48%|████▊ | 178840/371472 [3:20:25<17:03:51, 3.14it/s] 48%|████▊ | 178841/371472 [3:20:26<16:40:30, 3.21it/s] 48%|████▊ | 178842/371472 [3:20:26<16:18:52, 3.28it/s] 48%|████▊ | 178843/371472 [3:20:26<16:21:09, 3.27it/s] 48%|████▊ | 178844/371472 [3:20:27<16:20:40, 3.27it/s] 48%|████▊ | 178845/371472 [3:20:27<16:36:43, 3.22it/s] 48%|██��█▊ | 178846/371472 [3:20:27<16:23:32, 3.26it/s] 48%|████▊ | 178847/371472 [3:20:28<16:20:14, 3.28it/s] 48%|████▊ | 178848/371472 [3:20:28<16:07:24, 3.32it/s] 48%|████▊ | 178849/371472 [3:20:28<16:20:38, 3.27it/s] 48%|████▊ | 178850/371472 [3:20:28<16:11:57, 3.30it/s] 48%|████▊ | 178851/371472 [3:20:29<16:11:27, 3.30it/s] 48%|████▊ | 178852/371472 [3:20:29<15:47:59, 3.39it/s] 48%|████▊ | 178853/371472 [3:20:29<15:48:04, 3.39it/s] 48%|████▊ | 178854/371472 [3:20:30<15:26:33, 3.46it/s] 48%|████▊ | 178855/371472 [3:20:30<15:07:41, 3.54it/s] 48%|████▊ | 178856/371472 [3:20:30<15:05:00, 3.55it/s] 48%|████▊ | 178857/371472 [3:20:31<16:08:11, 3.32it/s] 48%|████▊ | 178858/371472 [3:20:31<15:49:50, 3.38it/s] 48%|████▊ | 178859/371472 [3:20:31<16:30:49, 3.24it/s] 48%|████▊ | 178860/371472 [3:20:31<16:00:38, 3.34it/s] {'loss': 2.861, 'learning_rate': 5.669105130470382e-07, 'epoch': 7.7} + 48%|████▊ | 178860/371472 [3:20:31<16:00:38, 3.34it/s] 48%|████▊ | 178861/371472 [3:20:32<16:17:56, 3.28it/s] 48%|████▊ | 178862/371472 [3:20:32<16:06:05, 3.32it/s] 48%|████▊ | 178863/371472 [3:20:32<15:37:56, 3.42it/s] 48%|████▊ | 178864/371472 [3:20:33<15:28:29, 3.46it/s] 48%|████▊ | 178865/371472 [3:20:33<16:09:05, 3.31it/s] 48%|████▊ | 178866/371472 [3:20:33<16:15:05, 3.29it/s] 48%|████▊ | 178867/371472 [3:20:34<17:28:09, 3.06it/s] 48%|████▊ | 178868/371472 [3:20:34<16:57:33, 3.15it/s] 48%|████▊ | 178869/371472 [3:20:34<16:10:02, 3.31it/s] 48%|████▊ | 178870/371472 [3:20:34<15:54:58, 3.36it/s] 48%|████▊ | 178871/371472 [3:20:35<16:31:01, 3.24it/s] 48%|████▊ | 178872/371472 [3:20:35<16:56:26, 3.16it/s] 48%|████▊ | 178873/371472 [3:20:35<16:37:11, 3.22it/s] 48%|████▊ | 178874/371472 [3:20:36<17:22:06, 3.08it/s] 48%|████▊ | 178875/371472 [3:20:36<16:46:52, 3.19it/s] 48%|████▊ | 178876/371472 [3:20:36<16:10:58, 3.31it/s] 48%|████▊ | 178877/371472 [3:20:37<16:12:19, 3.30it/s] 48%|████▊ | 178878/371472 [3:20:37<15:56:30, 3.36it/s] 48%|████▊ | 178879/371472 [3:20:37<16:14:03, 3.30it/s] 48%|████▊ | 178880/371472 [3:20:38<16:13:08, 3.30it/s] {'loss': 3.0203, 'learning_rate': 5.668620310715593e-07, 'epoch': 7.7} + 48%|████▊ | 178880/371472 [3:20:38<16:13:08, 3.30it/s] 48%|████▊ | 178881/371472 [3:20:38<16:00:22, 3.34it/s] 48%|████▊ | 178882/371472 [3:20:38<15:38:38, 3.42it/s] 48%|████▊ | 178883/371472 [3:20:38<16:34:43, 3.23it/s] 48%|████▊ | 178884/371472 [3:20:39<15:54:43, 3.36it/s] 48%|████▊ | 178885/371472 [3:20:39<16:56:33, 3.16it/s] 48%|████▊ | 178886/371472 [3:20:39<16:44:25, 3.20it/s] 48%|████▊ | 178887/371472 [3:20:40<16:12:45, 3.30it/s] 48%|████▊ | 178888/371472 [3:20:40<16:14:31, 3.29it/s] 48%|████▊ | 178889/371472 [3:20:40<15:54:39, 3.36it/s] 48%|████▊ | 178890/371472 [3:20:41<15:50:03, 3.38it/s] 48%|████▊ | 178891/371472 [3:20:41<15:43:37, 3.40it/s] 48%|████▊ | 178892/371472 [3:20:41<16:29:41, 3.24it/s] 48%|████▊ | 178893/371472 [3:20:41<16:34:41, 3.23it/s] 48%|████▊ | 178894/371472 [3:20:42<16:23:15, 3.26it/s] 48%|████▊ | 178895/371472 [3:20:42<16:23:52, 3.26it/s] 48%|████▊ | 178896/371472 [3:20:42<15:52:34, 3.37it/s] 48%|████▊ | 178897/371472 [3:20:43<15:41:50, 3.41it/s] 48%|████▊ | 178898/371472 [3:20:43<15:26:34, 3.46it/s] 48%|████▊ | 178899/371472 [3:20:43<15:39:07, 3.42it/s] 48%|████▊ | 178900/371472 [3:20:44<16:04:11, 3.33it/s] {'loss': 2.8358, 'learning_rate': 5.668135490960804e-07, 'epoch': 7.71} + 48%|████▊ | 178900/371472 [3:20:44<16:04:11, 3.33it/s] 48%|████▊ | 178901/371472 [3:20:44<16:20:21, 3.27it/s] 48%|████▊ | 178902/371472 [3:20:44<16:25:04, 3.26it/s] 48%|████▊ | 178903/371472 [3:20:44<15:56:44, 3.35it/s] 48%|████▊ | 178904/371472 [3:20:45<16:36:08, 3.22it/s] 48%|████▊ | 178905/371472 [3:20:45<16:48:31, 3.18it/s] 48%|████▊ | 178906/371472 [3:20:45<16:27:03, 3.25it/s] 48%|████▊ | 178907/371472 [3:20:46<16:07:19, 3.32it/s] 48%|████▊ | 178908/371472 [3:20:46<15:53:35, 3.37it/s] 48%|████▊ | 178909/371472 [3:20:46<16:04:17, 3.33it/s] 48%|████▊ | 178910/371472 [3:20:47<16:30:45, 3.24it/s] 48%|████▊ | 178911/371472 [3:20:47<16:03:35, 3.33it/s] 48%|████▊ | 178912/371472 [3:20:47<16:33:32, 3.23it/s] 48%|████▊ | 178913/371472 [3:20:48<16:13:58, 3.30it/s] 48%|████▊ | 178914/371472 [3:20:48<16:07:40, 3.32it/s] 48%|████▊ | 178915/371472 [3:20:48<15:57:31, 3.35it/s] 48%|████▊ | 178916/371472 [3:20:48<16:37:05, 3.22it/s] 48%|████▊ | 178917/371472 [3:20:49<17:23:11, 3.08it/s] 48%|████▊ | 178918/371472 [3:20:49<16:59:43, 3.15it/s] 48%|████▊ | 178919/371472 [3:20:49<16:52:43, 3.17it/s] 48%|████▊ | 178920/371472 [3:20:50<17:02:33, 3.14it/s] {'loss': 3.0071, 'learning_rate': 5.667650671206016e-07, 'epoch': 7.71} + 48%|████▊ | 178920/371472 [3:20:50<17:02:33, 3.14it/s] 48%|████▊ | 178921/371472 [3:20:50<16:37:58, 3.22it/s] 48%|████▊ | 178922/371472 [3:20:50<16:14:57, 3.29it/s] 48%|████▊ | 178923/371472 [3:20:51<16:33:36, 3.23it/s] 48%|████▊ | 178924/371472 [3:20:51<16:03:54, 3.33it/s] 48%|████▊ | 178925/371472 [3:20:51<17:31:11, 3.05it/s] 48%|████▊ | 178926/371472 [3:20:52<17:13:01, 3.11it/s] 48%|████▊ | 178927/371472 [3:20:52<17:09:49, 3.12it/s] 48%|████▊ | 178928/371472 [3:20:52<16:43:59, 3.20it/s] 48%|████▊ | 178929/371472 [3:20:53<16:42:17, 3.20it/s] 48%|████▊ | 178930/371472 [3:20:53<16:02:58, 3.33it/s] 48%|████▊ | 178931/371472 [3:20:53<16:12:17, 3.30it/s] 48%|████▊ | 178932/371472 [3:20:53<16:41:26, 3.20it/s] 48%|████▊ | 178933/371472 [3:20:54<16:15:20, 3.29it/s] 48%|████▊ | 178934/371472 [3:20:54<16:19:01, 3.28it/s] 48%|████▊ | 178935/371472 [3:20:54<16:50:02, 3.18it/s] 48%|████▊ | 178936/371472 [3:20:55<16:00:30, 3.34it/s] 48%|████▊ | 178937/371472 [3:20:55<15:47:06, 3.39it/s] 48%|████▊ | 178938/371472 [3:20:55<17:00:41, 3.14it/s] 48%|████▊ | 178939/371472 [3:20:56<16:39:37, 3.21it/s] 48%|████▊ | 178940/371472 [3:20:56<17:13:23, 3.11it/s] {'loss': 3.071, 'learning_rate': 5.667165851451227e-07, 'epoch': 7.71} + 48%|████▊ | 178940/371472 [3:20:56<17:13:23, 3.11it/s] 48%|████▊ | 178941/371472 [3:20:56<17:22:40, 3.08it/s] 48%|████▊ | 178942/371472 [3:20:57<16:52:23, 3.17it/s] 48%|████▊ | 178943/371472 [3:20:57<16:22:21, 3.27it/s] 48%|████▊ | 178944/371472 [3:20:57<16:06:34, 3.32it/s] 48%|████▊ | 178945/371472 [3:20:57<16:01:32, 3.34it/s] 48%|████▊ | 178946/371472 [3:20:58<15:24:16, 3.47it/s] 48%|████▊ | 178947/371472 [3:20:58<15:34:51, 3.43it/s] 48%|████▊ | 178948/371472 [3:20:58<15:44:34, 3.40it/s] 48%|████▊ | 178949/371472 [3:20:59<15:38:52, 3.42it/s] 48%|████▊ | 178950/371472 [3:20:59<15:23:29, 3.47it/s] 48%|████▊ | 178951/371472 [3:20:59<15:59:24, 3.34it/s] 48%|████▊ | 178952/371472 [3:21:00<16:14:01, 3.29it/s] 48%|████▊ | 178953/371472 [3:21:00<15:51:06, 3.37it/s] 48%|████▊ | 178954/371472 [3:21:00<15:27:38, 3.46it/s] 48%|████▊ | 178955/371472 [3:21:00<15:22:08, 3.48it/s] 48%|████▊ | 178956/371472 [3:21:01<15:22:06, 3.48it/s] 48%|████▊ | 178957/371472 [3:21:01<15:42:27, 3.40it/s] 48%|████▊ | 178958/371472 [3:21:01<15:40:51, 3.41it/s] 48%|████▊ | 178959/371472 [3:21:02<15:30:35, 3.45it/s] 48%|████▊ | 178960/371472 [3:21:02<15:29:15, 3.45it/s] {'loss': 2.7632, 'learning_rate': 5.666681031696438e-07, 'epoch': 7.71} + 48%|████▊ | 178960/371472 [3:21:02<15:29:15, 3.45it/s] 48%|████▊ | 178961/371472 [3:21:02<15:36:19, 3.43it/s] 48%|████▊ | 178962/371472 [3:21:02<15:44:04, 3.40it/s] 48%|████▊ | 178963/371472 [3:21:03<15:29:30, 3.45it/s] 48%|████▊ | 178964/371472 [3:21:03<15:37:49, 3.42it/s] 48%|████▊ | 178965/371472 [3:21:03<16:20:34, 3.27it/s] 48%|████▊ | 178966/371472 [3:21:04<16:07:13, 3.32it/s] 48%|████▊ | 178967/371472 [3:21:04<16:04:17, 3.33it/s] 48%|████▊ | 178968/371472 [3:21:04<15:45:22, 3.39it/s] 48%|████▊ | 178969/371472 [3:21:04<15:27:02, 3.46it/s] 48%|████▊ | 178970/371472 [3:21:05<15:11:35, 3.52it/s] 48%|████▊ | 178971/371472 [3:21:05<15:49:01, 3.38it/s] 48%|████▊ | 178972/371472 [3:21:05<16:11:19, 3.30it/s] 48%|████▊ | 178973/371472 [3:21:06<16:09:52, 3.31it/s] 48%|████▊ | 178974/371472 [3:21:06<16:21:58, 3.27it/s] 48%|████▊ | 178975/371472 [3:21:06<16:01:51, 3.34it/s] 48%|████▊ | 178976/371472 [3:21:07<16:43:39, 3.20it/s] 48%|████▊ | 178977/371472 [3:21:07<16:27:10, 3.25it/s] 48%|████▊ | 178978/371472 [3:21:07<16:25:51, 3.25it/s] 48%|████▊ | 178979/371472 [3:21:08<16:38:37, 3.21it/s] 48%|████▊ | 178980/371472 [3:21:08<16:55:14, 3.16it/s] {'loss': 2.9656, 'learning_rate': 5.666196211941649e-07, 'epoch': 7.71} + 48%|████▊ | 178980/371472 [3:21:08<16:55:14, 3.16it/s] 48%|████▊ | 178981/371472 [3:21:08<16:37:59, 3.21it/s] 48%|████▊ | 178982/371472 [3:21:09<16:49:00, 3.18it/s] 48%|████▊ | 178983/371472 [3:21:09<17:27:40, 3.06it/s] 48%|████▊ | 178984/371472 [3:21:09<17:09:28, 3.12it/s] 48%|████▊ | 178985/371472 [3:21:10<17:27:45, 3.06it/s] 48%|████▊ | 178986/371472 [3:21:10<17:40:26, 3.03it/s] 48%|████▊ | 178987/371472 [3:21:10<16:52:27, 3.17it/s] 48%|████▊ | 178988/371472 [3:21:10<16:44:26, 3.19it/s] 48%|████▊ | 178989/371472 [3:21:11<16:20:22, 3.27it/s] 48%|████▊ | 178990/371472 [3:21:11<16:44:06, 3.19it/s] 48%|████▊ | 178991/371472 [3:21:11<16:32:09, 3.23it/s] 48%|████▊ | 178992/371472 [3:21:12<16:17:56, 3.28it/s] 48%|████▊ | 178993/371472 [3:21:12<16:13:46, 3.29it/s] 48%|████▊ | 178994/371472 [3:21:12<16:20:22, 3.27it/s] 48%|████▊ | 178995/371472 [3:21:13<17:05:13, 3.13it/s] 48%|████▊ | 178996/371472 [3:21:13<16:48:00, 3.18it/s] 48%|████▊ | 178997/371472 [3:21:13<16:35:01, 3.22it/s] 48%|████▊ | 178998/371472 [3:21:13<16:00:49, 3.34it/s] 48%|████▊ | 178999/371472 [3:21:14<16:17:07, 3.28it/s] 48%|████▊ | 179000/371472 [3:21:14<15:58:35, 3.35it/s] {'loss': 2.8735, 'learning_rate': 5.665711392186859e-07, 'epoch': 7.71} + 48%|████▊ | 179000/371472 [3:21:14<15:58:35, 3.35it/s] 48%|████▊ | 179001/371472 [3:21:14<16:15:20, 3.29it/s] 48%|████▊ | 179002/371472 [3:21:15<16:12:36, 3.30it/s] 48%|████▊ | 179003/371472 [3:21:15<16:01:29, 3.34it/s] 48%|████▊ | 179004/371472 [3:21:15<16:40:48, 3.21it/s] 48%|████▊ | 179005/371472 [3:21:16<15:55:27, 3.36it/s] 48%|████▊ | 179006/371472 [3:21:16<15:39:40, 3.41it/s] 48%|████▊ | 179007/371472 [3:21:16<17:55:41, 2.98it/s] 48%|████▊ | 179008/371472 [3:21:17<17:11:28, 3.11it/s] 48%|████▊ | 179009/371472 [3:21:17<16:42:21, 3.20it/s] 48%|████▊ | 179010/371472 [3:21:17<16:48:49, 3.18it/s] 48%|████▊ | 179011/371472 [3:21:18<16:48:18, 3.18it/s] 48%|████▊ | 179012/371472 [3:21:18<16:30:01, 3.24it/s] 48%|████▊ | 179013/371472 [3:21:18<15:50:51, 3.37it/s] 48%|████▊ | 179014/371472 [3:21:18<16:00:42, 3.34it/s] 48%|████▊ | 179015/371472 [3:21:19<15:50:23, 3.38it/s] 48%|████▊ | 179016/371472 [3:21:19<15:44:48, 3.39it/s] 48%|████▊ | 179017/371472 [3:21:19<15:38:09, 3.42it/s] 48%|████▊ | 179018/371472 [3:21:20<15:16:51, 3.50it/s] 48%|████▊ | 179019/371472 [3:21:20<15:55:09, 3.36it/s] 48%|████▊ | 179020/371472 [3:21:20<15:56:16, 3.35it/s] {'loss': 3.0153, 'learning_rate': 5.665226572432072e-07, 'epoch': 7.71} + 48%|████▊ | 179020/371472 [3:21:20<15:56:16, 3.35it/s] 48%|████▊ | 179021/371472 [3:21:20<15:47:26, 3.39it/s] 48%|████▊ | 179022/371472 [3:21:21<16:02:58, 3.33it/s] 48%|████▊ | 179023/371472 [3:21:21<15:52:17, 3.37it/s] 48%|████▊ | 179024/371472 [3:21:21<15:57:48, 3.35it/s] 48%|████▊ | 179025/371472 [3:21:22<15:54:59, 3.36it/s] 48%|████▊ | 179026/371472 [3:21:22<16:23:04, 3.26it/s] 48%|████▊ | 179027/371472 [3:21:22<16:47:14, 3.18it/s] 48%|████▊ | 179028/371472 [3:21:23<16:09:02, 3.31it/s] 48%|████▊ | 179029/371472 [3:21:23<16:20:20, 3.27it/s] 48%|████▊ | 179030/371472 [3:21:23<16:16:06, 3.29it/s] 48%|████▊ | 179031/371472 [3:21:24<16:11:09, 3.30it/s] 48%|████▊ | 179032/371472 [3:21:24<16:08:22, 3.31it/s] 48%|████▊ | 179033/371472 [3:21:24<15:29:28, 3.45it/s] 48%|████▊ | 179034/371472 [3:21:24<15:06:18, 3.54it/s] 48%|████▊ | 179035/371472 [3:21:25<15:39:23, 3.41it/s] 48%|████▊ | 179036/371472 [3:21:25<15:31:51, 3.44it/s] 48%|████▊ | 179037/371472 [3:21:25<16:06:51, 3.32it/s] 48%|████▊ | 179038/371472 [3:21:26<16:57:24, 3.15it/s] 48%|████▊ | 179039/371472 [3:21:26<16:17:01, 3.28it/s] 48%|████▊ | 179040/371472 [3:21:26<16:07:15, 3.32it/s] {'loss': 2.8502, 'learning_rate': 5.664741752677283e-07, 'epoch': 7.71} + 48%|████▊ | 179040/371472 [3:21:26<16:07:15, 3.32it/s] 48%|████▊ | 179041/371472 [3:21:26<16:12:43, 3.30it/s] 48%|████▊ | 179042/371472 [3:21:27<16:03:33, 3.33it/s] 48%|████▊ | 179043/371472 [3:21:27<16:08:53, 3.31it/s] 48%|████▊ | 179044/371472 [3:21:27<16:32:40, 3.23it/s] 48%|████▊ | 179045/371472 [3:21:28<16:08:15, 3.31it/s] 48%|████▊ | 179046/371472 [3:21:28<17:12:53, 3.10it/s] 48%|████▊ | 179047/371472 [3:21:28<16:50:29, 3.17it/s] 48%|████▊ | 179048/371472 [3:21:29<16:17:05, 3.28it/s] 48%|████▊ | 179049/371472 [3:21:29<15:52:22, 3.37it/s] 48%|████▊ | 179050/371472 [3:21:29<15:37:27, 3.42it/s] 48%|████▊ | 179051/371472 [3:21:30<15:42:26, 3.40it/s] 48%|████▊ | 179052/371472 [3:21:30<15:29:51, 3.45it/s] 48%|████▊ | 179053/371472 [3:21:30<15:24:23, 3.47it/s] 48%|████▊ | 179054/371472 [3:21:30<15:14:10, 3.51it/s] 48%|████▊ | 179055/371472 [3:21:31<15:07:30, 3.53it/s] 48%|████▊ | 179056/371472 [3:21:31<15:07:35, 3.53it/s] 48%|████▊ | 179057/371472 [3:21:31<15:17:52, 3.49it/s] 48%|████▊ | 179058/371472 [3:21:31<15:13:23, 3.51it/s] 48%|████▊ | 179059/371472 [3:21:32<15:19:42, 3.49it/s] 48%|████▊ | 179060/371472 [3:21:32<15:34:58, 3.43it/s] {'loss': 2.9253, 'learning_rate': 5.664256932922493e-07, 'epoch': 7.71} + 48%|████▊ | 179060/371472 [3:21:32<15:34:58, 3.43it/s] 48%|████▊ | 179061/371472 [3:21:32<15:25:24, 3.47it/s] 48%|████▊ | 179062/371472 [3:21:33<15:15:55, 3.50it/s] 48%|████▊ | 179063/371472 [3:21:33<15:27:00, 3.46it/s] 48%|████▊ | 179064/371472 [3:21:33<15:09:08, 3.53it/s] 48%|████▊ | 179065/371472 [3:21:33<15:18:40, 3.49it/s] 48%|████▊ | 179066/371472 [3:21:34<15:53:29, 3.36it/s] 48%|████▊ | 179067/371472 [3:21:34<16:20:55, 3.27it/s] 48%|████▊ | 179068/371472 [3:21:34<15:57:50, 3.35it/s] 48%|████▊ | 179069/371472 [3:21:35<15:39:06, 3.41it/s] 48%|████▊ | 179070/371472 [3:21:35<15:35:28, 3.43it/s] 48%|████▊ | 179071/371472 [3:21:35<15:23:42, 3.47it/s] 48%|████▊ | 179072/371472 [3:21:36<15:09:37, 3.53it/s] 48%|████▊ | 179073/371472 [3:21:36<14:55:38, 3.58it/s] 48%|████▊ | 179074/371472 [3:21:36<15:12:17, 3.51it/s] 48%|████▊ | 179075/371472 [3:21:36<15:21:03, 3.48it/s] 48%|████▊ | 179076/371472 [3:21:37<15:21:59, 3.48it/s] 48%|████▊ | 179077/371472 [3:21:37<15:07:08, 3.53it/s] 48%|████▊ | 179078/371472 [3:21:37<15:48:25, 3.38it/s] 48%|████▊ | 179079/371472 [3:21:38<16:08:21, 3.31it/s] 48%|████▊ | 179080/371472 [3:21:38<16:01:23, 3.34it/s] {'loss': 2.7938, 'learning_rate': 5.663772113167704e-07, 'epoch': 7.71} + 48%|████▊ | 179080/371472 [3:21:38<16:01:23, 3.34it/s] 48%|████▊ | 179081/371472 [3:21:38<15:34:40, 3.43it/s] 48%|████▊ | 179082/371472 [3:21:38<15:47:23, 3.38it/s] 48%|████▊ | 179083/371472 [3:21:39<16:15:21, 3.29it/s] 48%|████▊ | 179084/371472 [3:21:39<16:11:44, 3.30it/s] 48%|████▊ | 179085/371472 [3:21:39<17:03:51, 3.13it/s] 48%|████▊ | 179086/371472 [3:21:40<17:39:49, 3.03it/s] 48%|████▊ | 179087/371472 [3:21:40<17:23:47, 3.07it/s] 48%|████▊ | 179088/371472 [3:21:40<16:52:59, 3.17it/s] 48%|████▊ | 179089/371472 [3:21:41<17:04:27, 3.13it/s] 48%|████▊ | 179090/371472 [3:21:41<16:22:59, 3.26it/s] 48%|████▊ | 179091/371472 [3:21:41<15:52:11, 3.37it/s] 48%|████▊ | 179092/371472 [3:21:42<16:00:47, 3.34it/s] 48%|████▊ | 179093/371472 [3:21:42<15:52:54, 3.36it/s] 48%|████▊ | 179094/371472 [3:21:42<15:43:27, 3.40it/s] 48%|████▊ | 179095/371472 [3:21:42<15:30:26, 3.45it/s] 48%|████▊ | 179096/371472 [3:21:43<15:45:03, 3.39it/s] 48%|████▊ | 179097/371472 [3:21:43<15:49:49, 3.38it/s] 48%|████▊ | 179098/371472 [3:21:43<16:03:08, 3.33it/s] 48%|████▊ | 179099/371472 [3:21:44<16:34:16, 3.22it/s] 48%|████▊ | 179100/371472 [3:21:44<16:18:19, 3.28it/s] {'loss': 2.9461, 'learning_rate': 5.663287293412916e-07, 'epoch': 7.71} + 48%|████▊ | 179100/371472 [3:21:44<16:18:19, 3.28it/s] 48%|████▊ | 179101/371472 [3:21:44<16:32:39, 3.23it/s] 48%|████▊ | 179102/371472 [3:21:45<16:07:52, 3.31it/s] 48%|████▊ | 179103/371472 [3:21:45<15:55:32, 3.36it/s] 48%|████▊ | 179104/371472 [3:21:45<15:45:38, 3.39it/s] 48%|████▊ | 179105/371472 [3:21:46<16:49:59, 3.17it/s] 48%|████▊ | 179106/371472 [3:21:46<16:57:13, 3.15it/s] 48%|████▊ | 179107/371472 [3:21:46<16:18:52, 3.28it/s] 48%|████▊ | 179108/371472 [3:21:46<15:58:12, 3.35it/s] 48%|████▊ | 179109/371472 [3:21:47<16:08:36, 3.31it/s] 48%|████▊ | 179110/371472 [3:21:47<16:05:44, 3.32it/s] 48%|████▊ | 179111/371472 [3:21:47<15:48:52, 3.38it/s] 48%|████▊ | 179112/371472 [3:21:48<15:52:24, 3.37it/s] 48%|████▊ | 179113/371472 [3:21:48<15:45:57, 3.39it/s] 48%|████▊ | 179114/371472 [3:21:48<15:26:41, 3.46it/s] 48%|████▊ | 179115/371472 [3:21:49<17:30:18, 3.05it/s] 48%|████▊ | 179116/371472 [3:21:49<17:28:14, 3.06it/s] 48%|████▊ | 179117/371472 [3:21:49<16:57:14, 3.15it/s] 48%|████▊ | 179118/371472 [3:21:50<17:23:46, 3.07it/s] 48%|████▊ | 179119/371472 [3:21:50<16:55:50, 3.16it/s] 48%|████▊ | 179120/371472 [3:21:50<16:23:17, 3.26it/s] {'loss': 2.8583, 'learning_rate': 5.662802473658126e-07, 'epoch': 7.72} + 48%|████▊ | 179120/371472 [3:21:50<16:23:17, 3.26it/s] 48%|████▊ | 179121/371472 [3:21:50<15:55:42, 3.35it/s] 48%|████▊ | 179122/371472 [3:21:51<15:46:44, 3.39it/s] 48%|████▊ | 179123/371472 [3:21:51<15:47:43, 3.38it/s] 48%|████▊ | 179124/371472 [3:21:51<15:28:49, 3.45it/s] 48%|████▊ | 179125/371472 [3:21:52<15:28:52, 3.45it/s] 48%|████▊ | 179126/371472 [3:21:52<15:13:10, 3.51it/s] 48%|████▊ | 179127/371472 [3:21:52<15:05:56, 3.54it/s] 48%|████▊ | 179128/371472 [3:21:52<15:03:37, 3.55it/s] 48%|████▊ | 179129/371472 [3:21:53<15:07:41, 3.53it/s] 48%|████▊ | 179130/371472 [3:21:53<15:04:51, 3.54it/s] 48%|████▊ | 179131/371472 [3:21:53<16:16:28, 3.28it/s] 48%|████▊ | 179132/371472 [3:21:54<18:27:34, 2.89it/s] 48%|████▊ | 179133/371472 [3:21:54<17:43:34, 3.01it/s] 48%|████▊ | 179134/371472 [3:21:54<17:33:25, 3.04it/s] 48%|████▊ | 179135/371472 [3:21:55<16:47:33, 3.18it/s] 48%|████▊ | 179136/371472 [3:21:55<16:29:56, 3.24it/s] 48%|████▊ | 179137/371472 [3:21:55<16:43:32, 3.19it/s] 48%|████▊ | 179138/371472 [3:21:56<16:21:35, 3.27it/s] 48%|████▊ | 179139/371472 [3:21:56<16:54:45, 3.16it/s] 48%|████▊ | 179140/371472 [3:21:56<16:29:55, 3.24it/s] {'loss': 2.7534, 'learning_rate': 5.662317653903336e-07, 'epoch': 7.72} + 48%|████▊ | 179140/371472 [3:21:56<16:29:55, 3.24it/s] 48%|████▊ | 179141/371472 [3:21:57<17:19:34, 3.08it/s] 48%|████▊ | 179142/371472 [3:21:57<17:31:05, 3.05it/s] 48%|████▊ | 179143/371472 [3:21:57<16:46:52, 3.18it/s] 48%|████▊ | 179144/371472 [3:21:58<17:09:00, 3.12it/s] 48%|████▊ | 179145/371472 [3:21:58<18:07:41, 2.95it/s] 48%|████▊ | 179146/371472 [3:21:59<21:58:00, 2.43it/s] 48%|████▊ | 179147/371472 [3:21:59<20:26:01, 2.61it/s] 48%|████▊ | 179148/371472 [3:21:59<18:56:12, 2.82it/s] 48%|████▊ | 179149/371472 [3:21:59<18:27:34, 2.89it/s] 48%|████▊ | 179150/371472 [3:22:00<17:10:05, 3.11it/s] 48%|████▊ | 179151/371472 [3:22:00<16:42:17, 3.20it/s] 48%|████▊ | 179152/371472 [3:22:00<18:17:41, 2.92it/s] 48%|████▊ | 179153/371472 [3:22:01<18:30:57, 2.89it/s] 48%|████▊ | 179154/371472 [3:22:01<17:22:08, 3.08it/s] 48%|████▊ | 179155/371472 [3:22:01<17:32:52, 3.04it/s] 48%|████▊ | 179156/371472 [3:22:02<17:29:53, 3.05it/s] 48%|████▊ | 179157/371472 [3:22:02<17:06:45, 3.12it/s] 48%|████▊ | 179158/371472 [3:22:02<16:52:28, 3.17it/s] 48%|████▊ | 179159/371472 [3:22:03<17:18:43, 3.09it/s] 48%|████▊ | 179160/371472 [3:22:03<17:00:44, 3.14it/s] {'loss': 2.9148, 'learning_rate': 5.661832834148549e-07, 'epoch': 7.72} + 48%|████▊ | 179160/371472 [3:22:03<17:00:44, 3.14it/s] 48%|████▊ | 179161/371472 [3:22:03<17:17:10, 3.09it/s] 48%|████▊ | 179162/371472 [3:22:04<16:46:51, 3.18it/s] 48%|████▊ | 179163/371472 [3:22:04<16:22:16, 3.26it/s] 48%|████▊ | 179164/371472 [3:22:04<15:47:43, 3.38it/s] 48%|████▊ | 179165/371472 [3:22:04<15:28:31, 3.45it/s] 48%|████▊ | 179166/371472 [3:22:05<15:17:25, 3.49it/s] 48%|████▊ | 179167/371472 [3:22:05<15:50:50, 3.37it/s] 48%|████▊ | 179168/371472 [3:22:05<15:37:09, 3.42it/s] 48%|████▊ | 179169/371472 [3:22:06<15:57:25, 3.35it/s] 48%|████▊ | 179170/371472 [3:22:06<15:28:00, 3.45it/s] 48%|████▊ | 179171/371472 [3:22:06<15:24:10, 3.47it/s] 48%|████▊ | 179172/371472 [3:22:07<16:46:57, 3.18it/s] 48%|████▊ | 179173/371472 [3:22:07<16:47:51, 3.18it/s] 48%|████▊ | 179174/371472 [3:22:07<16:22:05, 3.26it/s] 48%|████▊ | 179175/371472 [3:22:07<17:10:19, 3.11it/s] 48%|████▊ | 179176/371472 [3:22:08<16:29:28, 3.24it/s] 48%|████▊ | 179177/371472 [3:22:08<17:54:19, 2.98it/s] 48%|████▊ | 179178/371472 [3:22:08<17:09:41, 3.11it/s] 48%|████▊ | 179179/371472 [3:22:09<17:13:34, 3.10it/s] 48%|████▊ | 179180/371472 [3:22:09<17:15:44, 3.09it/s] {'loss': 3.0079, 'learning_rate': 5.66134801439376e-07, 'epoch': 7.72} + 48%|████▊ | 179180/371472 [3:22:09<17:15:44, 3.09it/s] 48%|████▊ | 179181/371472 [3:22:09<16:47:15, 3.18it/s] 48%|████▊ | 179182/371472 [3:22:10<16:46:46, 3.18it/s] 48%|████▊ | 179183/371472 [3:22:10<16:16:54, 3.28it/s] 48%|████▊ | 179184/371472 [3:22:11<20:06:54, 2.66it/s] 48%|████▊ | 179185/371472 [3:22:11<19:52:15, 2.69it/s] 48%|████▊ | 179186/371472 [3:22:11<18:41:57, 2.86it/s] 48%|████▊ | 179187/371472 [3:22:12<17:57:59, 2.97it/s] 48%|████▊ | 179188/371472 [3:22:12<17:30:22, 3.05it/s] 48%|████▊ | 179189/371472 [3:22:12<17:16:32, 3.09it/s] 48%|████▊ | 179190/371472 [3:22:12<16:50:12, 3.17it/s] 48%|████▊ | 179191/371472 [3:22:13<16:45:18, 3.19it/s] 48%|████▊ | 179192/371472 [3:22:13<16:13:39, 3.29it/s] 48%|████▊ | 179193/371472 [3:22:13<16:52:01, 3.17it/s] 48%|████▊ | 179194/371472 [3:22:14<17:27:03, 3.06it/s] 48%|████▊ | 179195/371472 [3:22:14<17:01:28, 3.14it/s] 48%|████▊ | 179196/371472 [3:22:14<17:13:56, 3.10it/s] 48%|████▊ | 179197/371472 [3:22:15<16:50:02, 3.17it/s] 48%|████▊ | 179198/371472 [3:22:15<16:21:24, 3.27it/s] 48%|████▊ | 179199/371472 [3:22:15<16:25:34, 3.25it/s] 48%|████▊ | 179200/371472 [3:22:16<16:18:24, 3.28it/s] {'loss': 2.8535, 'learning_rate': 5.660863194638971e-07, 'epoch': 7.72} + 48%|████▊ | 179200/371472 [3:22:16<16:18:24, 3.28it/s] 48%|████▊ | 179201/371472 [3:22:16<16:51:50, 3.17it/s] 48%|████▊ | 179202/371472 [3:22:16<16:52:10, 3.17it/s] 48%|████▊ | 179203/371472 [3:22:16<16:13:11, 3.29it/s] 48%|████▊ | 179204/371472 [3:22:17<15:48:03, 3.38it/s] 48%|████▊ | 179205/371472 [3:22:17<16:32:35, 3.23it/s] 48%|████▊ | 179206/371472 [3:22:17<17:13:07, 3.10it/s] 48%|████▊ | 179207/371472 [3:22:18<16:45:59, 3.19it/s] 48%|████▊ | 179208/371472 [3:22:18<16:18:44, 3.27it/s] 48%|████▊ | 179209/371472 [3:22:18<15:50:33, 3.37it/s] 48%|████▊ | 179210/371472 [3:22:19<16:00:10, 3.34it/s] 48%|████▊ | 179211/371472 [3:22:19<15:42:58, 3.40it/s] 48%|████▊ | 179212/371472 [3:22:19<16:36:25, 3.22it/s] 48%|████▊ | 179213/371472 [3:22:20<16:13:04, 3.29it/s] 48%|████▊ | 179214/371472 [3:22:20<16:02:40, 3.33it/s] 48%|████▊ | 179215/371472 [3:22:20<15:50:01, 3.37it/s] 48%|████▊ | 179216/371472 [3:22:20<16:10:33, 3.30it/s] 48%|████▊ | 179217/371472 [3:22:21<16:33:25, 3.23it/s] 48%|████▊ | 179218/371472 [3:22:21<16:45:45, 3.19it/s] 48%|████▊ | 179219/371472 [3:22:21<16:26:17, 3.25it/s] 48%|████▊ | 179220/371472 [3:22:22<15:56:29, 3.35it/s] {'loss': 2.9551, 'learning_rate': 5.660378374884181e-07, 'epoch': 7.72} + 48%|████▊ | 179220/371472 [3:22:22<15:56:29, 3.35it/s] 48%|████▊ | 179221/371472 [3:22:22<16:36:19, 3.22it/s] 48%|████▊ | 179222/371472 [3:22:22<16:29:23, 3.24it/s] 48%|████▊ | 179223/371472 [3:22:23<15:50:49, 3.37it/s] 48%|████▊ | 179224/371472 [3:22:23<16:01:47, 3.33it/s] 48%|████▊ | 179225/371472 [3:22:23<15:30:22, 3.44it/s] 48%|████▊ | 179226/371472 [3:22:23<15:18:53, 3.49it/s] 48%|████▊ | 179227/371472 [3:22:24<15:22:50, 3.47it/s] 48%|████▊ | 179228/371472 [3:22:24<15:42:43, 3.40it/s] 48%|████▊ | 179229/371472 [3:22:24<16:06:20, 3.32it/s] 48%|████▊ | 179230/371472 [3:22:25<16:05:03, 3.32it/s] 48%|████▊ | 179231/371472 [3:22:25<16:49:23, 3.17it/s] 48%|████▊ | 179232/371472 [3:22:25<16:38:03, 3.21it/s] 48%|████▊ | 179233/371472 [3:22:26<16:55:24, 3.16it/s] 48%|████▊ | 179234/371472 [3:22:26<16:34:10, 3.22it/s] 48%|████▊ | 179235/371472 [3:22:26<16:19:04, 3.27it/s] 48%|████▊ | 179236/371472 [3:22:27<16:17:52, 3.28it/s] 48%|████▊ | 179237/371472 [3:22:27<16:25:33, 3.25it/s] 48%|████▊ | 179238/371472 [3:22:27<15:59:56, 3.34it/s] 48%|████▊ | 179239/371472 [3:22:27<16:33:17, 3.23it/s] 48%|████▊ | 179240/371472 [3:22:28<15:54:47, 3.36it/s] {'loss': 2.9464, 'learning_rate': 5.659893555129392e-07, 'epoch': 7.72} + 48%|████▊ | 179240/371472 [3:22:28<15:54:47, 3.36it/s] 48%|████▊ | 179241/371472 [3:22:28<16:16:44, 3.28it/s] 48%|████▊ | 179242/371472 [3:22:28<16:05:17, 3.32it/s] 48%|████▊ | 179243/371472 [3:22:29<16:29:59, 3.24it/s] 48%|████▊ | 179244/371472 [3:22:29<16:17:10, 3.28it/s] 48%|████▊ | 179245/371472 [3:22:29<16:16:09, 3.28it/s] 48%|████▊ | 179246/371472 [3:22:30<16:48:51, 3.18it/s] 48%|████▊ | 179247/371472 [3:22:30<16:22:42, 3.26it/s] 48%|████▊ | 179248/371472 [3:22:30<16:17:17, 3.28it/s] 48%|████▊ | 179249/371472 [3:22:30<16:12:31, 3.29it/s] 48%|████▊ | 179250/371472 [3:22:31<16:04:48, 3.32it/s] 48%|████▊ | 179251/371472 [3:22:31<16:33:01, 3.23it/s] 48%|████▊ | 179252/371472 [3:22:31<16:00:08, 3.34it/s] 48%|████▊ | 179253/371472 [3:22:32<16:19:10, 3.27it/s] 48%|████▊ | 179254/371472 [3:22:32<15:58:57, 3.34it/s] 48%|████▊ | 179255/371472 [3:22:32<16:14:31, 3.29it/s] 48%|████▊ | 179256/371472 [3:22:33<16:04:56, 3.32it/s] 48%|████▊ | 179257/371472 [3:22:33<15:58:16, 3.34it/s] 48%|████▊ | 179258/371472 [3:22:33<16:03:40, 3.32it/s] 48%|████▊ | 179259/371472 [3:22:33<15:55:48, 3.35it/s] 48%|████▊ | 179260/371472 [3:22:34<15:47:07, 3.38it/s] {'loss': 2.989, 'learning_rate': 5.659408735374605e-07, 'epoch': 7.72} + 48%|████▊ | 179260/371472 [3:22:34<15:47:07, 3.38it/s] 48%|████▊ | 179261/371472 [3:22:34<15:49:19, 3.37it/s] 48%|████▊ | 179262/371472 [3:22:34<16:11:30, 3.30it/s] 48%|████▊ | 179263/371472 [3:22:35<16:48:27, 3.18it/s] 48%|████▊ | 179264/371472 [3:22:35<16:23:57, 3.26it/s] 48%|████▊ | 179265/371472 [3:22:35<18:09:11, 2.94it/s] 48%|████▊ | 179266/371472 [3:22:36<17:57:25, 2.97it/s] 48%|████▊ | 179267/371472 [3:22:36<17:37:52, 3.03it/s] 48%|████▊ | 179268/371472 [3:22:36<17:08:54, 3.11it/s] 48%|████▊ | 179269/371472 [3:22:37<16:32:55, 3.23it/s] 48%|████▊ | 179270/371472 [3:22:37<17:08:46, 3.11it/s] 48%|████▊ | 179271/371472 [3:22:37<17:41:34, 3.02it/s] 48%|████▊ | 179272/371472 [3:22:38<19:37:27, 2.72it/s] 48%|████▊ | 179273/371472 [3:22:38<19:06:11, 2.79it/s] 48%|████▊ | 179274/371472 [3:22:38<17:45:20, 3.01it/s] 48%|████▊ | 179275/371472 [3:22:39<17:59:18, 2.97it/s] 48%|████▊ | 179276/371472 [3:22:39<18:07:17, 2.95it/s] 48%|████▊ | 179277/371472 [3:22:39<17:11:13, 3.11it/s] 48%|████▊ | 179278/371472 [3:22:40<16:42:45, 3.19it/s] 48%|████▊ | 179279/371472 [3:22:40<16:21:22, 3.26it/s] 48%|████▊ | 179280/371472 [3:22:40<16:27:10, 3.24it/s] {'loss': 3.0463, 'learning_rate': 5.658923915619816e-07, 'epoch': 7.72} + 48%|████▊ | 179280/371472 [3:22:40<16:27:10, 3.24it/s] 48%|████▊ | 179281/371472 [3:22:41<16:07:14, 3.31it/s] 48%|████▊ | 179282/371472 [3:22:41<16:01:43, 3.33it/s] 48%|████▊ | 179283/371472 [3:22:41<15:50:45, 3.37it/s] 48%|████▊ | 179284/371472 [3:22:41<15:59:19, 3.34it/s] 48%|████▊ | 179285/371472 [3:22:42<15:52:08, 3.36it/s] 48%|████▊ | 179286/371472 [3:22:42<16:40:32, 3.20it/s] 48%|███��▊ | 179287/371472 [3:22:42<15:58:22, 3.34it/s] 48%|████▊ | 179288/371472 [3:22:43<16:49:54, 3.17it/s] 48%|████▊ | 179289/371472 [3:22:43<16:11:37, 3.30it/s] 48%|████▊ | 179290/371472 [3:22:43<15:44:12, 3.39it/s] 48%|████▊ | 179291/371472 [3:22:44<15:54:43, 3.35it/s] 48%|████▊ | 179292/371472 [3:22:44<15:44:32, 3.39it/s] 48%|████▊ | 179293/371472 [3:22:44<15:52:32, 3.36it/s] 48%|████▊ | 179294/371472 [3:22:45<16:17:05, 3.28it/s] 48%|████▊ | 179295/371472 [3:22:45<16:21:20, 3.26it/s] 48%|████▊ | 179296/371472 [3:22:45<17:07:45, 3.12it/s] 48%|████▊ | 179297/371472 [3:22:45<16:40:36, 3.20it/s] 48%|████▊ | 179298/371472 [3:22:46<16:22:08, 3.26it/s] 48%|████▊ | 179299/371472 [3:22:46<16:06:26, 3.31it/s] 48%|████▊ | 179300/371472 [3:22:46<16:09:50, 3.30it/s] {'loss': 2.7292, 'learning_rate': 5.658439095865026e-07, 'epoch': 7.72} + 48%|████▊ | 179300/371472 [3:22:46<16:09:50, 3.30it/s] 48%|████▊ | 179301/371472 [3:22:47<15:42:03, 3.40it/s] 48%|████▊ | 179302/371472 [3:22:47<15:50:46, 3.37it/s] 48%|████▊ | 179303/371472 [3:22:47<15:34:22, 3.43it/s] 48%|████▊ | 179304/371472 [3:22:48<16:12:43, 3.29it/s] 48%|████▊ | 179305/371472 [3:22:48<15:51:14, 3.37it/s] 48%|████▊ | 179306/371472 [3:22:48<15:41:44, 3.40it/s] 48%|████▊ | 179307/371472 [3:22:48<16:30:28, 3.23it/s] 48%|████▊ | 179308/371472 [3:22:49<16:11:12, 3.30it/s] 48%|████▊ | 179309/371472 [3:22:49<15:44:44, 3.39it/s] 48%|████▊ | 179310/371472 [3:22:49<15:28:04, 3.45it/s] 48%|████▊ | 179311/371472 [3:22:50<15:38:41, 3.41it/s] 48%|████▊ | 179312/371472 [3:22:50<15:18:24, 3.49it/s] 48%|████▊ | 179313/371472 [3:22:50<15:24:12, 3.47it/s] 48%|████▊ | 179314/371472 [3:22:50<15:28:41, 3.45it/s] 48%|████▊ | 179315/371472 [3:22:51<16:02:40, 3.33it/s] 48%|████▊ | 179316/371472 [3:22:51<15:48:32, 3.38it/s] 48%|████▊ | 179317/371472 [3:22:51<16:26:35, 3.25it/s] 48%|████▊ | 179318/371472 [3:22:52<17:06:10, 3.12it/s] 48%|████▊ | 179319/371472 [3:22:52<16:42:23, 3.19it/s] 48%|████▊ | 179320/371472 [3:22:52<16:15:14, 3.28it/s] {'loss': 3.105, 'learning_rate': 5.657954276110237e-07, 'epoch': 7.72} + 48%|████▊ | 179320/371472 [3:22:52<16:15:14, 3.28it/s] 48%|████▊ | 179321/371472 [3:22:53<17:36:58, 3.03it/s] 48%|████▊ | 179322/371472 [3:22:53<17:55:57, 2.98it/s] 48%|████▊ | 179323/371472 [3:22:53<17:33:15, 3.04it/s] 48%|████▊ | 179324/371472 [3:22:54<17:01:03, 3.14it/s] 48%|████▊ | 179325/371472 [3:22:54<16:14:43, 3.29it/s] 48%|████▊ | 179326/371472 [3:22:54<17:38:30, 3.03it/s] 48%|████▊ | 179327/371472 [3:22:55<16:55:10, 3.15it/s] 48%|████▊ | 179328/371472 [3:22:55<17:15:49, 3.09it/s] 48%|████▊ | 179329/371472 [3:22:55<16:43:07, 3.19it/s] 48%|████▊ | 179330/371472 [3:22:56<16:24:50, 3.25it/s] 48%|████▊ | 179331/371472 [3:22:56<16:41:05, 3.20it/s] 48%|████▊ | 179332/371472 [3:22:56<16:40:42, 3.20it/s] 48%|████▊ | 179333/371472 [3:22:56<16:38:36, 3.21it/s] 48%|████▊ | 179334/371472 [3:22:57<17:08:49, 3.11it/s] 48%|████▊ | 179335/371472 [3:22:57<16:35:58, 3.22it/s] 48%|████▊ | 179336/371472 [3:22:57<16:33:13, 3.22it/s] 48%|████▊ | 179337/371472 [3:22:58<16:26:20, 3.25it/s] 48%|████▊ | 179338/371472 [3:22:58<15:53:59, 3.36it/s] 48%|████▊ | 179339/371472 [3:22:58<16:03:22, 3.32it/s] 48%|████▊ | 179340/371472 [3:22:59<15:54:45, 3.35it/s] {'loss': 3.0078, 'learning_rate': 5.657469456355448e-07, 'epoch': 7.72} + 48%|████▊ | 179340/371472 [3:22:59<15:54:45, 3.35it/s] 48%|████▊ | 179341/371472 [3:22:59<16:09:29, 3.30it/s] 48%|████▊ | 179342/371472 [3:22:59<15:51:32, 3.37it/s] 48%|████▊ | 179343/371472 [3:22:59<15:33:24, 3.43it/s] 48%|████▊ | 179344/371472 [3:23:00<15:43:39, 3.39it/s] 48%|████▊ | 179345/371472 [3:23:00<16:13:22, 3.29it/s] 48%|████▊ | 179346/371472 [3:23:00<15:54:21, 3.36it/s] 48%|████▊ | 179347/371472 [3:23:01<15:43:26, 3.39it/s] 48%|████▊ | 179348/371472 [3:23:01<16:15:49, 3.28it/s] 48%|████▊ | 179349/371472 [3:23:01<16:18:08, 3.27it/s] 48%|████▊ | 179350/371472 [3:23:02<16:16:24, 3.28it/s] 48%|████▊ | 179351/371472 [3:23:02<16:23:48, 3.25it/s] 48%|████▊ | 179352/371472 [3:23:02<16:33:55, 3.22it/s] 48%|████▊ | 179353/371472 [3:23:03<16:10:57, 3.30it/s] 48%|████▊ | 179354/371472 [3:23:03<16:09:25, 3.30it/s] 48%|████▊ | 179355/371472 [3:23:03<16:53:08, 3.16it/s] 48%|████▊ | 179356/371472 [3:23:03<16:28:24, 3.24it/s] 48%|████▊ | 179357/371472 [3:23:04<16:14:07, 3.29it/s] 48%|████▊ | 179358/371472 [3:23:04<16:40:58, 3.20it/s] 48%|████▊ | 179359/371472 [3:23:04<16:24:00, 3.25it/s] 48%|████▊ | 179360/371472 [3:23:05<15:59:50, 3.34it/s] {'loss': 3.0882, 'learning_rate': 5.656984636600659e-07, 'epoch': 7.73} + 48%|████▊ | 179360/371472 [3:23:05<15:59:50, 3.34it/s] 48%|████▊ | 179361/371472 [3:23:05<16:01:23, 3.33it/s] 48%|████▊ | 179362/371472 [3:23:05<16:18:05, 3.27it/s] 48%|████▊ | 179363/371472 [3:23:06<16:22:27, 3.26it/s] 48%|████▊ | 179364/371472 [3:23:06<15:55:15, 3.35it/s] 48%|████▊ | 179365/371472 [3:23:06<17:34:18, 3.04it/s] 48%|████▊ | 179366/371472 [3:23:07<16:56:13, 3.15it/s] 48%|████▊ | 179367/371472 [3:23:07<17:28:50, 3.05it/s] 48%|████▊ | 179368/371472 [3:23:07<17:03:05, 3.13it/s] 48%|████▊ | 179369/371472 [3:23:08<17:46:56, 3.00it/s] 48%|████▊ | 179370/371472 [3:23:08<17:02:21, 3.13it/s] 48%|████▊ | 179371/371472 [3:23:08<16:36:20, 3.21it/s] 48%|████▊ | 179372/371472 [3:23:08<16:33:27, 3.22it/s] 48%|████▊ | 179373/371472 [3:23:09<16:11:10, 3.30it/s] 48%|████▊ | 179374/371472 [3:23:09<15:49:18, 3.37it/s] 48%|████▊ | 179375/371472 [3:23:09<16:05:01, 3.32it/s] 48%|████▊ | 179376/371472 [3:23:10<17:32:44, 3.04it/s] 48%|████▊ | 179377/371472 [3:23:10<16:44:46, 3.19it/s] 48%|████▊ | 179378/371472 [3:23:10<16:21:02, 3.26it/s] 48%|████▊ | 179379/371472 [3:23:11<16:28:19, 3.24it/s] 48%|████▊ | 179380/371472 [3:23:11<15:55:52, 3.35it/s] {'loss': 2.7412, 'learning_rate': 5.656499816845869e-07, 'epoch': 7.73} + 48%|████▊ | 179380/371472 [3:23:11<15:55:52, 3.35it/s] 48%|████▊ | 179381/371472 [3:23:11<16:00:42, 3.33it/s] 48%|████▊ | 179382/371472 [3:23:12<15:56:39, 3.35it/s] 48%|████▊ | 179383/371472 [3:23:12<15:37:41, 3.41it/s] 48%|████▊ | 179384/371472 [3:23:12<15:44:07, 3.39it/s] 48%|████▊ | 179385/371472 [3:23:12<15:34:42, 3.43it/s] 48%|████▊ | 179386/371472 [3:23:13<15:50:06, 3.37it/s] 48%|████▊ | 179387/371472 [3:23:13<15:35:25, 3.42it/s] 48%|████▊ | 179388/371472 [3:23:13<15:49:20, 3.37it/s] 48%|████▊ | 179389/371472 [3:23:14<15:28:02, 3.45it/s] 48%|████▊ | 179390/371472 [3:23:14<15:20:31, 3.48it/s] 48%|████▊ | 179391/371472 [3:23:14<15:19:21, 3.48it/s] 48%|████▊ | 179392/371472 [3:23:14<16:25:34, 3.25it/s] 48%|████▊ | 179393/371472 [3:23:15<16:13:41, 3.29it/s] 48%|████▊ | 179394/371472 [3:23:15<15:52:54, 3.36it/s] 48%|████▊ | 179395/371472 [3:23:15<15:44:23, 3.39it/s] 48%|████▊ | 179396/371472 [3:23:16<15:37:20, 3.42it/s] 48%|████▊ | 179397/371472 [3:23:16<15:54:05, 3.36it/s] 48%|████▊ | 179398/371472 [3:23:16<16:11:38, 3.29it/s] 48%|████▊ | 179399/371472 [3:23:17<16:08:45, 3.30it/s] 48%|████▊ | 179400/371472 [3:23:17<16:01:15, 3.33it/s] {'loss': 2.7994, 'learning_rate': 5.656014997091082e-07, 'epoch': 7.73} + 48%|████▊ | 179400/371472 [3:23:17<16:01:15, 3.33it/s] 48%|████▊ | 179401/371472 [3:23:17<16:02:56, 3.32it/s] 48%|████▊ | 179402/371472 [3:23:17<15:39:43, 3.41it/s] 48%|████▊ | 179403/371472 [3:23:18<16:59:57, 3.14it/s] 48%|████▊ | 179404/371472 [3:23:18<16:43:28, 3.19it/s] 48%|████▊ | 179405/371472 [3:23:18<16:59:37, 3.14it/s] 48%|████▊ | 179406/371472 [3:23:19<16:28:44, 3.24it/s] 48%|████▊ | 179407/371472 [3:23:19<15:53:00, 3.36it/s] 48%|████▊ | 179408/371472 [3:23:19<16:38:08, 3.21it/s] 48%|████▊ | 179409/371472 [3:23:20<16:02:58, 3.32it/s] 48%|████▊ | 179410/371472 [3:23:20<15:45:07, 3.39it/s] 48%|████▊ | 179411/371472 [3:23:20<15:28:41, 3.45it/s] 48%|████▊ | 179412/371472 [3:23:21<16:23:33, 3.25it/s] 48%|████▊ | 179413/371472 [3:23:21<16:14:58, 3.28it/s] 48%|████▊ | 179414/371472 [3:23:21<16:43:00, 3.19it/s] 48%|████▊ | 179415/371472 [3:23:21<16:17:01, 3.28it/s] 48%|████▊ | 179416/371472 [3:23:22<16:05:55, 3.31it/s] 48%|████▊ | 179417/371472 [3:23:22<17:27:46, 3.05it/s] 48%|████▊ | 179418/371472 [3:23:22<17:00:07, 3.14it/s] 48%|████▊ | 179419/371472 [3:23:23<16:21:38, 3.26it/s] 48%|████▊ | 179420/371472 [3:23:23<16:16:07, 3.28it/s] {'loss': 2.897, 'learning_rate': 5.655530177336293e-07, 'epoch': 7.73} + 48%|████▊ | 179420/371472 [3:23:23<16:16:07, 3.28it/s] 48%|████▊ | 179421/371472 [3:23:23<16:03:40, 3.32it/s] 48%|████▊ | 179422/371472 [3:23:24<15:55:34, 3.35it/s] 48%|████▊ | 179423/371472 [3:23:24<15:53:28, 3.36it/s] 48%|████▊ | 179424/371472 [3:23:24<15:43:11, 3.39it/s] 48%|████▊ | 179425/371472 [3:23:24<15:40:12, 3.40it/s] 48%|████▊ | 179426/371472 [3:23:25<15:34:08, 3.43it/s] 48%|████▊ | 179427/371472 [3:23:25<15:19:19, 3.48it/s] 48%|████▊ | 179428/371472 [3:23:25<15:44:16, 3.39it/s] 48%|████▊ | 179429/371472 [3:23:26<15:38:09, 3.41it/s] 48%|████▊ | 179430/371472 [3:23:26<15:57:27, 3.34it/s] 48%|████▊ | 179431/371472 [3:23:26<16:03:51, 3.32it/s] 48%|████▊ | 179432/371472 [3:23:27<16:03:52, 3.32it/s] 48%|████▊ | 179433/371472 [3:23:27<17:01:55, 3.13it/s] 48%|████▊ | 179434/371472 [3:23:27<16:38:44, 3.20it/s] 48%|████▊ | 179435/371472 [3:23:28<16:50:08, 3.17it/s] 48%|████▊ | 179436/371472 [3:23:28<17:31:42, 3.04it/s] 48%|████▊ | 179437/371472 [3:23:28<17:25:43, 3.06it/s] 48%|████▊ | 179438/371472 [3:23:29<17:52:34, 2.98it/s] 48%|████▊ | 179439/371472 [3:23:29<18:11:11, 2.93it/s] 48%|████▊ | 179440/371472 [3:23:29<17:13:56, 3.10it/s] {'loss': 2.809, 'learning_rate': 5.655045357581502e-07, 'epoch': 7.73} + 48%|████▊ | 179440/371472 [3:23:29<17:13:56, 3.10it/s] 48%|████▊ | 179441/371472 [3:23:29<16:42:42, 3.19it/s] 48%|████▊ | 179442/371472 [3:23:30<17:39:04, 3.02it/s] 48%|████▊ | 179443/371472 [3:23:30<17:22:01, 3.07it/s] 48%|████▊ | 179444/371472 [3:23:31<17:37:20, 3.03it/s] 48%|████▊ | 179445/371472 [3:23:31<16:58:27, 3.14it/s] 48%|████▊ | 179446/371472 [3:23:31<16:46:15, 3.18it/s] 48%|████▊ | 179447/371472 [3:23:31<16:10:00, 3.30it/s] 48%|████▊ | 179448/371472 [3:23:32<15:38:33, 3.41it/s] 48%|████▊ | 179449/371472 [3:23:32<16:00:22, 3.33it/s] 48%|████▊ | 179450/371472 [3:23:32<16:15:32, 3.28it/s] 48%|████▊ | 179451/371472 [3:23:33<16:44:18, 3.19it/s] 48%|████▊ | 179452/371472 [3:23:33<16:39:29, 3.20it/s] 48%|████▊ | 179453/371472 [3:23:33<16:32:14, 3.23it/s] 48%|████▊ | 179454/371472 [3:23:34<16:04:53, 3.32it/s] 48%|████▊ | 179455/371472 [3:23:34<16:12:32, 3.29it/s] 48%|████▊ | 179456/371472 [3:23:34<15:53:34, 3.36it/s] 48%|████▊ | 179457/371472 [3:23:34<16:13:38, 3.29it/s] 48%|████▊ | 179458/371472 [3:23:35<16:00:14, 3.33it/s] 48%|████▊ | 179459/371472 [3:23:35<15:49:20, 3.37it/s] 48%|████▊ | 179460/371472 [3:23:35<15:52:49, 3.36it/s] {'loss': 2.8083, 'learning_rate': 5.654560537826714e-07, 'epoch': 7.73} + 48%|████▊ | 179460/371472 [3:23:35<15:52:49, 3.36it/s] 48%|████▊ | 179461/371472 [3:23:36<16:28:22, 3.24it/s] 48%|████▊ | 179462/371472 [3:23:36<16:02:14, 3.33it/s] 48%|████▊ | 179463/371472 [3:23:36<15:43:44, 3.39it/s] 48%|████▊ | 179464/371472 [3:23:37<15:42:05, 3.40it/s] 48%|████▊ | 179465/371472 [3:23:37<16:14:58, 3.28it/s] 48%|████▊ | 179466/371472 [3:23:37<16:18:02, 3.27it/s] 48%|████▊ | 179467/371472 [3:23:37<16:34:28, 3.22it/s] 48%|████▊ | 179468/371472 [3:23:38<17:34:47, 3.03it/s] 48%|████▊ | 179469/371472 [3:23:38<17:51:40, 2.99it/s] 48%|████▊ | 179470/371472 [3:23:39<17:40:37, 3.02it/s] 48%|████▊ | 179471/371472 [3:23:39<17:41:42, 3.01it/s] 48%|████▊ | 179472/371472 [3:23:39<16:53:37, 3.16it/s] 48%|████▊ | 179473/371472 [3:23:39<16:18:20, 3.27it/s] 48%|████▊ | 179474/371472 [3:23:40<16:36:52, 3.21it/s] 48%|████▊ | 179475/371472 [3:23:40<16:03:18, 3.32it/s] 48%|████▊ | 179476/371472 [3:23:40<16:49:50, 3.17it/s] 48%|████▊ | 179477/371472 [3:23:41<16:18:45, 3.27it/s] 48%|████▊ | 179478/371472 [3:23:41<15:42:56, 3.39it/s] 48%|████▊ | 179479/371472 [3:23:41<15:29:18, 3.44it/s] 48%|████▊ | 179480/371472 [3:23:41<15:10:17, 3.52it/s] {'loss': 2.9846, 'learning_rate': 5.654075718071926e-07, 'epoch': 7.73} + 48%|████▊ | 179480/371472 [3:23:41<15:10:17, 3.52it/s] 48%|████▊ | 179481/371472 [3:23:42<15:17:21, 3.49it/s] 48%|████▊ | 179482/371472 [3:23:42<15:22:37, 3.47it/s] 48%|████▊ | 179483/371472 [3:23:42<15:53:37, 3.36it/s] 48%|████▊ | 179484/371472 [3:23:43<15:50:50, 3.37it/s] 48%|████▊ | 179485/371472 [3:23:43<16:15:47, 3.28it/s] 48%|████▊ | 179486/371472 [3:23:43<16:14:51, 3.28it/s] 48%|████▊ | 179487/371472 [3:23:44<16:54:51, 3.15it/s] 48%|████▊ | 179488/371472 [3:23:44<17:02:18, 3.13it/s] 48%|████▊ | 179489/371472 [3:23:44<17:29:09, 3.05it/s] 48%|████▊ | 179490/371472 [3:23:45<17:00:09, 3.14it/s] 48%|████▊ | 179491/371472 [3:23:45<16:30:52, 3.23it/s] 48%|████▊ | 179492/371472 [3:23:45<16:49:13, 3.17it/s] 48%|████▊ | 179493/371472 [3:23:46<16:56:31, 3.15it/s] 48%|████▊ | 179494/371472 [3:23:46<16:33:34, 3.22it/s] 48%|████▊ | 179495/371472 [3:23:46<16:15:09, 3.28it/s] 48%|████▊ | 179496/371472 [3:23:46<16:00:22, 3.33it/s] 48%|████▊ | 179497/371472 [3:23:47<16:10:01, 3.30it/s] 48%|████▊ | 179498/371472 [3:23:47<16:10:01, 3.30it/s] 48%|████▊ | 179499/371472 [3:23:47<15:49:20, 3.37it/s] 48%|████▊ | 179500/371472 [3:23:48<17:22:42, 3.07it/s] {'loss': 2.8899, 'learning_rate': 5.653590898317136e-07, 'epoch': 7.73} + 48%|████▊ | 179500/371472 [3:23:48<17:22:42, 3.07it/s] 48%|████▊ | 179501/371472 [3:23:48<17:03:22, 3.13it/s] 48%|████▊ | 179502/371472 [3:23:48<16:55:53, 3.15it/s] 48%|████▊ | 179503/371472 [3:23:49<16:31:21, 3.23it/s] 48%|████▊ | 179504/371472 [3:23:49<16:00:53, 3.33it/s] 48%|████▊ | 179505/371472 [3:23:49<15:47:57, 3.38it/s] 48%|████▊ | 179506/371472 [3:23:49<15:43:10, 3.39it/s] 48%|████▊ | 179507/371472 [3:23:50<16:20:03, 3.26it/s] 48%|████▊ | 179508/371472 [3:23:50<15:38:03, 3.41it/s] 48%|████▊ | 179509/371472 [3:23:50<16:24:13, 3.25it/s] 48%|████▊ | 179510/371472 [3:23:51<15:56:47, 3.34it/s] 48%|████▊ | 179511/371472 [3:23:51<15:56:29, 3.34it/s] 48%|████▊ | 179512/371472 [3:23:51<15:41:07, 3.40it/s] 48%|████▊ | 179513/371472 [3:23:52<15:37:06, 3.41it/s] 48%|████▊ | 179514/371472 [3:23:52<15:32:01, 3.43it/s] 48%|████▊ | 179515/371472 [3:23:52<15:31:52, 3.43it/s] 48%|████▊ | 179516/371472 [3:23:52<15:56:03, 3.35it/s] 48%|████▊ | 179517/371472 [3:23:53<16:02:58, 3.32it/s] 48%|████▊ | 179518/371472 [3:23:53<15:43:34, 3.39it/s] 48%|████▊ | 179519/371472 [3:23:53<16:11:36, 3.29it/s] 48%|████▊ | 179520/371472 [3:23:54<16:00:15, 3.33it/s] {'loss': 2.9043, 'learning_rate': 5.653106078562346e-07, 'epoch': 7.73} + 48%|████▊ | 179520/371472 [3:23:54<16:00:15, 3.33it/s] 48%|████▊ | 179521/371472 [3:23:54<15:50:55, 3.36it/s] 48%|████▊ | 179522/371472 [3:23:54<16:23:37, 3.25it/s] 48%|████▊ | 179523/371472 [3:23:55<16:13:21, 3.29it/s] 48%|████▊ | 179524/371472 [3:23:55<16:05:48, 3.31it/s] 48%|████▊ | 179525/371472 [3:23:55<16:42:41, 3.19it/s] 48%|████▊ | 179526/371472 [3:23:55<16:12:57, 3.29it/s] 48%|████▊ | 179527/371472 [3:23:56<16:42:48, 3.19it/s] 48%|████▊ | 179528/371472 [3:23:56<16:13:51, 3.28it/s] 48%|████▊ | 179529/371472 [3:23:56<16:21:06, 3.26it/s] 48%|████▊ | 179530/371472 [3:23:57<16:04:19, 3.32it/s] 48%|████▊ | 179531/371472 [3:23:57<16:01:31, 3.33it/s] 48%|████▊ | 179532/371472 [3:23:57<15:57:04, 3.34it/s] 48%|████▊ | 179533/371472 [3:23:58<16:49:34, 3.17it/s] 48%|████▊ | 179534/371472 [3:23:58<16:51:27, 3.16it/s] 48%|████▊ | 179535/371472 [3:23:58<17:02:36, 3.13it/s] 48%|████▊ | 179536/371472 [3:23:59<16:53:31, 3.16it/s] 48%|████▊ | 179537/371472 [3:23:59<16:33:58, 3.22it/s] 48%|████▊ | 179538/371472 [3:23:59<16:57:24, 3.14it/s] 48%|████▊ | 179539/371472 [3:24:00<17:10:01, 3.11it/s] 48%|████▊ | 179540/371472 [3:24:00<17:22:25, 3.07it/s] {'loss': 2.7846, 'learning_rate': 5.652621258807559e-07, 'epoch': 7.73} + 48%|████▊ | 179540/371472 [3:24:00<17:22:25, 3.07it/s] 48%|████▊ | 179541/371472 [3:24:00<16:41:21, 3.19it/s] 48%|████▊ | 179542/371472 [3:24:00<16:15:12, 3.28it/s] 48%|████▊ | 179543/371472 [3:24:01<15:51:49, 3.36it/s] 48%|████▊ | 179544/371472 [3:24:01<17:30:24, 3.05it/s] 48%|████▊ | 179545/371472 [3:24:01<17:03:29, 3.13it/s] 48%|████▊ | 179546/371472 [3:24:02<16:17:55, 3.27it/s] 48%|████▊ | 179547/371472 [3:24:02<16:23:18, 3.25it/s] 48%|████▊ | 179548/371472 [3:24:02<16:50:42, 3.16it/s] 48%|████▊ | 179549/371472 [3:24:03<16:40:51, 3.20it/s] 48%|████▊ | 179550/371472 [3:24:03<16:59:16, 3.14it/s] 48%|████▊ | 179551/371472 [3:24:03<16:34:13, 3.22it/s] 48%|████▊ | 179552/371472 [3:24:04<17:25:06, 3.06it/s] 48%|████▊ | 179553/371472 [3:24:04<16:50:55, 3.16it/s] 48%|████▊ | 179554/371472 [3:24:04<16:05:26, 3.31it/s] 48%|████▊ | 179555/371472 [3:24:05<15:41:12, 3.40it/s] 48%|████▊ | 179556/371472 [3:24:05<15:35:26, 3.42it/s] 48%|████▊ | 179557/371472 [3:24:05<15:30:18, 3.44it/s] 48%|████▊ | 179558/371472 [3:24:05<15:13:18, 3.50it/s] 48%|████▊ | 179559/371472 [3:24:06<16:10:40, 3.30it/s] 48%|████▊ | 179560/371472 [3:24:06<16:28:06, 3.24it/s] {'loss': 3.137, 'learning_rate': 5.65213643905277e-07, 'epoch': 7.73} + 48%|████▊ | 179560/371472 [3:24:06<16:28:06, 3.24it/s] 48%|████▊ | 179561/371472 [3:24:06<16:04:56, 3.31it/s] 48%|████▊ | 179562/371472 [3:24:07<16:01:31, 3.33it/s] 48%|████▊ | 179563/371472 [3:24:07<15:53:48, 3.35it/s] 48%|████▊ | 179564/371472 [3:24:07<16:25:31, 3.25it/s] 48%|████▊ | 179565/371472 [3:24:08<16:09:25, 3.30it/s] 48%|████▊ | 179566/371472 [3:24:08<16:23:33, 3.25it/s] 48%|████▊ | 179567/371472 [3:24:08<16:35:06, 3.21it/s] 48%|████▊ | 179568/371472 [3:24:08<16:30:07, 3.23it/s] 48%|████▊ | 179569/371472 [3:24:09<16:46:10, 3.18it/s] 48%|████▊ | 179570/371472 [3:24:09<16:17:48, 3.27it/s] 48%|████▊ | 179571/371472 [3:24:09<17:04:28, 3.12it/s] 48%|████▊ | 179572/371472 [3:24:10<16:55:30, 3.15it/s] 48%|████▊ | 179573/371472 [3:24:10<16:45:28, 3.18it/s] 48%|████▊ | 179574/371472 [3:24:10<16:14:25, 3.28it/s] 48%|████▊ | 179575/371472 [3:24:11<16:37:07, 3.21it/s] 48%|████▊ | 179576/371472 [3:24:11<16:20:57, 3.26it/s] 48%|████▊ | 179577/371472 [3:24:11<16:27:13, 3.24it/s] 48%|████▊ | 179578/371472 [3:24:12<16:25:39, 3.24it/s] 48%|████▊ | 179579/371472 [3:24:12<15:59:54, 3.33it/s] 48%|████▊ | 179580/371472 [3:24:12<16:50:30, 3.16it/s] {'loss': 2.6918, 'learning_rate': 5.651651619297981e-07, 'epoch': 7.73} + 48%|████▊ | 179580/371472 [3:24:12<16:50:30, 3.16it/s] 48%|████▊ | 179581/371472 [3:24:13<16:31:55, 3.22it/s] 48%|████▊ | 179582/371472 [3:24:13<16:10:53, 3.29it/s] 48%|████▊ | 179583/371472 [3:24:13<16:01:21, 3.33it/s] 48%|████▊ | 179584/371472 [3:24:13<15:26:35, 3.45it/s] 48%|████▊ | 179585/371472 [3:24:14<16:37:25, 3.21it/s] 48%|████▊ | 179586/371472 [3:24:14<17:12:45, 3.10it/s] 48%|████▊ | 179587/371472 [3:24:14<17:39:29, 3.02it/s] 48%|████▊ | 179588/371472 [3:24:15<19:12:27, 2.77it/s] 48%|████▊ | 179589/371472 [3:24:15<18:31:25, 2.88it/s] 48%|████▊ | 179590/371472 [3:24:15<17:45:25, 3.00it/s] 48%|████▊ | 179591/371472 [3:24:16<17:08:41, 3.11it/s] 48%|████▊ | 179592/371472 [3:24:16<16:47:47, 3.17it/s] 48%|████▊ | 179593/371472 [3:24:16<16:01:32, 3.33it/s] 48%|████▊ | 179594/371472 [3:24:17<16:00:08, 3.33it/s] 48%|████▊ | 179595/371472 [3:24:17<15:40:22, 3.40it/s] 48%|████▊ | 179596/371472 [3:24:17<15:36:23, 3.42it/s] 48%|████▊ | 179597/371472 [3:24:18<15:47:47, 3.37it/s] 48%|████▊ | 179598/371472 [3:24:18<16:02:07, 3.32it/s] 48%|████▊ | 179599/371472 [3:24:18<16:51:36, 3.16it/s] 48%|████▊ | 179600/371472 [3:24:18<16:18:04, 3.27it/s] {'loss': 3.0329, 'learning_rate': 5.651166799543191e-07, 'epoch': 7.74} + 48%|████▊ | 179600/371472 [3:24:18<16:18:04, 3.27it/s] 48%|████▊ | 179601/371472 [3:24:19<17:18:46, 3.08it/s] 48%|████▊ | 179602/371472 [3:24:19<16:22:40, 3.25it/s] 48%|████▊ | 179603/371472 [3:24:19<16:01:45, 3.32it/s] 48%|████▊ | 179604/371472 [3:24:20<15:47:09, 3.38it/s] 48%|████▊ | 179605/371472 [3:24:20<16:55:50, 3.15it/s] 48%|████▊ | 179606/371472 [3:24:20<16:51:03, 3.16it/s] 48%|████▊ | 179607/371472 [3:24:21<16:13:51, 3.28it/s] 48%|████▊ | 179608/371472 [3:24:21<16:12:32, 3.29it/s] 48%|████▊ | 179609/371472 [3:24:21<16:41:22, 3.19it/s] 48%|████▊ | 179610/371472 [3:24:22<16:42:55, 3.19it/s] 48%|████▊ | 179611/371472 [3:24:22<16:43:45, 3.19it/s] 48%|████▊ | 179612/371472 [3:24:22<16:27:01, 3.24it/s] 48%|████▊ | 179613/371472 [3:24:22<16:34:16, 3.22it/s] 48%|████▊ | 179614/371472 [3:24:23<16:28:02, 3.24it/s] 48%|████▊ | 179615/371472 [3:24:23<16:04:09, 3.32it/s] 48%|████▊ | 179616/371472 [3:24:23<15:46:33, 3.38it/s] 48%|████▊ | 179617/371472 [3:24:24<16:01:29, 3.33it/s] 48%|████▊ | 179618/371472 [3:24:24<15:47:59, 3.37it/s] 48%|████▊ | 179619/371472 [3:24:24<16:40:04, 3.20it/s] 48%|████▊ | 179620/371472 [3:24:25<16:25:56, 3.24it/s] {'loss': 2.88, 'learning_rate': 5.650681979788403e-07, 'epoch': 7.74} + 48%|████▊ | 179620/371472 [3:24:25<16:25:56, 3.24it/s] 48%|████▊ | 179621/371472 [3:24:25<17:09:08, 3.11it/s] 48%|████▊ | 179622/371472 [3:24:25<17:51:11, 2.99it/s] 48%|████▊ | 179623/371472 [3:24:26<17:03:15, 3.12it/s] 48%|████▊ | 179624/371472 [3:24:26<16:25:43, 3.24it/s] 48%|████▊ | 179625/371472 [3:24:26<16:35:02, 3.21it/s] 48%|████▊ | 179626/371472 [3:24:27<17:19:46, 3.08it/s] 48%|████▊ | 179627/371472 [3:24:27<17:46:10, 3.00it/s] 48%|████▊ | 179628/371472 [3:24:27<17:08:28, 3.11it/s] 48%|████▊ | 179629/371472 [3:24:28<18:24:05, 2.90it/s] 48%|████▊ | 179630/371472 [3:24:28<18:43:35, 2.85it/s] 48%|████▊ | 179631/371472 [3:24:28<18:02:16, 2.95it/s] 48%|████▊ | 179632/371472 [3:24:29<17:49:45, 2.99it/s] 48%|████▊ | 179633/371472 [3:24:29<18:06:46, 2.94it/s] 48%|████▊ | 179634/371472 [3:24:29<17:16:12, 3.09it/s] 48%|████▊ | 179635/371472 [3:24:30<16:47:48, 3.17it/s] 48%|████▊ | 179636/371472 [3:24:30<16:26:31, 3.24it/s] 48%|████▊ | 179637/371472 [3:24:30<17:00:37, 3.13it/s] 48%|████▊ | 179638/371472 [3:24:31<17:07:11, 3.11it/s] 48%|████▊ | 179639/371472 [3:24:31<17:26:42, 3.05it/s] 48%|████▊ | 179640/371472 [3:24:31<16:44:32, 3.18it/s] {'loss': 2.7716, 'learning_rate': 5.650197160033615e-07, 'epoch': 7.74} + 48%|████▊ | 179640/371472 [3:24:31<16:44:32, 3.18it/s] 48%|████▊ | 179641/371472 [3:24:31<16:40:16, 3.20it/s] 48%|████▊ | 179642/371472 [3:24:32<16:06:58, 3.31it/s] 48%|████▊ | 179643/371472 [3:24:32<15:40:23, 3.40it/s] 48%|████▊ | 179644/371472 [3:24:32<15:38:49, 3.41it/s] 48%|████▊ | 179645/371472 [3:24:33<16:01:44, 3.32it/s] 48%|████▊ | 179646/371472 [3:24:33<16:13:24, 3.28it/s] 48%|████▊ | 179647/371472 [3:24:33<15:43:12, 3.39it/s] 48%|████▊ | 179648/371472 [3:24:33<15:47:01, 3.38it/s] 48%|████▊ | 179649/371472 [3:24:34<15:24:42, 3.46it/s] 48%|████▊ | 179650/371472 [3:24:34<15:24:30, 3.46it/s] 48%|████▊ | 179651/371472 [3:24:34<15:11:58, 3.51it/s] 48%|████▊ | 179652/371472 [3:24:35<14:51:54, 3.58it/s] 48%|████▊ | 179653/371472 [3:24:35<15:33:15, 3.43it/s] 48%|████▊ | 179654/371472 [3:24:35<15:53:59, 3.35it/s] 48%|████▊ | 179655/371472 [3:24:35<15:16:44, 3.49it/s] 48%|████▊ | 179656/371472 [3:24:36<15:03:46, 3.54it/s] 48%|████▊ | 179657/371472 [3:24:36<15:11:56, 3.51it/s] 48%|████▊ | 179658/371472 [3:24:36<15:11:20, 3.51it/s] 48%|████▊ | 179659/371472 [3:24:37<15:33:57, 3.42it/s] 48%|████▊ | 179660/371472 [3:24:37<16:47:55, 3.17it/s] {'loss': 2.9868, 'learning_rate': 5.649712340278826e-07, 'epoch': 7.74} + 48%|████▊ | 179660/371472 [3:24:37<16:47:55, 3.17it/s] 48%|████▊ | 179661/371472 [3:24:37<16:55:20, 3.15it/s] 48%|████▊ | 179662/371472 [3:24:38<17:39:01, 3.02it/s] 48%|████▊ | 179663/371472 [3:24:38<17:11:09, 3.10it/s] 48%|████▊ | 179664/371472 [3:24:38<16:41:56, 3.19it/s] 48%|████▊ | 179665/371472 [3:24:39<16:20:02, 3.26it/s] 48%|████▊ | 179666/371472 [3:24:39<16:53:43, 3.15it/s] 48%|████▊ | 179667/371472 [3:24:39<16:40:02, 3.20it/s] 48%|████▊ | 179668/371472 [3:24:40<16:22:25, 3.25it/s] 48%|████▊ | 179669/371472 [3:24:40<15:57:41, 3.34it/s] 48%|████▊ | 179670/371472 [3:24:40<15:45:23, 3.38it/s] 48%|████▊ | 179671/371472 [3:24:40<15:21:45, 3.47it/s] 48%|████▊ | 179672/371472 [3:24:41<16:57:18, 3.14it/s] 48%|████▊ | 179673/371472 [3:24:41<16:17:01, 3.27it/s] 48%|████▊ | 179674/371472 [3:24:41<16:19:17, 3.26it/s] 48%|████▊ | 179675/371472 [3:24:42<16:19:34, 3.26it/s] 48%|████▊ | 179676/371472 [3:24:42<16:46:23, 3.18it/s] 48%|████▊ | 179677/371472 [3:24:42<16:10:33, 3.29it/s] 48%|████▊ | 179678/371472 [3:24:43<15:50:38, 3.36it/s] 48%|████▊ | 179679/371472 [3:24:43<15:34:39, 3.42it/s] 48%|████▊ | 179680/371472 [3:24:43<16:09:46, 3.30it/s] {'loss': 2.8133, 'learning_rate': 5.649227520524036e-07, 'epoch': 7.74} + 48%|████▊ | 179680/371472 [3:24:43<16:09:46, 3.30it/s] 48%|████▊ | 179681/371472 [3:24:43<15:59:40, 3.33it/s] 48%|████▊ | 179682/371472 [3:24:44<15:37:08, 3.41it/s] 48%|████▊ | 179683/371472 [3:24:44<15:21:32, 3.47it/s] 48%|████▊ | 179684/371472 [3:24:44<16:34:11, 3.22it/s] 48%|████▊ | 179685/371472 [3:24:45<16:44:11, 3.18it/s] 48%|████▊ | 179686/371472 [3:24:45<16:10:25, 3.29it/s] 48%|████▊ | 179687/371472 [3:24:45<15:52:28, 3.36it/s] 48%|████▊ | 179688/371472 [3:24:46<15:35:24, 3.42it/s] 48%|████▊ | 179689/371472 [3:24:46<15:39:52, 3.40it/s] 48%|████▊ | 179690/371472 [3:24:46<15:49:04, 3.37it/s] 48%|████▊ | 179691/371472 [3:24:46<16:35:29, 3.21it/s] 48%|████▊ | 179692/371472 [3:24:47<15:56:16, 3.34it/s] 48%|████▊ | 179693/371472 [3:24:47<16:01:17, 3.33it/s] 48%|████▊ | 179694/371472 [3:24:47<16:30:30, 3.23it/s] 48%|████▊ | 179695/371472 [3:24:48<16:44:07, 3.18it/s] 48%|████▊ | 179696/371472 [3:24:48<16:25:39, 3.24it/s] 48%|████▊ | 179697/371472 [3:24:48<17:35:08, 3.03it/s] 48%|████▊ | 179698/371472 [3:24:49<17:23:21, 3.06it/s] 48%|████▊ | 179699/371472 [3:24:49<17:50:04, 2.99it/s] 48%|████▊ | 179700/371472 [3:24:49<17:10:42, 3.10it/s] {'loss': 3.0493, 'learning_rate': 5.648742700769247e-07, 'epoch': 7.74} + 48%|████▊ | 179700/371472 [3:24:49<17:10:42, 3.10it/s] 48%|████▊ | 179701/371472 [3:24:50<16:38:59, 3.20it/s] 48%|████▊ | 179702/371472 [3:24:50<16:34:36, 3.21it/s] 48%|████▊ | 179703/371472 [3:24:50<16:13:12, 3.28it/s] 48%|████▊ | 179704/371472 [3:24:51<16:10:19, 3.29it/s] 48%|████▊ | 179705/371472 [3:24:51<16:02:33, 3.32it/s] 48%|████▊ | 179706/371472 [3:24:51<16:22:55, 3.25it/s] 48%|████▊ | 179707/371472 [3:24:51<16:07:56, 3.30it/s] 48%|████▊ | 179708/371472 [3:24:52<16:06:19, 3.31it/s] 48%|████▊ | 179709/371472 [3:24:52<16:30:04, 3.23it/s] 48%|████▊ | 179710/371472 [3:24:52<16:33:43, 3.22it/s] 48%|████▊ | 179711/371472 [3:24:53<16:38:32, 3.20it/s] 48%|████▊ | 179712/371472 [3:24:53<16:21:25, 3.26it/s] 48%|████▊ | 179713/371472 [3:24:53<16:09:58, 3.29it/s] 48%|████▊ | 179714/371472 [3:24:54<16:05:11, 3.31it/s] 48%|████▊ | 179715/371472 [3:24:54<15:51:20, 3.36it/s] 48%|████▊ | 179716/371472 [3:24:54<15:34:26, 3.42it/s] 48%|████▊ | 179717/371472 [3:24:54<16:02:03, 3.32it/s] 48%|████▊ | 179718/371472 [3:24:55<16:28:18, 3.23it/s] 48%|████▊ | 179719/371472 [3:24:55<16:24:41, 3.25it/s] 48%|████▊ | 179720/371472 [3:24:55<16:23:26, 3.25it/s] {'loss': 2.7209, 'learning_rate': 5.648257881014459e-07, 'epoch': 7.74} + 48%|████▊ | 179720/371472 [3:24:55<16:23:26, 3.25it/s] 48%|████▊ | 179721/371472 [3:24:56<17:33:27, 3.03it/s] 48%|████▊ | 179722/371472 [3:24:56<17:09:54, 3.10it/s] 48%|████▊ | 179723/371472 [3:24:56<17:16:39, 3.08it/s] 48%|████▊ | 179724/371472 [3:24:57<17:50:33, 2.99it/s] 48%|████▊ | 179725/371472 [3:24:57<17:35:31, 3.03it/s] 48%|████▊ | 179726/371472 [3:24:57<18:18:34, 2.91it/s] 48%|████▊ | 179727/371472 [3:24:58<18:34:10, 2.87it/s] 48%|████▊ | 179728/371472 [3:24:58<17:22:43, 3.06it/s] 48%|████▊ | 179729/371472 [3:24:58<16:46:50, 3.17it/s] 48%|████▊ | 179730/371472 [3:24:59<16:25:14, 3.24it/s] 48%|████▊ | 179731/371472 [3:24:59<16:21:29, 3.26it/s] 48%|████▊ | 179732/371472 [3:24:59<15:55:09, 3.35it/s] 48%|████▊ | 179733/371472 [3:25:00<15:55:05, 3.35it/s] 48%|████▊ | 179734/371472 [3:25:00<15:47:36, 3.37it/s] 48%|████▊ | 179735/371472 [3:25:00<15:35:00, 3.42it/s] 48%|████▊ | 179736/371472 [3:25:00<16:13:19, 3.28it/s] 48%|████▊ | 179737/371472 [3:25:01<16:03:57, 3.32it/s] 48%|████▊ | 179738/371472 [3:25:01<17:30:00, 3.04it/s] 48%|████▊ | 179739/371472 [3:25:02<17:29:45, 3.04it/s] 48%|████▊ | 179740/371472 [3:25:02<17:25:00, 3.06it/s] {'loss': 2.7858, 'learning_rate': 5.64777306125967e-07, 'epoch': 7.74} + 48%|████▊ | 179740/371472 [3:25:02<17:25:00, 3.06it/s] 48%|████▊ | 179741/371472 [3:25:02<20:07:10, 2.65it/s] 48%|████▊ | 179742/371472 [3:25:03<19:01:00, 2.80it/s] 48%|████▊ | 179743/371472 [3:25:03<18:54:59, 2.82it/s] 48%|████▊ | 179744/371472 [3:25:03<17:36:12, 3.03it/s] 48%|████▊ | 179745/371472 [3:25:04<17:09:22, 3.10it/s] 48%|████▊ | 179746/371472 [3:25:04<16:28:24, 3.23it/s] 48%|████▊ | 179747/371472 [3:25:04<16:32:24, 3.22it/s] 48%|████▊ | 179748/371472 [3:25:04<16:18:59, 3.26it/s] 48%|████▊ | 179749/371472 [3:25:05<16:16:59, 3.27it/s] 48%|████▊ | 179750/371472 [3:25:05<15:55:42, 3.34it/s] 48%|████▊ | 179751/371472 [3:25:05<16:39:36, 3.20it/s] 48%|████▊ | 179752/371472 [3:25:06<15:50:04, 3.36it/s] 48%|████▊ | 179753/371472 [3:25:06<17:07:18, 3.11it/s] 48%|████▊ | 179754/371472 [3:25:06<17:28:31, 3.05it/s] 48%|████▊ | 179755/371472 [3:25:07<17:04:15, 3.12it/s] 48%|████▊ | 179756/371472 [3:25:07<16:33:26, 3.22it/s] 48%|████▊ | 179757/371472 [3:25:07<15:51:43, 3.36it/s] 48%|████▊ | 179758/371472 [3:25:08<15:52:48, 3.35it/s] 48%|████▊ | 179759/371472 [3:25:08<15:46:13, 3.38it/s] 48%|████▊ | 179760/371472 [3:25:08<15:43:40, 3.39it/s] {'loss': 2.9878, 'learning_rate': 5.647288241504879e-07, 'epoch': 7.74} + 48%|████▊ | 179760/371472 [3:25:08<15:43:40, 3.39it/s] 48%|████▊ | 179761/371472 [3:25:08<16:05:55, 3.31it/s] 48%|████▊ | 179762/371472 [3:25:09<16:05:57, 3.31it/s] 48%|████▊ | 179763/371472 [3:25:09<16:45:33, 3.18it/s] 48%|████▊ | 179764/371472 [3:25:09<16:49:36, 3.16it/s] 48%|████▊ | 179765/371472 [3:25:10<15:57:16, 3.34it/s] 48%|████▊ | 179766/371472 [3:25:10<15:56:48, 3.34it/s] 48%|████▊ | 179767/371472 [3:25:10<15:45:33, 3.38it/s] 48%|████▊ | 179768/371472 [3:25:11<15:22:47, 3.46it/s] 48%|████▊ | 179769/371472 [3:25:11<15:49:23, 3.37it/s] 48%|████▊ | 179770/371472 [3:25:11<15:23:42, 3.46it/s] 48%|████▊ | 179771/371472 [3:25:11<15:12:13, 3.50it/s] 48%|████▊ | 179772/371472 [3:25:12<15:23:07, 3.46it/s] 48%|████▊ | 179773/371472 [3:25:12<15:30:00, 3.44it/s] 48%|████▊ | 179774/371472 [3:25:12<15:35:14, 3.42it/s] 48%|████▊ | 179775/371472 [3:25:13<16:43:16, 3.18it/s] 48%|████▊ | 179776/371472 [3:25:13<16:55:29, 3.15it/s] 48%|████▊ | 179777/371472 [3:25:13<16:37:18, 3.20it/s] 48%|████▊ | 179778/371472 [3:25:14<16:17:56, 3.27it/s] 48%|████▊ | 179779/371472 [3:25:14<16:12:31, 3.29it/s] 48%|████▊ | 179780/371472 [3:25:14<16:23:35, 3.25it/s] {'loss': 2.9763, 'learning_rate': 5.646803421750091e-07, 'epoch': 7.74} + 48%|████▊ | 179780/371472 [3:25:14<16:23:35, 3.25it/s] 48%|████▊ | 179781/371472 [3:25:14<16:22:47, 3.25it/s] 48%|████▊ | 179782/371472 [3:25:15<16:07:03, 3.30it/s] 48%|████▊ | 179783/371472 [3:25:15<18:49:09, 2.83it/s] 48%|████▊ | 179784/371472 [3:25:16<17:36:22, 3.02it/s] 48%|████▊ | 179785/371472 [3:25:16<17:18:04, 3.08it/s] 48%|████▊ | 179786/371472 [3:25:16<17:04:45, 3.12it/s] 48%|████▊ | 179787/371472 [3:25:16<16:32:48, 3.22it/s] 48%|████▊ | 179788/371472 [3:25:17<16:16:42, 3.27it/s] 48%|████▊ | 179789/371472 [3:25:17<16:23:47, 3.25it/s] 48%|████▊ | 179790/371472 [3:25:17<18:12:23, 2.92it/s] 48%|████▊ | 179791/371472 [3:25:18<17:33:04, 3.03it/s] 48%|████▊ | 179792/371472 [3:25:18<17:16:13, 3.08it/s] 48%|████▊ | 179793/371472 [3:25:18<16:39:23, 3.20it/s] 48%|████▊ | 179794/371472 [3:25:19<16:00:08, 3.33it/s] 48%|████▊ | 179795/371472 [3:25:19<15:35:14, 3.42it/s] 48%|████▊ | 179796/371472 [3:25:19<15:36:49, 3.41it/s] 48%|████▊ | 179797/371472 [3:25:20<16:31:47, 3.22it/s] 48%|████▊ | 179798/371472 [3:25:20<16:08:15, 3.30it/s] 48%|████▊ | 179799/371472 [3:25:20<15:55:50, 3.34it/s] 48%|████▊ | 179800/371472 [3:25:20<15:59:48, 3.33it/s] {'loss': 2.9738, 'learning_rate': 5.646318601995303e-07, 'epoch': 7.74} + 48%|████▊ | 179800/371472 [3:25:20<15:59:48, 3.33it/s] 48%|████▊ | 179801/371472 [3:25:21<16:20:31, 3.26it/s] 48%|████▊ | 179802/371472 [3:25:21<15:38:09, 3.41it/s] 48%|████▊ | 179803/371472 [3:25:21<16:07:23, 3.30it/s] 48%|████▊ | 179804/371472 [3:25:22<15:50:47, 3.36it/s] 48%|████▊ | 179805/371472 [3:25:22<15:41:19, 3.39it/s] 48%|████▊ | 179806/371472 [3:25:22<15:55:51, 3.34it/s] 48%|████▊ | 179807/371472 [3:25:23<16:41:18, 3.19it/s] 48%|████▊ | 179808/371472 [3:25:23<16:12:15, 3.29it/s] 48%|████▊ | 179809/371472 [3:25:23<16:11:16, 3.29it/s] 48%|████▊ | 179810/371472 [3:25:23<15:58:01, 3.33it/s] 48%|████▊ | 179811/371472 [3:25:24<15:41:31, 3.39it/s] 48%|████▊ | 179812/371472 [3:25:24<15:26:24, 3.45it/s] 48%|████▊ | 179813/371472 [3:25:24<15:16:30, 3.49it/s] 48%|████▊ | 179814/371472 [3:25:25<16:27:45, 3.23it/s] 48%|████▊ | 179815/371472 [3:25:25<16:05:56, 3.31it/s] 48%|████▊ | 179816/371472 [3:25:25<15:54:05, 3.35it/s] 48%|████▊ | 179817/371472 [3:25:26<15:49:43, 3.36it/s] 48%|████▊ | 179818/371472 [3:25:26<15:29:24, 3.44it/s] 48%|████▊ | 179819/371472 [3:25:26<15:55:53, 3.34it/s] 48%|████▊ | 179820/371472 [3:25:26<16:06:45, 3.30it/s] {'loss': 2.7971, 'learning_rate': 5.645833782240513e-07, 'epoch': 7.75} + 48%|████▊ | 179820/371472 [3:25:26<16:06:45, 3.30it/s] 48%|████▊ | 179821/371472 [3:25:27<15:46:08, 3.38it/s] 48%|████▊ | 179822/371472 [3:25:27<15:52:53, 3.35it/s] 48%|████▊ | 179823/371472 [3:25:27<15:57:03, 3.34it/s] 48%|████▊ | 179824/371472 [3:25:28<17:08:31, 3.11it/s] 48%|████▊ | 179825/371472 [3:25:28<16:41:20, 3.19it/s] 48%|████▊ | 179826/371472 [3:25:28<15:55:27, 3.34it/s] 48%|████▊ | 179827/371472 [3:25:29<15:47:51, 3.37it/s] 48%|████▊ | 179828/371472 [3:25:29<16:07:28, 3.30it/s] 48%|████▊ | 179829/371472 [3:25:29<15:50:11, 3.36it/s] 48%|████▊ | 179830/371472 [3:25:29<15:27:42, 3.44it/s] 48%|████▊ | 179831/371472 [3:25:30<15:36:02, 3.41it/s] 48%|████▊ | 179832/371472 [3:25:30<15:28:50, 3.44it/s] 48%|████▊ | 179833/371472 [3:25:30<15:14:11, 3.49it/s] 48%|████▊ | 179834/371472 [3:25:31<17:06:39, 3.11it/s] 48%|████▊ | 179835/371472 [3:25:31<18:05:57, 2.94it/s] 48%|████▊ | 179836/371472 [3:25:31<17:40:17, 3.01it/s] 48%|████▊ | 179837/371472 [3:25:32<17:13:20, 3.09it/s] 48%|████▊ | 179838/371472 [3:25:32<17:22:23, 3.06it/s] 48%|████▊ | 179839/371472 [3:25:32<16:39:36, 3.20it/s] 48%|████▊ | 179840/371472 [3:25:33<16:49:35, 3.16it/s] {'loss': 2.8912, 'learning_rate': 5.645348962485724e-07, 'epoch': 7.75} + 48%|████▊ | 179840/371472 [3:25:33<16:49:35, 3.16it/s] 48%|████▊ | 179841/371472 [3:25:33<17:03:06, 3.12it/s] 48%|████▊ | 179842/371472 [3:25:33<16:37:28, 3.20it/s] 48%|████▊ | 179843/371472 [3:25:34<16:51:25, 3.16it/s] 48%|████▊ | 179844/371472 [3:25:34<16:34:23, 3.21it/s] 48%|████▊ | 179845/371472 [3:25:34<16:43:02, 3.18it/s] 48%|████▊ | 179846/371472 [3:25:34<16:45:51, 3.18it/s] 48%|████▊ | 179847/371472 [3:25:35<16:28:42, 3.23it/s] 48%|████▊ | 179848/371472 [3:25:35<16:40:14, 3.19it/s] 48%|████▊ | 179849/371472 [3:25:35<16:20:18, 3.26it/s] 48%|████▊ | 179850/371472 [3:25:36<16:15:51, 3.27it/s] 48%|████▊ | 179851/371472 [3:25:36<16:00:42, 3.32it/s] 48%|████▊ | 179852/371472 [3:25:36<16:01:35, 3.32it/s] 48%|████▊ | 179853/371472 [3:25:37<15:48:19, 3.37it/s] 48%|████▊ | 179854/371472 [3:25:37<15:41:18, 3.39it/s] 48%|████▊ | 179855/371472 [3:25:37<15:35:00, 3.42it/s] 48%|████▊ | 179856/371472 [3:25:37<15:32:23, 3.43it/s] 48%|████▊ | 179857/371472 [3:25:38<16:02:26, 3.32it/s] 48%|████▊ | 179858/371472 [3:25:38<16:39:58, 3.19it/s] 48%|████▊ | 179859/371472 [3:25:38<17:06:14, 3.11it/s] 48%|████▊ | 179860/371472 [3:25:39<16:44:10, 3.18it/s] {'loss': 2.9335, 'learning_rate': 5.644864142730936e-07, 'epoch': 7.75} + 48%|████▊ | 179860/371472 [3:25:39<16:44:10, 3.18it/s] 48%|████▊ | 179861/371472 [3:25:39<16:53:13, 3.15it/s] 48%|████▊ | 179862/371472 [3:25:39<17:13:53, 3.09it/s] 48%|████▊ | 179863/371472 [3:25:40<17:07:34, 3.11it/s] 48%|████▊ | 179864/371472 [3:25:40<16:21:05, 3.25it/s] 48%|████▊ | 179865/371472 [3:25:40<16:11:40, 3.29it/s] 48%|████▊ | 179866/371472 [3:25:41<15:42:45, 3.39it/s] 48%|████▊ | 179867/371472 [3:25:41<15:49:08, 3.36it/s] 48%|████▊ | 179868/371472 [3:25:41<15:45:47, 3.38it/s] 48%|████▊ | 179869/371472 [3:25:41<15:30:34, 3.43it/s] 48%|████▊ | 179870/371472 [3:25:42<15:40:39, 3.39it/s] 48%|████▊ | 179871/371472 [3:25:42<16:09:26, 3.29it/s] 48%|████▊ | 179872/371472 [3:25:42<15:37:17, 3.41it/s] 48%|████▊ | 179873/371472 [3:25:43<15:45:12, 3.38it/s] 48%|████▊ | 179874/371472 [3:25:43<15:22:16, 3.46it/s] 48%|████▊ | 179875/371472 [3:25:43<15:08:03, 3.52it/s] 48%|████▊ | 179876/371472 [3:25:44<16:04:38, 3.31it/s] 48%|████▊ | 179877/371472 [3:25:44<15:40:13, 3.40it/s] 48%|████▊ | 179878/371472 [3:25:44<15:32:25, 3.42it/s] 48%|████▊ | 179879/371472 [3:25:44<15:35:22, 3.41it/s] 48%|████▊ | 179880/371472 [3:25:45<15:28:26, 3.44it/s] {'loss': 3.0141, 'learning_rate': 5.644379322976146e-07, 'epoch': 7.75} + 48%|████▊ | 179880/371472 [3:25:45<15:28:26, 3.44it/s] 48%|████▊ | 179881/371472 [3:25:45<15:42:46, 3.39it/s] 48%|████▊ | 179882/371472 [3:25:45<15:38:57, 3.40it/s] 48%|████▊ | 179883/371472 [3:25:46<15:37:12, 3.41it/s] 48%|████▊ | 179884/371472 [3:25:46<15:21:37, 3.46it/s] 48%|████▊ | 179885/371472 [3:25:46<15:02:21, 3.54it/s] 48%|████▊ | 179886/371472 [3:25:46<15:21:47, 3.46it/s] 48%|████▊ | 179887/371472 [3:25:47<15:06:06, 3.52it/s] 48%|████▊ | 179888/371472 [3:25:47<15:09:00, 3.51it/s] 48%|████▊ | 179889/371472 [3:25:47<16:07:05, 3.30it/s] 48%|████▊ | 179890/371472 [3:25:48<16:18:44, 3.26it/s] 48%|████▊ | 179891/371472 [3:25:48<16:29:14, 3.23it/s] 48%|████▊ | 179892/371472 [3:25:48<16:16:30, 3.27it/s] 48%|████▊ | 179893/371472 [3:25:49<16:46:39, 3.17it/s] 48%|████▊ | 179894/371472 [3:25:49<16:12:03, 3.28it/s] 48%|████▊ | 179895/371472 [3:25:49<16:04:10, 3.31it/s] 48%|████▊ | 179896/371472 [3:25:49<15:42:12, 3.39it/s] 48%|████▊ | 179897/371472 [3:25:50<16:39:49, 3.19it/s] 48%|████▊ | 179898/371472 [3:25:50<16:09:34, 3.29it/s] 48%|████▊ | 179899/371472 [3:25:50<16:22:22, 3.25it/s] 48%|████▊ | 179900/371472 [3:25:51<16:12:17, 3.28it/s] {'loss': 2.8723, 'learning_rate': 5.643894503221356e-07, 'epoch': 7.75} + 48%|████▊ | 179900/371472 [3:25:51<16:12:17, 3.28it/s] 48%|████▊ | 179901/371472 [3:25:51<16:31:43, 3.22it/s] 48%|████▊ | 179902/371472 [3:25:51<16:03:15, 3.31it/s] 48%|████▊ | 179903/371472 [3:25:52<16:08:50, 3.30it/s] 48%|████▊ | 179904/371472 [3:25:52<15:53:18, 3.35it/s] 48%|████▊ | 179905/371472 [3:25:52<15:51:16, 3.36it/s] 48%|████▊ | 179906/371472 [3:25:52<15:34:24, 3.42it/s] 48%|████▊ | 179907/371472 [3:25:53<15:15:57, 3.49it/s] 48%|████▊ | 179908/371472 [3:25:53<15:32:14, 3.42it/s] 48%|████▊ | 179909/371472 [3:25:53<15:17:03, 3.48it/s] 48%|████▊ | 179910/371472 [3:25:54<15:59:28, 3.33it/s] 48%|████▊ | 179911/371472 [3:25:54<15:38:44, 3.40it/s] 48%|████▊ | 179912/371472 [3:25:54<16:07:05, 3.30it/s] 48%|████▊ | 179913/371472 [3:25:55<16:31:35, 3.22it/s] 48%|████▊ | 179914/371472 [3:25:55<15:45:44, 3.38it/s] 48%|████▊ | 179915/371472 [3:25:55<15:27:02, 3.44it/s] 48%|████▊ | 179916/371472 [3:25:55<15:27:14, 3.44it/s] 48%|████▊ | 179917/371472 [3:25:56<15:18:50, 3.47it/s] 48%|████▊ | 179918/371472 [3:25:56<15:14:11, 3.49it/s] 48%|████▊ | 179919/371472 [3:25:56<15:51:44, 3.35it/s] 48%|████▊ | 179920/371472 [3:25:57<15:54:56, 3.34it/s] {'loss': 2.9959, 'learning_rate': 5.643409683466569e-07, 'epoch': 7.75} + 48%|████▊ | 179920/371472 [3:25:57<15:54:56, 3.34it/s] 48%|████▊ | 179921/371472 [3:25:57<16:22:44, 3.25it/s] 48%|████▊ | 179922/371472 [3:25:57<16:24:30, 3.24it/s] 48%|████▊ | 179923/371472 [3:25:58<17:02:25, 3.12it/s] 48%|████▊ | 179924/371472 [3:25:58<16:24:48, 3.24it/s] 48%|████▊ | 179925/371472 [3:25:58<16:36:33, 3.20it/s] 48%|████▊ | 179926/371472 [3:25:58<16:01:52, 3.32it/s] 48%|████▊ | 179927/371472 [3:25:59<16:00:57, 3.32it/s] 48%|████▊ | 179928/371472 [3:25:59<15:34:09, 3.42it/s] 48%|████▊ | 179929/371472 [3:25:59<15:37:52, 3.40it/s] 48%|████▊ | 179930/371472 [3:26:00<16:24:04, 3.24it/s] 48%|████▊ | 179931/371472 [3:26:00<16:19:57, 3.26it/s] 48%|████▊ | 179932/371472 [3:26:00<16:07:41, 3.30it/s] 48%|████▊ | 179933/371472 [3:26:01<15:53:57, 3.35it/s] 48%|████▊ | 179934/371472 [3:26:01<15:28:44, 3.44it/s] 48%|████▊ | 179935/371472 [3:26:01<16:02:08, 3.32it/s] 48%|████▊ | 179936/371472 [3:26:02<16:49:20, 3.16it/s] 48%|████▊ | 179937/371472 [3:26:02<16:29:12, 3.23it/s] 48%|████▊ | 179938/371472 [3:26:02<16:19:14, 3.26it/s] 48%|████▊ | 179939/371472 [3:26:02<16:21:41, 3.25it/s] 48%|████▊ | 179940/371472 [3:26:03<15:44:13, 3.38it/s] {'loss': 2.9816, 'learning_rate': 5.64292486371178e-07, 'epoch': 7.75} + 48%|████▊ | 179940/371472 [3:26:03<15:44:13, 3.38it/s] 48%|████▊ | 179941/371472 [3:26:03<15:55:14, 3.34it/s] 48%|████▊ | 179942/371472 [3:26:03<16:04:57, 3.31it/s] 48%|████▊ | 179943/371472 [3:26:04<15:41:25, 3.39it/s] 48%|████▊ | 179944/371472 [3:26:04<15:20:48, 3.47it/s] 48%|████▊ | 179945/371472 [3:26:04<15:26:39, 3.44it/s] 48%|████▊ | 179946/371472 [3:26:04<15:15:14, 3.49it/s] 48%|████▊ | 179947/371472 [3:26:05<15:57:38, 3.33it/s] 48%|████▊ | 179948/371472 [3:26:05<15:34:05, 3.42it/s] 48%|████▊ | 179949/371472 [3:26:05<15:38:16, 3.40it/s] 48%|████▊ | 179950/371472 [3:26:06<15:55:53, 3.34it/s] 48%|████▊ | 179951/371472 [3:26:06<15:40:12, 3.39it/s] 48%|████▊ | 179952/371472 [3:26:06<15:26:25, 3.45it/s] 48%|████▊ | 179953/371472 [3:26:07<16:08:33, 3.30it/s] 48%|████▊ | 179954/371472 [3:26:07<16:47:59, 3.17it/s] 48%|████▊ | 179955/371472 [3:26:07<16:40:52, 3.19it/s] 48%|████▊ | 179956/371472 [3:26:08<16:28:36, 3.23it/s] 48%|████▊ | 179957/371472 [3:26:08<16:15:12, 3.27it/s] 48%|████▊ | 179958/371472 [3:26:08<15:43:38, 3.38it/s] 48%|████▊ | 179959/371472 [3:26:08<15:25:23, 3.45it/s] 48%|████▊ | 179960/371472 [3:26:09<15:18:56, 3.47it/s] {'loss': 3.1578, 'learning_rate': 5.642440043956991e-07, 'epoch': 7.75} + 48%|████▊ | 179960/371472 [3:26:09<15:18:56, 3.47it/s] 48%|████▊ | 179961/371472 [3:26:09<15:12:32, 3.50it/s] 48%|████▊ | 179962/371472 [3:26:09<15:54:22, 3.34it/s] 48%|████▊ | 179963/371472 [3:26:10<17:28:56, 3.04it/s] 48%|████▊ | 179964/371472 [3:26:10<18:11:57, 2.92it/s] 48%|████▊ | 179965/371472 [3:26:10<17:26:43, 3.05it/s] 48%|████▊ | 179966/371472 [3:26:11<18:32:03, 2.87it/s] 48%|████▊ | 179967/371472 [3:26:11<17:19:42, 3.07it/s] 48%|████▊ | 179968/371472 [3:26:11<16:13:31, 3.28it/s] 48%|████▊ | 179969/371472 [3:26:12<15:54:23, 3.34it/s] 48%|████▊ | 179970/371472 [3:26:12<15:34:06, 3.42it/s] 48%|████▊ | 179971/371472 [3:26:12<15:22:02, 3.46it/s] 48%|████▊ | 179972/371472 [3:26:12<15:10:10, 3.51it/s] 48%|████▊ | 179973/371472 [3:26:13<15:02:40, 3.54it/s] 48%|████▊ | 179974/371472 [3:26:13<15:02:46, 3.54it/s] 48%|████▊ | 179975/371472 [3:26:13<15:06:06, 3.52it/s] 48%|████▊ | 179976/371472 [3:26:13<15:06:41, 3.52it/s] 48%|████▊ | 179977/371472 [3:26:14<15:20:36, 3.47it/s] 48%|████▊ | 179978/371472 [3:26:14<15:27:52, 3.44it/s] 48%|████▊ | 179979/371472 [3:26:14<15:33:22, 3.42it/s] 48%|████▊ | 179980/371472 [3:26:15<17:42:22, 3.00it/s] {'loss': 2.982, 'learning_rate': 5.641955224202201e-07, 'epoch': 7.75} + 48%|████▊ | 179980/371472 [3:26:15<17:42:22, 3.00it/s] 48%|████▊ | 179981/371472 [3:26:15<16:54:00, 3.15it/s] 48%|████▊ | 179982/371472 [3:26:15<16:03:08, 3.31it/s] 48%|████▊ | 179983/371472 [3:26:16<15:50:49, 3.36it/s] 48%|████▊ | 179984/371472 [3:26:16<15:38:29, 3.40it/s] 48%|████▊ | 179985/371472 [3:26:16<15:38:17, 3.40it/s] 48%|████▊ | 179986/371472 [3:26:17<16:50:34, 3.16it/s] 48%|████▊ | 179987/371472 [3:26:17<16:26:36, 3.23it/s] 48%|████▊ | 179988/371472 [3:26:17<15:56:56, 3.33it/s] 48%|████▊ | 179989/371472 [3:26:18<17:15:51, 3.08it/s] 48%|████▊ | 179990/371472 [3:26:18<16:53:22, 3.15it/s] 48%|████▊ | 179991/371472 [3:26:18<16:19:10, 3.26it/s] 48%|████▊ | 179992/371472 [3:26:18<17:09:28, 3.10it/s] 48%|████▊ | 179993/371472 [3:26:19<17:00:31, 3.13it/s] 48%|████▊ | 179994/371472 [3:26:19<16:35:43, 3.21it/s] 48%|████▊ | 179995/371472 [3:26:19<16:54:28, 3.15it/s] 48%|████▊ | 179996/371472 [3:26:20<17:08:01, 3.10it/s] 48%|████▊ | 179997/371472 [3:26:20<18:06:06, 2.94it/s] 48%|████▊ | 179998/371472 [3:26:20<16:51:31, 3.15it/s] 48%|████▊ | 179999/371472 [3:26:21<16:25:38, 3.24it/s] 48%|████▊ | 180000/371472 [3:26:21<16:47:10, 3.17it/s] {'loss': 2.7792, 'learning_rate': 5.641470404447413e-07, 'epoch': 7.75} + 48%|████▊ | 180000/371472 [3:26:21<16:47:10, 3.17it/s] 48%|████▊ | 180001/371472 [3:26:21<17:04:56, 3.11it/s] 48%|████▊ | 180002/371472 [3:26:22<16:13:20, 3.28it/s] 48%|████▊ | 180003/371472 [3:26:22<15:48:17, 3.37it/s] 48%|████▊ | 180004/371472 [3:26:22<15:53:30, 3.35it/s] 48%|████▊ | 180005/371472 [3:26:22<15:38:19, 3.40it/s] 48%|████▊ | 180006/371472 [3:26:23<15:40:26, 3.39it/s] 48%|████▊ | 180007/371472 [3:26:23<15:53:44, 3.35it/s] 48%|████▊ | 180008/371472 [3:26:23<15:47:37, 3.37it/s] 48%|████▊ | 180009/371472 [3:26:24<15:57:09, 3.33it/s] 48%|████▊ | 180010/371472 [3:26:24<16:11:23, 3.29it/s] 48%|████▊ | 180011/371472 [3:26:24<16:23:03, 3.25it/s] 48%|████▊ | 180012/371472 [3:26:25<15:46:17, 3.37it/s] 48%|████▊ | 180013/371472 [3:26:25<16:11:52, 3.28it/s] 48%|████▊ | 180014/371472 [3:26:25<15:49:42, 3.36it/s] 48%|████▊ | 180015/371472 [3:26:25<15:33:28, 3.42it/s] 48%|████▊ | 180016/371472 [3:26:26<15:19:19, 3.47it/s] 48%|████▊ | 180017/371472 [3:26:26<15:05:09, 3.53it/s] 48%|████▊ | 180018/371472 [3:26:26<15:23:36, 3.45it/s] 48%|████▊ | 180019/371472 [3:26:27<15:27:00, 3.44it/s] 48%|████▊ | 180020/371472 [3:26:27<16:01:08, 3.32it/s] {'loss': 2.8534, 'learning_rate': 5.640985584692625e-07, 'epoch': 7.75} + 48%|████▊ | 180020/371472 [3:26:27<16:01:08, 3.32it/s] 48%|████▊ | 180021/371472 [3:26:27<15:30:40, 3.43it/s] 48%|████▊ | 180022/371472 [3:26:28<15:43:08, 3.38it/s] 48%|████▊ | 180023/371472 [3:26:28<16:26:38, 3.23it/s] 48%|████▊ | 180024/371472 [3:26:28<16:03:48, 3.31it/s] 48%|████▊ | 180025/371472 [3:26:28<15:53:11, 3.35it/s] 48%|████▊ | 180026/371472 [3:26:29<15:44:51, 3.38it/s] 48%|████▊ | 180027/371472 [3:26:29<16:07:52, 3.30it/s] 48%|████▊ | 180028/371472 [3:26:29<15:45:28, 3.37it/s] 48%|████▊ | 180029/371472 [3:26:30<16:20:27, 3.25it/s] 48%|████▊ | 180030/371472 [3:26:30<16:56:18, 3.14it/s] 48%|████▊ | 180031/371472 [3:26:30<16:31:38, 3.22it/s] 48%|████▊ | 180032/371472 [3:26:31<16:12:59, 3.28it/s] 48%|████▊ | 180033/371472 [3:26:31<16:23:51, 3.24it/s] 48%|████▊ | 180034/371472 [3:26:31<15:53:18, 3.35it/s] 48%|████▊ | 180035/371472 [3:26:32<16:21:07, 3.25it/s] 48%|████▊ | 180036/371472 [3:26:32<15:52:46, 3.35it/s] 48%|████▊ | 180037/371472 [3:26:32<15:46:08, 3.37it/s] 48%|████▊ | 180038/371472 [3:26:32<15:28:45, 3.44it/s] 48%|████▊ | 180039/371472 [3:26:33<15:48:29, 3.36it/s] 48%|████▊ | 180040/371472 [3:26:33<15:56:29, 3.34it/s] {'loss': 2.9068, 'learning_rate': 5.640500764937836e-07, 'epoch': 7.75} + 48%|████▊ | 180040/371472 [3:26:33<15:56:29, 3.34it/s] 48%|████▊ | 180041/371472 [3:26:33<15:38:04, 3.40it/s] 48%|████▊ | 180042/371472 [3:26:34<15:21:33, 3.46it/s] 48%|████▊ | 180043/371472 [3:26:34<16:52:43, 3.15it/s] 48%|████▊ | 180044/371472 [3:26:34<16:11:06, 3.29it/s] 48%|████▊ | 180045/371472 [3:26:35<16:30:58, 3.22it/s] 48%|████▊ | 180046/371472 [3:26:35<15:51:17, 3.35it/s] 48%|████▊ | 180047/371472 [3:26:35<15:52:52, 3.35it/s] 48%|████▊ | 180048/371472 [3:26:35<16:20:36, 3.25it/s] 48%|████▊ | 180049/371472 [3:26:36<16:39:26, 3.19it/s] 48%|████▊ | 180050/371472 [3:26:36<16:41:38, 3.19it/s] 48%|████▊ | 180051/371472 [3:26:36<16:41:37, 3.19it/s] 48%|████▊ | 180052/371472 [3:26:37<16:26:21, 3.23it/s] 48%|████▊ | 180053/371472 [3:26:37<17:29:11, 3.04it/s] 48%|████▊ | 180054/371472 [3:26:37<18:55:59, 2.81it/s] 48%|████▊ | 180055/371472 [3:26:38<19:06:58, 2.78it/s] 48%|████▊ | 180056/371472 [3:26:38<19:26:28, 2.73it/s] 48%|████▊ | 180057/371472 [3:26:38<17:59:16, 2.96it/s] 48%|████▊ | 180058/371472 [3:26:39<16:57:45, 3.13it/s] 48%|████▊ | 180059/371472 [3:26:39<16:09:04, 3.29it/s] 48%|████▊ | 180060/371472 [3:26:39<16:31:27, 3.22it/s] {'loss': 3.0067, 'learning_rate': 5.640015945183046e-07, 'epoch': 7.76} + 48%|████▊ | 180060/371472 [3:26:39<16:31:27, 3.22it/s] 48%|████▊ | 180061/371472 [3:26:40<16:46:24, 3.17it/s] 48%|████▊ | 180062/371472 [3:26:40<17:50:46, 2.98it/s] 48%|████▊ | 180063/371472 [3:26:40<17:19:51, 3.07it/s] 48%|████▊ | 180064/371472 [3:26:41<16:36:49, 3.20it/s] 48%|████▊ | 180065/371472 [3:26:41<16:41:33, 3.19it/s] 48%|████▊ | 180066/371472 [3:26:41<16:06:30, 3.30it/s] 48%|████▊ | 180067/371472 [3:26:42<15:46:13, 3.37it/s] 48%|████▊ | 180068/371472 [3:26:42<15:39:55, 3.39it/s] 48%|████▊ | 180069/371472 [3:26:42<16:00:00, 3.32it/s] 48%|████▊ | 180070/371472 [3:26:42<16:10:15, 3.29it/s] 48%|████▊ | 180071/371472 [3:26:43<15:50:50, 3.35it/s] 48%|████▊ | 180072/371472 [3:26:43<15:33:15, 3.42it/s] 48%|████▊ | 180073/371472 [3:26:43<15:18:28, 3.47it/s] 48%|████▊ | 180074/371472 [3:26:44<15:23:53, 3.45it/s] 48%|████▊ | 180075/371472 [3:26:44<15:35:27, 3.41it/s] 48%|████▊ | 180076/371472 [3:26:44<16:20:42, 3.25it/s] 48%|████▊ | 180077/371472 [3:26:45<16:52:57, 3.15it/s] 48%|████▊ | 180078/371472 [3:26:45<19:07:51, 2.78it/s] 48%|████▊ | 180079/371472 [3:26:45<18:08:13, 2.93it/s] 48%|████▊ | 180080/371472 [3:26:46<17:16:04, 3.08it/s] {'loss': 2.9297, 'learning_rate': 5.639531125428257e-07, 'epoch': 7.76} + 48%|████▊ | 180080/371472 [3:26:46<17:16:04, 3.08it/s] 48%|████▊ | 180081/371472 [3:26:46<17:12:01, 3.09it/s] 48%|████▊ | 180082/371472 [3:26:46<16:57:48, 3.13it/s] 48%|████▊ | 180083/371472 [3:26:47<16:37:03, 3.20it/s] 48%|████▊ | 180084/371472 [3:26:47<15:53:32, 3.35it/s] 48%|████▊ | 180085/371472 [3:26:47<15:20:19, 3.47it/s] 48%|████▊ | 180086/371472 [3:26:47<15:32:17, 3.42it/s] 48%|████▊ | 180087/371472 [3:26:48<16:49:21, 3.16it/s] 48%|████▊ | 180088/371472 [3:26:48<16:30:25, 3.22it/s] 48%|████▊ | 180089/371472 [3:26:48<16:13:42, 3.28it/s] 48%|████▊ | 180090/371472 [3:26:49<16:05:19, 3.30it/s] 48%|████▊ | 180091/371472 [3:26:49<17:05:03, 3.11it/s] 48%|████▊ | 180092/371472 [3:26:49<16:27:40, 3.23it/s] 48%|████▊ | 180093/371472 [3:26:50<17:33:01, 3.03it/s] 48%|████▊ | 180094/371472 [3:26:50<16:52:44, 3.15it/s] 48%|████▊ | 180095/371472 [3:26:50<17:10:09, 3.10it/s] 48%|████▊ | 180096/371472 [3:26:51<17:14:38, 3.08it/s] 48%|████▊ | 180097/371472 [3:26:51<17:58:39, 2.96it/s] 48%|████▊ | 180098/371472 [3:26:51<16:59:12, 3.13it/s] 48%|████▊ | 180099/371472 [3:26:52<16:14:15, 3.27it/s] 48%|████▊ | 180100/371472 [3:26:52<17:13:13, 3.09it/s] {'loss': 2.7985, 'learning_rate': 5.639046305673469e-07, 'epoch': 7.76} + 48%|████▊ | 180100/371472 [3:26:52<17:13:13, 3.09it/s] 48%|████▊ | 180101/371472 [3:26:52<17:42:04, 3.00it/s] 48%|████▊ | 180102/371472 [3:26:53<16:57:18, 3.14it/s] 48%|████▊ | 180103/371472 [3:26:53<16:32:26, 3.21it/s] 48%|████▊ | 180104/371472 [3:26:53<16:42:30, 3.18it/s] 48%|████▊ | 180105/371472 [3:26:53<16:31:17, 3.22it/s] 48%|████▊ | 180106/371472 [3:26:54<16:30:18, 3.22it/s] 48%|████▊ | 180107/371472 [3:26:54<17:15:33, 3.08it/s] 48%|████▊ | 180108/371472 [3:26:54<16:25:24, 3.24it/s] 48%|████▊ | 180109/371472 [3:26:55<15:55:15, 3.34it/s] 48%|████▊ | 180110/371472 [3:26:55<16:05:41, 3.30it/s] 48%|████▊ | 180111/371472 [3:26:55<15:34:24, 3.41it/s] 48%|████▊ | 180112/371472 [3:26:56<15:28:11, 3.44it/s] 48%|████▊ | 180113/371472 [3:26:56<15:56:57, 3.33it/s] 48%|████▊ | 180114/371472 [3:26:56<15:21:30, 3.46it/s] 48%|████▊ | 180115/371472 [3:26:56<15:19:00, 3.47it/s] 48%|████▊ | 180116/371472 [3:26:57<15:14:11, 3.49it/s] 48%|████▊ | 180117/371472 [3:26:57<15:23:46, 3.45it/s] 48%|████▊ | 180118/371472 [3:26:57<15:28:03, 3.44it/s] 48%|████▊ | 180119/371472 [3:26:58<15:41:25, 3.39it/s] 48%|████▊ | 180120/371472 [3:26:58<15:37:28, 3.40it/s] {'loss': 2.8505, 'learning_rate': 5.63856148591868e-07, 'epoch': 7.76} + 48%|████▊ | 180120/371472 [3:26:58<15:37:28, 3.40it/s] 48%|████▊ | 180121/371472 [3:26:58<15:21:26, 3.46it/s] 48%|████▊ | 180122/371472 [3:26:58<15:06:46, 3.52it/s] 48%|████▊ | 180123/371472 [3:26:59<16:01:16, 3.32it/s] 48%|████▊ | 180124/371472 [3:26:59<15:55:07, 3.34it/s] 48%|████▊ | 180125/371472 [3:26:59<15:44:09, 3.38it/s] 48%|████▊ | 180126/371472 [3:27:00<15:26:07, 3.44it/s] 48%|████▊ | 180127/371472 [3:27:00<16:19:59, 3.25it/s] 48%|████▊ | 180128/371472 [3:27:00<15:37:24, 3.40it/s] 48%|████▊ | 180129/371472 [3:27:01<15:25:15, 3.45it/s] 48%|████▊ | 180130/371472 [3:27:01<15:10:43, 3.50it/s] 48%|████▊ | 180131/371472 [3:27:01<15:59:47, 3.32it/s] 48%|████▊ | 180132/371472 [3:27:01<16:39:07, 3.19it/s] 48%|████▊ | 180133/371472 [3:27:02<15:53:57, 3.34it/s] 48%|████▊ | 180134/371472 [3:27:02<15:12:43, 3.49it/s] 48%|████▊ | 180135/371472 [3:27:02<15:19:39, 3.47it/s] 48%|████▊ | 180136/371472 [3:27:03<15:50:26, 3.36it/s] 48%|████▊ | 180137/371472 [3:27:03<15:32:53, 3.42it/s] 48%|████▊ | 180138/371472 [3:27:03<15:51:55, 3.35it/s] 48%|████▊ | 180139/371472 [3:27:03<15:37:33, 3.40it/s] 48%|████▊ | 180140/371472 [3:27:04<15:40:52, 3.39it/s] {'loss': 3.0474, 'learning_rate': 5.638076666163889e-07, 'epoch': 7.76} + 48%|████▊ | 180140/371472 [3:27:04<15:40:52, 3.39it/s] 48%|████▊ | 180141/371472 [3:27:04<15:52:46, 3.35it/s] 48%|████▊ | 180142/371472 [3:27:04<15:54:46, 3.34it/s] 48%|████▊ | 180143/371472 [3:27:05<16:18:51, 3.26it/s] 48%|████▊ | 180144/371472 [3:27:05<15:57:21, 3.33it/s] 48%|████▊ | 180145/371472 [3:27:05<15:36:53, 3.40it/s] 48%|████▊ | 180146/371472 [3:27:06<15:46:39, 3.37it/s] 48%|████▊ | 180147/371472 [3:27:06<15:21:23, 3.46it/s] 48%|████▊ | 180148/371472 [3:27:06<15:40:42, 3.39it/s] 48%|████▊ | 180149/371472 [3:27:06<16:19:27, 3.26it/s] 48%|████▊ | 180150/371472 [3:27:07<16:11:18, 3.28it/s] 48%|████▊ | 180151/371472 [3:27:07<15:47:47, 3.36it/s] 48%|████▊ | 180152/371472 [3:27:07<16:07:59, 3.29it/s] 48%|████▊ | 180153/371472 [3:27:08<16:17:10, 3.26it/s] 48%|████▊ | 180154/371472 [3:27:08<15:46:11, 3.37it/s] 48%|████▊ | 180155/371472 [3:27:08<15:57:46, 3.33it/s] 48%|████▊ | 180156/371472 [3:27:09<16:26:52, 3.23it/s] 48%|████▊ | 180157/371472 [3:27:09<17:11:03, 3.09it/s] 48%|████▊ | 180158/371472 [3:27:09<16:44:55, 3.17it/s] 48%|████▊ | 180159/371472 [3:27:10<16:27:42, 3.23it/s] 48%|████▊ | 180160/371472 [3:27:10<16:29:27, 3.22it/s] {'loss': 2.7556, 'learning_rate': 5.637591846409102e-07, 'epoch': 7.76} + 48%|████▊ | 180160/371472 [3:27:10<16:29:27, 3.22it/s] 48%|████▊ | 180161/371472 [3:27:10<16:47:11, 3.17it/s] 48%|████▊ | 180162/371472 [3:27:11<16:29:21, 3.22it/s] 48%|████▊ | 180163/371472 [3:27:11<15:46:42, 3.37it/s] 49%|████▊ | 180164/371472 [3:27:11<15:15:22, 3.48it/s] 49%|████▊ | 180165/371472 [3:27:11<15:16:47, 3.48it/s] 49%|████▊ | 180166/371472 [3:27:12<16:00:05, 3.32it/s] 49%|████▊ | 180167/371472 [3:27:12<15:35:19, 3.41it/s] 49%|████▊ | 180168/371472 [3:27:12<15:04:59, 3.52it/s] 49%|████▊ | 180169/371472 [3:27:12<15:20:53, 3.46it/s] 49%|████▊ | 180170/371472 [3:27:13<15:17:00, 3.48it/s] 49%|████▊ | 180171/371472 [3:27:13<15:20:08, 3.47it/s] 49%|████▊ | 180172/371472 [3:27:13<15:11:08, 3.50it/s] 49%|████▊ | 180173/371472 [3:27:14<15:13:12, 3.49it/s] 49%|████▊ | 180174/371472 [3:27:14<15:09:04, 3.51it/s] 49%|████▊ | 180175/371472 [3:27:14<15:09:56, 3.50it/s] 49%|████▊ | 180176/371472 [3:27:14<15:15:32, 3.48it/s] 49%|████▊ | 180177/371472 [3:27:15<15:13:45, 3.49it/s] 49%|████▊ | 180178/371472 [3:27:15<15:39:35, 3.39it/s] 49%|████▊ | 180179/371472 [3:27:15<15:23:26, 3.45it/s] 49%|████▊ | 180180/371472 [3:27:16<15:30:09, 3.43it/s] {'loss': 2.8877, 'learning_rate': 5.637107026654313e-07, 'epoch': 7.76} + 49%|████▊ | 180180/371472 [3:27:16<15:30:09, 3.43it/s] 49%|████▊ | 180181/371472 [3:27:16<15:52:49, 3.35it/s] 49%|████▊ | 180182/371472 [3:27:16<17:19:08, 3.07it/s] 49%|████▊ | 180183/371472 [3:27:17<18:01:45, 2.95it/s] 49%|████▊ | 180184/371472 [3:27:17<17:46:56, 2.99it/s] 49%|████▊ | 180185/371472 [3:27:17<17:04:19, 3.11it/s] 49%|████▊ | 180186/371472 [3:27:18<16:29:42, 3.22it/s] 49%|████▊ | 180187/371472 [3:27:18<15:55:03, 3.34it/s] 49%|████▊ | 180188/371472 [3:27:18<15:32:51, 3.42it/s] 49%|████▊ | 180189/371472 [3:27:19<15:48:27, 3.36it/s] 49%|████▊ | 180190/371472 [3:27:19<15:50:21, 3.35it/s] 49%|████▊ | 180191/371472 [3:27:19<16:29:22, 3.22it/s] 49%|████▊ | 180192/371472 [3:27:19<15:57:19, 3.33it/s] 49%|████▊ | 180193/371472 [3:27:20<16:00:15, 3.32it/s] 49%|████▊ | 180194/371472 [3:27:20<16:12:13, 3.28it/s] 49%|████▊ | 180195/371472 [3:27:20<15:51:32, 3.35it/s] 49%|████▊ | 180196/371472 [3:27:21<15:43:10, 3.38it/s] 49%|████▊ | 180197/371472 [3:27:21<16:31:19, 3.22it/s] 49%|████▊ | 180198/371472 [3:27:21<16:12:42, 3.28it/s] 49%|████▊ | 180199/371472 [3:27:22<16:02:51, 3.31it/s] 49%|████▊ | 180200/371472 [3:27:22<16:23:20, 3.24it/s] {'loss': 2.9347, 'learning_rate': 5.636622206899524e-07, 'epoch': 7.76} + 49%|████▊ | 180200/371472 [3:27:22<16:23:20, 3.24it/s] 49%|████▊ | 180201/371472 [3:27:22<16:12:29, 3.28it/s] 49%|████▊ | 180202/371472 [3:27:22<15:51:21, 3.35it/s] 49%|████▊ | 180203/371472 [3:27:23<16:33:05, 3.21it/s] 49%|████▊ | 180204/371472 [3:27:23<16:20:02, 3.25it/s] 49%|████▊ | 180205/371472 [3:27:24<18:15:26, 2.91it/s] 49%|████▊ | 180206/371472 [3:27:24<17:54:10, 2.97it/s] 49%|████▊ | 180207/371472 [3:27:24<17:22:17, 3.06it/s] 49%|████▊ | 180208/371472 [3:27:24<16:34:08, 3.21it/s] 49%|████▊ | 180209/371472 [3:27:25<16:35:17, 3.20it/s] 49%|████▊ | 180210/371472 [3:27:25<16:25:55, 3.23it/s] 49%|████▊ | 180211/371472 [3:27:25<16:04:41, 3.30it/s] 49%|████▊ | 180212/371472 [3:27:26<16:02:26, 3.31it/s] 49%|████▊ | 180213/371472 [3:27:26<16:03:52, 3.31it/s] 49%|████▊ | 180214/371472 [3:27:26<16:50:58, 3.15it/s] 49%|████▊ | 180215/371472 [3:27:27<16:25:52, 3.23it/s] 49%|████▊ | 180216/371472 [3:27:27<15:57:36, 3.33it/s] 49%|████▊ | 180217/371472 [3:27:27<16:14:55, 3.27it/s] 49%|████▊ | 180218/371472 [3:27:27<16:01:47, 3.31it/s] 49%|████▊ | 180219/371472 [3:27:28<16:20:56, 3.25it/s] 49%|████▊ | 180220/371472 [3:27:28<16:26:03, 3.23it/s] {'loss': 2.8148, 'learning_rate': 5.636137387144734e-07, 'epoch': 7.76} + 49%|████▊ | 180220/371472 [3:27:28<16:26:03, 3.23it/s] 49%|████▊ | 180221/371472 [3:27:28<16:23:26, 3.24it/s] 49%|████▊ | 180222/371472 [3:27:29<16:12:01, 3.28it/s] 49%|████▊ | 180223/371472 [3:27:29<16:01:51, 3.31it/s] 49%|████▊ | 180224/371472 [3:27:29<16:03:50, 3.31it/s] 49%|████▊ | 180225/371472 [3:27:30<15:35:44, 3.41it/s] 49%|████▊ | 180226/371472 [3:27:30<15:39:32, 3.39it/s] 49%|████▊ | 180227/371472 [3:27:30<15:28:04, 3.43it/s] 49%|████▊ | 180228/371472 [3:27:30<15:54:26, 3.34it/s] 49%|████▊ | 180229/371472 [3:27:31<15:48:20, 3.36it/s] 49%|████▊ | 180230/371472 [3:27:31<15:41:29, 3.39it/s] 49%|████▊ | 180231/371472 [3:27:31<15:38:54, 3.39it/s] 49%|████▊ | 180232/371472 [3:27:32<16:23:58, 3.24it/s] 49%|████▊ | 180233/371472 [3:27:32<15:58:22, 3.33it/s] 49%|████▊ | 180234/371472 [3:27:32<15:56:04, 3.33it/s] 49%|████▊ | 180235/371472 [3:27:33<16:04:55, 3.30it/s] 49%|████▊ | 180236/371472 [3:27:33<16:09:40, 3.29it/s] 49%|████▊ | 180237/371472 [3:27:33<15:49:54, 3.36it/s] 49%|████▊ | 180238/371472 [3:27:33<15:39:54, 3.39it/s] 49%|████▊ | 180239/371472 [3:27:34<16:15:30, 3.27it/s] 49%|████▊ | 180240/371472 [3:27:34<15:44:11, 3.38it/s] {'loss': 2.9797, 'learning_rate': 5.635652567389946e-07, 'epoch': 7.76} + 49%|████▊ | 180240/371472 [3:27:34<15:44:11, 3.38it/s] 49%|████▊ | 180241/371472 [3:27:34<15:28:59, 3.43it/s] 49%|████▊ | 180242/371472 [3:27:35<15:19:48, 3.47it/s] 49%|████▊ | 180243/371472 [3:27:35<15:56:15, 3.33it/s] 49%|████▊ | 180244/371472 [3:27:35<16:19:11, 3.25it/s] 49%|████▊ | 180245/371472 [3:27:36<15:59:49, 3.32it/s] 49%|████▊ | 180246/371472 [3:27:36<16:05:20, 3.30it/s] 49%|████▊ | 180247/371472 [3:27:36<15:50:13, 3.35it/s] 49%|████▊ | 180248/371472 [3:27:36<15:46:08, 3.37it/s] 49%|████▊ | 180249/371472 [3:27:37<16:03:07, 3.31it/s] 49%|████▊ | 180250/371472 [3:27:37<15:49:58, 3.35it/s] 49%|████▊ | 180251/371472 [3:27:37<16:10:36, 3.28it/s] 49%|████▊ | 180252/371472 [3:27:38<15:47:12, 3.36it/s] 49%|████▊ | 180253/371472 [3:27:38<16:16:38, 3.26it/s] 49%|████▊ | 180254/371472 [3:27:38<16:00:16, 3.32it/s] 49%|████▊ | 180255/371472 [3:27:39<15:51:09, 3.35it/s] 49%|████▊ | 180256/371472 [3:27:39<15:47:15, 3.36it/s] 49%|████▊ | 180257/371472 [3:27:39<15:41:43, 3.38it/s] 49%|████▊ | 180258/371472 [3:27:39<15:49:34, 3.36it/s] 49%|████▊ | 180259/371472 [3:27:40<16:22:27, 3.24it/s] 49%|████▊ | 180260/371472 [3:27:40<16:28:32, 3.22it/s] {'loss': 2.9068, 'learning_rate': 5.635167747635158e-07, 'epoch': 7.76} + 49%|████▊ | 180260/371472 [3:27:40<16:28:32, 3.22it/s] 49%|████▊ | 180261/371472 [3:27:40<16:31:44, 3.21it/s] 49%|████▊ | 180262/371472 [3:27:41<16:29:00, 3.22it/s] 49%|████▊ | 180263/371472 [3:27:41<16:37:01, 3.20it/s] 49%|████▊ | 180264/371472 [3:27:41<16:19:42, 3.25it/s] 49%|████▊ | 180265/371472 [3:27:42<15:32:07, 3.42it/s] 49%|████▊ | 180266/371472 [3:27:42<15:34:42, 3.41it/s] 49%|████▊ | 180267/371472 [3:27:42<15:34:08, 3.41it/s] 49%|████▊ | 180268/371472 [3:27:42<15:59:11, 3.32it/s] 49%|████▊ | 180269/371472 [3:27:43<15:54:57, 3.34it/s] 49%|████▊ | 180270/371472 [3:27:43<15:44:06, 3.38it/s] 49%|████▊ | 180271/371472 [3:27:43<15:32:00, 3.42it/s] 49%|████▊ | 180272/371472 [3:27:44<16:23:22, 3.24it/s] 49%|████▊ | 180273/371472 [3:27:44<15:52:47, 3.34it/s] 49%|████▊ | 180274/371472 [3:27:44<15:31:55, 3.42it/s] 49%|████▊ | 180275/371472 [3:27:45<15:35:18, 3.41it/s] 49%|████▊ | 180276/371472 [3:27:45<15:52:42, 3.34it/s] 49%|████▊ | 180277/371472 [3:27:45<15:47:50, 3.36it/s] 49%|████▊ | 180278/371472 [3:27:45<15:31:30, 3.42it/s] 49%|████▊ | 180279/371472 [3:27:46<15:23:10, 3.45it/s] 49%|████▊ | 180280/371472 [3:27:46<15:46:10, 3.37it/s] {'loss': 3.0076, 'learning_rate': 5.634682927880368e-07, 'epoch': 7.76} + 49%|████▊ | 180280/371472 [3:27:46<15:46:10, 3.37it/s] 49%|████▊ | 180281/371472 [3:27:46<17:31:26, 3.03it/s] 49%|████▊ | 180282/371472 [3:27:47<16:43:37, 3.17it/s] 49%|████▊ | 180283/371472 [3:27:47<16:19:35, 3.25it/s] 49%|████▊ | 180284/371472 [3:27:47<16:24:28, 3.24it/s] 49%|████▊ | 180285/371472 [3:27:48<16:28:58, 3.22it/s] 49%|████▊ | 180286/371472 [3:27:48<16:20:30, 3.25it/s] 49%|████▊ | 180287/371472 [3:27:48<16:11:16, 3.28it/s] 49%|████▊ | 180288/371472 [3:27:49<16:21:12, 3.25it/s] 49%|████▊ | 180289/371472 [3:27:49<16:40:43, 3.18it/s] 49%|████▊ | 180290/371472 [3:27:49<16:06:07, 3.30it/s] 49%|████▊ | 180291/371472 [3:27:49<15:37:34, 3.40it/s] 49%|████▊ | 180292/371472 [3:27:50<15:15:53, 3.48it/s] 49%|████▊ | 180293/371472 [3:27:50<15:13:29, 3.49it/s] 49%|████▊ | 180294/371472 [3:27:50<15:06:23, 3.52it/s] 49%|████▊ | 180295/371472 [3:27:51<16:30:37, 3.22it/s] 49%|████▊ | 180296/371472 [3:27:51<16:11:49, 3.28it/s] 49%|████▊ | 180297/371472 [3:27:51<15:40:49, 3.39it/s] 49%|████▊ | 180298/371472 [3:27:51<15:22:20, 3.45it/s] 49%|████▊ | 180299/371472 [3:27:52<15:04:22, 3.52it/s] 49%|████▊ | 180300/371472 [3:27:52<16:14:55, 3.27it/s] {'loss': 2.8068, 'learning_rate': 5.634198108125579e-07, 'epoch': 7.77} + 49%|████▊ | 180300/371472 [3:27:52<16:14:55, 3.27it/s] 49%|████▊ | 180301/371472 [3:27:52<15:50:20, 3.35it/s] 49%|████▊ | 180302/371472 [3:27:53<16:19:29, 3.25it/s] 49%|████▊ | 180303/371472 [3:27:53<15:59:34, 3.32it/s] 49%|████▊ | 180304/371472 [3:27:53<15:47:48, 3.36it/s] 49%|████▊ | 180305/371472 [3:27:54<15:57:50, 3.33it/s] 49%|████▊ | 180306/371472 [3:27:54<15:30:33, 3.42it/s] 49%|████▊ | 180307/371472 [3:27:54<16:28:52, 3.22it/s] 49%|████▊ | 180308/371472 [3:27:55<16:19:26, 3.25it/s] 49%|████▊ | 180309/371472 [3:27:55<16:16:56, 3.26it/s] 49%|████▊ | 180310/371472 [3:27:55<15:56:01, 3.33it/s] 49%|████▊ | 180311/371472 [3:27:55<15:38:16, 3.40it/s] 49%|████▊ | 180312/371472 [3:27:56<15:35:51, 3.40it/s] 49%|████▊ | 180313/371472 [3:27:56<17:47:16, 2.99it/s] 49%|████▊ | 180314/371472 [3:27:56<17:05:17, 3.11it/s] 49%|████▊ | 180315/371472 [3:27:57<16:38:32, 3.19it/s] 49%|████▊ | 180316/371472 [3:27:57<16:03:02, 3.31it/s] 49%|████▊ | 180317/371472 [3:27:57<16:05:32, 3.30it/s] 49%|████▊ | 180318/371472 [3:27:58<16:35:20, 3.20it/s] 49%|████▊ | 180319/371472 [3:27:58<17:58:28, 2.95it/s] 49%|████▊ | 180320/371472 [3:27:58<16:53:46, 3.14it/s] {'loss': 2.8989, 'learning_rate': 5.63371328837079e-07, 'epoch': 7.77} + 49%|████▊ | 180320/371472 [3:27:58<16:53:46, 3.14it/s] 49%|████▊ | 180321/371472 [3:27:59<17:37:42, 3.01it/s] 49%|████▊ | 180322/371472 [3:27:59<17:52:19, 2.97it/s] 49%|████▊ | 180323/371472 [3:27:59<17:03:52, 3.11it/s] 49%|████▊ | 180324/371472 [3:28:00<17:07:26, 3.10it/s] 49%|████▊ | 180325/371472 [3:28:00<17:40:01, 3.01it/s] 49%|████▊ | 180326/371472 [3:28:00<16:56:45, 3.13it/s] 49%|████▊ | 180327/371472 [3:28:01<16:26:43, 3.23it/s] 49%|████▊ | 180328/371472 [3:28:01<16:24:14, 3.24it/s] 49%|████▊ | 180329/371472 [3:28:01<16:31:20, 3.21it/s] 49%|████▊ | 180330/371472 [3:28:01<16:22:02, 3.24it/s] 49%|████▊ | 180331/371472 [3:28:02<16:08:42, 3.29it/s] 49%|████▊ | 180332/371472 [3:28:02<15:47:58, 3.36it/s] 49%|████▊ | 180333/371472 [3:28:02<16:25:36, 3.23it/s] 49%|████▊ | 180334/371472 [3:28:03<15:49:16, 3.36it/s] 49%|████▊ | 180335/371472 [3:28:03<15:34:35, 3.41it/s] 49%|████▊ | 180336/371472 [3:28:03<15:31:30, 3.42it/s] 49%|████▊ | 180337/371472 [3:28:04<16:14:46, 3.27it/s] 49%|████▊ | 180338/371472 [3:28:04<15:50:19, 3.35it/s] 49%|████▊ | 180339/371472 [3:28:04<15:52:05, 3.35it/s] 49%|████▊ | 180340/371472 [3:28:04<15:51:37, 3.35it/s] {'loss': 2.8423, 'learning_rate': 5.633228468616002e-07, 'epoch': 7.77} + 49%|████▊ | 180340/371472 [3:28:04<15:51:37, 3.35it/s] 49%|████▊ | 180341/371472 [3:28:05<15:46:03, 3.37it/s] 49%|████▊ | 180342/371472 [3:28:05<15:36:19, 3.40it/s] 49%|████▊ | 180343/371472 [3:28:05<15:39:50, 3.39it/s] 49%|████▊ | 180344/371472 [3:28:06<15:39:53, 3.39it/s] 49%|████▊ | 180345/371472 [3:28:06<16:02:39, 3.31it/s] 49%|████▊ | 180346/371472 [3:28:06<16:02:39, 3.31it/s] 49%|████▊ | 180347/371472 [3:28:07<15:31:39, 3.42it/s] 49%|████▊ | 180348/371472 [3:28:07<15:15:47, 3.48it/s] 49%|████▊ | 180349/371472 [3:28:07<15:22:11, 3.45it/s] 49%|████▊ | 180350/371472 [3:28:07<15:45:20, 3.37it/s] 49%|████▊ | 180351/371472 [3:28:08<15:39:29, 3.39it/s] 49%|████▊ | 180352/371472 [3:28:08<16:01:48, 3.31it/s] 49%|████▊ | 180353/371472 [3:28:08<16:35:18, 3.20it/s] 49%|████▊ | 180354/371472 [3:28:09<16:15:31, 3.27it/s] 49%|████▊ | 180355/371472 [3:28:09<16:03:31, 3.31it/s] 49%|████▊ | 180356/371472 [3:28:09<15:51:16, 3.35it/s] 49%|████▊ | 180357/371472 [3:28:10<17:09:49, 3.09it/s] 49%|████▊ | 180358/371472 [3:28:10<17:10:35, 3.09it/s] 49%|████▊ | 180359/371472 [3:28:10<17:11:42, 3.09it/s] 49%|████▊ | 180360/371472 [3:28:11<16:27:44, 3.22it/s] {'loss': 2.9327, 'learning_rate': 5.632743648861212e-07, 'epoch': 7.77} + 49%|████▊ | 180360/371472 [3:28:11<16:27:44, 3.22it/s] 49%|████▊ | 180361/371472 [3:28:11<16:35:02, 3.20it/s] 49%|████▊ | 180362/371472 [3:28:11<16:51:54, 3.15it/s] 49%|████▊ | 180363/371472 [3:28:11<16:50:14, 3.15it/s] 49%|████▊ | 180364/371472 [3:28:12<16:20:50, 3.25it/s] 49%|████▊ | 180365/371472 [3:28:12<16:07:02, 3.29it/s] 49%|████▊ | 180366/371472 [3:28:12<17:18:20, 3.07it/s] 49%|████▊ | 180367/371472 [3:28:13<16:48:02, 3.16it/s] 49%|████▊ | 180368/371472 [3:28:13<16:10:20, 3.28it/s] 49%|████▊ | 180369/371472 [3:28:13<16:51:57, 3.15it/s] 49%|████▊ | 180370/371472 [3:28:14<17:11:22, 3.09it/s] 49%|████▊ | 180371/371472 [3:28:14<17:09:19, 3.09it/s] 49%|████▊ | 180372/371472 [3:28:14<16:41:06, 3.18it/s] 49%|████▊ | 180373/371472 [3:28:15<16:24:06, 3.24it/s] 49%|████▊ | 180374/371472 [3:28:15<16:31:06, 3.21it/s] 49%|████▊ | 180375/371472 [3:28:15<16:10:32, 3.28it/s] 49%|████▊ | 180376/371472 [3:28:16<15:45:29, 3.37it/s] 49%|████▊ | 180377/371472 [3:28:16<15:31:49, 3.42it/s] 49%|████▊ | 180378/371472 [3:28:16<15:23:25, 3.45it/s] 49%|████▊ | 180379/371472 [3:28:16<15:49:56, 3.35it/s] 49%|████▊ | 180380/371472 [3:28:17<16:01:25, 3.31it/s] {'loss': 2.829, 'learning_rate': 5.632258829106423e-07, 'epoch': 7.77} + 49%|████▊ | 180380/371472 [3:28:17<16:01:25, 3.31it/s] 49%|████▊ | 180381/371472 [3:28:17<17:07:40, 3.10it/s] 49%|████▊ | 180382/371472 [3:28:17<17:16:05, 3.07it/s] 49%|████▊ | 180383/371472 [3:28:18<16:49:53, 3.15it/s] 49%|████▊ | 180384/371472 [3:28:18<17:20:20, 3.06it/s] 49%|████▊ | 180385/371472 [3:28:18<16:26:31, 3.23it/s] 49%|████▊ | 180386/371472 [3:28:19<16:25:55, 3.23it/s] 49%|████▊ | 180387/371472 [3:28:19<15:59:09, 3.32it/s] 49%|████▊ | 180388/371472 [3:28:19<15:55:07, 3.33it/s] 49%|████▊ | 180389/371472 [3:28:19<15:36:27, 3.40it/s] 49%|████▊ | 180390/371472 [3:28:20<15:27:22, 3.43it/s] 49%|████▊ | 180391/371472 [3:28:20<15:31:34, 3.42it/s] 49%|████▊ | 180392/371472 [3:28:20<15:29:36, 3.43it/s] 49%|████▊ | 180393/371472 [3:28:21<15:33:15, 3.41it/s] 49%|████▊ | 180394/371472 [3:28:21<15:28:13, 3.43it/s] 49%|████▊ | 180395/371472 [3:28:21<15:10:01, 3.50it/s] 49%|████▊ | 180396/371472 [3:28:22<15:37:09, 3.40it/s] 49%|████▊ | 180397/371472 [3:28:22<15:25:01, 3.44it/s] 49%|████▊ | 180398/371472 [3:28:22<15:18:48, 3.47it/s] 49%|████▊ | 180399/371472 [3:28:22<15:07:35, 3.51it/s] 49%|████▊ | 180400/371472 [3:28:23<15:03:15, 3.53it/s] {'loss': 2.7907, 'learning_rate': 5.631774009351635e-07, 'epoch': 7.77} + 49%|████▊ | 180400/371472 [3:28:23<15:03:15, 3.53it/s] 49%|████▊ | 180401/371472 [3:28:23<15:30:18, 3.42it/s] 49%|████▊ | 180402/371472 [3:28:23<15:39:16, 3.39it/s] 49%|████▊ | 180403/371472 [3:28:24<15:26:35, 3.44it/s] 49%|████▊ | 180404/371472 [3:28:24<15:25:04, 3.44it/s] 49%|████▊ | 180405/371472 [3:28:24<15:25:03, 3.44it/s] 49%|████▊ | 180406/371472 [3:28:24<16:08:15, 3.29it/s] 49%|████▊ | 180407/371472 [3:28:25<16:06:44, 3.29it/s] 49%|████▊ | 180408/371472 [3:28:25<15:45:34, 3.37it/s] 49%|████▊ | 180409/371472 [3:28:25<15:41:36, 3.38it/s] 49%|████▊ | 180410/371472 [3:28:26<15:30:29, 3.42it/s] 49%|████▊ | 180411/371472 [3:28:26<16:44:10, 3.17it/s] 49%|████▊ | 180412/371472 [3:28:26<17:01:12, 3.12it/s] 49%|████▊ | 180413/371472 [3:28:27<16:08:05, 3.29it/s] 49%|████▊ | 180414/371472 [3:28:27<16:06:44, 3.29it/s] 49%|████▊ | 180415/371472 [3:28:27<16:11:27, 3.28it/s] 49%|████▊ | 180416/371472 [3:28:28<16:49:53, 3.15it/s] 49%|████▊ | 180417/371472 [3:28:28<16:10:54, 3.28it/s] 49%|████▊ | 180418/371472 [3:28:28<16:38:21, 3.19it/s] 49%|████▊ | 180419/371472 [3:28:28<15:48:36, 3.36it/s] 49%|████▊ | 180420/371472 [3:28:29<15:41:21, 3.38it/s] {'loss': 2.9406, 'learning_rate': 5.631289189596846e-07, 'epoch': 7.77} + 49%|████▊ | 180420/371472 [3:28:29<15:41:21, 3.38it/s] 49%|████▊ | 180421/371472 [3:28:29<15:33:38, 3.41it/s] 49%|████▊ | 180422/371472 [3:28:29<15:21:16, 3.46it/s] 49%|████▊ | 180423/371472 [3:28:30<15:04:32, 3.52it/s] 49%|████▊ | 180424/371472 [3:28:30<15:09:55, 3.50it/s] 49%|████▊ | 180425/371472 [3:28:30<15:19:11, 3.46it/s] 49%|████▊ | 180426/371472 [3:28:30<15:15:54, 3.48it/s] 49%|████▊ | 180427/371472 [3:28:31<15:21:29, 3.46it/s] 49%|████▊ | 180428/371472 [3:28:31<15:05:03, 3.52it/s] 49%|████▊ | 180429/371472 [3:28:31<14:46:07, 3.59it/s] 49%|████▊ | 180430/371472 [3:28:32<15:10:04, 3.50it/s] 49%|████▊ | 180431/371472 [3:28:32<16:01:40, 3.31it/s] 49%|████▊ | 180432/371472 [3:28:32<16:08:10, 3.29it/s] 49%|████▊ | 180433/371472 [3:28:33<16:08:13, 3.29it/s] 49%|████▊ | 180434/371472 [3:28:33<15:43:06, 3.38it/s] 49%|████▊ | 180435/371472 [3:28:33<15:44:51, 3.37it/s] 49%|████▊ | 180436/371472 [3:28:33<15:26:06, 3.44it/s] 49%|████▊ | 180437/371472 [3:28:34<16:38:41, 3.19it/s] 49%|████▊ | 180438/371472 [3:28:34<16:12:03, 3.28it/s] 49%|████▊ | 180439/371472 [3:28:34<17:31:10, 3.03it/s] 49%|████▊ | 180440/371472 [3:28:35<16:37:42, 3.19it/s] {'loss': 3.106, 'learning_rate': 5.630804369842056e-07, 'epoch': 7.77} + 49%|████▊ | 180440/371472 [3:28:35<16:37:42, 3.19it/s] 49%|████▊ | 180441/371472 [3:28:35<16:37:55, 3.19it/s] 49%|████▊ | 180442/371472 [3:28:35<16:49:04, 3.16it/s] 49%|████▊ | 180443/371472 [3:28:36<17:09:48, 3.09it/s] 49%|████▊ | 180444/371472 [3:28:36<17:39:25, 3.01it/s] 49%|████▊ | 180445/371472 [3:28:36<17:01:28, 3.12it/s] 49%|████▊ | 180446/371472 [3:28:37<16:52:03, 3.15it/s] 49%|████▊ | 180447/371472 [3:28:37<16:18:10, 3.25it/s] 49%|████▊ | 180448/371472 [3:28:37<15:57:18, 3.33it/s] 49%|████▊ | 180449/371472 [3:28:38<17:19:27, 3.06it/s] 49%|████▊ | 180450/371472 [3:28:38<17:49:44, 2.98it/s] 49%|████▊ | 180451/371472 [3:28:38<16:58:07, 3.13it/s] 49%|████▊ | 180452/371472 [3:28:38<16:19:33, 3.25it/s] 49%|████▊ | 180453/371472 [3:28:39<16:00:38, 3.31it/s] 49%|████▊ | 180454/371472 [3:28:39<16:52:36, 3.14it/s] 49%|████▊ | 180455/371472 [3:28:39<16:21:16, 3.24it/s] 49%|████▊ | 180456/371472 [3:28:40<16:25:54, 3.23it/s] 49%|████▊ | 180457/371472 [3:28:40<16:40:15, 3.18it/s] 49%|████▊ | 180458/371472 [3:28:40<16:46:35, 3.16it/s] 49%|████▊ | 180459/371472 [3:28:41<16:23:57, 3.24it/s] 49%|████▊ | 180460/371472 [3:28:41<16:53:02, 3.14it/s] {'loss': 2.7992, 'learning_rate': 5.630319550087267e-07, 'epoch': 7.77} + 49%|████▊ | 180460/371472 [3:28:41<16:53:02, 3.14it/s] 49%|████▊ | 180461/371472 [3:28:41<16:20:02, 3.25it/s] 49%|████▊ | 180462/371472 [3:28:42<15:59:50, 3.32it/s] 49%|████▊ | 180463/371472 [3:28:42<15:54:58, 3.33it/s] 49%|████▊ | 180464/371472 [3:28:42<16:30:35, 3.21it/s] 49%|████▊ | 180465/371472 [3:28:43<16:56:33, 3.13it/s] 49%|████▊ | 180466/371472 [3:28:43<16:53:15, 3.14it/s] 49%|████▊ | 180467/371472 [3:28:43<16:12:12, 3.27it/s] 49%|████▊ | 180468/371472 [3:28:43<16:17:48, 3.26it/s] 49%|████▊ | 180469/371472 [3:28:44<15:52:01, 3.34it/s] 49%|████▊ | 180470/371472 [3:28:44<16:34:05, 3.20it/s] 49%|████▊ | 180471/371472 [3:28:44<17:10:18, 3.09it/s] 49%|████▊ | 180472/371472 [3:28:45<16:59:21, 3.12it/s] 49%|████▊ | 180473/371472 [3:28:45<17:20:52, 3.06it/s] 49%|████▊ | 180474/371472 [3:28:45<16:40:52, 3.18it/s] 49%|████▊ | 180475/371472 [3:28:46<16:10:44, 3.28it/s] 49%|████▊ | 180476/371472 [3:28:46<16:28:42, 3.22it/s] 49%|████▊ | 180477/371472 [3:28:46<16:03:03, 3.31it/s] 49%|████▊ | 180478/371472 [3:28:47<15:55:42, 3.33it/s] 49%|████▊ | 180479/371472 [3:28:47<16:00:11, 3.32it/s] 49%|████▊ | 180480/371472 [3:28:47<16:04:32, 3.30it/s] {'loss': 2.9508, 'learning_rate': 5.629834730332479e-07, 'epoch': 7.77} + 49%|████▊ | 180480/371472 [3:28:47<16:04:32, 3.30it/s] 49%|████▊ | 180481/371472 [3:28:47<15:57:57, 3.32it/s] 49%|████▊ | 180482/371472 [3:28:48<15:33:02, 3.41it/s] 49%|████▊ | 180483/371472 [3:28:48<15:41:55, 3.38it/s] 49%|████▊ | 180484/371472 [3:28:48<15:46:03, 3.36it/s] 49%|████▊ | 180485/371472 [3:28:49<15:25:24, 3.44it/s] 49%|████▊ | 180486/371472 [3:28:49<15:18:11, 3.47it/s] 49%|████▊ | 180487/371472 [3:28:49<14:57:42, 3.55it/s] 49%|████▊ | 180488/371472 [3:28:49<15:14:45, 3.48it/s] 49%|████▊ | 180489/371472 [3:28:50<15:28:19, 3.43it/s] 49%|████▊ | 180490/371472 [3:28:50<16:45:43, 3.16it/s] 49%|████▊ | 180491/371472 [3:28:50<16:33:09, 3.20it/s] 49%|████▊ | 180492/371472 [3:28:51<17:17:23, 3.07it/s] 49%|████▊ | 180493/371472 [3:28:51<16:49:45, 3.15it/s] 49%|████▊ | 180494/371472 [3:28:51<16:11:45, 3.28it/s] 49%|████▊ | 180495/371472 [3:28:52<17:44:54, 2.99it/s] 49%|████▊ | 180496/371472 [3:28:52<17:17:16, 3.07it/s] 49%|████▊ | 180497/371472 [3:28:52<17:14:29, 3.08it/s] 49%|████▊ | 180498/371472 [3:28:53<17:04:11, 3.11it/s] 49%|████▊ | 180499/371472 [3:28:53<16:42:12, 3.18it/s] 49%|████▊ | 180500/371472 [3:28:53<17:14:33, 3.08it/s] {'loss': 2.7001, 'learning_rate': 5.629349910577689e-07, 'epoch': 7.77} + 49%|████▊ | 180500/371472 [3:28:53<17:14:33, 3.08it/s] 49%|████▊ | 180501/371472 [3:28:54<17:06:07, 3.10it/s] 49%|████▊ | 180502/371472 [3:28:54<16:38:25, 3.19it/s] 49%|████▊ | 180503/371472 [3:28:54<16:42:00, 3.18it/s] 49%|████▊ | 180504/371472 [3:28:55<17:05:21, 3.10it/s] 49%|████▊ | 180505/371472 [3:28:55<16:14:15, 3.27it/s] 49%|████▊ | 180506/371472 [3:28:55<17:53:28, 2.96it/s] 49%|████▊ | 180507/371472 [3:28:56<17:47:40, 2.98it/s] 49%|████▊ | 180508/371472 [3:28:56<16:56:27, 3.13it/s] 49%|████▊ | 180509/371472 [3:28:56<18:20:01, 2.89it/s] 49%|████▊ | 180510/371472 [3:28:57<17:48:57, 2.98it/s] 49%|████▊ | 180511/371472 [3:28:57<16:49:39, 3.15it/s] 49%|████▊ | 180512/371472 [3:28:57<16:44:01, 3.17it/s] 49%|████▊ | 180513/371472 [3:28:58<16:38:43, 3.19it/s] 49%|████▊ | 180514/371472 [3:28:58<16:26:03, 3.23it/s] 49%|████▊ | 180515/371472 [3:28:58<16:15:07, 3.26it/s] 49%|████▊ | 180516/371472 [3:28:58<16:07:32, 3.29it/s] 49%|████▊ | 180517/371472 [3:28:59<15:42:16, 3.38it/s] 49%|████▊ | 180518/371472 [3:28:59<15:45:26, 3.37it/s] 49%|████▊ | 180519/371472 [3:28:59<15:50:06, 3.35it/s] 49%|████▊ | 180520/371472 [3:29:00<16:05:00, 3.30it/s] {'loss': 2.8058, 'learning_rate': 5.6288650908229e-07, 'epoch': 7.78} + 49%|████▊ | 180520/371472 [3:29:00<16:05:00, 3.30it/s] 49%|████▊ | 180521/371472 [3:29:00<15:35:46, 3.40it/s] 49%|████▊ | 180522/371472 [3:29:00<15:31:49, 3.42it/s] 49%|████▊ | 180523/371472 [3:29:00<15:41:55, 3.38it/s] 49%|████▊ | 180524/371472 [3:29:01<15:46:11, 3.36it/s] 49%|████▊ | 180525/371472 [3:29:01<15:42:18, 3.38it/s] 49%|████▊ | 180526/371472 [3:29:01<15:50:00, 3.35it/s] 49%|████▊ | 180527/371472 [3:29:02<15:41:50, 3.38it/s] 49%|████▊ | 180528/371472 [3:29:02<15:22:15, 3.45it/s] 49%|████▊ | 180529/371472 [3:29:02<15:18:19, 3.47it/s] 49%|████▊ | 180530/371472 [3:29:03<15:36:24, 3.40it/s] 49%|████▊ | 180531/371472 [3:29:03<15:33:36, 3.41it/s] 49%|████▊ | 180532/371472 [3:29:03<15:42:37, 3.38it/s] 49%|████▊ | 180533/371472 [3:29:03<15:30:59, 3.42it/s] 49%|████▊ | 180534/371472 [3:29:04<15:42:39, 3.38it/s] 49%|████▊ | 180535/371472 [3:29:04<16:13:55, 3.27it/s] 49%|████▊ | 180536/371472 [3:29:04<15:53:26, 3.34it/s] 49%|████▊ | 180537/371472 [3:29:05<20:30:17, 2.59it/s] 49%|████▊ | 180538/371472 [3:29:05<18:40:18, 2.84it/s] 49%|████▊ | 180539/371472 [3:29:05<17:32:14, 3.02it/s] 49%|████▊ | 180540/371472 [3:29:06<18:14:25, 2.91it/s] {'loss': 2.9045, 'learning_rate': 5.628380271068112e-07, 'epoch': 7.78} + 49%|████▊ | 180540/371472 [3:29:06<18:14:25, 2.91it/s] 49%|████▊ | 180541/371472 [3:29:06<17:32:27, 3.02it/s] 49%|████▊ | 180542/371472 [3:29:06<16:42:18, 3.17it/s] 49%|████▊ | 180543/371472 [3:29:07<16:53:36, 3.14it/s] 49%|████▊ | 180544/371472 [3:29:07<16:43:30, 3.17it/s] 49%|████▊ | 180545/371472 [3:29:08<19:27:43, 2.73it/s] 49%|████▊ | 180546/371472 [3:29:08<18:11:32, 2.92it/s] 49%|████▊ | 180547/371472 [3:29:08<17:46:24, 2.98it/s] 49%|████▊ | 180548/371472 [3:29:08<17:22:08, 3.05it/s] 49%|████▊ | 180549/371472 [3:29:09<16:24:51, 3.23it/s] 49%|████▊ | 180550/371472 [3:29:09<16:07:02, 3.29it/s] 49%|████▊ | 180551/371472 [3:29:09<15:54:22, 3.33it/s] 49%|████▊ | 180552/371472 [3:29:10<16:45:42, 3.16it/s] 49%|████▊ | 180553/371472 [3:29:10<17:01:24, 3.12it/s] 49%|████▊ | 180554/371472 [3:29:10<16:46:24, 3.16it/s] 49%|████▊ | 180555/371472 [3:29:11<16:49:04, 3.15it/s] 49%|████▊ | 180556/371472 [3:29:11<16:11:13, 3.28it/s] 49%|████▊ | 180557/371472 [3:29:11<16:12:32, 3.27it/s] 49%|████▊ | 180558/371472 [3:29:12<15:55:35, 3.33it/s] 49%|████▊ | 180559/371472 [3:29:12<16:07:19, 3.29it/s] 49%|████▊ | 180560/371472 [3:29:12<16:39:49, 3.18it/s] {'loss': 2.8204, 'learning_rate': 5.627895451313323e-07, 'epoch': 7.78} + 49%|████▊ | 180560/371472 [3:29:12<16:39:49, 3.18it/s] 49%|████▊ | 180561/371472 [3:29:12<16:14:10, 3.27it/s] 49%|████▊ | 180562/371472 [3:29:13<16:46:46, 3.16it/s] 49%|████▊ | 180563/371472 [3:29:13<16:08:45, 3.28it/s] 49%|████▊ | 180564/371472 [3:29:13<15:47:35, 3.36it/s] 49%|████▊ | 180565/371472 [3:29:14<15:35:47, 3.40it/s] 49%|████▊ | 180566/371472 [3:29:14<16:45:35, 3.16it/s] 49%|████▊ | 180567/371472 [3:29:14<16:45:59, 3.16it/s] 49%|████▊ | 180568/371472 [3:29:15<16:33:42, 3.20it/s] 49%|████▊ | 180569/371472 [3:29:15<16:10:40, 3.28it/s] 49%|████▊ | 180570/371472 [3:29:15<17:26:06, 3.04it/s] 49%|████▊ | 180571/371472 [3:29:16<17:15:55, 3.07it/s] 49%|████▊ | 180572/371472 [3:29:16<16:51:22, 3.15it/s] 49%|████▊ | 180573/371472 [3:29:16<16:25:42, 3.23it/s] 49%|████▊ | 180574/371472 [3:29:16<16:13:04, 3.27it/s] 49%|████▊ | 180575/371472 [3:29:17<15:52:27, 3.34it/s] 49%|████▊ | 180576/371472 [3:29:17<15:50:47, 3.35it/s] 49%|████▊ | 180577/371472 [3:29:17<16:52:12, 3.14it/s] 49%|████▊ | 180578/371472 [3:29:18<16:21:41, 3.24it/s] 49%|████▊ | 180579/371472 [3:29:18<16:08:51, 3.28it/s] 49%|████▊ | 180580/371472 [3:29:18<16:05:14, 3.30it/s] {'loss': 2.8089, 'learning_rate': 5.627410631558533e-07, 'epoch': 7.78} + 49%|████▊ | 180580/371472 [3:29:18<16:05:14, 3.30it/s] 49%|████▊ | 180581/371472 [3:29:19<16:09:05, 3.28it/s] 49%|████▊ | 180582/371472 [3:29:19<16:28:27, 3.22it/s] 49%|████▊ | 180583/371472 [3:29:19<16:39:33, 3.18it/s] 49%|████▊ | 180584/371472 [3:29:20<16:35:52, 3.19it/s] 49%|████▊ | 180585/371472 [3:29:20<16:17:26, 3.25it/s] 49%|████▊ | 180586/371472 [3:29:20<17:19:23, 3.06it/s] 49%|████▊ | 180587/371472 [3:29:21<16:43:58, 3.17it/s] 49%|████▊ | 180588/371472 [3:29:21<16:33:02, 3.20it/s] 49%|████▊ | 180589/371472 [3:29:21<16:50:33, 3.15it/s] 49%|████▊ | 180590/371472 [3:29:21<16:28:35, 3.22it/s] 49%|████▊ | 180591/371472 [3:29:22<16:12:51, 3.27it/s] 49%|████▊ | 180592/371472 [3:29:22<17:08:05, 3.09it/s] 49%|████▊ | 180593/371472 [3:29:22<16:27:48, 3.22it/s] 49%|████▊ | 180594/371472 [3:29:23<16:12:57, 3.27it/s] 49%|████▊ | 180595/371472 [3:29:23<16:03:42, 3.30it/s] 49%|████▊ | 180596/371472 [3:29:23<15:57:06, 3.32it/s] 49%|████▊ | 180597/371472 [3:29:24<16:14:10, 3.27it/s] 49%|████▊ | 180598/371472 [3:29:24<17:17:23, 3.07it/s] 49%|████▊ | 180599/371472 [3:29:24<16:33:52, 3.20it/s] 49%|████▊ | 180600/371472 [3:29:25<16:34:23, 3.20it/s] {'loss': 2.8198, 'learning_rate': 5.626925811803744e-07, 'epoch': 7.78} + 49%|████▊ | 180600/371472 [3:29:25<16:34:23, 3.20it/s] 49%|████▊ | 180601/371472 [3:29:25<16:15:56, 3.26it/s] 49%|████▊ | 180602/371472 [3:29:25<16:11:08, 3.28it/s] 49%|████▊ | 180603/371472 [3:29:25<16:16:16, 3.26it/s] 49%|████▊ | 180604/371472 [3:29:26<16:05:15, 3.30it/s] 49%|████▊ | 180605/371472 [3:29:26<16:00:09, 3.31it/s] 49%|████▊ | 180606/371472 [3:29:26<16:09:19, 3.28it/s] 49%|████▊ | 180607/371472 [3:29:27<16:03:16, 3.30it/s] 49%|████▊ | 180608/371472 [3:29:27<15:54:09, 3.33it/s] 49%|████▊ | 180609/371472 [3:29:27<16:17:02, 3.26it/s] 49%|████▊ | 180610/371472 [3:29:28<16:37:51, 3.19it/s] 49%|████▊ | 180611/371472 [3:29:28<16:06:25, 3.29it/s] 49%|████▊ | 180612/371472 [3:29:28<16:12:03, 3.27it/s] 49%|████▊ | 180613/371472 [3:29:29<15:51:31, 3.34it/s] 49%|████▊ | 180614/371472 [3:29:29<16:29:16, 3.22it/s] 49%|████▊ | 180615/371472 [3:29:29<16:12:42, 3.27it/s] 49%|████▊ | 180616/371472 [3:29:29<15:45:37, 3.36it/s] 49%|████▊ | 180617/371472 [3:29:30<17:04:26, 3.11it/s] 49%|████▊ | 180618/371472 [3:29:30<16:32:23, 3.21it/s] 49%|████▊ | 180619/371472 [3:29:30<16:51:24, 3.14it/s] 49%|████▊ | 180620/371472 [3:29:31<16:59:52, 3.12it/s] {'loss': 2.9812, 'learning_rate': 5.626440992048955e-07, 'epoch': 7.78} + 49%|████▊ | 180620/371472 [3:29:31<16:59:52, 3.12it/s] 49%|████▊ | 180621/371472 [3:29:31<16:55:33, 3.13it/s] 49%|████▊ | 180622/371472 [3:29:31<16:24:36, 3.23it/s] 49%|████▊ | 180623/371472 [3:29:32<16:18:48, 3.25it/s] 49%|████▊ | 180624/371472 [3:29:32<16:52:13, 3.14it/s] 49%|████▊ | 180625/371472 [3:29:32<16:41:12, 3.18it/s] 49%|████▊ | 180626/371472 [3:29:33<17:10:41, 3.09it/s] 49%|████▊ | 180627/371472 [3:29:33<16:59:38, 3.12it/s] 49%|████▊ | 180628/371472 [3:29:33<16:21:10, 3.24it/s] 49%|████▊ | 180629/371472 [3:29:34<15:56:08, 3.33it/s] 49%|████▊ | 180630/371472 [3:29:34<15:30:48, 3.42it/s] 49%|████▊ | 180631/371472 [3:29:34<15:36:45, 3.40it/s] 49%|████▊ | 180632/371472 [3:29:34<15:36:49, 3.40it/s] 49%|████▊ | 180633/371472 [3:29:35<15:36:58, 3.39it/s] 49%|████▊ | 180634/371472 [3:29:35<15:37:04, 3.39it/s] 49%|████▊ | 180635/371472 [3:29:35<15:56:32, 3.33it/s] 49%|████▊ | 180636/371472 [3:29:36<16:00:06, 3.31it/s] 49%|████▊ | 180637/371472 [3:29:36<15:38:08, 3.39it/s] 49%|████▊ | 180638/371472 [3:29:36<15:48:23, 3.35it/s] 49%|████▊ | 180639/371472 [3:29:36<15:53:09, 3.34it/s] 49%|████▊ | 180640/371472 [3:29:37<15:58:58, 3.32it/s] {'loss': 2.797, 'learning_rate': 5.625956172294168e-07, 'epoch': 7.78} + 49%|████▊ | 180640/371472 [3:29:37<15:58:58, 3.32it/s] 49%|████▊ | 180641/371472 [3:29:37<16:26:33, 3.22it/s] 49%|████▊ | 180642/371472 [3:29:37<16:38:31, 3.19it/s] 49%|████▊ | 180643/371472 [3:29:38<16:37:48, 3.19it/s] 49%|████▊ | 180644/371472 [3:29:38<17:35:32, 3.01it/s] 49%|████▊ | 180645/371472 [3:29:38<17:01:35, 3.11it/s] 49%|████▊ | 180646/371472 [3:29:39<16:32:16, 3.21it/s] 49%|████▊ | 180647/371472 [3:29:39<16:01:51, 3.31it/s] 49%|████▊ | 180648/371472 [3:29:39<15:46:45, 3.36it/s] 49%|████▊ | 180649/371472 [3:29:40<15:50:59, 3.34it/s] 49%|████▊ | 180650/371472 [3:29:40<15:30:55, 3.42it/s] 49%|████▊ | 180651/371472 [3:29:40<15:59:32, 3.31it/s] 49%|████▊ | 180652/371472 [3:29:40<15:49:02, 3.35it/s] 49%|████▊ | 180653/371472 [3:29:41<15:46:13, 3.36it/s] 49%|████▊ | 180654/371472 [3:29:41<16:12:21, 3.27it/s] 49%|████▊ | 180655/371472 [3:29:41<15:58:40, 3.32it/s] 49%|████▊ | 180656/371472 [3:29:42<15:45:43, 3.36it/s] 49%|████▊ | 180657/371472 [3:29:42<17:19:38, 3.06it/s] 49%|████▊ | 180658/371472 [3:29:42<16:24:17, 3.23it/s] 49%|████▊ | 180659/371472 [3:29:43<15:55:14, 3.33it/s] 49%|████▊ | 180660/371472 [3:29:43<18:28:13, 2.87it/s] {'loss': 2.7257, 'learning_rate': 5.625471352539378e-07, 'epoch': 7.78} + 49%|████▊ | 180660/371472 [3:29:43<18:28:13, 2.87it/s] 49%|████▊ | 180661/371472 [3:29:43<17:14:35, 3.07it/s] 49%|████▊ | 180662/371472 [3:29:44<16:26:50, 3.22it/s] 49%|████▊ | 180663/371472 [3:29:44<16:36:17, 3.19it/s] 49%|████▊ | 180664/371472 [3:29:44<16:05:19, 3.29it/s] 49%|████▊ | 180665/371472 [3:29:45<16:49:31, 3.15it/s] 49%|████▊ | 180666/371472 [3:29:45<16:35:20, 3.19it/s] 49%|████▊ | 180667/371472 [3:29:45<15:58:47, 3.32it/s] 49%|████▊ | 180668/371472 [3:29:45<16:34:37, 3.20it/s] 49%|████▊ | 180669/371472 [3:29:46<16:32:10, 3.21it/s] 49%|████▊ | 180670/371472 [3:29:46<16:13:05, 3.27it/s] 49%|████▊ | 180671/371472 [3:29:46<15:38:22, 3.39it/s] 49%|████▊ | 180672/371472 [3:29:47<15:50:11, 3.35it/s] 49%|████▊ | 180673/371472 [3:29:47<15:26:17, 3.43it/s] 49%|████▊ | 180674/371472 [3:29:47<15:39:24, 3.39it/s] 49%|████▊ | 180675/371472 [3:29:48<15:52:45, 3.34it/s] 49%|████▊ | 180676/371472 [3:29:48<15:45:50, 3.36it/s] 49%|████▊ | 180677/371472 [3:29:48<15:55:20, 3.33it/s] 49%|████▊ | 180678/371472 [3:29:48<15:41:46, 3.38it/s] 49%|████▊ | 180679/371472 [3:29:49<15:27:10, 3.43it/s] 49%|████▊ | 180680/371472 [3:29:49<15:55:03, 3.33it/s] {'loss': 3.0094, 'learning_rate': 5.624986532784589e-07, 'epoch': 7.78} + 49%|████▊ | 180680/371472 [3:29:49<15:55:03, 3.33it/s] 49%|████▊ | 180681/371472 [3:29:49<16:54:40, 3.13it/s] 49%|████▊ | 180682/371472 [3:29:50<17:05:03, 3.10it/s] 49%|████▊ | 180683/371472 [3:29:50<16:49:38, 3.15it/s] 49%|████▊ | 180684/371472 [3:29:50<16:12:51, 3.27it/s] 49%|████▊ | 180685/371472 [3:29:51<15:44:56, 3.37it/s] 49%|████▊ | 180686/371472 [3:29:51<15:38:40, 3.39it/s] 49%|████▊ | 180687/371472 [3:29:51<16:07:08, 3.29it/s] 49%|████▊ | 180688/371472 [3:29:52<16:19:17, 3.25it/s] 49%|████▊ | 180689/371472 [3:29:52<16:22:18, 3.24it/s] 49%|████▊ | 180690/371472 [3:29:52<16:11:29, 3.27it/s] 49%|████▊ | 180691/371472 [3:29:52<15:55:17, 3.33it/s] 49%|████▊ | 180692/371472 [3:29:53<15:37:52, 3.39it/s] 49%|████▊ | 180693/371472 [3:29:53<15:30:48, 3.42it/s] 49%|████▊ | 180694/371472 [3:29:53<15:55:47, 3.33it/s] 49%|████▊ | 180695/371472 [3:29:54<16:19:39, 3.25it/s] 49%|████▊ | 180696/371472 [3:29:54<16:12:48, 3.27it/s] 49%|████▊ | 180697/371472 [3:29:54<16:03:50, 3.30it/s] 49%|████▊ | 180698/371472 [3:29:55<15:48:24, 3.35it/s] 49%|████▊ | 180699/371472 [3:29:55<15:39:05, 3.39it/s] 49%|████▊ | 180700/371472 [3:29:55<15:48:59, 3.35it/s] {'loss': 2.7618, 'learning_rate': 5.6245017130298e-07, 'epoch': 7.78} + 49%|████▊ | 180700/371472 [3:29:55<15:48:59, 3.35it/s] 49%|████▊ | 180701/371472 [3:29:55<15:55:38, 3.33it/s] 49%|████▊ | 180702/371472 [3:29:56<16:17:38, 3.25it/s] 49%|████▊ | 180703/371472 [3:29:56<15:58:14, 3.32it/s] 49%|████▊ | 180704/371472 [3:29:56<16:05:25, 3.29it/s] 49%|████▊ | 180705/371472 [3:29:57<17:22:55, 3.05it/s] 49%|████▊ | 180706/371472 [3:29:57<16:47:40, 3.16it/s] 49%|████▊ | 180707/371472 [3:29:57<17:23:16, 3.05it/s] 49%|████▊ | 180708/371472 [3:29:58<16:51:47, 3.14it/s] 49%|████▊ | 180709/371472 [3:29:58<16:06:25, 3.29it/s] 49%|████▊ | 180710/371472 [3:29:58<16:03:40, 3.30it/s] 49%|████▊ | 180711/371472 [3:29:59<16:22:37, 3.24it/s] 49%|████▊ | 180712/371472 [3:29:59<16:19:17, 3.25it/s] 49%|████▊ | 180713/371472 [3:29:59<16:13:12, 3.27it/s] 49%|████▊ | 180714/371472 [3:29:59<15:45:14, 3.36it/s] 49%|████▊ | 180715/371472 [3:30:00<16:14:56, 3.26it/s] 49%|████▊ | 180716/371472 [3:30:00<15:42:51, 3.37it/s] 49%|████▊ | 180717/371472 [3:30:00<15:38:24, 3.39it/s] 49%|████▊ | 180718/371472 [3:30:01<16:19:43, 3.25it/s] 49%|████▊ | 180719/371472 [3:30:01<16:00:21, 3.31it/s] 49%|████▊ | 180720/371472 [3:30:01<15:27:05, 3.43it/s] {'loss': 2.8389, 'learning_rate': 5.624016893275013e-07, 'epoch': 7.78} + 49%|████▊ | 180720/371472 [3:30:01<15:27:05, 3.43it/s] 49%|████▊ | 180721/371472 [3:30:02<15:07:13, 3.50it/s] 49%|████▊ | 180722/371472 [3:30:02<15:08:54, 3.50it/s] 49%|████▊ | 180723/371472 [3:30:02<16:54:51, 3.13it/s] 49%|████▊ | 180724/371472 [3:30:02<16:34:43, 3.20it/s] 49%|████▊ | 180725/371472 [3:30:03<16:13:23, 3.27it/s] 49%|████▊ | 180726/371472 [3:30:03<17:31:18, 3.02it/s] 49%|████▊ | 180727/371472 [3:30:04<17:44:04, 2.99it/s] 49%|████▊ | 180728/371472 [3:30:04<17:16:29, 3.07it/s] 49%|████▊ | 180729/371472 [3:30:04<17:03:00, 3.11it/s] 49%|████▊ | 180730/371472 [3:30:04<16:17:57, 3.25it/s] 49%|████▊ | 180731/371472 [3:30:05<16:16:59, 3.25it/s] 49%|████▊ | 180732/371472 [3:30:05<15:59:24, 3.31it/s] 49%|████▊ | 180733/371472 [3:30:05<15:29:18, 3.42it/s] 49%|████▊ | 180734/371472 [3:30:06<16:15:02, 3.26it/s] 49%|████▊ | 180735/371472 [3:30:06<15:42:14, 3.37it/s] 49%|████▊ | 180736/371472 [3:30:06<15:28:27, 3.42it/s] 49%|██��█▊ | 180737/371472 [3:30:06<15:27:49, 3.43it/s] 49%|████▊ | 180738/371472 [3:30:07<16:39:54, 3.18it/s] 49%|████▊ | 180739/371472 [3:30:07<17:17:19, 3.06it/s] 49%|████▊ | 180740/371472 [3:30:08<17:28:07, 3.03it/s] {'loss': 2.7675, 'learning_rate': 5.623532073520222e-07, 'epoch': 7.78} + 49%|████▊ | 180740/371472 [3:30:08<17:28:07, 3.03it/s] 49%|████▊ | 180741/371472 [3:30:08<17:16:14, 3.07it/s] 49%|████▊ | 180742/371472 [3:30:08<16:38:00, 3.19it/s] 49%|████▊ | 180743/371472 [3:30:08<16:19:38, 3.24it/s] 49%|████▊ | 180744/371472 [3:30:09<16:34:49, 3.20it/s] 49%|████▊ | 180745/371472 [3:30:09<15:48:47, 3.35it/s] 49%|████▊ | 180746/371472 [3:30:09<15:23:04, 3.44it/s] 49%|████▊ | 180747/371472 [3:30:10<15:36:48, 3.39it/s] 49%|████▊ | 180748/371472 [3:30:10<16:45:54, 3.16it/s] 49%|████▊ | 180749/371472 [3:30:10<16:30:50, 3.21it/s] 49%|████▊ | 180750/371472 [3:30:11<16:18:36, 3.25it/s] 49%|████▊ | 180751/371472 [3:30:11<16:02:46, 3.30it/s] 49%|████▊ | 180752/371472 [3:30:11<15:56:01, 3.32it/s] 49%|████▊ | 180753/371472 [3:30:11<15:35:57, 3.40it/s] 49%|████▊ | 180754/371472 [3:30:12<15:45:38, 3.36it/s] 49%|████▊ | 180755/371472 [3:30:12<15:39:16, 3.38it/s] 49%|████▊ | 180756/371472 [3:30:12<16:08:43, 3.28it/s] 49%|████▊ | 180757/371472 [3:30:13<15:33:55, 3.40it/s] 49%|████▊ | 180758/371472 [3:30:13<15:40:26, 3.38it/s] 49%|████▊ | 180759/371472 [3:30:13<16:06:05, 3.29it/s] 49%|████▊ | 180760/371472 [3:30:14<15:41:37, 3.38it/s] {'loss': 2.8425, 'learning_rate': 5.623047253765433e-07, 'epoch': 7.79} + 49%|████▊ | 180760/371472 [3:30:14<15:41:37, 3.38it/s] 49%|████▊ | 180761/371472 [3:30:14<15:34:40, 3.40it/s] 49%|████▊ | 180762/371472 [3:30:14<15:35:48, 3.40it/s] 49%|████▊ | 180763/371472 [3:30:14<15:40:41, 3.38it/s] 49%|████▊ | 180764/371472 [3:30:15<15:40:59, 3.38it/s] 49%|████▊ | 180765/371472 [3:30:15<15:50:10, 3.35it/s] 49%|████▊ | 180766/371472 [3:30:15<16:09:41, 3.28it/s] 49%|████▊ | 180767/371472 [3:30:16<16:12:52, 3.27it/s] 49%|████▊ | 180768/371472 [3:30:16<15:59:40, 3.31it/s] 49%|████▊ | 180769/371472 [3:30:16<16:21:58, 3.24it/s] 49%|████▊ | 180770/371472 [3:30:17<16:15:23, 3.26it/s] 49%|████▊ | 180771/371472 [3:30:17<16:10:38, 3.27it/s] 49%|████▊ | 180772/371472 [3:30:17<16:14:57, 3.26it/s] 49%|████▊ | 180773/371472 [3:30:17<16:32:41, 3.20it/s] 49%|████▊ | 180774/371472 [3:30:18<18:05:01, 2.93it/s] 49%|████▊ | 180775/371472 [3:30:18<17:12:42, 3.08it/s] 49%|████▊ | 180776/371472 [3:30:18<16:54:04, 3.13it/s] 49%|████▊ | 180777/371472 [3:30:19<16:41:19, 3.17it/s] 49%|████▊ | 180778/371472 [3:30:19<16:26:39, 3.22it/s] 49%|████▊ | 180779/371472 [3:30:19<16:38:58, 3.18it/s] 49%|████▊ | 180780/371472 [3:30:20<16:15:00, 3.26it/s] {'loss': 2.9683, 'learning_rate': 5.622562434010645e-07, 'epoch': 7.79} + 49%|████▊ | 180780/371472 [3:30:20<16:15:00, 3.26it/s] 49%|████▊ | 180781/371472 [3:30:20<15:36:07, 3.40it/s] 49%|████▊ | 180782/371472 [3:30:20<15:42:27, 3.37it/s] 49%|████▊ | 180783/371472 [3:30:21<15:47:43, 3.35it/s] 49%|████▊ | 180784/371472 [3:30:21<16:35:37, 3.19it/s] 49%|████▊ | 180785/371472 [3:30:21<16:34:20, 3.20it/s] 49%|████▊ | 180786/371472 [3:30:22<15:55:07, 3.33it/s] 49%|████▊ | 180787/371472 [3:30:22<15:54:18, 3.33it/s] 49%|████▊ | 180788/371472 [3:30:22<15:34:25, 3.40it/s] 49%|████▊ | 180789/371472 [3:30:22<15:50:56, 3.34it/s] 49%|████▊ | 180790/371472 [3:30:23<16:09:53, 3.28it/s] 49%|████▊ | 180791/371472 [3:30:23<16:32:21, 3.20it/s] 49%|████▊ | 180792/371472 [3:30:23<15:58:47, 3.31it/s] 49%|████▊ | 180793/371472 [3:30:24<16:04:01, 3.30it/s] 49%|████▊ | 180794/371472 [3:30:24<16:45:59, 3.16it/s] 49%|████▊ | 180795/371472 [3:30:24<16:49:10, 3.15it/s] 49%|████▊ | 180796/371472 [3:30:25<16:32:31, 3.20it/s] 49%|████▊ | 180797/371472 [3:30:25<16:00:24, 3.31it/s] 49%|████▊ | 180798/371472 [3:30:25<15:35:22, 3.40it/s] 49%|████▊ | 180799/371472 [3:30:25<15:26:15, 3.43it/s] 49%|████▊ | 180800/371472 [3:30:26<16:09:13, 3.28it/s] {'loss': 2.9076, 'learning_rate': 5.622077614255855e-07, 'epoch': 7.79} + 49%|████▊ | 180800/371472 [3:30:26<16:09:13, 3.28it/s] 49%|████▊ | 180801/371472 [3:30:26<15:40:42, 3.38it/s] 49%|████▊ | 180802/371472 [3:30:26<15:58:49, 3.31it/s] 49%|████▊ | 180803/371472 [3:30:27<16:51:56, 3.14it/s] 49%|████▊ | 180804/371472 [3:30:27<16:08:40, 3.28it/s] 49%|████▊ | 180805/371472 [3:30:27<15:48:12, 3.35it/s] 49%|████▊ | 180806/371472 [3:30:28<15:44:21, 3.37it/s] 49%|████▊ | 180807/371472 [3:30:28<15:39:35, 3.38it/s] 49%|████▊ | 180808/371472 [3:30:28<15:36:00, 3.39it/s] 49%|████▊ | 180809/371472 [3:30:28<15:35:50, 3.40it/s] 49%|████▊ | 180810/371472 [3:30:29<15:18:21, 3.46it/s] 49%|████▊ | 180811/371472 [3:30:29<15:32:58, 3.41it/s] 49%|████▊ | 180812/371472 [3:30:29<15:25:16, 3.43it/s] 49%|████▊ | 180813/371472 [3:30:30<15:30:46, 3.41it/s] 49%|████▊ | 180814/371472 [3:30:30<16:00:55, 3.31it/s] 49%|████▊ | 180815/371472 [3:30:30<16:22:25, 3.23it/s] 49%|████▊ | 180816/371472 [3:30:31<16:42:12, 3.17it/s] 49%|████▊ | 180817/371472 [3:30:31<16:06:28, 3.29it/s] 49%|████▊ | 180818/371472 [3:30:31<19:01:39, 2.78it/s] 49%|████▊ | 180819/371472 [3:30:32<18:05:27, 2.93it/s] 49%|████▊ | 180820/371472 [3:30:32<17:21:43, 3.05it/s] {'loss': 2.9029, 'learning_rate': 5.621592794501066e-07, 'epoch': 7.79} + 49%|████▊ | 180820/371472 [3:30:32<17:21:43, 3.05it/s] 49%|████▊ | 180821/371472 [3:30:32<17:31:41, 3.02it/s] 49%|████▊ | 180822/371472 [3:30:33<17:34:06, 3.01it/s] 49%|████▊ | 180823/371472 [3:30:33<16:49:22, 3.15it/s] 49%|████▊ | 180824/371472 [3:30:33<16:18:11, 3.25it/s] 49%|████▊ | 180825/371472 [3:30:33<16:11:35, 3.27it/s] 49%|████▊ | 180826/371472 [3:30:34<15:59:22, 3.31it/s] 49%|████▊ | 180827/371472 [3:30:34<15:27:37, 3.43it/s] 49%|████▊ | 180828/371472 [3:30:34<15:07:15, 3.50it/s] 49%|████▊ | 180829/371472 [3:30:35<16:04:39, 3.29it/s] 49%|████▊ | 180830/371472 [3:30:35<16:40:44, 3.18it/s] 49%|████▊ | 180831/371472 [3:30:35<16:05:40, 3.29it/s] 49%|████▊ | 180832/371472 [3:30:36<16:09:15, 3.28it/s] 49%|████▊ | 180833/371472 [3:30:36<15:50:41, 3.34it/s] 49%|████▊ | 180834/371472 [3:30:36<15:17:21, 3.46it/s] 49%|████▊ | 180835/371472 [3:30:36<15:18:33, 3.46it/s] 49%|████▊ | 180836/371472 [3:30:37<15:16:54, 3.47it/s] 49%|████▊ | 180837/371472 [3:30:37<15:24:55, 3.44it/s] 49%|████▊ | 180838/371472 [3:30:37<15:36:38, 3.39it/s] 49%|████▊ | 180839/371472 [3:30:38<16:07:00, 3.29it/s] 49%|████▊ | 180840/371472 [3:30:38<16:56:40, 3.13it/s] {'loss': 2.9947, 'learning_rate': 5.621107974746277e-07, 'epoch': 7.79} + 49%|████▊ | 180840/371472 [3:30:38<16:56:40, 3.13it/s] 49%|████▊ | 180841/371472 [3:30:38<16:36:33, 3.19it/s] 49%|████▊ | 180842/371472 [3:30:39<16:26:17, 3.22it/s] 49%|████▊ | 180843/371472 [3:30:39<17:32:07, 3.02it/s] 49%|████▊ | 180844/371472 [3:30:39<17:21:58, 3.05it/s] 49%|████▊ | 180845/371472 [3:30:40<16:46:25, 3.16it/s] 49%|████▊ | 180846/371472 [3:30:40<16:27:11, 3.22it/s] 49%|████▊ | 180847/371472 [3:30:40<16:10:37, 3.27it/s] 49%|████▊ | 180848/371472 [3:30:40<16:07:20, 3.28it/s] 49%|████▊ | 180849/371472 [3:30:41<16:22:04, 3.24it/s] 49%|████▊ | 180850/371472 [3:30:41<16:01:44, 3.30it/s] 49%|████▊ | 180851/371472 [3:30:41<15:42:06, 3.37it/s] 49%|████▊ | 180852/371472 [3:30:42<15:37:12, 3.39it/s] 49%|████▊ | 180853/371472 [3:30:42<15:11:18, 3.49it/s] 49%|████▊ | 180854/371472 [3:30:42<15:14:44, 3.47it/s] 49%|████▊ | 180855/371472 [3:30:43<16:10:39, 3.27it/s] 49%|████▊ | 180856/371472 [3:30:43<15:33:39, 3.40it/s] 49%|████▊ | 180857/371472 [3:30:43<16:24:42, 3.23it/s] 49%|████▊ | 180858/371472 [3:30:43<16:13:06, 3.26it/s] 49%|████▊ | 180859/371472 [3:30:44<16:03:59, 3.30it/s] 49%|████▊ | 180860/371472 [3:30:44<15:26:56, 3.43it/s] {'loss': 2.9691, 'learning_rate': 5.620623154991489e-07, 'epoch': 7.79} + 49%|████▊ | 180860/371472 [3:30:44<15:26:56, 3.43it/s] 49%|��███▊ | 180861/371472 [3:30:44<15:12:09, 3.48it/s] 49%|████▊ | 180862/371472 [3:30:45<15:01:11, 3.53it/s] 49%|████▊ | 180863/371472 [3:30:45<15:12:44, 3.48it/s] 49%|████▊ | 180864/371472 [3:30:45<15:18:18, 3.46it/s] 49%|████▊ | 180865/371472 [3:30:46<16:08:27, 3.28it/s] 49%|████▊ | 180866/371472 [3:30:46<16:20:26, 3.24it/s] 49%|████▊ | 180867/371472 [3:30:46<16:00:58, 3.31it/s] 49%|████▊ | 180868/371472 [3:30:46<15:35:13, 3.40it/s] 49%|████▊ | 180869/371472 [3:30:47<16:10:44, 3.27it/s] 49%|████▊ | 180870/371472 [3:30:47<17:45:09, 2.98it/s] 49%|████▊ | 180871/371472 [3:30:47<17:29:33, 3.03it/s] 49%|████▊ | 180872/371472 [3:30:48<16:46:44, 3.16it/s] 49%|████▊ | 180873/371472 [3:30:48<17:54:11, 2.96it/s] 49%|████▊ | 180874/371472 [3:30:48<17:16:05, 3.07it/s] 49%|████▊ | 180875/371472 [3:30:49<17:11:55, 3.08it/s] 49%|████▊ | 180876/371472 [3:30:49<16:36:34, 3.19it/s] 49%|████▊ | 180877/371472 [3:30:49<16:31:04, 3.21it/s] 49%|████▊ | 180878/371472 [3:30:50<16:04:03, 3.29it/s] 49%|████▊ | 180879/371472 [3:30:50<15:40:52, 3.38it/s] 49%|████▊ | 180880/371472 [3:30:50<15:28:52, 3.42it/s] {'loss': 3.0655, 'learning_rate': 5.6201383352367e-07, 'epoch': 7.79} + 49%|████▊ | 180880/371472 [3:30:50<15:28:52, 3.42it/s] 49%|████▊ | 180881/371472 [3:30:51<16:03:02, 3.30it/s] 49%|████▊ | 180882/371472 [3:30:51<16:10:42, 3.27it/s] 49%|████▊ | 180883/371472 [3:30:51<16:28:41, 3.21it/s] 49%|████▊ | 180884/371472 [3:30:51<16:19:57, 3.24it/s] 49%|████▊ | 180885/371472 [3:30:52<16:11:56, 3.27it/s] 49%|████▊ | 180886/371472 [3:30:52<16:12:31, 3.27it/s] 49%|████▊ | 180887/371472 [3:30:52<15:31:13, 3.41it/s] 49%|████▊ | 180888/371472 [3:30:53<15:25:19, 3.43it/s] 49%|████▊ | 180889/371472 [3:30:53<15:17:13, 3.46it/s] 49%|████▊ | 180890/371472 [3:30:53<16:09:49, 3.28it/s] 49%|████▊ | 180891/371472 [3:30:54<15:57:25, 3.32it/s] 49%|████▊ | 180892/371472 [3:30:54<16:20:13, 3.24it/s] 49%|████▊ | 180893/371472 [3:30:54<15:47:42, 3.35it/s] 49%|████▊ | 180894/371472 [3:30:54<15:11:18, 3.49it/s] 49%|████▊ | 180895/371472 [3:30:55<15:03:36, 3.52it/s] 49%|████▊ | 180896/371472 [3:30:55<15:44:14, 3.36it/s] 49%|████▊ | 180897/371472 [3:30:55<15:50:53, 3.34it/s] 49%|████▊ | 180898/371472 [3:30:56<15:22:59, 3.44it/s] 49%|████▊ | 180899/371472 [3:30:56<15:25:48, 3.43it/s] 49%|████▊ | 180900/371472 [3:30:56<15:35:30, 3.40it/s] {'loss': 2.7746, 'learning_rate': 5.619653515481911e-07, 'epoch': 7.79} + 49%|████▊ | 180900/371472 [3:30:56<15:35:30, 3.40it/s] 49%|████▊ | 180901/371472 [3:30:56<15:49:15, 3.35it/s] 49%|████▊ | 180902/371472 [3:30:57<15:40:57, 3.38it/s] 49%|████▊ | 180903/371472 [3:30:57<15:56:36, 3.32it/s] 49%|████▊ | 180904/371472 [3:30:57<15:36:37, 3.39it/s] 49%|████▊ | 180905/371472 [3:30:58<15:38:09, 3.39it/s] 49%|████▊ | 180906/371472 [3:30:58<15:41:41, 3.37it/s] 49%|████▊ | 180907/371472 [3:30:58<16:29:25, 3.21it/s] 49%|████▊ | 180908/371472 [3:30:59<16:17:40, 3.25it/s] 49%|████▊ | 180909/371472 [3:30:59<16:11:07, 3.27it/s] 49%|████▊ | 180910/371472 [3:30:59<16:02:52, 3.30it/s] 49%|████▊ | 180911/371472 [3:31:00<15:57:06, 3.32it/s] 49%|████▊ | 180912/371472 [3:31:00<16:18:58, 3.24it/s] 49%|████▊ | 180913/371472 [3:31:00<16:04:56, 3.29it/s] 49%|████▊ | 180914/371472 [3:31:00<15:39:02, 3.38it/s] 49%|████▊ | 180915/371472 [3:31:01<16:53:12, 3.13it/s] 49%|████▊ | 180916/371472 [3:31:01<17:35:41, 3.01it/s] 49%|████▊ | 180917/371472 [3:31:01<16:58:36, 3.12it/s] 49%|████▊ | 180918/371472 [3:31:02<17:29:02, 3.03it/s] 49%|████▊ | 180919/371472 [3:31:02<16:41:00, 3.17it/s] 49%|████▊ | 180920/371472 [3:31:02<16:26:44, 3.22it/s] {'loss': 2.8569, 'learning_rate': 5.619168695727122e-07, 'epoch': 7.79} + 49%|████▊ | 180920/371472 [3:31:02<16:26:44, 3.22it/s] 49%|████▊ | 180921/371472 [3:31:03<16:03:06, 3.30it/s] 49%|████▊ | 180922/371472 [3:31:03<15:51:53, 3.34it/s] 49%|████▊ | 180923/371472 [3:31:03<15:26:20, 3.43it/s] 49%|████▊ | 180924/371472 [3:31:04<15:16:21, 3.47it/s] 49%|████▊ | 180925/371472 [3:31:04<15:29:16, 3.42it/s] 49%|████▊ | 180926/371472 [3:31:04<15:41:28, 3.37it/s] 49%|████▊ | 180927/371472 [3:31:04<15:36:40, 3.39it/s] 49%|████▊ | 180928/371472 [3:31:05<15:40:10, 3.38it/s] 49%|████▊ | 180929/371472 [3:31:05<16:15:16, 3.26it/s] 49%|████▊ | 180930/371472 [3:31:05<16:36:10, 3.19it/s] 49%|████▊ | 180931/371472 [3:31:06<17:22:56, 3.04it/s] 49%|████▊ | 180932/371472 [3:31:06<17:14:48, 3.07it/s] 49%|████▊ | 180933/371472 [3:31:06<16:40:39, 3.17it/s] 49%|████▊ | 180934/371472 [3:31:07<17:38:10, 3.00it/s] 49%|████▊ | 180935/371472 [3:31:07<17:48:48, 2.97it/s] 49%|████▊ | 180936/371472 [3:31:07<19:11:10, 2.76it/s] 49%|████▊ | 180937/371472 [3:31:08<19:48:56, 2.67it/s] 49%|████▊ | 180938/371472 [3:31:08<19:22:38, 2.73it/s] 49%|████▊ | 180939/371472 [3:31:09<18:12:52, 2.91it/s] 49%|████▊ | 180940/371472 [3:31:09<17:33:35, 3.01it/s] {'loss': 2.8128, 'learning_rate': 5.618683875972333e-07, 'epoch': 7.79} + 49%|████▊ | 180940/371472 [3:31:09<17:33:35, 3.01it/s] 49%|████▊ | 180941/371472 [3:31:09<16:53:56, 3.13it/s] 49%|████▊ | 180942/371472 [3:31:09<16:11:50, 3.27it/s] 49%|████▊ | 180943/371472 [3:31:10<16:04:40, 3.29it/s] 49%|████▊ | 180944/371472 [3:31:10<16:12:16, 3.27it/s] 49%|████▊ | 180945/371472 [3:31:10<16:06:32, 3.29it/s] 49%|████▊ | 180946/371472 [3:31:11<16:35:25, 3.19it/s] 49%|████▊ | 180947/371472 [3:31:11<16:18:56, 3.24it/s] 49%|████▊ | 180948/371472 [3:31:11<15:54:09, 3.33it/s] 49%|████▊ | 180949/371472 [3:31:12<16:02:21, 3.30it/s] 49%|████▊ | 180950/371472 [3:31:12<16:06:20, 3.29it/s] 49%|████▊ | 180951/371472 [3:31:12<16:08:46, 3.28it/s] 49%|████▊ | 180952/371472 [3:31:12<15:54:32, 3.33it/s] 49%|████▊ | 180953/371472 [3:31:13<16:25:34, 3.22it/s] 49%|████▊ | 180954/371472 [3:31:13<15:56:00, 3.32it/s] 49%|████▊ | 180955/371472 [3:31:13<15:46:24, 3.36it/s] 49%|████▊ | 180956/371472 [3:31:14<16:01:27, 3.30it/s] 49%|████▊ | 180957/371472 [3:31:14<16:03:47, 3.29it/s] 49%|████▊ | 180958/371472 [3:31:14<15:41:10, 3.37it/s] 49%|████▊ | 180959/371472 [3:31:15<16:14:17, 3.26it/s] 49%|████▊ | 180960/371472 [3:31:15<16:01:43, 3.30it/s] {'loss': 2.9037, 'learning_rate': 5.618199056217543e-07, 'epoch': 7.79} + 49%|████▊ | 180960/371472 [3:31:15<16:01:43, 3.30it/s] 49%|████▊ | 180961/371472 [3:31:15<16:01:30, 3.30it/s] 49%|████▊ | 180962/371472 [3:31:15<15:52:02, 3.34it/s] 49%|████▊ | 180963/371472 [3:31:16<15:53:32, 3.33it/s] 49%|████▊ | 180964/371472 [3:31:16<16:32:02, 3.20it/s] 49%|████▊ | 180965/371472 [3:31:16<16:20:29, 3.24it/s] 49%|████▊ | 180966/371472 [3:31:17<17:01:18, 3.11it/s] 49%|████▊ | 180967/371472 [3:31:17<16:29:28, 3.21it/s] 49%|████▊ | 180968/371472 [3:31:17<16:16:34, 3.25it/s] 49%|████▊ | 180969/371472 [3:31:18<16:31:42, 3.20it/s] 49%|████▊ | 180970/371472 [3:31:18<16:16:20, 3.25it/s] 49%|████▊ | 180971/371472 [3:31:18<16:44:23, 3.16it/s] 49%|████▊ | 180972/371472 [3:31:19<16:31:00, 3.20it/s] 49%|████▊ | 180973/371472 [3:31:19<15:47:26, 3.35it/s] 49%|████▊ | 180974/371472 [3:31:19<15:37:09, 3.39it/s] 49%|████▊ | 180975/371472 [3:31:19<15:54:08, 3.33it/s] 49%|████▊ | 180976/371472 [3:31:20<15:56:56, 3.32it/s] 49%|████▊ | 180977/371472 [3:31:20<16:02:35, 3.30it/s] 49%|████▊ | 180978/371472 [3:31:20<16:18:36, 3.24it/s] 49%|████▊ | 180979/371472 [3:31:21<17:43:03, 2.99it/s] 49%|████▊ | 180980/371472 [3:31:21<17:05:12, 3.10it/s] {'loss': 2.7566, 'learning_rate': 5.617714236462754e-07, 'epoch': 7.8} + 49%|████▊ | 180980/371472 [3:31:21<17:05:12, 3.10it/s] 49%|████▊ | 180981/371472 [3:31:21<16:24:37, 3.22it/s] 49%|████▊ | 180982/371472 [3:31:22<16:22:38, 3.23it/s] 49%|████▊ | 180983/371472 [3:31:22<16:56:02, 3.12it/s] 49%|████▊ | 180984/371472 [3:31:22<16:17:25, 3.25it/s] 49%|████▊ | 180985/371472 [3:31:23<15:49:45, 3.34it/s] 49%|████▊ | 180986/371472 [3:31:23<15:31:26, 3.41it/s] 49%|████▊ | 180987/371472 [3:31:23<15:58:36, 3.31it/s] 49%|████▊ | 180988/371472 [3:31:24<16:46:32, 3.15it/s] 49%|████▊ | 180989/371472 [3:31:24<16:16:25, 3.25it/s] 49%|████▊ | 180990/371472 [3:31:24<15:44:18, 3.36it/s] 49%|████▊ | 180991/371472 [3:31:24<15:39:57, 3.38it/s] 49%|████▊ | 180992/371472 [3:31:25<15:39:57, 3.38it/s] 49%|████▊ | 180993/371472 [3:31:25<15:12:05, 3.48it/s] 49%|████▊ | 180994/371472 [3:31:25<15:28:07, 3.42it/s] 49%|████▊ | 180995/371472 [3:31:26<15:36:23, 3.39it/s] 49%|████▊ | 180996/371472 [3:31:26<15:15:23, 3.47it/s] 49%|████▊ | 180997/371472 [3:31:26<15:04:18, 3.51it/s] 49%|████▊ | 180998/371472 [3:31:26<14:57:41, 3.54it/s] 49%|████▊ | 180999/371472 [3:31:27<14:59:12, 3.53it/s] 49%|████▊ | 181000/371472 [3:31:27<15:06:17, 3.50it/s] {'loss': 2.8804, 'learning_rate': 5.617229416707966e-07, 'epoch': 7.8} + 49%|████▊ | 181000/371472 [3:31:27<15:06:17, 3.50it/s] 49%|████▊ | 181001/371472 [3:31:27<15:14:24, 3.47it/s] 49%|████▊ | 181002/371472 [3:31:28<15:21:32, 3.44it/s] 49%|████▊ | 181003/371472 [3:31:28<15:14:47, 3.47it/s] 49%|████▊ | 181004/371472 [3:31:28<15:43:13, 3.37it/s] 49%|████▊ | 181005/371472 [3:31:28<15:41:14, 3.37it/s] 49%|████▊ | 181006/371472 [3:31:29<16:12:13, 3.27it/s] 49%|████▊ | 181007/371472 [3:31:29<17:28:15, 3.03it/s] 49%|████▊ | 181008/371472 [3:31:29<16:58:35, 3.12it/s] 49%|████▊ | 181009/371472 [3:31:30<16:40:43, 3.17it/s] 49%|████▊ | 181010/371472 [3:31:30<17:50:33, 2.97it/s] 49%|████▊ | 181011/371472 [3:31:30<17:31:22, 3.02it/s] 49%|████▊ | 181012/371472 [3:31:31<16:57:57, 3.12it/s] 49%|████▊ | 181013/371472 [3:31:31<16:33:46, 3.19it/s] 49%|████▊ | 181014/371472 [3:31:31<18:12:38, 2.91it/s] 49%|████▊ | 181015/371472 [3:31:32<17:24:07, 3.04it/s] 49%|████▊ | 181016/371472 [3:31:32<16:47:42, 3.15it/s] 49%|████▊ | 181017/371472 [3:31:32<16:26:44, 3.22it/s] 49%|████▊ | 181018/371472 [3:31:33<15:58:45, 3.31it/s] 49%|████▊ | 181019/371472 [3:31:33<17:05:04, 3.10it/s] 49%|████▊ | 181020/371472 [3:31:33<16:51:52, 3.14it/s] {'loss': 2.7942, 'learning_rate': 5.616744596953178e-07, 'epoch': 7.8} + 49%|████▊ | 181020/371472 [3:31:33<16:51:52, 3.14it/s] 49%|████▊ | 181021/371472 [3:31:34<16:38:13, 3.18it/s] 49%|████▊ | 181022/371472 [3:31:34<16:07:15, 3.28it/s] 49%|████▊ | 181023/371472 [3:31:34<16:33:37, 3.19it/s] 49%|████▊ | 181024/371472 [3:31:35<16:23:07, 3.23it/s] 49%|████▊ | 181025/371472 [3:31:35<16:21:28, 3.23it/s] 49%|████▊ | 181026/371472 [3:31:35<15:49:28, 3.34it/s] 49%|████▊ | 181027/371472 [3:31:35<15:42:59, 3.37it/s] 49%|████▊ | 181028/371472 [3:31:36<16:09:03, 3.28it/s] 49%|████▊ | 181029/371472 [3:31:36<15:50:03, 3.34it/s] 49%|████▊ | 181030/371472 [3:31:36<16:10:01, 3.27it/s] 49%|████▊ | 181031/371472 [3:31:37<16:26:40, 3.22it/s] 49%|████▊ | 181032/371472 [3:31:37<15:56:58, 3.32it/s] 49%|████▊ | 181033/371472 [3:31:37<15:25:13, 3.43it/s] 49%|████▊ | 181034/371472 [3:31:38<15:55:41, 3.32it/s] 49%|████▊ | 181035/371472 [3:31:38<18:07:39, 2.92it/s] 49%|████▊ | 181036/371472 [3:31:38<17:28:49, 3.03it/s] 49%|████▊ | 181037/371472 [3:31:39<16:54:02, 3.13it/s] 49%|████▊ | 181038/371472 [3:31:39<16:26:07, 3.22it/s] 49%|████▊ | 181039/371472 [3:31:39<16:17:09, 3.25it/s] 49%|████▊ | 181040/371472 [3:31:40<17:09:52, 3.08it/s] {'loss': 2.8969, 'learning_rate': 5.616259777198388e-07, 'epoch': 7.8} + 49%|████▊ | 181040/371472 [3:31:40<17:09:52, 3.08it/s] 49%|████▊ | 181041/371472 [3:31:40<16:47:42, 3.15it/s] 49%|████▊ | 181042/371472 [3:31:40<16:08:46, 3.28it/s] 49%|████▊ | 181043/371472 [3:31:40<15:39:02, 3.38it/s] 49%|████▊ | 181044/371472 [3:31:41<16:00:36, 3.30it/s] 49%|████▊ | 181045/371472 [3:31:41<16:57:00, 3.12it/s] 49%|████▊ | 181046/371472 [3:31:41<17:00:13, 3.11it/s] 49%|████▊ | 181047/371472 [3:31:42<16:43:06, 3.16it/s] 49%|████▊ | 181048/371472 [3:31:42<16:18:38, 3.24it/s] 49%|████▊ | 181049/371472 [3:31:42<15:48:15, 3.35it/s] 49%|████▊ | 181050/371472 [3:31:43<15:22:17, 3.44it/s] 49%|████▊ | 181051/371472 [3:31:43<15:17:42, 3.46it/s] 49%|████▊ | 181052/371472 [3:31:43<16:03:50, 3.29it/s] 49%|████▊ | 181053/371472 [3:31:43<15:33:24, 3.40it/s] 49%|████▊ | 181054/371472 [3:31:44<15:47:21, 3.35it/s] 49%|████▊ | 181055/371472 [3:31:44<15:39:03, 3.38it/s] 49%|████▊ | 181056/371472 [3:31:44<15:55:18, 3.32it/s] 49%|████▊ | 181057/371472 [3:31:45<15:51:15, 3.34it/s] 49%|████▊ | 181058/371472 [3:31:45<15:42:16, 3.37it/s] 49%|████▊ | 181059/371472 [3:31:45<16:07:25, 3.28it/s] 49%|████▊ | 181060/371472 [3:31:46<15:53:22, 3.33it/s] {'loss': 2.9761, 'learning_rate': 5.615774957443599e-07, 'epoch': 7.8} + 49%|████▊ | 181060/371472 [3:31:46<15:53:22, 3.33it/s] 49%|████▊ | 181061/371472 [3:31:46<15:31:52, 3.41it/s] 49%|████▊ | 181062/371472 [3:31:46<15:18:25, 3.46it/s] 49%|████▊ | 181063/371472 [3:31:46<15:21:14, 3.44it/s] 49%|████▊ | 181064/371472 [3:31:47<15:47:12, 3.35it/s] 49%|████▊ | 181065/371472 [3:31:47<15:45:01, 3.36it/s] 49%|████▊ | 181066/371472 [3:31:47<16:08:27, 3.28it/s] 49%|████▊ | 181067/371472 [3:31:48<16:36:40, 3.18it/s] 49%|████▊ | 181068/371472 [3:31:48<16:37:59, 3.18it/s] 49%|████▊ | 181069/371472 [3:31:48<16:44:01, 3.16it/s] 49%|████▊ | 181070/371472 [3:31:49<16:36:18, 3.19it/s] 49%|████▊ | 181071/371472 [3:31:49<17:03:25, 3.10it/s] 49%|████▊ | 181072/371472 [3:31:49<16:34:35, 3.19it/s] 49%|████▊ | 181073/371472 [3:31:49<15:53:54, 3.33it/s] 49%|████▊ | 181074/371472 [3:31:50<16:12:35, 3.26it/s] 49%|████▊ | 181075/371472 [3:31:50<15:39:06, 3.38it/s] 49%|████▊ | 181076/371472 [3:31:50<15:22:32, 3.44it/s] 49%|████▊ | 181077/371472 [3:31:51<16:06:24, 3.28it/s] 49%|████▊ | 181078/371472 [3:31:51<16:25:59, 3.22it/s] 49%|████▊ | 181079/371472 [3:31:51<16:13:30, 3.26it/s] 49%|████▊ | 181080/371472 [3:31:52<16:34:34, 3.19it/s] {'loss': 2.8106, 'learning_rate': 5.61529013768881e-07, 'epoch': 7.8} + 49%|████▊ | 181080/371472 [3:31:52<16:34:34, 3.19it/s] 49%|████▊ | 181081/371472 [3:31:52<16:04:19, 3.29it/s] 49%|████▊ | 181082/371472 [3:31:52<17:03:20, 3.10it/s] 49%|████▊ | 181083/371472 [3:31:53<16:43:56, 3.16it/s] 49%|████▊ | 181084/371472 [3:31:53<16:17:54, 3.24it/s] 49%|████▊ | 181085/371472 [3:31:53<15:55:53, 3.32it/s] 49%|████▊ | 181086/371472 [3:31:53<15:24:18, 3.43it/s] 49%|████▊ | 181087/371472 [3:31:54<15:50:26, 3.34it/s] 49%|████▊ | 181088/371472 [3:31:54<15:36:07, 3.39it/s] 49%|████▊ | 181089/371472 [3:31:54<15:39:34, 3.38it/s] 49%|████▊ | 181090/371472 [3:31:55<16:07:19, 3.28it/s] 49%|████▊ | 181091/371472 [3:31:55<17:24:37, 3.04it/s] 49%|████▊ | 181092/371472 [3:31:55<17:06:24, 3.09it/s] 49%|████▉ | 181093/371472 [3:31:56<16:24:32, 3.22it/s] 49%|████▉ | 181094/371472 [3:31:56<16:00:22, 3.30it/s] 49%|████▉ | 181095/371472 [3:31:56<15:46:36, 3.35it/s] 49%|████▉ | 181096/371472 [3:31:57<15:41:12, 3.37it/s] 49%|████▉ | 181097/371472 [3:31:57<15:45:40, 3.36it/s] 49%|████▉ | 181098/371472 [3:31:57<15:41:47, 3.37it/s] 49%|████▉ | 181099/371472 [3:31:57<15:35:23, 3.39it/s] 49%|████▉ | 181100/371472 [3:31:58<15:43:35, 3.36it/s] {'loss': 3.0037, 'learning_rate': 5.614805317934021e-07, 'epoch': 7.8} + 49%|████▉ | 181100/371472 [3:31:58<15:43:35, 3.36it/s] 49%|████▉ | 181101/371472 [3:31:58<15:55:57, 3.32it/s] 49%|████▉ | 181102/371472 [3:31:58<16:13:11, 3.26it/s] 49%|████▉ | 181103/371472 [3:31:59<16:02:06, 3.30it/s] 49%|████▉ | 181104/371472 [3:31:59<15:48:14, 3.35it/s] 49%|████▉ | 181105/371472 [3:31:59<15:43:37, 3.36it/s] 49%|████▉ | 181106/371472 [3:32:00<15:45:46, 3.35it/s] 49%|████▉ | 181107/371472 [3:32:00<15:34:41, 3.39it/s] 49%|████▉ | 181108/371472 [3:32:00<15:26:42, 3.42it/s] 49%|████▉ | 181109/371472 [3:32:00<15:09:33, 3.49it/s] 49%|████▉ | 181110/371472 [3:32:01<16:14:37, 3.26it/s] 49%|████▉ | 181111/371472 [3:32:01<17:13:49, 3.07it/s] 49%|████▉ | 181112/371472 [3:32:01<16:45:15, 3.16it/s] 49%|████▉ | 181113/371472 [3:32:02<16:10:39, 3.27it/s] 49%|████▉ | 181114/371472 [3:32:02<16:01:10, 3.30it/s] 49%|████▉ | 181115/371472 [3:32:02<15:49:07, 3.34it/s] 49%|████▉ | 181116/371472 [3:32:03<16:12:04, 3.26it/s] 49%|████▉ | 181117/371472 [3:32:03<16:28:24, 3.21it/s] 49%|████▉ | 181118/371472 [3:32:03<16:23:22, 3.23it/s] 49%|████▉ | 181119/371472 [3:32:03<15:52:09, 3.33it/s] 49%|████▉ | 181120/371472 [3:32:04<15:45:43, 3.35it/s] {'loss': 2.9452, 'learning_rate': 5.614320498179232e-07, 'epoch': 7.8} + 49%|████▉ | 181120/371472 [3:32:04<15:45:43, 3.35it/s] 49%|████▉ | 181121/371472 [3:32:04<15:38:32, 3.38it/s] 49%|████▉ | 181122/371472 [3:32:04<15:36:28, 3.39it/s] 49%|████▉ | 181123/371472 [3:32:05<15:36:45, 3.39it/s] 49%|████▉ | 181124/371472 [3:32:05<15:30:56, 3.41it/s] 49%|████▉ | 181125/371472 [3:32:05<16:29:47, 3.21it/s] 49%|████▉ | 181126/371472 [3:32:06<15:47:44, 3.35it/s] 49%|████▉ | 181127/371472 [3:32:06<15:45:01, 3.36it/s] 49%|████▉ | 181128/371472 [3:32:06<15:47:40, 3.35it/s] 49%|████▉ | 181129/371472 [3:32:06<15:38:42, 3.38it/s] 49%|████▉ | 181130/371472 [3:32:07<15:39:47, 3.38it/s] 49%|████▉ | 181131/371472 [3:32:07<15:46:24, 3.35it/s] 49%|████▉ | 181132/371472 [3:32:07<15:40:31, 3.37it/s] 49%|████▉ | 181133/371472 [3:32:08<16:01:45, 3.30it/s] 49%|████▉ | 181134/371472 [3:32:08<15:49:10, 3.34it/s] 49%|████▉ | 181135/371472 [3:32:08<16:10:07, 3.27it/s] 49%|████▉ | 181136/371472 [3:32:09<15:51:59, 3.33it/s] 49%|████▉ | 181137/371472 [3:32:09<15:57:05, 3.31it/s] 49%|████▉ | 181138/371472 [3:32:09<16:21:11, 3.23it/s] 49%|████▉ | 181139/371472 [3:32:10<18:37:40, 2.84it/s] 49%|████▉ | 181140/371472 [3:32:10<17:23:58, 3.04it/s] {'loss': 2.9165, 'learning_rate': 5.613835678424443e-07, 'epoch': 7.8} + 49%|████▉ | 181140/371472 [3:32:10<17:23:58, 3.04it/s] 49%|████▉ | 181141/371472 [3:32:10<17:00:50, 3.11it/s] 49%|████▉ | 181142/371472 [3:32:10<16:21:39, 3.23it/s] 49%|████▉ | 181143/371472 [3:32:11<15:58:26, 3.31it/s] 49%|████▉ | 181144/371472 [3:32:11<15:43:38, 3.36it/s] 49%|████▉ | 181145/371472 [3:32:11<15:58:49, 3.31it/s] 49%|████▉ | 181146/371472 [3:32:12<16:02:52, 3.29it/s] 49%|████▉ | 181147/371472 [3:32:12<15:23:23, 3.44it/s] 49%|████▉ | 181148/371472 [3:32:12<15:26:09, 3.42it/s] 49%|████▉ | 181149/371472 [3:32:13<15:27:56, 3.42it/s] 49%|████▉ | 181150/371472 [3:32:13<15:16:47, 3.46it/s] 49%|████▉ | 181151/371472 [3:32:13<16:40:41, 3.17it/s] 49%|████▉ | 181152/371472 [3:32:14<16:33:02, 3.19it/s] 49%|████▉ | 181153/371472 [3:32:14<16:04:35, 3.29it/s] 49%|████▉ | 181154/371472 [3:32:14<15:46:45, 3.35it/s] 49%|████▉ | 181155/371472 [3:32:14<15:49:12, 3.34it/s] 49%|████▉ | 181156/371472 [3:32:15<15:47:39, 3.35it/s] 49%|████▉ | 181157/371472 [3:32:15<15:50:10, 3.34it/s] 49%|████▉ | 181158/371472 [3:32:15<15:44:36, 3.36it/s] 49%|████▉ | 181159/371472 [3:32:16<15:25:34, 3.43it/s] 49%|████▉ | 181160/371472 [3:32:16<15:35:55, 3.39it/s] {'loss': 2.8266, 'learning_rate': 5.613350858669655e-07, 'epoch': 7.8} + 49%|████▉ | 181160/371472 [3:32:16<15:35:55, 3.39it/s] 49%|████▉ | 181161/371472 [3:32:16<15:32:43, 3.40it/s] 49%|████▉ | 181162/371472 [3:32:16<15:38:32, 3.38it/s] 49%|████▉ | 181163/371472 [3:32:17<15:24:33, 3.43it/s] 49%|████▉ | 181164/371472 [3:32:17<16:10:57, 3.27it/s] 49%|████▉ | 181165/371472 [3:32:17<16:15:21, 3.25it/s] 49%|████▉ | 181166/371472 [3:32:18<16:04:29, 3.29it/s] 49%|████▉ | 181167/371472 [3:32:18<15:41:03, 3.37it/s] 49%|████▉ | 181168/371472 [3:32:18<16:11:28, 3.26it/s] 49%|████▉ | 181169/371472 [3:32:19<16:52:05, 3.13it/s] 49%|████▉ | 181170/371472 [3:32:19<17:01:09, 3.11it/s] 49%|████▉ | 181171/371472 [3:32:19<16:28:14, 3.21it/s] 49%|████▉ | 181172/371472 [3:32:20<16:15:21, 3.25it/s] 49%|████▉ | 181173/371472 [3:32:20<16:11:07, 3.27it/s] 49%|████▉ | 181174/371472 [3:32:20<15:45:24, 3.35it/s] 49%|████▉ | 181175/371472 [3:32:20<15:41:33, 3.37it/s] 49%|████▉ | 181176/371472 [3:32:21<17:03:11, 3.10it/s] 49%|████▉ | 181177/371472 [3:32:21<16:47:06, 3.15it/s] 49%|████▉ | 181178/371472 [3:32:21<16:07:59, 3.28it/s] 49%|████▉ | 181179/371472 [3:32:22<15:45:27, 3.35it/s] 49%|████▉ | 181180/371472 [3:32:22<15:47:16, 3.35it/s] {'loss': 2.9734, 'learning_rate': 5.612866038914865e-07, 'epoch': 7.8} + 49%|████▉ | 181180/371472 [3:32:22<15:47:16, 3.35it/s] 49%|████▉ | 181181/371472 [3:32:22<15:30:09, 3.41it/s] 49%|████▉ | 181182/371472 [3:32:23<15:52:29, 3.33it/s] 49%|████▉ | 181183/371472 [3:32:23<16:27:01, 3.21it/s] 49%|████▉ | 181184/371472 [3:32:23<16:31:33, 3.20it/s] 49%|████▉ | 181185/371472 [3:32:24<16:13:35, 3.26it/s] 49%|████▉ | 181186/371472 [3:32:24<15:36:51, 3.39it/s] 49%|████▉ | 181187/371472 [3:32:24<15:30:22, 3.41it/s] 49%|████▉ | 181188/371472 [3:32:24<15:12:43, 3.47it/s] 49%|████▉ | 181189/371472 [3:32:25<15:10:55, 3.48it/s] 49%|████▉ | 181190/371472 [3:32:25<15:09:15, 3.49it/s] 49%|████▉ | 181191/371472 [3:32:25<15:39:50, 3.37it/s] 49%|████▉ | 181192/371472 [3:32:26<15:43:26, 3.36it/s] 49%|████▉ | 181193/371472 [3:32:26<15:58:35, 3.31it/s] 49%|████▉ | 181194/371472 [3:32:26<15:42:18, 3.37it/s] 49%|████▉ | 181195/371472 [3:32:26<16:04:16, 3.29it/s] 49%|████▉ | 181196/371472 [3:32:27<16:07:44, 3.28it/s] 49%|████▉ | 181197/371472 [3:32:27<16:54:40, 3.13it/s] 49%|████▉ | 181198/371472 [3:32:27<16:57:17, 3.12it/s] 49%|████▉ | 181199/371472 [3:32:28<16:20:23, 3.23it/s] 49%|████▉ | 181200/371472 [3:32:28<16:25:19, 3.22it/s] {'loss': 2.9567, 'learning_rate': 5.612381219160076e-07, 'epoch': 7.8} + 49%|████▉ | 181200/371472 [3:32:28<16:25:19, 3.22it/s] 49%|████▉ | 181201/371472 [3:32:28<15:55:04, 3.32it/s] 49%|████▉ | 181202/371472 [3:32:29<15:57:25, 3.31it/s] 49%|████▉ | 181203/371472 [3:32:29<15:57:28, 3.31it/s] 49%|████▉ | 181204/371472 [3:32:29<16:07:28, 3.28it/s] 49%|████▉ | 181205/371472 [3:32:30<15:53:11, 3.33it/s] 49%|████▉ | 181206/371472 [3:32:30<15:52:04, 3.33it/s] 49%|████▉ | 181207/371472 [3:32:30<15:25:14, 3.43it/s] 49%|████▉ | 181208/371472 [3:32:30<15:03:40, 3.51it/s] 49%|████▉ | 181209/371472 [3:32:31<15:42:25, 3.36it/s] 49%|████▉ | 181210/371472 [3:32:31<15:43:21, 3.36it/s] 49%|████▉ | 181211/371472 [3:32:31<16:09:44, 3.27it/s] 49%|████▉ | 181212/371472 [3:32:32<16:00:41, 3.30it/s] 49%|████▉ | 181213/371472 [3:32:32<15:23:15, 3.43it/s] 49%|████▉ | 181214/371472 [3:32:32<15:30:19, 3.41it/s] 49%|████▉ | 181215/371472 [3:32:32<15:33:37, 3.40it/s] 49%|████▉ | 181216/371472 [3:32:33<15:29:23, 3.41it/s] 49%|████▉ | 181217/371472 [3:32:33<15:41:16, 3.37it/s] 49%|████▉ | 181218/371472 [3:32:33<15:34:20, 3.39it/s] 49%|████▉ | 181219/371472 [3:32:34<16:06:27, 3.28it/s] 49%|████▉ | 181220/371472 [3:32:34<15:33:38, 3.40it/s] {'loss': 2.9947, 'learning_rate': 5.611896399405287e-07, 'epoch': 7.81} + 49%|████▉ | 181220/371472 [3:32:34<15:33:38, 3.40it/s] 49%|████▉ | 181221/371472 [3:32:34<16:23:25, 3.22it/s] 49%|████▉ | 181222/371472 [3:32:35<16:12:37, 3.26it/s] 49%|████▉ | 181223/371472 [3:32:35<15:55:37, 3.32it/s] 49%|████▉ | 181224/371472 [3:32:35<15:36:57, 3.38it/s] 49%|████▉ | 181225/371472 [3:32:35<16:20:04, 3.24it/s] 49%|████▉ | 181226/371472 [3:32:36<16:01:46, 3.30it/s] 49%|████▉ | 181227/371472 [3:32:36<15:48:54, 3.34it/s] 49%|████▉ | 181228/371472 [3:32:36<15:30:06, 3.41it/s] 49%|████▉ | 181229/371472 [3:32:37<15:11:00, 3.48it/s] 49%|████▉ | 181230/371472 [3:32:37<15:03:46, 3.51it/s] 49%|████▉ | 181231/371472 [3:32:37<14:52:38, 3.55it/s] 49%|████▉ | 181232/371472 [3:32:37<14:59:06, 3.53it/s] 49%|████▉ | 181233/371472 [3:32:38<14:37:22, 3.61it/s] 49%|████▉ | 181234/371472 [3:32:38<14:28:53, 3.65it/s] 49%|████▉ | 181235/371472 [3:32:38<14:30:08, 3.64it/s] 49%|████▉ | 181236/371472 [3:32:39<14:46:12, 3.58it/s] 49%|████▉ | 181237/371472 [3:32:39<14:51:29, 3.56it/s] 49%|████▉ | 181238/371472 [3:32:39<15:19:53, 3.45it/s] 49%|████▉ | 181239/371472 [3:32:39<14:52:54, 3.55it/s] 49%|████▉ | 181240/371472 [3:32:40<14:38:33, 3.61it/s] {'loss': 2.9535, 'learning_rate': 5.611411579650499e-07, 'epoch': 7.81} + 49%|████▉ | 181240/371472 [3:32:40<14:38:33, 3.61it/s] 49%|████▉ | 181241/371472 [3:32:40<15:07:59, 3.49it/s] 49%|████▉ | 181242/371472 [3:32:40<15:15:43, 3.46it/s] 49%|████▉ | 181243/371472 [3:32:41<14:53:34, 3.55it/s] 49%|████▉ | 181244/371472 [3:32:41<14:54:14, 3.55it/s] 49%|████▉ | 181245/371472 [3:32:41<14:54:41, 3.54it/s] 49%|████▉ | 181246/371472 [3:32:41<14:53:44, 3.55it/s] 49%|████▉ | 181247/371472 [3:32:42<15:03:59, 3.51it/s] 49%|████▉ | 181248/371472 [3:32:42<14:51:23, 3.56it/s] 49%|████▉ | 181249/371472 [3:32:42<14:57:49, 3.53it/s] 49%|████▉ | 181250/371472 [3:32:43<14:49:36, 3.56it/s] 49%|████▉ | 181251/371472 [3:32:43<15:09:04, 3.49it/s] 49%|████▉ | 181252/371472 [3:32:43<15:41:54, 3.37it/s] 49%|████▉ | 181253/371472 [3:32:43<15:17:14, 3.46it/s] 49%|████▉ | 181254/371472 [3:32:44<15:15:17, 3.46it/s] 49%|████▉ | 181255/371472 [3:32:44<15:19:25, 3.45it/s] 49%|████▉ | 181256/371472 [3:32:44<15:32:50, 3.40it/s] 49%|████▉ | 181257/371472 [3:32:45<15:17:08, 3.46it/s] 49%|████▉ | 181258/371472 [3:32:45<16:04:21, 3.29it/s] 49%|████▉ | 181259/371472 [3:32:45<16:00:09, 3.30it/s] 49%|████▉ | 181260/371472 [3:32:46<15:47:48, 3.34it/s] {'loss': 2.9932, 'learning_rate': 5.61092675989571e-07, 'epoch': 7.81} + 49%|████▉ | 181260/371472 [3:32:46<15:47:48, 3.34it/s] 49%|████▉ | 181261/371472 [3:32:46<15:34:57, 3.39it/s] 49%|████▉ | 181262/371472 [3:32:46<16:17:12, 3.24it/s] 49%|████▉ | 181263/371472 [3:32:46<16:00:55, 3.30it/s] 49%|████▉ | 181264/371472 [3:32:47<16:15:36, 3.25it/s] 49%|████▉ | 181265/371472 [3:32:47<16:25:36, 3.22it/s] 49%|████▉ | 181266/371472 [3:32:47<15:50:37, 3.33it/s] 49%|████▉ | 181267/371472 [3:32:48<15:37:17, 3.38it/s] 49%|████▉ | 181268/371472 [3:32:48<15:37:30, 3.38it/s] 49%|████▉ | 181269/371472 [3:32:48<16:19:29, 3.24it/s] 49%|████▉ | 181270/371472 [3:32:49<15:55:14, 3.32it/s] 49%|████▉ | 181271/371472 [3:32:49<17:35:53, 3.00it/s] 49%|████▉ | 181272/371472 [3:32:49<16:49:36, 3.14it/s] 49%|████▉ | 181273/371472 [3:32:50<16:26:05, 3.21it/s] 49%|████▉ | 181274/371472 [3:32:50<16:11:09, 3.26it/s] 49%|████▉ | 181275/371472 [3:32:50<16:21:16, 3.23it/s] 49%|████▉ | 181276/371472 [3:32:50<15:47:30, 3.35it/s] 49%|████▉ | 181277/371472 [3:32:51<16:18:07, 3.24it/s] 49%|████▉ | 181278/371472 [3:32:51<16:16:52, 3.24it/s] 49%|████▉ | 181279/371472 [3:32:51<16:17:09, 3.24it/s] 49%|████▉ | 181280/371472 [3:32:52<15:55:06, 3.32it/s] {'loss': 2.8796, 'learning_rate': 5.610441940140921e-07, 'epoch': 7.81} + 49%|████▉ | 181280/371472 [3:32:52<15:55:06, 3.32it/s] 49%|████▉ | 181281/371472 [3:32:52<15:55:48, 3.32it/s] 49%|████▉ | 181282/371472 [3:32:52<16:18:04, 3.24it/s] 49%|████▉ | 181283/371472 [3:32:53<16:16:49, 3.25it/s] 49%|████▉ | 181284/371472 [3:32:53<15:56:10, 3.32it/s] 49%|████▉ | 181285/371472 [3:32:53<15:38:18, 3.38it/s] 49%|████▉ | 181286/371472 [3:32:53<15:23:50, 3.43it/s] 49%|████▉ | 181287/371472 [3:32:54<16:35:37, 3.18it/s] 49%|████▉ | 181288/371472 [3:32:54<16:54:13, 3.13it/s] 49%|████▉ | 181289/371472 [3:32:54<16:28:02, 3.21it/s] 49%|████▉ | 181290/371472 [3:32:55<17:43:45, 2.98it/s] 49%|████▉ | 181291/371472 [3:32:55<18:10:30, 2.91it/s] 49%|████▉ | 181292/371472 [3:32:56<18:08:42, 2.91it/s] 49%|████▉ | 181293/371472 [3:32:56<18:05:40, 2.92it/s] 49%|████▉ | 181294/371472 [3:32:56<18:15:40, 2.89it/s] 49%|████▉ | 181295/371472 [3:32:56<17:11:43, 3.07it/s] 49%|████▉ | 181296/371472 [3:32:57<16:32:59, 3.19it/s] 49%|████▉ | 181297/371472 [3:32:57<16:10:22, 3.27it/s] 49%|████▉ | 181298/371472 [3:32:57<16:52:37, 3.13it/s] 49%|████▉ | 181299/371472 [3:32:58<16:19:34, 3.24it/s] 49%|████▉ | 181300/371472 [3:32:58<15:56:02, 3.32it/s] {'loss': 3.0261, 'learning_rate': 5.609957120386132e-07, 'epoch': 7.81} + 49%|████▉ | 181300/371472 [3:32:58<15:56:02, 3.32it/s] 49%|████▉ | 181301/371472 [3:32:58<16:14:32, 3.25it/s] 49%|████▉ | 181302/371472 [3:32:59<15:58:52, 3.31it/s] 49%|████▉ | 181303/371472 [3:32:59<15:32:14, 3.40it/s] 49%|████▉ | 181304/371472 [3:32:59<16:35:31, 3.18it/s] 49%|████▉ | 181305/371472 [3:33:00<17:27:20, 3.03it/s] 49%|████▉ | 181306/371472 [3:33:00<16:43:26, 3.16it/s] 49%|████▉ | 181307/371472 [3:33:00<16:07:04, 3.28it/s] 49%|████▉ | 181308/371472 [3:33:00<15:35:21, 3.39it/s] 49%|████▉ | 181309/371472 [3:33:01<15:27:26, 3.42it/s] 49%|████▉ | 181310/371472 [3:33:01<15:21:01, 3.44it/s] 49%|████▉ | 181311/371472 [3:33:01<14:59:38, 3.52it/s] 49%|████▉ | 181312/371472 [3:33:02<15:18:50, 3.45it/s] 49%|████▉ | 181313/371472 [3:33:02<14:58:16, 3.53it/s] 49%|████▉ | 181314/371472 [3:33:02<15:02:25, 3.51it/s] 49%|████▉ | 181315/371472 [3:33:02<14:57:57, 3.53it/s] 49%|████▉ | 181316/371472 [3:33:03<15:20:32, 3.44it/s] 49%|████▉ | 181317/371472 [3:33:03<15:03:55, 3.51it/s] 49%|████▉ | 181318/371472 [3:33:03<14:58:18, 3.53it/s] 49%|████▉ | 181319/371472 [3:33:04<15:36:06, 3.39it/s] 49%|████▉ | 181320/371472 [3:33:04<15:30:16, 3.41it/s] {'loss': 2.8174, 'learning_rate': 5.609472300631343e-07, 'epoch': 7.81} + 49%|████▉ | 181320/371472 [3:33:04<15:30:16, 3.41it/s] 49%|████▉ | 181321/371472 [3:33:04<15:19:20, 3.45it/s] 49%|████▉ | 181322/371472 [3:33:04<15:20:19, 3.44it/s] 49%|████▉ | 181323/371472 [3:33:05<15:43:13, 3.36it/s] 49%|████▉ | 181324/371472 [3:33:05<15:48:05, 3.34it/s] 49%|████▉ | 181325/371472 [3:33:05<15:47:55, 3.34it/s] 49%|████▉ | 181326/371472 [3:33:06<15:42:25, 3.36it/s] 49%|████▉ | 181327/371472 [3:33:06<15:25:42, 3.42it/s] 49%|████▉ | 181328/371472 [3:33:06<15:15:52, 3.46it/s] 49%|████▉ | 181329/371472 [3:33:07<15:05:50, 3.50it/s] 49%|████▉ | 181330/371472 [3:33:07<15:05:22, 3.50it/s] 49%|████▉ | 181331/371472 [3:33:07<15:13:20, 3.47it/s] 49%|████▉ | 181332/371472 [3:33:07<15:11:47, 3.48it/s] 49%|████▉ | 181333/371472 [3:33:08<15:08:41, 3.49it/s] 49%|████▉ | 181334/371472 [3:33:08<15:13:56, 3.47it/s] 49%|████▉ | 181335/371472 [3:33:08<15:30:32, 3.41it/s] 49%|████▉ | 181336/371472 [3:33:09<15:32:56, 3.40it/s] 49%|████▉ | 181337/371472 [3:33:09<16:36:21, 3.18it/s] 49%|████▉ | 181338/371472 [3:33:09<16:36:14, 3.18it/s] 49%|████▉ | 181339/371472 [3:33:10<16:10:10, 3.27it/s] 49%|████▉ | 181340/371472 [3:33:10<16:14:44, 3.25it/s] {'loss': 2.9925, 'learning_rate': 5.608987480876554e-07, 'epoch': 7.81} + 49%|████▉ | 181340/371472 [3:33:10<16:14:44, 3.25it/s] 49%|████▉ | 181341/371472 [3:33:10<15:44:07, 3.36it/s] 49%|████▉ | 181342/371472 [3:33:10<16:00:30, 3.30it/s] 49%|████▉ | 181343/371472 [3:33:11<15:41:58, 3.36it/s] 49%|████▉ | 181344/371472 [3:33:11<15:35:37, 3.39it/s] 49%|████▉ | 181345/371472 [3:33:11<15:14:17, 3.47it/s] 49%|████▉ | 181346/371472 [3:33:12<15:21:44, 3.44it/s] 49%|████▉ | 181347/371472 [3:33:12<15:22:25, 3.44it/s] 49%|████▉ | 181348/371472 [3:33:12<15:34:30, 3.39it/s] 49%|████▉ | 181349/371472 [3:33:12<15:29:37, 3.41it/s] 49%|████▉ | 181350/371472 [3:33:13<15:36:09, 3.38it/s] 49%|████▉ | 181351/371472 [3:33:13<15:39:25, 3.37it/s] 49%|████▉ | 181352/371472 [3:33:13<15:14:03, 3.47it/s] 49%|████▉ | 181353/371472 [3:33:14<15:51:05, 3.33it/s] 49%|████▉ | 181354/371472 [3:33:14<16:35:43, 3.18it/s] 49%|████▉ | 181355/371472 [3:33:14<15:58:54, 3.30it/s] 49%|████▉ | 181356/371472 [3:33:15<15:46:51, 3.35it/s] 49%|████▉ | 181357/371472 [3:33:15<16:04:14, 3.29it/s] 49%|████▉ | 181358/371472 [3:33:15<15:44:55, 3.35it/s] 49%|████▉ | 181359/371472 [3:33:15<15:59:46, 3.30it/s] 49%|████▉ | 181360/371472 [3:33:16<15:34:06, 3.39it/s] {'loss': 2.8922, 'learning_rate': 5.608502661121765e-07, 'epoch': 7.81} + 49%|████▉ | 181360/371472 [3:33:16<15:34:06, 3.39it/s] 49%|████▉ | 181361/371472 [3:33:16<15:59:40, 3.30it/s] 49%|████▉ | 181362/371472 [3:33:16<15:53:41, 3.32it/s] 49%|████▉ | 181363/371472 [3:33:17<15:25:08, 3.42it/s] 49%|████▉ | 181364/371472 [3:33:17<15:02:55, 3.51it/s] 49%|████▉ | 181365/371472 [3:33:17<15:51:29, 3.33it/s] 49%|████▉ | 181366/371472 [3:33:18<18:08:27, 2.91it/s] 49%|████▉ | 181367/371472 [3:33:18<17:12:49, 3.07it/s] 49%|████▉ | 181368/371472 [3:33:18<17:00:33, 3.10it/s] 49%|████▉ | 181369/371472 [3:33:19<16:51:22, 3.13it/s] 49%|████▉ | 181370/371472 [3:33:19<16:10:58, 3.26it/s] 49%|████▉ | 181371/371472 [3:33:19<15:53:11, 3.32it/s] 49%|████▉ | 181372/371472 [3:33:19<15:30:36, 3.40it/s] 49%|████▉ | 181373/371472 [3:33:20<16:16:56, 3.24it/s] 49%|████▉ | 181374/371472 [3:33:20<15:43:09, 3.36it/s] 49%|████▉ | 181375/371472 [3:33:20<15:53:23, 3.32it/s] 49%|████▉ | 181376/371472 [3:33:21<15:37:17, 3.38it/s] 49%|████▉ | 181377/371472 [3:33:21<15:28:23, 3.41it/s] 49%|████▉ | 181378/371472 [3:33:21<15:25:45, 3.42it/s] 49%|████▉ | 181379/371472 [3:33:22<15:11:41, 3.48it/s] 49%|████▉ | 181380/371472 [3:33:22<15:19:06, 3.45it/s] {'loss': 2.7791, 'learning_rate': 5.608017841366976e-07, 'epoch': 7.81} + 49%|████▉ | 181380/371472 [3:33:22<15:19:06, 3.45it/s] 49%|████▉ | 181381/371472 [3:33:22<15:38:03, 3.38it/s] 49%|████▉ | 181382/371472 [3:33:22<15:41:54, 3.36it/s] 49%|████▉ | 181383/371472 [3:33:23<15:54:17, 3.32it/s] 49%|████▉ | 181384/371472 [3:33:23<15:36:42, 3.38it/s] 49%|████▉ | 181385/371472 [3:33:23<15:24:20, 3.43it/s] 49%|████▉ | 181386/371472 [3:33:24<15:21:41, 3.44it/s] 49%|████▉ | 181387/371472 [3:33:24<15:15:07, 3.46it/s] 49%|████▉ | 181388/371472 [3:33:24<15:43:31, 3.36it/s] 49%|████▉ | 181389/371472 [3:33:24<15:31:18, 3.40it/s] 49%|████▉ | 181390/371472 [3:33:25<15:22:15, 3.44it/s] 49%|████▉ | 181391/371472 [3:33:25<15:21:20, 3.44it/s] 49%|████▉ | 181392/371472 [3:33:25<15:29:31, 3.41it/s] 49%|████▉ | 181393/371472 [3:33:26<17:01:52, 3.10it/s] 49%|████▉ | 181394/371472 [3:33:26<17:20:23, 3.04it/s] 49%|████▉ | 181395/371472 [3:33:26<17:28:39, 3.02it/s] 49%|████▉ | 181396/371472 [3:33:27<16:45:52, 3.15it/s] 49%|████▉ | 181397/371472 [3:33:27<15:59:59, 3.30it/s] 49%|████▉ | 181398/371472 [3:33:27<16:29:01, 3.20it/s] 49%|████▉ | 181399/371472 [3:33:28<16:39:42, 3.17it/s] 49%|████▉ | 181400/371472 [3:33:28<17:11:55, 3.07it/s] {'loss': 2.8835, 'learning_rate': 5.607533021612187e-07, 'epoch': 7.81} + 49%|████▉ | 181400/371472 [3:33:28<17:11:55, 3.07it/s] 49%|████▉ | 181401/371472 [3:33:28<17:13:57, 3.06it/s] 49%|████▉ | 181402/371472 [3:33:29<16:28:50, 3.20it/s] 49%|████▉ | 181403/371472 [3:33:29<16:09:18, 3.27it/s] 49%|████▉ | 181404/371472 [3:33:29<16:00:06, 3.30it/s] 49%|████▉ | 181405/371472 [3:33:29<15:24:05, 3.43it/s] 49%|████▉ | 181406/371472 [3:33:30<16:06:58, 3.28it/s] 49%|████▉ | 181407/371472 [3:33:30<16:14:37, 3.25it/s] 49%|████▉ | 181408/371472 [3:33:30<16:10:17, 3.26it/s] 49%|████▉ | 181409/371472 [3:33:31<16:39:18, 3.17it/s] 49%|████▉ | 181410/371472 [3:33:31<16:13:32, 3.25it/s] 49%|████▉ | 181411/371472 [3:33:31<16:12:48, 3.26it/s] 49%|████▉ | 181412/371472 [3:33:32<16:38:28, 3.17it/s] 49%|████▉ | 181413/371472 [3:33:32<16:29:31, 3.20it/s] 49%|████▉ | 181414/371472 [3:33:32<16:29:11, 3.20it/s] 49%|████▉ | 181415/371472 [3:33:33<16:36:53, 3.18it/s] 49%|████▉ | 181416/371472 [3:33:33<16:23:55, 3.22it/s] 49%|████▉ | 181417/371472 [3:33:33<16:14:38, 3.25it/s] 49%|████▉ | 181418/371472 [3:33:34<17:00:46, 3.10it/s] 49%|████▉ | 181419/371472 [3:33:34<16:29:21, 3.20it/s] 49%|████▉ | 181420/371472 [3:33:34<15:49:56, 3.33it/s] {'loss': 2.8447, 'learning_rate': 5.607048201857398e-07, 'epoch': 7.81} + 49%|████▉ | 181420/371472 [3:33:34<15:49:56, 3.33it/s] 49%|████▉ | 181421/371472 [3:33:34<17:01:05, 3.10it/s] 49%|████▉ | 181422/371472 [3:33:35<16:31:56, 3.19it/s] 49%|████▉ | 181423/371472 [3:33:35<16:11:02, 3.26it/s] 49%|████▉ | 181424/371472 [3:33:35<15:47:33, 3.34it/s] 49%|████▉ | 181425/371472 [3:33:36<18:42:28, 2.82it/s] 49%|████▉ | 181426/371472 [3:33:36<17:38:36, 2.99it/s] 49%|████▉ | 181427/371472 [3:33:36<17:14:00, 3.06it/s] 49%|████▉ | 181428/371472 [3:33:37<16:49:48, 3.14it/s] 49%|��███▉ | 181429/371472 [3:33:37<16:08:45, 3.27it/s] 49%|████▉ | 181430/371472 [3:33:37<16:33:17, 3.19it/s] 49%|████▉ | 181431/371472 [3:33:38<16:20:44, 3.23it/s] 49%|████▉ | 181432/371472 [3:33:38<16:03:02, 3.29it/s] 49%|████▉ | 181433/371472 [3:33:38<15:42:27, 3.36it/s] 49%|████▉ | 181434/371472 [3:33:38<15:29:04, 3.41it/s] 49%|████▉ | 181435/371472 [3:33:39<15:25:57, 3.42it/s] 49%|████▉ | 181436/371472 [3:33:39<15:08:20, 3.49it/s] 49%|████▉ | 181437/371472 [3:33:39<14:40:48, 3.60it/s] 49%|████▉ | 181438/371472 [3:33:40<15:14:08, 3.46it/s] 49%|████▉ | 181439/371472 [3:33:40<15:21:56, 3.44it/s] 49%|████▉ | 181440/371472 [3:33:40<16:13:02, 3.25it/s] {'loss': 2.8917, 'learning_rate': 5.606563382102609e-07, 'epoch': 7.81} + 49%|████▉ | 181440/371472 [3:33:40<16:13:02, 3.25it/s] 49%|████▉ | 181441/371472 [3:33:41<16:07:20, 3.27it/s] 49%|████▉ | 181442/371472 [3:33:41<16:02:07, 3.29it/s] 49%|████▉ | 181443/371472 [3:33:41<15:25:28, 3.42it/s] 49%|████▉ | 181444/371472 [3:33:41<15:12:13, 3.47it/s] 49%|████▉ | 181445/371472 [3:33:42<15:35:24, 3.39it/s] 49%|████▉ | 181446/371472 [3:33:42<15:29:29, 3.41it/s] 49%|████▉ | 181447/371472 [3:33:42<15:11:38, 3.47it/s] 49%|████▉ | 181448/371472 [3:33:43<15:06:46, 3.49it/s] 49%|████▉ | 181449/371472 [3:33:43<15:33:25, 3.39it/s] 49%|████▉ | 181450/371472 [3:33:43<15:29:19, 3.41it/s] 49%|████▉ | 181451/371472 [3:33:43<15:09:00, 3.48it/s] 49%|████▉ | 181452/371472 [3:33:44<15:19:03, 3.45it/s] 49%|████▉ | 181453/371472 [3:33:44<15:10:32, 3.48it/s] 49%|████▉ | 181454/371472 [3:33:44<15:13:38, 3.47it/s] 49%|████▉ | 181455/371472 [3:33:45<15:29:36, 3.41it/s] 49%|████▉ | 181456/371472 [3:33:45<15:25:17, 3.42it/s] 49%|████▉ | 181457/371472 [3:33:45<15:39:44, 3.37it/s] 49%|████▉ | 181458/371472 [3:33:46<15:34:15, 3.39it/s] 49%|████▉ | 181459/371472 [3:33:46<15:26:19, 3.42it/s] 49%|████▉ | 181460/371472 [3:33:46<15:15:54, 3.46it/s] {'loss': 2.8386, 'learning_rate': 5.606078562347821e-07, 'epoch': 7.82} + 49%|████▉ | 181460/371472 [3:33:46<15:15:54, 3.46it/s] 49%|████▉ | 181461/371472 [3:33:46<15:15:37, 3.46it/s] 49%|████▉ | 181462/371472 [3:33:47<15:03:37, 3.50it/s] 49%|████▉ | 181463/371472 [3:33:47<15:52:48, 3.32it/s] 49%|████▉ | 181464/371472 [3:33:47<15:39:42, 3.37it/s] 49%|████▉ | 181465/371472 [3:33:48<16:00:18, 3.30it/s] 49%|████▉ | 181466/371472 [3:33:48<16:17:20, 3.24it/s] 49%|████▉ | 181467/371472 [3:33:48<16:31:29, 3.19it/s] 49%|████▉ | 181468/371472 [3:33:49<16:29:47, 3.20it/s] 49%|████▉ | 181469/371472 [3:33:49<16:21:03, 3.23it/s] 49%|████▉ | 181470/371472 [3:33:49<16:32:24, 3.19it/s] 49%|████▉ | 181471/371472 [3:33:49<16:09:16, 3.27it/s] 49%|████▉ | 181472/371472 [3:33:50<15:56:12, 3.31it/s] 49%|████▉ | 181473/371472 [3:33:50<15:48:20, 3.34it/s] 49%|████▉ | 181474/371472 [3:33:50<16:27:49, 3.21it/s] 49%|████▉ | 181475/371472 [3:33:51<15:55:32, 3.31it/s] 49%|████▉ | 181476/371472 [3:33:51<15:48:03, 3.34it/s] 49%|████▉ | 181477/371472 [3:33:51<15:59:24, 3.30it/s] 49%|████▉ | 181478/371472 [3:33:52<16:20:25, 3.23it/s] 49%|████▉ | 181479/371472 [3:33:52<16:10:30, 3.26it/s] 49%|████▉ | 181480/371472 [3:33:52<16:06:29, 3.28it/s] {'loss': 2.8214, 'learning_rate': 5.605593742593031e-07, 'epoch': 7.82} + 49%|████▉ | 181480/371472 [3:33:52<16:06:29, 3.28it/s] 49%|████▉ | 181481/371472 [3:33:52<16:00:49, 3.30it/s] 49%|████▉ | 181482/371472 [3:33:53<17:06:42, 3.08it/s] 49%|████▉ | 181483/371472 [3:33:53<17:44:29, 2.97it/s] 49%|████▉ | 181484/371472 [3:33:54<16:56:02, 3.12it/s] 49%|████▉ | 181485/371472 [3:33:54<16:06:24, 3.28it/s] 49%|████▉ | 181486/371472 [3:33:54<15:31:26, 3.40it/s] 49%|████▉ | 181487/371472 [3:33:54<15:21:14, 3.44it/s] 49%|████▉ | 181488/371472 [3:33:55<15:02:52, 3.51it/s] 49%|████▉ | 181489/371472 [3:33:55<14:58:22, 3.52it/s] 49%|████▉ | 181490/371472 [3:33:55<15:25:37, 3.42it/s] 49%|████▉ | 181491/371472 [3:33:55<15:10:08, 3.48it/s] 49%|████▉ | 181492/371472 [3:33:56<15:08:56, 3.48it/s] 49%|████▉ | 181493/371472 [3:33:56<16:05:18, 3.28it/s] 49%|████▉ | 181494/371472 [3:33:56<15:49:01, 3.34it/s] 49%|████▉ | 181495/371472 [3:33:57<15:24:49, 3.42it/s] 49%|████▉ | 181496/371472 [3:33:57<16:12:35, 3.26it/s] 49%|████▉ | 181497/371472 [3:33:57<16:13:04, 3.25it/s] 49%|████▉ | 181498/371472 [3:33:58<16:37:10, 3.18it/s] 49%|████▉ | 181499/371472 [3:33:58<15:59:25, 3.30it/s] 49%|████▉ | 181500/371472 [3:33:58<15:31:23, 3.40it/s] {'loss': 2.9754, 'learning_rate': 5.605108922838242e-07, 'epoch': 7.82} + 49%|████▉ | 181500/371472 [3:33:58<15:31:23, 3.40it/s] 49%|████▉ | 181501/371472 [3:33:58<15:18:07, 3.45it/s] 49%|████▉ | 181502/371472 [3:33:59<15:15:02, 3.46it/s] 49%|████▉ | 181503/371472 [3:33:59<15:01:00, 3.51it/s] 49%|████▉ | 181504/371472 [3:33:59<15:44:18, 3.35it/s] 49%|████▉ | 181505/371472 [3:34:00<15:24:45, 3.42it/s] 49%|████▉ | 181506/371472 [3:34:00<15:43:16, 3.36it/s] 49%|████▉ | 181507/371472 [3:34:00<15:25:32, 3.42it/s] 49%|████▉ | 181508/371472 [3:34:01<16:23:08, 3.22it/s] 49%|████▉ | 181509/371472 [3:34:01<15:53:06, 3.32it/s] 49%|████▉ | 181510/371472 [3:34:01<15:57:31, 3.31it/s] 49%|████▉ | 181511/371472 [3:34:01<15:53:16, 3.32it/s] 49%|████▉ | 181512/371472 [3:34:02<16:52:21, 3.13it/s] 49%|████▉ | 181513/371472 [3:34:02<16:48:21, 3.14it/s] 49%|████▉ | 181514/371472 [3:34:02<17:05:15, 3.09it/s] 49%|████▉ | 181515/371472 [3:34:03<17:09:17, 3.08it/s] 49%|████▉ | 181516/371472 [3:34:03<17:40:33, 2.99it/s] 49%|████▉ | 181517/371472 [3:34:04<18:27:26, 2.86it/s] 49%|████▉ | 181518/371472 [3:34:04<17:39:43, 2.99it/s] 49%|████▉ | 181519/371472 [3:34:04<17:56:31, 2.94it/s] 49%|████▉ | 181520/371472 [3:34:05<17:08:51, 3.08it/s] {'loss': 3.0259, 'learning_rate': 5.604624103083453e-07, 'epoch': 7.82} + 49%|████▉ | 181520/371472 [3:34:05<17:08:51, 3.08it/s] 49%|████▉ | 181521/371472 [3:34:05<16:49:47, 3.14it/s] 49%|████▉ | 181522/371472 [3:34:05<17:13:41, 3.06it/s] 49%|████▉ | 181523/371472 [3:34:05<16:38:34, 3.17it/s] 49%|████▉ | 181524/371472 [3:34:06<16:25:16, 3.21it/s] 49%|████▉ | 181525/371472 [3:34:06<16:23:03, 3.22it/s] 49%|████▉ | 181526/371472 [3:34:06<15:53:00, 3.32it/s] 49%|████▉ | 181527/371472 [3:34:07<15:44:21, 3.35it/s] 49%|████▉ | 181528/371472 [3:34:07<15:47:24, 3.34it/s] 49%|████▉ | 181529/371472 [3:34:07<15:45:23, 3.35it/s] 49%|████▉ | 181530/371472 [3:34:08<16:17:01, 3.24it/s] 49%|████▉ | 181531/371472 [3:34:08<16:08:14, 3.27it/s] 49%|████▉ | 181532/371472 [3:34:08<16:05:25, 3.28it/s] 49%|████▉ | 181533/371472 [3:34:08<16:32:10, 3.19it/s] 49%|████▉ | 181534/371472 [3:34:09<16:06:59, 3.27it/s] 49%|████▉ | 181535/371472 [3:34:09<15:57:44, 3.31it/s] 49%|████▉ | 181536/371472 [3:34:09<16:00:37, 3.30it/s] 49%|████▉ | 181537/371472 [3:34:10<15:51:11, 3.33it/s] 49%|████▉ | 181538/371472 [3:34:10<15:20:29, 3.44it/s] 49%|████▉ | 181539/371472 [3:34:10<15:21:29, 3.44it/s] 49%|████▉ | 181540/371472 [3:34:11<15:40:18, 3.37it/s] {'loss': 3.0027, 'learning_rate': 5.604139283328665e-07, 'epoch': 7.82} + 49%|████▉ | 181540/371472 [3:34:11<15:40:18, 3.37it/s] 49%|████▉ | 181541/371472 [3:34:11<15:25:29, 3.42it/s] 49%|████▉ | 181542/371472 [3:34:11<16:10:44, 3.26it/s] 49%|████▉ | 181543/371472 [3:34:11<15:52:01, 3.33it/s] 49%|████▉ | 181544/371472 [3:34:12<15:53:06, 3.32it/s] 49%|████▉ | 181545/371472 [3:34:12<15:52:43, 3.32it/s] 49%|████▉ | 181546/371472 [3:34:12<15:54:55, 3.31it/s] 49%|████▉ | 181547/371472 [3:34:13<15:35:41, 3.38it/s] 49%|████▉ | 181548/371472 [3:34:13<15:15:50, 3.46it/s] 49%|████▉ | 181549/371472 [3:34:13<17:21:29, 3.04it/s] 49%|████▉ | 181550/371472 [3:34:14<16:31:34, 3.19it/s] 49%|████▉ | 181551/371472 [3:34:14<16:13:44, 3.25it/s] 49%|████▉ | 181552/371472 [3:34:14<16:12:31, 3.25it/s] 49%|████▉ | 181553/371472 [3:34:14<15:52:04, 3.32it/s] 49%|████▉ | 181554/371472 [3:34:15<15:25:00, 3.42it/s] 49%|████▉ | 181555/371472 [3:34:15<15:27:05, 3.41it/s] 49%|████▉ | 181556/371472 [3:34:15<15:52:11, 3.32it/s] 49%|████▉ | 181557/371472 [3:34:16<15:25:09, 3.42it/s] 49%|████▉ | 181558/371472 [3:34:16<15:09:57, 3.48it/s] 49%|████▉ | 181559/371472 [3:34:16<15:48:26, 3.34it/s] 49%|████▉ | 181560/371472 [3:34:17<15:47:04, 3.34it/s] {'loss': 2.8351, 'learning_rate': 5.603654463573875e-07, 'epoch': 7.82} + 49%|████▉ | 181560/371472 [3:34:17<15:47:04, 3.34it/s] 49%|████▉ | 181561/371472 [3:34:17<15:23:25, 3.43it/s] 49%|████▉ | 181562/371472 [3:34:17<15:15:59, 3.46it/s] 49%|████▉ | 181563/371472 [3:34:17<15:11:01, 3.47it/s] 49%|████▉ | 181564/371472 [3:34:18<15:44:21, 3.35it/s] 49%|████▉ | 181565/371472 [3:34:18<15:21:35, 3.43it/s] 49%|████▉ | 181566/371472 [3:34:18<15:34:00, 3.39it/s] 49%|████▉ | 181567/371472 [3:34:19<15:28:37, 3.41it/s] 49%|████▉ | 181568/371472 [3:34:19<15:11:07, 3.47it/s] 49%|████▉ | 181569/371472 [3:34:19<14:54:06, 3.54it/s] 49%|████▉ | 181570/371472 [3:34:19<15:21:27, 3.43it/s] 49%|████▉ | 181571/371472 [3:34:20<15:32:32, 3.39it/s] 49%|████▉ | 181572/371472 [3:34:20<15:03:37, 3.50it/s] 49%|████▉ | 181573/371472 [3:34:20<15:52:25, 3.32it/s] 49%|████▉ | 181574/371472 [3:34:21<15:31:36, 3.40it/s] 49%|████▉ | 181575/371472 [3:34:21<15:20:54, 3.44it/s] 49%|████▉ | 181576/371472 [3:34:21<15:35:13, 3.38it/s] 49%|████▉ | 181577/371472 [3:34:22<15:23:28, 3.43it/s] 49%|████▉ | 181578/371472 [3:34:22<14:51:18, 3.55it/s] 49%|████▉ | 181579/371472 [3:34:22<14:46:00, 3.57it/s] 49%|████▉ | 181580/371472 [3:34:22<15:31:06, 3.40it/s] {'loss': 2.8462, 'learning_rate': 5.603169643819086e-07, 'epoch': 7.82} + 49%|████▉ | 181580/371472 [3:34:22<15:31:06, 3.40it/s] 49%|████▉ | 181581/371472 [3:34:23<15:00:48, 3.51it/s] 49%|████▉ | 181582/371472 [3:34:23<15:27:40, 3.41it/s] 49%|████▉ | 181583/371472 [3:34:23<15:09:08, 3.48it/s] 49%|████▉ | 181584/371472 [3:34:24<15:09:05, 3.48it/s] 49%|████▉ | 181585/371472 [3:34:24<14:51:03, 3.55it/s] 49%|████▉ | 181586/371472 [3:34:24<14:59:17, 3.52it/s] 49%|████▉ | 181587/371472 [3:34:24<15:53:58, 3.32it/s] 49%|████▉ | 181588/371472 [3:34:25<16:04:03, 3.28it/s] 49%|████▉ | 181589/371472 [3:34:25<15:45:38, 3.35it/s] 49%|████▉ | 181590/371472 [3:34:25<15:49:43, 3.33it/s] 49%|████▉ | 181591/371472 [3:34:26<15:34:13, 3.39it/s] 49%|████▉ | 181592/371472 [3:34:26<15:40:05, 3.37it/s] 49%|████▉ | 181593/371472 [3:34:26<15:21:32, 3.43it/s] 49%|████▉ | 181594/371472 [3:34:26<15:20:15, 3.44it/s] 49%|████▉ | 181595/371472 [3:34:27<15:51:47, 3.32it/s] 49%|████▉ | 181596/371472 [3:34:27<16:12:10, 3.26it/s] 49%|████▉ | 181597/371472 [3:34:27<15:37:02, 3.38it/s] 49%|████▉ | 181598/371472 [3:34:28<15:56:49, 3.31it/s] 49%|████▉ | 181599/371472 [3:34:28<16:42:04, 3.16it/s] 49%|████▉ | 181600/371472 [3:34:28<16:56:10, 3.11it/s] {'loss': 2.8548, 'learning_rate': 5.602684824064297e-07, 'epoch': 7.82} + 49%|████▉ | 181600/371472 [3:34:28<16:56:10, 3.11it/s] 49%|████▉ | 181601/371472 [3:34:29<16:47:06, 3.14it/s] 49%|████▉ | 181602/371472 [3:34:29<16:36:51, 3.17it/s] 49%|████▉ | 181603/371472 [3:34:29<16:24:12, 3.22it/s] 49%|████▉ | 181604/371472 [3:34:30<15:50:06, 3.33it/s] 49%|████▉ | 181605/371472 [3:34:30<15:43:52, 3.35it/s] 49%|████▉ | 181606/371472 [3:34:30<15:22:55, 3.43it/s] 49%|████▉ | 181607/371472 [3:34:30<15:31:59, 3.40it/s] 49%|████▉ | 181608/371472 [3:34:31<15:26:07, 3.42it/s] 49%|████▉ | 181609/371472 [3:34:31<15:25:05, 3.42it/s] 49%|████▉ | 181610/371472 [3:34:31<15:23:00, 3.43it/s] 49%|████▉ | 181611/371472 [3:34:32<15:06:48, 3.49it/s] 49%|████▉ | 181612/371472 [3:34:32<15:21:26, 3.43it/s] 49%|████▉ | 181613/371472 [3:34:32<15:35:57, 3.38it/s] 49%|████▉ | 181614/371472 [3:34:32<15:27:30, 3.41it/s] 49%|████▉ | 181615/371472 [3:34:33<17:16:28, 3.05it/s] 49%|████▉ | 181616/371472 [3:34:33<16:40:30, 3.16it/s] 49%|████▉ | 181617/371472 [3:34:33<16:22:38, 3.22it/s] 49%|████▉ | 181618/371472 [3:34:34<16:17:55, 3.24it/s] 49%|████▉ | 181619/371472 [3:34:34<15:38:11, 3.37it/s] 49%|████▉ | 181620/371472 [3:34:34<15:24:36, 3.42it/s] {'loss': 3.0012, 'learning_rate': 5.602200004309509e-07, 'epoch': 7.82} + 49%|████▉ | 181620/371472 [3:34:34<15:24:36, 3.42it/s] 49%|████▉ | 181621/371472 [3:34:35<15:15:54, 3.45it/s] 49%|████▉ | 181622/371472 [3:34:35<15:26:07, 3.42it/s] 49%|████▉ | 181623/371472 [3:34:35<15:09:45, 3.48it/s] 49%|████▉ | 181624/371472 [3:34:35<15:05:22, 3.49it/s] 49%|████▉ | 181625/371472 [3:34:36<15:39:06, 3.37it/s] 49%|████▉ | 181626/371472 [3:34:36<15:35:26, 3.38it/s] 49%|████▉ | 181627/371472 [3:34:36<15:38:21, 3.37it/s] 49%|████▉ | 181628/371472 [3:34:37<15:29:25, 3.40it/s] 49%|████▉ | 181629/371472 [3:34:37<15:23:27, 3.43it/s] 49%|████▉ | 181630/371472 [3:34:37<15:28:23, 3.41it/s] 49%|████▉ | 181631/371472 [3:34:38<16:32:54, 3.19it/s] 49%|████▉ | 181632/371472 [3:34:38<15:59:39, 3.30it/s] 49%|████▉ | 181633/371472 [3:34:38<15:46:59, 3.34it/s] 49%|████▉ | 181634/371472 [3:34:39<16:44:57, 3.15it/s] 49%|████▉ | 181635/371472 [3:34:39<17:21:25, 3.04it/s] 49%|████▉ | 181636/371472 [3:34:39<16:41:19, 3.16it/s] 49%|████▉ | 181637/371472 [3:34:39<16:15:28, 3.24it/s] 49%|████▉ | 181638/371472 [3:34:40<16:04:21, 3.28it/s] 49%|████▉ | 181639/371472 [3:34:40<16:00:12, 3.29it/s] 49%|████▉ | 181640/371472 [3:34:40<16:03:23, 3.28it/s] {'loss': 2.8327, 'learning_rate': 5.60171518455472e-07, 'epoch': 7.82} + 49%|████▉ | 181640/371472 [3:34:40<16:03:23, 3.28it/s] 49%|████▉ | 181641/371472 [3:34:41<16:00:21, 3.29it/s] 49%|████▉ | 181642/371472 [3:34:41<15:49:17, 3.33it/s] 49%|████▉ | 181643/371472 [3:34:41<16:29:35, 3.20it/s] 49%|████▉ | 181644/371472 [3:34:42<16:30:08, 3.20it/s] 49%|████▉ | 181645/371472 [3:34:42<16:16:16, 3.24it/s] 49%|████▉ | 181646/371472 [3:34:42<16:27:39, 3.20it/s] 49%|████▉ | 181647/371472 [3:34:43<16:18:36, 3.23it/s] 49%|████▉ | 181648/371472 [3:34:43<15:58:03, 3.30it/s] 49%|████▉ | 181649/371472 [3:34:43<15:31:52, 3.39it/s] 49%|████▉ | 181650/371472 [3:34:43<16:02:08, 3.29it/s] 49%|████▉ | 181651/371472 [3:34:44<15:57:45, 3.30it/s] 49%|████▉ | 181652/371472 [3:34:44<15:39:54, 3.37it/s] 49%|████▉ | 181653/371472 [3:34:44<15:27:54, 3.41it/s] 49%|████▉ | 181654/371472 [3:34:45<15:38:55, 3.37it/s] 49%|████▉ | 181655/371472 [3:34:45<15:19:20, 3.44it/s] 49%|████▉ | 181656/371472 [3:34:45<15:09:18, 3.48it/s] 49%|████▉ | 181657/371472 [3:34:45<15:16:02, 3.45it/s] 49%|████▉ | 181658/371472 [3:34:46<15:24:10, 3.42it/s] 49%|████▉ | 181659/371472 [3:34:46<15:44:27, 3.35it/s] 49%|████▉ | 181660/371472 [3:34:46<15:38:02, 3.37it/s] {'loss': 2.7803, 'learning_rate': 5.601230364799931e-07, 'epoch': 7.82} + 49%|████▉ | 181660/371472 [3:34:46<15:38:02, 3.37it/s] 49%|████▉ | 181661/371472 [3:34:47<16:11:54, 3.25it/s] 49%|████▉ | 181662/371472 [3:34:47<16:40:38, 3.16it/s] 49%|████▉ | 181663/371472 [3:34:47<16:49:15, 3.13it/s] 49%|████▉ | 181664/371472 [3:34:48<17:03:14, 3.09it/s] 49%|████▉ | 181665/371472 [3:34:48<16:44:45, 3.15it/s] 49%|████▉ | 181666/371472 [3:34:48<16:34:04, 3.18it/s] 49%|████▉ | 181667/371472 [3:34:49<16:27:40, 3.20it/s] 49%|████▉ | 181668/371472 [3:34:49<15:57:17, 3.30it/s] 49%|████▉ | 181669/371472 [3:34:49<15:26:43, 3.41it/s] 49%|████▉ | 181670/371472 [3:34:49<15:04:45, 3.50it/s] 49%|████▉ | 181671/371472 [3:34:50<15:17:09, 3.45it/s] 49%|████▉ | 181672/371472 [3:34:50<15:29:47, 3.40it/s] 49%|████▉ | 181673/371472 [3:34:50<16:40:00, 3.16it/s] 49%|████▉ | 181674/371472 [3:34:51<15:57:58, 3.30it/s] 49%|████▉ | 181675/371472 [3:34:51<16:11:08, 3.26it/s] 49%|████▉ | 181676/371472 [3:34:51<16:16:03, 3.24it/s] 49%|████▉ | 181677/371472 [3:34:52<15:54:43, 3.31it/s] 49%|████▉ | 181678/371472 [3:34:52<15:37:35, 3.37it/s] 49%|████▉ | 181679/371472 [3:34:52<15:15:46, 3.45it/s] 49%|████▉ | 181680/371472 [3:34:52<15:08:53, 3.48it/s] {'loss': 2.9596, 'learning_rate': 5.600745545045142e-07, 'epoch': 7.83} + 49%|████▉ | 181680/371472 [3:34:52<15:08:53, 3.48it/s] 49%|████▉ | 181681/371472 [3:34:53<15:28:28, 3.41it/s] 49%|████▉ | 181682/371472 [3:34:53<15:33:10, 3.39it/s] 49%|████▉ | 181683/371472 [3:34:53<17:10:12, 3.07it/s] 49%|████▉ | 181684/371472 [3:34:54<17:15:04, 3.06it/s] 49%|████▉ | 181685/371472 [3:34:54<16:50:33, 3.13it/s] 49%|████▉ | 181686/371472 [3:34:54<16:49:58, 3.13it/s] 49%|████▉ | 181687/371472 [3:34:55<17:03:52, 3.09it/s] 49%|████▉ | 181688/371472 [3:34:55<16:44:52, 3.15it/s] 49%|████▉ | 181689/371472 [3:34:55<16:52:33, 3.12it/s] 49%|████▉ | 181690/371472 [3:34:56<16:10:51, 3.26it/s] 49%|████▉ | 181691/371472 [3:34:56<15:48:47, 3.33it/s] 49%|████▉ | 181692/371472 [3:34:56<15:44:07, 3.35it/s] 49%|████▉ | 181693/371472 [3:34:56<15:33:45, 3.39it/s] 49%|████▉ | 181694/371472 [3:34:57<15:26:55, 3.41it/s] 49%|████▉ | 181695/371472 [3:34:57<15:53:22, 3.32it/s] 49%|████▉ | 181696/371472 [3:34:57<15:54:16, 3.31it/s] 49%|████▉ | 181697/371472 [3:34:58<16:16:21, 3.24it/s] 49%|████▉ | 181698/371472 [3:34:58<16:35:05, 3.18it/s] 49%|████▉ | 181699/371472 [3:34:58<16:22:43, 3.22it/s] 49%|████▉ | 181700/371472 [3:34:59<16:07:17, 3.27it/s] {'loss': 2.872, 'learning_rate': 5.600260725290352e-07, 'epoch': 7.83} + 49%|████▉ | 181700/371472 [3:34:59<16:07:17, 3.27it/s] 49%|████▉ | 181701/371472 [3:34:59<15:50:49, 3.33it/s] 49%|████▉ | 181702/371472 [3:34:59<15:40:17, 3.36it/s] 49%|████▉ | 181703/371472 [3:35:00<15:35:13, 3.38it/s] 49%|████▉ | 181704/371472 [3:35:00<15:41:50, 3.36it/s] 49%|████▉ | 181705/371472 [3:35:00<16:52:56, 3.12it/s] 49%|████▉ | 181706/371472 [3:35:01<16:36:37, 3.17it/s] 49%|████▉ | 181707/371472 [3:35:01<16:00:13, 3.29it/s] 49%|████▉ | 181708/371472 [3:35:01<16:49:10, 3.13it/s] 49%|████▉ | 181709/371472 [3:35:01<16:30:55, 3.19it/s] 49%|████▉ | 181710/371472 [3:35:02<16:08:37, 3.27it/s] 49%|████▉ | 181711/371472 [3:35:02<15:54:42, 3.31it/s] 49%|████▉ | 181712/371472 [3:35:02<16:06:43, 3.27it/s] 49%|████▉ | 181713/371472 [3:35:03<16:14:47, 3.24it/s] 49%|████▉ | 181714/371472 [3:35:03<16:14:12, 3.25it/s] 49%|████▉ | 181715/371472 [3:35:03<16:11:13, 3.26it/s] 49%|████▉ | 181716/371472 [3:35:04<15:50:43, 3.33it/s] 49%|████▉ | 181717/371472 [3:35:04<15:31:06, 3.40it/s] 49%|████▉ | 181718/371472 [3:35:04<16:01:59, 3.29it/s] 49%|████▉ | 181719/371472 [3:35:04<16:02:09, 3.29it/s] 49%|████▉ | 181720/371472 [3:35:05<16:11:37, 3.25it/s] {'loss': 2.9774, 'learning_rate': 5.599775905535564e-07, 'epoch': 7.83} + 49%|████▉ | 181720/371472 [3:35:05<16:11:37, 3.25it/s] 49%|████▉ | 181721/371472 [3:35:05<15:44:56, 3.35it/s] 49%|████▉ | 181722/371472 [3:35:05<15:37:56, 3.37it/s] 49%|████▉ | 181723/371472 [3:35:06<15:16:01, 3.45it/s] 49%|████▉ | 181724/371472 [3:35:06<15:04:11, 3.50it/s] 49%|████▉ | 181725/371472 [3:35:06<15:11:56, 3.47it/s] 49%|████▉ | 181726/371472 [3:35:06<15:05:17, 3.49it/s] 49%|████▉ | 181727/371472 [3:35:07<15:18:13, 3.44it/s] 49%|████▉ | 181728/371472 [3:35:07<15:34:31, 3.38it/s] 49%|████▉ | 181729/371472 [3:35:07<15:36:46, 3.38it/s] 49%|████▉ | 181730/371472 [3:35:08<16:06:48, 3.27it/s] 49%|████▉ | 181731/371472 [3:35:08<15:47:23, 3.34it/s] 49%|████▉ | 181732/371472 [3:35:08<16:04:36, 3.28it/s] 49%|████▉ | 181733/371472 [3:35:09<16:11:33, 3.25it/s] 49%|████▉ | 181734/371472 [3:35:09<15:58:31, 3.30it/s] 49%|████▉ | 181735/371472 [3:35:09<16:26:55, 3.20it/s] 49%|████▉ | 181736/371472 [3:35:10<15:58:52, 3.30it/s] 49%|████▉ | 181737/371472 [3:35:10<15:44:05, 3.35it/s] 49%|████▉ | 181738/371472 [3:35:10<15:42:24, 3.36it/s] 49%|████▉ | 181739/371472 [3:35:10<15:35:44, 3.38it/s] 49%|████▉ | 181740/371472 [3:35:11<15:56:55, 3.30it/s] {'loss': 2.9218, 'learning_rate': 5.599291085780775e-07, 'epoch': 7.83} + 49%|████▉ | 181740/371472 [3:35:11<15:56:55, 3.30it/s] 49%|████▉ | 181741/371472 [3:35:11<16:09:13, 3.26it/s] 49%|████▉ | 181742/371472 [3:35:11<16:10:53, 3.26it/s] 49%|████�� | 181743/371472 [3:35:12<16:24:59, 3.21it/s] 49%|████▉ | 181744/371472 [3:35:12<16:36:51, 3.17it/s] 49%|████▉ | 181745/371472 [3:35:12<16:26:32, 3.21it/s] 49%|████▉ | 181746/371472 [3:35:13<16:00:10, 3.29it/s] 49%|████▉ | 181747/371472 [3:35:13<15:38:01, 3.37it/s] 49%|████▉ | 181748/371472 [3:35:13<15:30:51, 3.40it/s] 49%|████▉ | 181749/371472 [3:35:13<15:20:32, 3.44it/s] 49%|████▉ | 181750/371472 [3:35:14<15:22:11, 3.43it/s] 49%|████▉ | 181751/371472 [3:35:14<15:08:29, 3.48it/s] 49%|████▉ | 181752/371472 [3:35:14<16:18:18, 3.23it/s] 49%|████▉ | 181753/371472 [3:35:15<16:06:56, 3.27it/s] 49%|████▉ | 181754/371472 [3:35:15<15:36:45, 3.38it/s] 49%|████▉ | 181755/371472 [3:35:15<15:20:01, 3.44it/s] 49%|████▉ | 181756/371472 [3:35:16<15:49:14, 3.33it/s] 49%|████▉ | 181757/371472 [3:35:16<15:25:52, 3.42it/s] 49%|████▉ | 181758/371472 [3:35:16<15:16:06, 3.45it/s] 49%|████▉ | 181759/371472 [3:35:16<15:11:27, 3.47it/s] 49%|████▉ | 181760/371472 [3:35:17<15:56:28, 3.31it/s] {'loss': 3.0218, 'learning_rate': 5.598806266025986e-07, 'epoch': 7.83} + 49%|████▉ | 181760/371472 [3:35:17<15:56:28, 3.31it/s] 49%|████▉ | 181761/371472 [3:35:17<15:47:47, 3.34it/s] 49%|████▉ | 181762/371472 [3:35:17<15:52:01, 3.32it/s] 49%|████▉ | 181763/371472 [3:35:18<16:23:25, 3.22it/s] 49%|████▉ | 181764/371472 [3:35:18<16:19:34, 3.23it/s] 49%|████▉ | 181765/371472 [3:35:18<16:06:22, 3.27it/s] 49%|████▉ | 181766/371472 [3:35:19<15:38:12, 3.37it/s] 49%|████▉ | 181767/371472 [3:35:19<15:37:05, 3.37it/s] 49%|████▉ | 181768/371472 [3:35:19<15:28:01, 3.41it/s] 49%|████▉ | 181769/371472 [3:35:19<15:30:45, 3.40it/s] 49%|████▉ | 181770/371472 [3:35:20<15:07:50, 3.48it/s] 49%|████▉ | 181771/371472 [3:35:20<15:06:16, 3.49it/s] 49%|████▉ | 181772/371472 [3:35:20<15:24:21, 3.42it/s] 49%|████▉ | 181773/371472 [3:35:21<15:32:08, 3.39it/s] 49%|████▉ | 181774/371472 [3:35:21<15:45:10, 3.34it/s] 49%|████▉ | 181775/371472 [3:35:21<15:49:57, 3.33it/s] 49%|████▉ | 181776/371472 [3:35:21<15:58:56, 3.30it/s] 49%|████▉ | 181777/371472 [3:35:22<16:03:13, 3.28it/s] 49%|████▉ | 181778/371472 [3:35:22<15:51:24, 3.32it/s] 49%|████▉ | 181779/371472 [3:35:22<15:42:30, 3.35it/s] 49%|████▉ | 181780/371472 [3:35:23<15:31:01, 3.40it/s] {'loss': 2.9055, 'learning_rate': 5.598321446271197e-07, 'epoch': 7.83} + 49%|████▉ | 181780/371472 [3:35:23<15:31:01, 3.40it/s] 49%|████▉ | 181781/371472 [3:35:23<15:19:10, 3.44it/s] 49%|████▉ | 181782/371472 [3:35:23<15:30:01, 3.40it/s] 49%|████▉ | 181783/371472 [3:35:24<15:10:10, 3.47it/s] 49%|████▉ | 181784/371472 [3:35:24<15:12:53, 3.46it/s] 49%|████▉ | 181785/371472 [3:35:24<15:32:55, 3.39it/s] 49%|████▉ | 181786/371472 [3:35:24<15:24:19, 3.42it/s] 49%|████▉ | 181787/371472 [3:35:25<15:15:02, 3.45it/s] 49%|████▉ | 181788/371472 [3:35:25<15:10:09, 3.47it/s] 49%|████▉ | 181789/371472 [3:35:25<15:07:53, 3.48it/s] 49%|████▉ | 181790/371472 [3:35:26<15:04:11, 3.50it/s] 49%|████▉ | 181791/371472 [3:35:26<15:19:01, 3.44it/s] 49%|████▉ | 181792/371472 [3:35:26<16:27:14, 3.20it/s] 49%|████▉ | 181793/371472 [3:35:26<16:07:01, 3.27it/s] 49%|████▉ | 181794/371472 [3:35:27<16:08:15, 3.26it/s] 49%|████▉ | 181795/371472 [3:35:27<15:55:41, 3.31it/s] 49%|████▉ | 181796/371472 [3:35:27<16:02:23, 3.28it/s] 49%|████▉ | 181797/371472 [3:35:28<15:40:30, 3.36it/s] 49%|████▉ | 181798/371472 [3:35:28<15:48:24, 3.33it/s] 49%|████▉ | 181799/371472 [3:35:28<16:22:07, 3.22it/s] 49%|████▉ | 181800/371472 [3:35:29<17:02:31, 3.09it/s] {'loss': 2.7596, 'learning_rate': 5.597836626516408e-07, 'epoch': 7.83} + 49%|████▉ | 181800/371472 [3:35:29<17:02:31, 3.09it/s] 49%|████▉ | 181801/371472 [3:35:29<16:23:22, 3.21it/s] 49%|████▉ | 181802/371472 [3:35:29<16:03:07, 3.28it/s] 49%|████▉ | 181803/371472 [3:35:30<16:14:32, 3.24it/s] 49%|████▉ | 181804/371472 [3:35:30<15:55:02, 3.31it/s] 49%|████▉ | 181805/371472 [3:35:30<16:09:56, 3.26it/s] 49%|████▉ | 181806/371472 [3:35:30<16:06:45, 3.27it/s] 49%|████▉ | 181807/371472 [3:35:31<15:51:16, 3.32it/s] 49%|████▉ | 181808/371472 [3:35:31<15:56:25, 3.31it/s] 49%|████▉ | 181809/371472 [3:35:31<16:07:24, 3.27it/s] 49%|████▉ | 181810/371472 [3:35:32<16:00:34, 3.29it/s] 49%|████▉ | 181811/371472 [3:35:32<16:22:19, 3.22it/s] 49%|████▉ | 181812/371472 [3:35:32<17:19:41, 3.04it/s] 49%|████▉ | 181813/371472 [3:35:33<17:17:06, 3.05it/s] 49%|████▉ | 181814/371472 [3:35:33<16:31:57, 3.19it/s] 49%|████▉ | 181815/371472 [3:35:33<15:57:55, 3.30it/s] 49%|████▉ | 181816/371472 [3:35:34<15:48:18, 3.33it/s] 49%|████▉ | 181817/371472 [3:35:34<15:24:52, 3.42it/s] 49%|████▉ | 181818/371472 [3:35:34<15:24:39, 3.42it/s] 49%|████▉ | 181819/371472 [3:35:34<15:35:02, 3.38it/s] 49%|████▉ | 181820/371472 [3:35:35<15:30:25, 3.40it/s] {'loss': 2.8521, 'learning_rate': 5.597351806761619e-07, 'epoch': 7.83} + 49%|████▉ | 181820/371472 [3:35:35<15:30:25, 3.40it/s] 49%|████▉ | 181821/371472 [3:35:35<15:10:15, 3.47it/s] 49%|████▉ | 181822/371472 [3:35:35<16:20:31, 3.22it/s] 49%|████▉ | 181823/371472 [3:35:36<15:55:45, 3.31it/s] 49%|████▉ | 181824/371472 [3:35:36<16:18:20, 3.23it/s] 49%|████▉ | 181825/371472 [3:35:36<16:18:33, 3.23it/s] 49%|████▉ | 181826/371472 [3:35:37<15:58:21, 3.30it/s] 49%|████▉ | 181827/371472 [3:35:37<15:46:10, 3.34it/s] 49%|████▉ | 181828/371472 [3:35:37<15:37:31, 3.37it/s] 49%|████▉ | 181829/371472 [3:35:38<16:41:59, 3.15it/s] 49%|████▉ | 181830/371472 [3:35:38<17:20:31, 3.04it/s] 49%|████▉ | 181831/371472 [3:35:38<16:34:04, 3.18it/s] 49%|████▉ | 181832/371472 [3:35:38<16:22:39, 3.22it/s] 49%|████▉ | 181833/371472 [3:35:39<16:08:30, 3.26it/s] 49%|████▉ | 181834/371472 [3:35:39<15:51:39, 3.32it/s] 49%|████▉ | 181835/371472 [3:35:39<15:31:38, 3.39it/s] 49%|████▉ | 181836/371472 [3:35:40<15:06:55, 3.48it/s] 49%|████▉ | 181837/371472 [3:35:40<15:22:00, 3.43it/s] 49%|████▉ | 181838/371472 [3:35:40<20:01:25, 2.63it/s] 49%|████▉ | 181839/371472 [3:35:41<18:47:52, 2.80it/s] 49%|████▉ | 181840/371472 [3:35:41<19:23:03, 2.72it/s] {'loss': 2.8664, 'learning_rate': 5.59686698700683e-07, 'epoch': 7.83} + 49%|████▉ | 181840/371472 [3:35:41<19:23:03, 2.72it/s] 49%|████▉ | 181841/371472 [3:35:41<18:04:05, 2.92it/s] 49%|████▉ | 181842/371472 [3:35:42<16:53:05, 3.12it/s] 49%|████▉ | 181843/371472 [3:35:42<16:43:44, 3.15it/s] 49%|████▉ | 181844/371472 [3:35:42<16:11:46, 3.25it/s] 49%|████▉ | 181845/371472 [3:35:43<15:44:32, 3.35it/s] 49%|████▉ | 181846/371472 [3:35:43<15:49:26, 3.33it/s] 49%|████▉ | 181847/371472 [3:35:43<16:03:17, 3.28it/s] 49%|████▉ | 181848/371472 [3:35:44<15:54:59, 3.31it/s] 49%|████▉ | 181849/371472 [3:35:44<15:41:17, 3.36it/s] 49%|████▉ | 181850/371472 [3:35:44<15:26:36, 3.41it/s] 49%|████▉ | 181851/371472 [3:35:44<15:09:31, 3.47it/s] 49%|████▉ | 181852/371472 [3:35:45<14:43:29, 3.58it/s] 49%|████▉ | 181853/371472 [3:35:45<14:47:17, 3.56it/s] 49%|████▉ | 181854/371472 [3:35:45<14:58:45, 3.52it/s] 49%|████▉ | 181855/371472 [3:35:46<15:20:30, 3.43it/s] 49%|████▉ | 181856/371472 [3:35:46<15:27:12, 3.41it/s] 49%|████▉ | 181857/371472 [3:35:46<15:15:34, 3.45it/s] 49%|████▉ | 181858/371472 [3:35:46<15:12:55, 3.46it/s] 49%|████▉ | 181859/371472 [3:35:47<14:57:31, 3.52it/s] 49%|████▉ | 181860/371472 [3:35:47<16:47:18, 3.14it/s] {'loss': 2.763, 'learning_rate': 5.596382167252041e-07, 'epoch': 7.83} + 49%|████▉ | 181860/371472 [3:35:47<16:47:18, 3.14it/s] 49%|████▉ | 181861/371472 [3:35:47<16:25:36, 3.21it/s] 49%|████▉ | 181862/371472 [3:35:48<17:02:21, 3.09it/s] 49%|████▉ | 181863/371472 [3:35:48<17:01:36, 3.09it/s] 49%|████▉ | 181864/371472 [3:35:48<17:02:16, 3.09it/s] 49%|████▉ | 181865/371472 [3:35:49<16:29:45, 3.19it/s] 49%|████▉ | 181866/371472 [3:35:49<15:50:37, 3.32it/s] 49%|████▉ | 181867/371472 [3:35:49<15:43:15, 3.35it/s] 49%|████▉ | 181868/371472 [3:35:49<15:14:16, 3.46it/s] 49%|████▉ | 181869/371472 [3:35:50<15:15:41, 3.45it/s] 49%|████▉ | 181870/371472 [3:35:50<14:52:33, 3.54it/s] 49%|████▉ | 181871/371472 [3:35:50<15:29:12, 3.40it/s] 49%|████▉ | 181872/371472 [3:35:51<15:30:37, 3.40it/s] 49%|████▉ | 181873/371472 [3:35:51<15:42:09, 3.35it/s] 49%|████▉ | 181874/371472 [3:35:51<15:30:54, 3.39it/s] 49%|████▉ | 181875/371472 [3:35:52<15:22:15, 3.43it/s] 49%|████▉ | 181876/371472 [3:35:52<15:33:07, 3.39it/s] 49%|████▉ | 181877/371472 [3:35:52<15:35:32, 3.38it/s] 49%|████▉ | 181878/371472 [3:35:52<15:47:55, 3.33it/s] 49%|████▉ | 181879/371472 [3:35:53<16:05:40, 3.27it/s] 49%|████▉ | 181880/371472 [3:35:53<15:43:36, 3.35it/s] {'loss': 2.7258, 'learning_rate': 5.595897347497253e-07, 'epoch': 7.83} + 49%|████▉ | 181880/371472 [3:35:53<15:43:36, 3.35it/s] 49%|████▉ | 181881/371472 [3:35:53<16:03:56, 3.28it/s] 49%|████▉ | 181882/371472 [3:35:54<15:57:56, 3.30it/s] 49%|████▉ | 181883/371472 [3:35:54<15:31:16, 3.39it/s] 49%|████▉ | 181884/371472 [3:35:54<15:56:29, 3.30it/s] 49%|████▉ | 181885/371472 [3:35:55<16:07:09, 3.27it/s] 49%|████▉ | 181886/371472 [3:35:55<17:08:54, 3.07it/s] 49%|████▉ | 181887/371472 [3:35:55<16:42:00, 3.15it/s] 49%|████▉ | 181888/371472 [3:35:56<16:21:19, 3.22it/s] 49%|████▉ | 181889/371472 [3:35:56<16:07:45, 3.26it/s] 49%|████▉ | 181890/371472 [3:35:56<15:56:26, 3.30it/s] 49%|████▉ | 181891/371472 [3:35:56<15:46:40, 3.34it/s] 49%|████▉ | 181892/371472 [3:35:57<15:26:34, 3.41it/s] 49%|████▉ | 181893/371472 [3:35:57<15:30:13, 3.40it/s] 49%|████▉ | 181894/371472 [3:35:57<15:38:31, 3.37it/s] 49%|████▉ | 181895/371472 [3:35:58<15:47:41, 3.33it/s] 49%|████▉ | 181896/371472 [3:35:58<15:34:24, 3.38it/s] 49%|████▉ | 181897/371472 [3:35:58<15:29:53, 3.40it/s] 49%|████▉ | 181898/371472 [3:35:58<15:16:19, 3.45it/s] 49%|████▉ | 181899/371472 [3:35:59<15:41:10, 3.36it/s] 49%|████▉ | 181900/371472 [3:35:59<15:06:14, 3.49it/s] {'loss': 2.955, 'learning_rate': 5.595412527742464e-07, 'epoch': 7.83} + 49%|████▉ | 181900/371472 [3:35:59<15:06:14, 3.49it/s] 49%|████▉ | 181901/371472 [3:35:59<15:24:43, 3.42it/s] 49%|████▉ | 181902/371472 [3:36:00<15:17:15, 3.44it/s] 49%|████▉ | 181903/371472 [3:36:00<15:10:34, 3.47it/s] 49%|████▉ | 181904/371472 [3:36:00<15:11:54, 3.46it/s] 49%|████▉ | 181905/371472 [3:36:00<14:41:31, 3.58it/s] 49%|████▉ | 181906/371472 [3:36:01<14:39:11, 3.59it/s] 49%|████▉ | 181907/371472 [3:36:01<15:21:54, 3.43it/s] 49%|████▉ | 181908/371472 [3:36:01<16:15:07, 3.24it/s] 49%|████▉ | 181909/371472 [3:36:02<15:50:53, 3.32it/s] 49%|████▉ | 181910/371472 [3:36:02<15:39:27, 3.36it/s] 49%|████▉ | 181911/371472 [3:36:02<15:21:20, 3.43it/s] 49%|████▉ | 181912/371472 [3:36:03<15:14:58, 3.45it/s] 49%|████▉ | 181913/371472 [3:36:03<15:35:44, 3.38it/s] 49%|████▉ | 181914/371472 [3:36:03<15:43:44, 3.35it/s] 49%|████▉ | 181915/371472 [3:36:03<15:56:45, 3.30it/s] 49%|████▉ | 181916/371472 [3:36:04<15:24:16, 3.42it/s] 49%|████▉ | 181917/371472 [3:36:04<15:29:18, 3.40it/s] 49%|████▉ | 181918/371472 [3:36:04<15:23:59, 3.42it/s] 49%|████▉ | 181919/371472 [3:36:05<15:29:40, 3.40it/s] 49%|████▉ | 181920/371472 [3:36:05<15:27:02, 3.41it/s] {'loss': 2.8266, 'learning_rate': 5.594927707987675e-07, 'epoch': 7.84} + 49%|████▉ | 181920/371472 [3:36:05<15:27:02, 3.41it/s] 49%|████▉ | 181921/371472 [3:36:05<15:12:55, 3.46it/s] 49%|████▉ | 181922/371472 [3:36:05<15:34:22, 3.38it/s] 49%|████▉ | 181923/371472 [3:36:06<15:28:14, 3.40it/s] 49%|████▉ | 181924/371472 [3:36:06<16:06:50, 3.27it/s] 49%|████▉ | 181925/371472 [3:36:06<17:04:42, 3.08it/s] 49%|████▉ | 181926/371472 [3:36:07<16:29:53, 3.19it/s] 49%|████▉ | 181927/371472 [3:36:07<17:01:27, 3.09it/s] 49%|████▉ | 181928/371472 [3:36:07<16:20:50, 3.22it/s] 49%|████▉ | 181929/371472 [3:36:08<15:48:11, 3.33it/s] 49%|████▉ | 181930/371472 [3:36:08<15:47:13, 3.34it/s] 49%|████▉ | 181931/371472 [3:36:08<15:28:23, 3.40it/s] 49%|████▉ | 181932/371472 [3:36:09<15:30:51, 3.39it/s] 49%|████▉ | 181933/371472 [3:36:09<15:22:00, 3.43it/s] 49%|████▉ | 181934/371472 [3:36:09<15:19:26, 3.44it/s] 49%|████▉ | 181935/371472 [3:36:09<14:54:54, 3.53it/s] 49%|████▉ | 181936/371472 [3:36:10<15:19:30, 3.44it/s] 49%|████▉ | 181937/371472 [3:36:10<15:06:52, 3.48it/s] 49%|████▉ | 181938/371472 [3:36:10<15:00:54, 3.51it/s] 49%|████▉ | 181939/371472 [3:36:11<15:39:28, 3.36it/s] 49%|████▉ | 181940/371472 [3:36:11<15:54:35, 3.31it/s] {'loss': 3.0105, 'learning_rate': 5.594442888232885e-07, 'epoch': 7.84} + 49%|████▉ | 181940/371472 [3:36:11<15:54:35, 3.31it/s] 49%|████▉ | 181941/371472 [3:36:11<15:59:06, 3.29it/s] 49%|████▉ | 181942/371472 [3:36:11<15:42:54, 3.35it/s] 49%|████▉ | 181943/371472 [3:36:12<15:30:20, 3.40it/s] 49%|████▉ | 181944/371472 [3:36:12<15:19:10, 3.44it/s] 49%|████▉ | 181945/371472 [3:36:12<15:36:51, 3.37it/s] 49%|████▉ | 181946/371472 [3:36:13<15:28:36, 3.40it/s] 49%|████▉ | 181947/371472 [3:36:13<16:02:06, 3.28it/s] 49%|████▉ | 181948/371472 [3:36:13<16:07:05, 3.27it/s] 49%|████▉ | 181949/371472 [3:36:14<15:42:23, 3.35it/s] 49%|████▉ | 181950/371472 [3:36:14<15:46:32, 3.34it/s] 49%|████▉ | 181951/371472 [3:36:14<15:55:36, 3.31it/s] 49%|████▉ | 181952/371472 [3:36:14<15:36:30, 3.37it/s] 49%|████▉ | 181953/371472 [3:36:15<15:33:12, 3.38it/s] 49%|████▉ | 181954/371472 [3:36:15<15:18:15, 3.44it/s] 49%|████▉ | 181955/371472 [3:36:15<15:29:50, 3.40it/s] 49%|████▉ | 181956/371472 [3:36:16<15:02:00, 3.50it/s] 49%|████▉ | 181957/371472 [3:36:16<15:09:54, 3.47it/s] 49%|████▉ | 181958/371472 [3:36:16<16:19:10, 3.23it/s] 49%|████▉ | 181959/371472 [3:36:17<16:04:14, 3.28it/s] 49%|████▉ | 181960/371472 [3:36:17<16:23:35, 3.21it/s] {'loss': 2.8356, 'learning_rate': 5.593958068478098e-07, 'epoch': 7.84} + 49%|████▉ | 181960/371472 [3:36:17<16:23:35, 3.21it/s] 49%|████▉ | 181961/371472 [3:36:17<16:03:41, 3.28it/s] 49%|████▉ | 181962/371472 [3:36:17<16:28:57, 3.19it/s] 49%|████▉ | 181963/371472 [3:36:18<16:24:26, 3.21it/s] 49%|████▉ | 181964/371472 [3:36:18<16:39:05, 3.16it/s] 49%|████▉ | 181965/371472 [3:36:18<16:04:10, 3.28it/s] 49%|████▉ | 181966/371472 [3:36:19<15:42:35, 3.35it/s] 49%|████▉ | 181967/371472 [3:36:19<15:32:58, 3.39it/s] 49%|████▉ | 181968/371472 [3:36:19<15:30:28, 3.39it/s] 49%|████▉ | 181969/371472 [3:36:20<15:38:27, 3.37it/s] 49%|████▉ | 181970/371472 [3:36:20<15:30:59, 3.39it/s] 49%|████▉ | 181971/371472 [3:36:20<16:05:54, 3.27it/s] 49%|████▉ | 181972/371472 [3:36:21<16:44:14, 3.15it/s] 49%|████▉ | 181973/371472 [3:36:21<16:27:32, 3.20it/s] 49%|████▉ | 181974/371472 [3:36:21<16:52:10, 3.12it/s] 49%|████▉ | 181975/371472 [3:36:21<16:12:07, 3.25it/s] 49%|████▉ | 181976/371472 [3:36:22<15:44:08, 3.35it/s] 49%|████▉ | 181977/371472 [3:36:22<16:31:51, 3.18it/s] 49%|████▉ | 181978/371472 [3:36:22<16:11:04, 3.25it/s] 49%|████▉ | 181979/371472 [3:36:23<16:18:22, 3.23it/s] 49%|████▉ | 181980/371472 [3:36:23<17:51:21, 2.95it/s] {'loss': 3.0566, 'learning_rate': 5.593473248723309e-07, 'epoch': 7.84} + 49%|████▉ | 181980/371472 [3:36:23<17:51:21, 2.95it/s] 49%|████▉ | 181981/371472 [3:36:23<17:05:42, 3.08it/s] 49%|████▉ | 181982/371472 [3:36:24<16:30:52, 3.19it/s] 49%|████▉ | 181983/371472 [3:36:24<16:07:30, 3.26it/s] 49%|████▉ | 181984/371472 [3:36:24<15:46:54, 3.34it/s] 49%|████▉ | 181985/371472 [3:36:25<15:33:34, 3.38it/s] 49%|████▉ | 181986/371472 [3:36:25<16:23:15, 3.21it/s] 49%|████▉ | 181987/371472 [3:36:25<15:54:56, 3.31it/s] 49%|████▉ | 181988/371472 [3:36:25<15:29:15, 3.40it/s] 49%|████▉ | 181989/371472 [3:36:26<15:25:21, 3.41it/s] 49%|████▉ | 181990/371472 [3:36:26<15:00:34, 3.51it/s] 49%|████▉ | 181991/371472 [3:36:26<15:33:14, 3.38it/s] 49%|████▉ | 181992/371472 [3:36:27<15:46:07, 3.34it/s] 49%|████▉ | 181993/371472 [3:36:27<15:41:38, 3.35it/s] 49%|████▉ | 181994/371472 [3:36:27<15:41:19, 3.35it/s] 49%|████▉ | 181995/371472 [3:36:28<15:53:10, 3.31it/s] 49%|████▉ | 181996/371472 [3:36:28<15:20:46, 3.43it/s] 49%|████▉ | 181997/371472 [3:36:28<15:16:33, 3.45it/s] 49%|████▉ | 181998/371472 [3:36:28<15:07:38, 3.48it/s] 49%|████▉ | 181999/371472 [3:36:29<15:01:17, 3.50it/s] 49%|████▉ | 182000/371472 [3:36:29<16:01:50, 3.28it/s] {'loss': 2.8246, 'learning_rate': 5.592988428968518e-07, 'epoch': 7.84} + 49%|████▉ | 182000/371472 [3:36:29<16:01:50, 3.28it/s] 49%|████▉ | 182001/371472 [3:36:29<15:46:02, 3.34it/s] 49%|████▉ | 182002/371472 [3:36:30<15:42:01, 3.35it/s] 49%|████▉ | 182003/371472 [3:36:30<17:02:08, 3.09it/s] 49%|████▉ | 182004/371472 [3:36:30<16:27:05, 3.20it/s] 49%|████▉ | 182005/371472 [3:36:31<17:22:06, 3.03it/s] 49%|████▉ | 182006/371472 [3:36:31<16:56:21, 3.11it/s] 49%|████▉ | 182007/371472 [3:36:31<16:31:04, 3.19it/s] 49%|████▉ | 182008/371472 [3:36:32<15:58:08, 3.30it/s] 49%|████▉ | 182009/371472 [3:36:32<15:44:00, 3.34it/s] 49%|████▉ | 182010/371472 [3:36:32<16:05:44, 3.27it/s] 49%|████▉ | 182011/371472 [3:36:32<16:41:35, 3.15it/s] 49%|████▉ | 182012/371472 [3:36:33<15:59:33, 3.29it/s] 49%|████▉ | 182013/371472 [3:36:33<15:57:56, 3.30it/s] 49%|████▉ | 182014/371472 [3:36:33<16:03:39, 3.28it/s] 49%|████▉ | 182015/371472 [3:36:34<16:21:41, 3.22it/s] 49%|████▉ | 182016/371472 [3:36:34<15:42:08, 3.35it/s] 49%|████▉ | 182017/371472 [3:36:34<16:04:45, 3.27it/s] 49%|████▉ | 182018/371472 [3:36:35<16:16:07, 3.23it/s] 49%|████▉ | 182019/371472 [3:36:35<16:38:43, 3.16it/s] 49%|████▉ | 182020/371472 [3:36:35<16:17:01, 3.23it/s] {'loss': 2.8604, 'learning_rate': 5.59250360921373e-07, 'epoch': 7.84} + 49%|████▉ | 182020/371472 [3:36:35<16:17:01, 3.23it/s] 49%|████▉ | 182021/371472 [3:36:36<16:07:21, 3.26it/s] 49%|████▉ | 182022/371472 [3:36:36<15:38:57, 3.36it/s] 49%|████▉ | 182023/371472 [3:36:36<15:46:06, 3.34it/s] 49%|████▉ | 182024/371472 [3:36:36<16:02:10, 3.28it/s] 49%|████▉ | 182025/371472 [3:36:37<15:52:58, 3.31it/s] 49%|████▉ | 182026/371472 [3:36:37<15:38:02, 3.37it/s] 49%|████▉ | 182027/371472 [3:36:37<16:44:37, 3.14it/s] 49%|████▉ | 182028/371472 [3:36:38<16:33:42, 3.18it/s] 49%|████▉ | 182029/371472 [3:36:38<15:48:52, 3.33it/s] 49%|████▉ | 182030/371472 [3:36:38<15:36:44, 3.37it/s] 49%|████▉ | 182031/371472 [3:36:39<15:35:08, 3.38it/s] 49%|████▉ | 182032/371472 [3:36:39<15:37:09, 3.37it/s] 49%|████▉ | 182033/371472 [3:36:39<15:29:50, 3.40it/s] 49%|████▉ | 182034/371472 [3:36:39<15:27:25, 3.40it/s] 49%|████▉ | 182035/371472 [3:36:40<15:32:37, 3.39it/s] 49%|████▉ | 182036/371472 [3:36:40<15:36:49, 3.37it/s] 49%|████▉ | 182037/371472 [3:36:40<16:48:15, 3.13it/s] 49%|████▉ | 182038/371472 [3:36:41<16:42:16, 3.15it/s] 49%|████▉ | 182039/371472 [3:36:41<17:26:42, 3.02it/s] 49%|████▉ | 182040/371472 [3:36:41<16:46:09, 3.14it/s] {'loss': 2.8263, 'learning_rate': 5.592018789458941e-07, 'epoch': 7.84} + 49%|████▉ | 182040/371472 [3:36:41<16:46:09, 3.14it/s] 49%|████▉ | 182041/371472 [3:36:42<16:07:09, 3.26it/s] 49%|████▉ | 182042/371472 [3:36:42<15:47:41, 3.33it/s] 49%|████▉ | 182043/371472 [3:36:42<15:41:33, 3.35it/s] 49%|████▉ | 182044/371472 [3:36:42<16:00:52, 3.29it/s] 49%|████▉ | 182045/371472 [3:36:43<15:41:43, 3.35it/s] 49%|████▉ | 182046/371472 [3:36:43<15:28:46, 3.40it/s] 49%|████▉ | 182047/371472 [3:36:43<15:14:48, 3.45it/s] 49%|████▉ | 182048/371472 [3:36:44<15:12:22, 3.46it/s] 49%|████▉ | 182049/371472 [3:36:44<15:20:27, 3.43it/s] 49%|████▉ | 182050/371472 [3:36:44<15:32:18, 3.39it/s] 49%|████▉ | 182051/371472 [3:36:45<16:08:51, 3.26it/s] 49%|████▉ | 182052/371472 [3:36:45<17:00:31, 3.09it/s] 49%|████▉ | 182053/371472 [3:36:45<16:34:25, 3.17it/s] 49%|████▉ | 182054/371472 [3:36:45<15:51:03, 3.32it/s] 49%|████▉ | 182055/371472 [3:36:46<16:02:14, 3.28it/s] 49%|████▉ | 182056/371472 [3:36:46<15:36:53, 3.37it/s] 49%|████▉ | 182057/371472 [3:36:46<15:32:36, 3.39it/s] 49%|████▉ | 182058/371472 [3:36:47<15:35:17, 3.38it/s] 49%|████▉ | 182059/371472 [3:36:47<15:36:58, 3.37it/s] 49%|████▉ | 182060/371472 [3:36:47<15:47:11, 3.33it/s] {'loss': 2.9423, 'learning_rate': 5.591533969704152e-07, 'epoch': 7.84} + 49%|████▉ | 182060/371472 [3:36:47<15:47:11, 3.33it/s] 49%|████▉ | 182061/371472 [3:36:48<16:11:33, 3.25it/s] 49%|████▉ | 182062/371472 [3:36:48<16:44:31, 3.14it/s] 49%|████▉ | 182063/371472 [3:36:48<16:19:47, 3.22it/s] 49%|████▉ | 182064/371472 [3:36:49<16:18:09, 3.23it/s] 49%|████▉ | 182065/371472 [3:36:49<15:49:46, 3.32it/s] 49%|████▉ | 182066/371472 [3:36:49<15:24:29, 3.41it/s] 49%|████▉ | 182067/371472 [3:36:49<15:05:02, 3.49it/s] 49%|████▉ | 182068/371472 [3:36:50<14:54:18, 3.53it/s] 49%|████▉ | 182069/371472 [3:36:50<14:44:23, 3.57it/s] 49%|████▉ | 182070/371472 [3:36:50<15:56:06, 3.30it/s] 49%|████▉ | 182071/371472 [3:36:51<15:51:35, 3.32it/s] 49%|████▉ | 182072/371472 [3:36:51<15:43:03, 3.35it/s] 49%|████▉ | 182073/371472 [3:36:51<15:18:08, 3.44it/s] 49%|████▉ | 182074/371472 [3:36:51<15:09:03, 3.47it/s] 49%|████▉ | 182075/371472 [3:36:52<15:08:02, 3.48it/s] 49%|████▉ | 182076/371472 [3:36:52<15:35:52, 3.37it/s] 49%|████▉ | 182077/371472 [3:36:52<15:23:45, 3.42it/s] 49%|████▉ | 182078/371472 [3:36:53<15:35:30, 3.37it/s] 49%|████▉ | 182079/371472 [3:36:53<15:24:10, 3.42it/s] 49%|████▉ | 182080/371472 [3:36:53<15:56:42, 3.30it/s] {'loss': 3.0576, 'learning_rate': 5.591049149949362e-07, 'epoch': 7.84} + 49%|████▉ | 182080/371472 [3:36:53<15:56:42, 3.30it/s] 49%|████▉ | 182081/371472 [3:36:54<15:47:55, 3.33it/s] 49%|████▉ | 182082/371472 [3:36:54<15:26:31, 3.41it/s] 49%|████▉ | 182083/371472 [3:36:54<15:20:05, 3.43it/s] 49%|████▉ | 182084/371472 [3:36:54<16:19:04, 3.22it/s] 49%|████▉ | 182085/371472 [3:36:55<16:29:34, 3.19it/s] 49%|████▉ | 182086/371472 [3:36:55<17:22:01, 3.03it/s] 49%|████▉ | 182087/371472 [3:36:55<17:29:59, 3.01it/s] 49%|████▉ | 182088/371472 [3:36:56<16:40:36, 3.15it/s] 49%|████▉ | 182089/371472 [3:36:56<15:58:28, 3.29it/s] 49%|████▉ | 182090/371472 [3:36:56<15:48:22, 3.33it/s] 49%|████▉ | 182091/371472 [3:36:57<15:37:00, 3.37it/s] 49%|████▉ | 182092/371472 [3:36:57<15:09:04, 3.47it/s] 49%|████▉ | 182093/371472 [3:36:57<15:24:01, 3.42it/s] 49%|████▉ | 182094/371472 [3:36:58<16:04:53, 3.27it/s] 49%|████▉ | 182095/371472 [3:36:58<17:07:53, 3.07it/s] 49%|████▉ | 182096/371472 [3:36:58<17:33:32, 3.00it/s] 49%|████▉ | 182097/371472 [3:36:59<16:55:05, 3.11it/s] 49%|████▉ | 182098/371472 [3:36:59<16:53:46, 3.11it/s] 49%|████▉ | 182099/371472 [3:36:59<17:40:09, 2.98it/s] 49%|████▉ | 182100/371472 [3:37:00<17:38:48, 2.98it/s] {'loss': 2.9191, 'learning_rate': 5.590564330194574e-07, 'epoch': 7.84} + 49%|████▉ | 182100/371472 [3:37:00<17:38:48, 2.98it/s] 49%|████▉ | 182101/371472 [3:37:00<17:04:22, 3.08it/s] 49%|████▉ | 182102/371472 [3:37:00<16:25:49, 3.20it/s] 49%|████▉ | 182103/371472 [3:37:00<16:20:43, 3.22it/s] 49%|████▉ | 182104/371472 [3:37:01<16:01:43, 3.28it/s] 49%|████▉ | 182105/371472 [3:37:01<16:05:46, 3.27it/s] 49%|████▉ | 182106/371472 [3:37:01<16:46:41, 3.14it/s] 49%|████▉ | 182107/371472 [3:37:02<16:17:59, 3.23it/s] 49%|████▉ | 182108/371472 [3:37:02<15:43:47, 3.34it/s] 49%|████▉ | 182109/371472 [3:37:02<15:25:02, 3.41it/s] 49%|████▉ | 182110/371472 [3:37:03<15:34:53, 3.38it/s] 49%|████▉ | 182111/371472 [3:37:03<15:31:56, 3.39it/s] 49%|████▉ | 182112/371472 [3:37:03<15:44:54, 3.34it/s] 49%|████▉ | 182113/371472 [3:37:04<16:47:06, 3.13it/s] 49%|████▉ | 182114/371472 [3:37:04<16:48:10, 3.13it/s] 49%|████▉ | 182115/371472 [3:37:04<17:30:19, 3.00it/s] 49%|████▉ | 182116/371472 [3:37:05<17:13:16, 3.05it/s] 49%|████▉ | 182117/371472 [3:37:05<16:22:16, 3.21it/s] 49%|████▉ | 182118/371472 [3:37:05<18:08:57, 2.90it/s] 49%|████▉ | 182119/371472 [3:37:06<17:54:12, 2.94it/s] 49%|████▉ | 182120/371472 [3:37:06<17:32:10, 3.00it/s] {'loss': 2.9829, 'learning_rate': 5.590079510439785e-07, 'epoch': 7.84} + 49%|████▉ | 182120/371472 [3:37:06<17:32:10, 3.00it/s] 49%|████▉ | 182121/371472 [3:37:06<17:37:05, 2.99it/s] 49%|████▉ | 182122/371472 [3:37:07<17:13:33, 3.05it/s] 49%|████▉ | 182123/371472 [3:37:07<19:34:30, 2.69it/s] 49%|████▉ | 182124/371472 [3:37:07<18:27:58, 2.85it/s] 49%|████▉ | 182125/371472 [3:37:08<18:05:52, 2.91it/s] 49%|████▉ | 182126/371472 [3:37:08<17:40:10, 2.98it/s] 49%|████▉ | 182127/371472 [3:37:08<16:51:29, 3.12it/s] 49%|████▉ | 182128/371472 [3:37:09<17:31:13, 3.00it/s] 49%|████▉ | 182129/371472 [3:37:09<18:25:30, 2.85it/s] 49%|████▉ | 182130/371472 [3:37:09<17:36:56, 2.99it/s] 49%|████▉ | 182131/371472 [3:37:10<17:02:17, 3.09it/s] 49%|████▉ | 182132/371472 [3:37:10<16:32:39, 3.18it/s] 49%|████▉ | 182133/371472 [3:37:10<16:40:56, 3.15it/s] 49%|████▉ | 182134/371472 [3:37:10<16:09:29, 3.25it/s] 49%|████▉ | 182135/371472 [3:37:11<16:01:20, 3.28it/s] 49%|████▉ | 182136/371472 [3:37:11<16:14:06, 3.24it/s] 49%|████▉ | 182137/371472 [3:37:11<16:13:41, 3.24it/s] 49%|████▉ | 182138/371472 [3:37:12<15:45:51, 3.34it/s] 49%|████▉ | 182139/371472 [3:37:12<15:42:17, 3.35it/s] 49%|████▉ | 182140/371472 [3:37:12<15:35:23, 3.37it/s] {'loss': 2.7893, 'learning_rate': 5.589594690684996e-07, 'epoch': 7.85} + 49%|████▉ | 182140/371472 [3:37:12<15:35:23, 3.37it/s] 49%|████▉ | 182141/371472 [3:37:13<15:43:37, 3.34it/s] 49%|████▉ | 182142/371472 [3:37:13<15:23:34, 3.42it/s] 49%|████▉ | 182143/371472 [3:37:13<15:31:13, 3.39it/s] 49%|████▉ | 182144/371472 [3:37:13<15:13:02, 3.46it/s] 49%|████▉ | 182145/371472 [3:37:14<15:07:13, 3.48it/s] 49%|████▉ | 182146/371472 [3:37:14<14:57:42, 3.51it/s] 49%|████▉ | 182147/371472 [3:37:14<14:54:35, 3.53it/s] 49%|████▉ | 182148/371472 [3:37:15<16:19:01, 3.22it/s] 49%|████▉ | 182149/371472 [3:37:15<17:02:21, 3.09it/s] 49%|████▉ | 182150/371472 [3:37:15<16:33:43, 3.18it/s] 49%|████▉ | 182151/371472 [3:37:16<16:06:18, 3.27it/s] 49%|████▉ | 182152/371472 [3:37:16<15:49:21, 3.32it/s] 49%|████▉ | 182153/371472 [3:37:16<15:47:42, 3.33it/s] 49%|████▉ | 182154/371472 [3:37:16<15:37:27, 3.37it/s] 49%|████▉ | 182155/371472 [3:37:17<15:18:55, 3.43it/s] 49%|████▉ | 182156/371472 [3:37:17<15:10:28, 3.47it/s] 49%|████▉ | 182157/371472 [3:37:17<14:48:49, 3.55it/s] 49%|████▉ | 182158/371472 [3:37:18<15:37:59, 3.36it/s] 49%|████▉ | 182159/371472 [3:37:18<15:22:29, 3.42it/s] 49%|████▉ | 182160/371472 [3:37:18<15:05:26, 3.48it/s] {'loss': 3.0744, 'learning_rate': 5.589109870930207e-07, 'epoch': 7.85} + 49%|████▉ | 182160/371472 [3:37:18<15:05:26, 3.48it/s] 49%|████▉ | 182161/371472 [3:37:18<15:03:54, 3.49it/s] 49%|████▉ | 182162/371472 [3:37:19<15:13:36, 3.45it/s] 49%|████▉ | 182163/371472 [3:37:19<15:21:09, 3.43it/s] 49%|████▉ | 182164/371472 [3:37:19<15:35:31, 3.37it/s] 49%|████▉ | 182165/371472 [3:37:20<15:23:10, 3.42it/s] 49%|████▉ | 182166/371472 [3:37:20<15:18:34, 3.43it/s] 49%|████▉ | 182167/371472 [3:37:20<15:39:01, 3.36it/s] 49%|████▉ | 182168/371472 [3:37:21<16:02:27, 3.28it/s] 49%|████▉ | 182169/371472 [3:37:21<15:52:39, 3.31it/s] 49%|████▉ | 182170/371472 [3:37:21<16:17:47, 3.23it/s] 49%|████▉ | 182171/371472 [3:37:22<16:39:59, 3.16it/s] 49%|████▉ | 182172/371472 [3:37:22<16:14:00, 3.24it/s] 49%|████▉ | 182173/371472 [3:37:22<16:06:58, 3.26it/s] 49%|████▉ | 182174/371472 [3:37:22<16:42:19, 3.15it/s] 49%|████▉ | 182175/371472 [3:37:23<16:00:48, 3.28it/s] 49%|████▉ | 182176/371472 [3:37:23<15:53:28, 3.31it/s] 49%|████▉ | 182177/371472 [3:37:23<15:26:41, 3.40it/s] 49%|████▉ | 182178/371472 [3:37:24<15:33:35, 3.38it/s] 49%|████▉ | 182179/371472 [3:37:24<15:08:52, 3.47it/s] 49%|████▉ | 182180/371472 [3:37:24<16:59:36, 3.09it/s] {'loss': 2.8198, 'learning_rate': 5.588625051175418e-07, 'epoch': 7.85} + 49%|████▉ | 182180/371472 [3:37:24<16:59:36, 3.09it/s] 49%|████▉ | 182181/371472 [3:37:25<16:17:57, 3.23it/s] 49%|████▉ | 182182/371472 [3:37:25<16:24:16, 3.21it/s] 49%|████▉ | 182183/371472 [3:37:25<16:21:21, 3.21it/s] 49%|████▉ | 182184/371472 [3:37:25<16:17:48, 3.23it/s] 49%|████▉ | 182185/371472 [3:37:26<16:30:14, 3.19it/s] 49%|████▉ | 182186/371472 [3:37:26<15:58:39, 3.29it/s] 49%|████▉ | 182187/371472 [3:37:26<15:23:06, 3.42it/s] 49%|████▉ | 182188/371472 [3:37:27<15:03:03, 3.49it/s] 49%|████▉ | 182189/371472 [3:37:27<15:07:58, 3.47it/s] 49%|████▉ | 182190/371472 [3:37:27<15:18:30, 3.43it/s] 49%|████▉ | 182191/371472 [3:37:28<15:51:49, 3.31it/s] 49%|████▉ | 182192/371472 [3:37:28<15:28:24, 3.40it/s] 49%|████▉ | 182193/371472 [3:37:28<15:24:27, 3.41it/s] 49%|████▉ | 182194/371472 [3:37:28<15:36:10, 3.37it/s] 49%|████▉ | 182195/371472 [3:37:29<15:45:11, 3.34it/s] 49%|████▉ | 182196/371472 [3:37:29<16:14:47, 3.24it/s] 49%|████▉ | 182197/371472 [3:37:29<16:00:08, 3.29it/s] 49%|████▉ | 182198/371472 [3:37:30<15:45:32, 3.34it/s] 49%|████▉ | 182199/371472 [3:37:30<15:55:05, 3.30it/s] 49%|████▉ | 182200/371472 [3:37:30<15:27:02, 3.40it/s] {'loss': 2.7462, 'learning_rate': 5.588140231420629e-07, 'epoch': 7.85} + 49%|████▉ | 182200/371472 [3:37:30<15:27:02, 3.40it/s] 49%|████▉ | 182201/371472 [3:37:31<16:30:21, 3.19it/s] 49%|████▉ | 182202/371472 [3:37:31<16:10:15, 3.25it/s] 49%|████▉ | 182203/371472 [3:37:31<16:31:08, 3.18it/s] 49%|████▉ | 182204/371472 [3:37:31<16:15:07, 3.23it/s] 49%|████▉ | 182205/371472 [3:37:32<15:53:03, 3.31it/s] 49%|████▉ | 182206/371472 [3:37:32<20:29:46, 2.57it/s] 49%|████▉ | 182207/371472 [3:37:33<18:55:04, 2.78it/s] 49%|████▉ | 182208/371472 [3:37:33<17:40:05, 2.98it/s] 49%|████▉ | 182209/371472 [3:37:33<16:38:37, 3.16it/s] 49%|████▉ | 182210/371472 [3:37:34<16:28:18, 3.19it/s] 49%|████▉ | 182211/371472 [3:37:34<16:11:52, 3.25it/s] 49%|████▉ | 182212/371472 [3:37:34<15:52:07, 3.31it/s] 49%|████▉ | 182213/371472 [3:37:34<16:09:01, 3.26it/s] 49%|████▉ | 182214/371472 [3:37:35<16:09:18, 3.25it/s] 49%|████▉ | 182215/371472 [3:37:35<16:15:22, 3.23it/s] 49%|████▉ | 182216/371472 [3:37:35<16:33:49, 3.17it/s] 49%|████▉ | 182217/371472 [3:37:36<16:06:06, 3.26it/s] 49%|████▉ | 182218/371472 [3:37:36<15:49:59, 3.32it/s] 49%|████▉ | 182219/371472 [3:37:36<15:40:23, 3.35it/s] 49%|████▉ | 182220/371472 [3:37:36<15:14:27, 3.45it/s] {'loss': 2.9637, 'learning_rate': 5.58765541166584e-07, 'epoch': 7.85} + 49%|████▉ | 182220/371472 [3:37:37<15:14:27, 3.45it/s] 49%|████▉ | 182221/371472 [3:37:37<14:44:43, 3.57it/s] 49%|████▉ | 182222/371472 [3:37:37<14:58:54, 3.51it/s] 49%|████▉ | 182223/371472 [3:37:37<16:10:28, 3.25it/s] 49%|████▉ | 182224/371472 [3:37:38<16:17:42, 3.23it/s] 49%|████▉ | 182225/371472 [3:37:38<15:53:36, 3.31it/s] 49%|████▉ | 182226/371472 [3:37:38<15:56:52, 3.30it/s] 49%|████▉ | 182227/371472 [3:37:39<15:51:27, 3.31it/s] 49%|████▉ | 182228/371472 [3:37:39<15:39:17, 3.36it/s] 49%|████▉ | 182229/371472 [3:37:39<15:26:32, 3.40it/s] 49%|████▉ | 182230/371472 [3:37:39<15:06:49, 3.48it/s] 49%|████▉ | 182231/371472 [3:37:40<14:49:28, 3.55it/s] 49%|████▉ | 182232/371472 [3:37:40<15:20:26, 3.43it/s] 49%|████▉ | 182233/371472 [3:37:40<15:19:33, 3.43it/s] 49%|████▉ | 182234/371472 [3:37:41<15:12:28, 3.46it/s] 49%|████▉ | 182235/371472 [3:37:41<15:02:11, 3.50it/s] 49%|████▉ | 182236/371472 [3:37:41<15:30:04, 3.39it/s] 49%|████▉ | 182237/371472 [3:37:42<15:20:57, 3.42it/s] 49%|████▉ | 182238/371472 [3:37:42<15:41:44, 3.35it/s] 49%|████▉ | 182239/371472 [3:37:42<15:43:08, 3.34it/s] 49%|████▉ | 182240/371472 [3:37:42<15:31:35, 3.39it/s] {'loss': 3.052, 'learning_rate': 5.587170591911051e-07, 'epoch': 7.85} + 49%|████▉ | 182240/371472 [3:37:42<15:31:35, 3.39it/s] 49%|████▉ | 182241/371472 [3:37:43<15:28:01, 3.40it/s] 49%|████▉ | 182242/371472 [3:37:43<15:39:29, 3.36it/s] 49%|████▉ | 182243/371472 [3:37:43<15:41:15, 3.35it/s] 49%|████▉ | 182244/371472 [3:37:44<15:27:15, 3.40it/s] 49%|████▉ | 182245/371472 [3:37:44<15:37:28, 3.36it/s] 49%|████▉ | 182246/371472 [3:37:44<15:38:51, 3.36it/s] 49%|████▉ | 182247/371472 [3:37:44<15:42:24, 3.35it/s] 49%|████▉ | 182248/371472 [3:37:45<16:00:50, 3.28it/s] 49%|████▉ | 182249/371472 [3:37:45<15:25:35, 3.41it/s] 49%|████▉ | 182250/371472 [3:37:45<15:12:38, 3.46it/s] 49%|████▉ | 182251/371472 [3:37:46<15:51:15, 3.32it/s] 49%|████▉ | 182252/371472 [3:37:46<15:47:23, 3.33it/s] 49%|████▉ | 182253/371472 [3:37:46<15:54:11, 3.31it/s] 49%|████▉ | 182254/371472 [3:37:47<15:46:39, 3.33it/s] 49%|████▉ | 182255/371472 [3:37:47<15:35:48, 3.37it/s] 49%|████▉ | 182256/371472 [3:37:47<15:04:52, 3.49it/s] 49%|████▉ | 182257/371472 [3:37:47<15:09:02, 3.47it/s] 49%|████▉ | 182258/371472 [3:37:48<15:26:17, 3.40it/s] 49%|████▉ | 182259/371472 [3:37:48<15:27:43, 3.40it/s] 49%|████▉ | 182260/371472 [3:37:48<15:26:11, 3.40it/s] {'loss': 2.9327, 'learning_rate': 5.586685772156263e-07, 'epoch': 7.85} + 49%|████▉ | 182260/371472 [3:37:48<15:26:11, 3.40it/s] 49%|████▉ | 182261/371472 [3:37:49<15:23:02, 3.42it/s] 49%|████▉ | 182262/371472 [3:37:49<14:58:21, 3.51it/s] 49%|████▉ | 182263/371472 [3:37:49<14:49:40, 3.54it/s] 49%|████▉ | 182264/371472 [3:37:50<16:01:27, 3.28it/s] 49%|████▉ | 182265/371472 [3:37:50<17:14:08, 3.05it/s] 49%|████▉ | 182266/371472 [3:37:50<16:31:25, 3.18it/s] 49%|████▉ | 182267/371472 [3:37:50<16:21:51, 3.21it/s] 49%|████▉ | 182268/371472 [3:37:51<15:48:56, 3.32it/s] 49%|████▉ | 182269/371472 [3:37:51<16:46:31, 3.13it/s] 49%|████▉ | 182270/371472 [3:37:51<16:28:30, 3.19it/s] 49%|████▉ | 182271/371472 [3:37:52<16:21:29, 3.21it/s] 49%|████▉ | 182272/371472 [3:37:52<16:09:12, 3.25it/s] 49%|████▉ | 182273/371472 [3:37:52<16:30:12, 3.18it/s] 49%|████▉ | 182274/371472 [3:37:53<16:06:12, 3.26it/s] 49%|████▉ | 182275/371472 [3:37:53<16:07:19, 3.26it/s] 49%|████▉ | 182276/371472 [3:37:53<16:34:43, 3.17it/s] 49%|████▉ | 182277/371472 [3:37:54<16:02:29, 3.28it/s] 49%|████▉ | 182278/371472 [3:37:54<15:36:56, 3.37it/s] 49%|████▉ | 182279/371472 [3:37:54<15:37:37, 3.36it/s] 49%|████▉ | 182280/371472 [3:37:54<15:29:24, 3.39it/s] {'loss': 2.8609, 'learning_rate': 5.586200952401474e-07, 'epoch': 7.85} + 49%|████▉ | 182280/371472 [3:37:54<15:29:24, 3.39it/s] 49%|████▉ | 182281/371472 [3:37:55<15:49:23, 3.32it/s] 49%|████▉ | 182282/371472 [3:37:55<15:30:12, 3.39it/s] 49%|████▉ | 182283/371472 [3:37:55<15:38:25, 3.36it/s] 49%|████▉ | 182284/371472 [3:37:56<15:32:29, 3.38it/s] 49%|████▉ | 182285/371472 [3:37:56<15:42:32, 3.35it/s] 49%|████▉ | 182286/371472 [3:37:56<16:12:30, 3.24it/s] 49%|████▉ | 182287/371472 [3:37:57<15:58:56, 3.29it/s] 49%|████▉ | 182288/371472 [3:37:57<15:21:23, 3.42it/s] 49%|████▉ | 182289/371472 [3:37:57<15:00:14, 3.50it/s] 49%|████▉ | 182290/371472 [3:37:57<15:07:29, 3.47it/s] 49%|████▉ | 182291/371472 [3:37:58<15:36:55, 3.37it/s] 49%|████▉ | 182292/371472 [3:37:58<17:15:55, 3.04it/s] 49%|████▉ | 182293/371472 [3:37:58<16:18:46, 3.22it/s] 49%|████▉ | 182294/371472 [3:37:59<16:27:51, 3.19it/s] 49%|████▉ | 182295/371472 [3:37:59<16:05:45, 3.26it/s] 49%|████▉ | 182296/371472 [3:37:59<15:52:56, 3.31it/s] 49%|████▉ | 182297/371472 [3:38:00<16:59:48, 3.09it/s] 49%|████▉ | 182298/371472 [3:38:00<16:12:57, 3.24it/s] 49%|████▉ | 182299/371472 [3:38:00<16:03:59, 3.27it/s] 49%|████▉ | 182300/371472 [3:38:01<15:59:41, 3.29it/s] {'loss': 2.864, 'learning_rate': 5.585716132646684e-07, 'epoch': 7.85} + 49%|████▉ | 182300/371472 [3:38:01<15:59:41, 3.29it/s] 49%|████▉ | 182301/371472 [3:38:01<15:58:13, 3.29it/s] 49%|████▉ | 182302/371472 [3:38:01<15:39:35, 3.36it/s] 49%|████▉ | 182303/371472 [3:38:01<16:16:27, 3.23it/s] 49%|████▉ | 182304/371472 [3:38:02<15:52:34, 3.31it/s] 49%|████▉ | 182305/371472 [3:38:02<15:25:42, 3.41it/s] 49%|████▉ | 182306/371472 [3:38:02<16:03:33, 3.27it/s] 49%|████▉ | 182307/371472 [3:38:03<15:47:30, 3.33it/s] 49%|████▉ | 182308/371472 [3:38:03<15:51:44, 3.31it/s] 49%|████▉ | 182309/371472 [3:38:03<15:58:09, 3.29it/s] 49%|████▉ | 182310/371472 [3:38:04<15:51:07, 3.31it/s] 49%|█��██▉ | 182311/371472 [3:38:04<15:42:02, 3.35it/s] 49%|████▉ | 182312/371472 [3:38:04<15:33:06, 3.38it/s] 49%|████▉ | 182313/371472 [3:38:04<16:14:10, 3.24it/s] 49%|████▉ | 182314/371472 [3:38:05<16:25:31, 3.20it/s] 49%|████▉ | 182315/371472 [3:38:05<17:03:45, 3.08it/s] 49%|████▉ | 182316/371472 [3:38:05<16:19:28, 3.22it/s] 49%|████▉ | 182317/371472 [3:38:06<15:37:30, 3.36it/s] 49%|████▉ | 182318/371472 [3:38:06<15:33:57, 3.38it/s] 49%|████▉ | 182319/371472 [3:38:06<15:33:14, 3.38it/s] 49%|████▉ | 182320/371472 [3:38:07<15:14:01, 3.45it/s] {'loss': 2.8302, 'learning_rate': 5.585231312891895e-07, 'epoch': 7.85} + 49%|████▉ | 182320/371472 [3:38:07<15:14:01, 3.45it/s] 49%|████▉ | 182321/371472 [3:38:07<15:19:53, 3.43it/s] 49%|████▉ | 182322/371472 [3:38:07<15:23:34, 3.41it/s] 49%|████▉ | 182323/371472 [3:38:07<15:24:51, 3.41it/s] 49%|████▉ | 182324/371472 [3:38:08<15:14:06, 3.45it/s] 49%|████▉ | 182325/371472 [3:38:08<14:40:44, 3.58it/s] 49%|████▉ | 182326/371472 [3:38:08<15:01:00, 3.50it/s] 49%|████▉ | 182327/371472 [3:38:09<16:49:29, 3.12it/s] 49%|████▉ | 182328/371472 [3:38:09<17:11:43, 3.06it/s] 49%|████▉ | 182329/371472 [3:38:09<16:25:54, 3.20it/s] 49%|████▉ | 182330/371472 [3:38:10<16:17:21, 3.23it/s] 49%|████▉ | 182331/371472 [3:38:10<15:43:24, 3.34it/s] 49%|████▉ | 182332/371472 [3:38:10<15:27:42, 3.40it/s] 49%|████▉ | 182333/371472 [3:38:10<15:24:26, 3.41it/s] 49%|████▉ | 182334/371472 [3:38:11<16:33:30, 3.17it/s] 49%|████▉ | 182335/371472 [3:38:11<16:07:41, 3.26it/s] 49%|████▉ | 182336/371472 [3:38:11<15:36:48, 3.36it/s] 49%|████▉ | 182337/371472 [3:38:12<15:19:55, 3.43it/s] 49%|████▉ | 182338/371472 [3:38:12<15:05:41, 3.48it/s] 49%|████▉ | 182339/371472 [3:38:12<15:01:29, 3.50it/s] 49%|████▉ | 182340/371472 [3:38:13<15:10:03, 3.46it/s] {'loss': 2.9203, 'learning_rate': 5.584746493137108e-07, 'epoch': 7.85} + 49%|████▉ | 182340/371472 [3:38:13<15:10:03, 3.46it/s] 49%|████▉ | 182341/371472 [3:38:13<15:22:49, 3.42it/s] 49%|████▉ | 182342/371472 [3:38:13<14:47:43, 3.55it/s] 49%|████▉ | 182343/371472 [3:38:13<14:41:45, 3.57it/s] 49%|████▉ | 182344/371472 [3:38:14<16:27:13, 3.19it/s] 49%|████▉ | 182345/371472 [3:38:14<15:42:20, 3.35it/s] 49%|████▉ | 182346/371472 [3:38:14<15:19:33, 3.43it/s] 49%|████▉ | 182347/371472 [3:38:15<16:41:42, 3.15it/s] 49%|████▉ | 182348/371472 [3:38:15<16:24:58, 3.20it/s] 49%|████▉ | 182349/371472 [3:38:15<15:46:21, 3.33it/s] 49%|████▉ | 182350/371472 [3:38:15<15:26:01, 3.40it/s] 49%|████▉ | 182351/371472 [3:38:16<15:55:49, 3.30it/s] 49%|████▉ | 182352/371472 [3:38:16<15:35:01, 3.37it/s] 49%|████▉ | 182353/371472 [3:38:16<15:06:21, 3.48it/s] 49%|████▉ | 182354/371472 [3:38:17<15:00:12, 3.50it/s] 49%|████▉ | 182355/371472 [3:38:17<14:52:51, 3.53it/s] 49%|████▉ | 182356/371472 [3:38:17<15:26:54, 3.40it/s] 49%|████▉ | 182357/371472 [3:38:18<16:07:00, 3.26it/s] 49%|████▉ | 182358/371472 [3:38:18<15:50:17, 3.32it/s] 49%|████▉ | 182359/371472 [3:38:18<15:31:19, 3.38it/s] 49%|████▉ | 182360/371472 [3:38:18<15:20:22, 3.42it/s] {'loss': 2.9416, 'learning_rate': 5.584261673382318e-07, 'epoch': 7.85} + 49%|████▉ | 182360/371472 [3:38:18<15:20:22, 3.42it/s] 49%|████▉ | 182361/371472 [3:38:19<15:05:46, 3.48it/s] 49%|████▉ | 182362/371472 [3:38:19<15:16:30, 3.44it/s] 49%|████▉ | 182363/371472 [3:38:19<15:51:34, 3.31it/s] 49%|████▉ | 182364/371472 [3:38:20<16:23:01, 3.21it/s] 49%|████▉ | 182365/371472 [3:38:20<15:54:06, 3.30it/s] 49%|████▉ | 182366/371472 [3:38:20<17:17:45, 3.04it/s] 49%|████▉ | 182367/371472 [3:38:21<16:44:25, 3.14it/s] 49%|████▉ | 182368/371472 [3:38:21<15:55:23, 3.30it/s] 49%|████▉ | 182369/371472 [3:38:21<16:38:14, 3.16it/s] 49%|████▉ | 182370/371472 [3:38:22<16:25:35, 3.20it/s] 49%|████▉ | 182371/371472 [3:38:22<15:55:24, 3.30it/s] 49%|████▉ | 182372/371472 [3:38:22<16:07:43, 3.26it/s] 49%|████▉ | 182373/371472 [3:38:22<15:52:30, 3.31it/s] 49%|████▉ | 182374/371472 [3:38:23<16:07:37, 3.26it/s] 49%|████▉ | 182375/371472 [3:38:23<15:47:25, 3.33it/s] 49%|████▉ | 182376/371472 [3:38:23<15:42:51, 3.34it/s] 49%|████▉ | 182377/371472 [3:38:24<15:22:30, 3.42it/s] 49%|████▉ | 182378/371472 [3:38:24<16:10:33, 3.25it/s] 49%|████▉ | 182379/371472 [3:38:24<16:14:06, 3.24it/s] 49%|████▉ | 182380/371472 [3:38:25<16:18:42, 3.22it/s] {'loss': 2.9021, 'learning_rate': 5.583776853627528e-07, 'epoch': 7.86} + 49%|████▉ | 182380/371472 [3:38:25<16:18:42, 3.22it/s] 49%|████▉ | 182381/371472 [3:38:25<15:51:24, 3.31it/s] 49%|████▉ | 182382/371472 [3:38:25<15:53:28, 3.31it/s] 49%|████▉ | 182383/371472 [3:38:26<17:05:53, 3.07it/s] 49%|████▉ | 182384/371472 [3:38:26<16:46:28, 3.13it/s] 49%|████▉ | 182385/371472 [3:38:26<17:08:44, 3.06it/s] 49%|████▉ | 182386/371472 [3:38:27<17:54:38, 2.93it/s] 49%|████▉ | 182387/371472 [3:38:27<17:06:46, 3.07it/s] 49%|████▉ | 182388/371472 [3:38:27<16:23:49, 3.20it/s] 49%|████▉ | 182389/371472 [3:38:28<17:08:25, 3.06it/s] 49%|████▉ | 182390/371472 [3:38:28<16:29:12, 3.19it/s] 49%|████▉ | 182391/371472 [3:38:28<16:02:26, 3.27it/s] 49%|████▉ | 182392/371472 [3:38:28<16:35:47, 3.16it/s] 49%|████▉ | 182393/371472 [3:38:29<15:45:33, 3.33it/s] 49%|████▉ | 182394/371472 [3:38:29<16:09:49, 3.25it/s] 49%|████▉ | 182395/371472 [3:38:29<17:27:11, 3.01it/s] 49%|████▉ | 182396/371472 [3:38:30<16:52:29, 3.11it/s] 49%|████▉ | 182397/371472 [3:38:30<16:51:51, 3.11it/s] 49%|████▉ | 182398/371472 [3:38:30<16:30:09, 3.18it/s] 49%|████▉ | 182399/371472 [3:38:31<17:10:20, 3.06it/s] 49%|████▉ | 182400/371472 [3:38:31<16:36:06, 3.16it/s] {'loss': 2.8476, 'learning_rate': 5.583292033872739e-07, 'epoch': 7.86} + 49%|████▉ | 182400/371472 [3:38:31<16:36:06, 3.16it/s] 49%|████▉ | 182401/371472 [3:38:31<15:53:41, 3.30it/s] 49%|████▉ | 182402/371472 [3:38:32<15:38:53, 3.36it/s] 49%|████▉ | 182403/371472 [3:38:32<15:25:01, 3.41it/s] 49%|████▉ | 182404/371472 [3:38:32<15:15:10, 3.44it/s] 49%|████▉ | 182405/371472 [3:38:32<15:01:43, 3.49it/s] 49%|████▉ | 182406/371472 [3:38:33<14:37:11, 3.59it/s] 49%|████▉ | 182407/371472 [3:38:33<14:23:57, 3.65it/s] 49%|████▉ | 182408/371472 [3:38:33<14:26:19, 3.64it/s] 49%|████▉ | 182409/371472 [3:38:33<14:42:28, 3.57it/s] 49%|████▉ | 182410/371472 [3:38:34<14:40:49, 3.58it/s] 49%|████▉ | 182411/371472 [3:38:34<15:12:01, 3.45it/s] 49%|████▉ | 182412/371472 [3:38:34<15:23:44, 3.41it/s] 49%|████▉ | 182413/371472 [3:38:35<15:33:44, 3.37it/s] 49%|████▉ | 182414/371472 [3:38:35<15:10:49, 3.46it/s] 49%|████▉ | 182415/371472 [3:38:35<15:13:52, 3.45it/s] 49%|████▉ | 182416/371472 [3:38:36<15:33:19, 3.38it/s] 49%|████▉ | 182417/371472 [3:38:36<15:18:03, 3.43it/s] 49%|████▉ | 182418/371472 [3:38:36<15:05:35, 3.48it/s] 49%|████▉ | 182419/371472 [3:38:36<14:57:25, 3.51it/s] 49%|████▉ | 182420/371472 [3:38:37<15:05:15, 3.48it/s] {'loss': 2.9182, 'learning_rate': 5.582807214117951e-07, 'epoch': 7.86} + 49%|████▉ | 182420/371472 [3:38:37<15:05:15, 3.48it/s] 49%|████▉ | 182421/371472 [3:38:37<15:25:07, 3.41it/s] 49%|████▉ | 182422/371472 [3:38:37<15:55:05, 3.30it/s] 49%|████▉ | 182423/371472 [3:38:38<16:12:43, 3.24it/s] 49%|████▉ | 182424/371472 [3:38:38<16:35:20, 3.17it/s] 49%|████▉ | 182425/371472 [3:38:38<16:27:37, 3.19it/s] 49%|████▉ | 182426/371472 [3:38:39<16:50:38, 3.12it/s] 49%|████▉ | 182427/371472 [3:38:39<16:15:15, 3.23it/s] 49%|████▉ | 182428/371472 [3:38:39<15:38:56, 3.36it/s] 49%|████▉ | 182429/371472 [3:38:39<16:27:11, 3.19it/s] 49%|████▉ | 182430/371472 [3:38:40<15:46:31, 3.33it/s] 49%|████▉ | 182431/371472 [3:38:40<16:34:26, 3.17it/s] 49%|████▉ | 182432/371472 [3:38:41<17:52:32, 2.94it/s] 49%|████▉ | 182433/371472 [3:38:41<17:38:29, 2.98it/s] 49%|████▉ | 182434/371472 [3:38:41<17:08:14, 3.06it/s] 49%|████▉ | 182435/371472 [3:38:41<17:31:52, 3.00it/s] 49%|████▉ | 182436/371472 [3:38:42<18:14:25, 2.88it/s] 49%|████▉ | 182437/371472 [3:38:42<17:04:14, 3.08it/s] 49%|████▉ | 182438/371472 [3:38:42<17:23:57, 3.02it/s] 49%|████▉ | 182439/371472 [3:38:43<16:37:11, 3.16it/s] 49%|████▉ | 182440/371472 [3:38:43<17:06:24, 3.07it/s] {'loss': 2.9308, 'learning_rate': 5.582322394363162e-07, 'epoch': 7.86} + 49%|████▉ | 182440/371472 [3:38:43<17:06:24, 3.07it/s] 49%|████▉ | 182441/371472 [3:38:43<16:40:05, 3.15it/s] 49%|████▉ | 182442/371472 [3:38:44<16:32:02, 3.18it/s] 49%|████▉ | 182443/371472 [3:38:44<17:01:33, 3.08it/s] 49%|████▉ | 182444/371472 [3:38:44<16:13:30, 3.24it/s] 49%|████▉ | 182445/371472 [3:38:45<16:01:15, 3.28it/s] 49%|████▉ | 182446/371472 [3:38:45<15:41:31, 3.35it/s] 49%|████▉ | 182447/371472 [3:38:45<16:11:30, 3.24it/s] 49%|████▉ | 182448/371472 [3:38:46<15:41:56, 3.34it/s] 49%|████▉ | 182449/371472 [3:38:46<16:04:06, 3.27it/s] 49%|████▉ | 182450/371472 [3:38:46<16:48:12, 3.12it/s] 49%|████▉ | 182451/371472 [3:38:46<16:12:16, 3.24it/s] 49%|████▉ | 182452/371472 [3:38:47<15:53:03, 3.31it/s] 49%|████▉ | 182453/371472 [3:38:47<16:09:11, 3.25it/s] 49%|████▉ | 182454/371472 [3:38:47<15:39:52, 3.35it/s] 49%|████▉ | 182455/371472 [3:38:48<15:40:47, 3.35it/s] 49%|████▉ | 182456/371472 [3:38:48<15:50:31, 3.31it/s] 49%|████▉ | 182457/371472 [3:38:48<15:13:04, 3.45it/s] 49%|████▉ | 182458/371472 [3:38:49<15:33:22, 3.38it/s] 49%|████▉ | 182459/371472 [3:38:49<15:19:05, 3.43it/s] 49%|████▉ | 182460/371472 [3:38:49<15:07:23, 3.47it/s] {'loss': 2.8982, 'learning_rate': 5.581837574608372e-07, 'epoch': 7.86} + 49%|████▉ | 182460/371472 [3:38:49<15:07:23, 3.47it/s] 49%|████▉ | 182461/371472 [3:38:49<15:24:37, 3.41it/s] 49%|████▉ | 182462/371472 [3:38:50<15:28:04, 3.39it/s] 49%|████▉ | 182463/371472 [3:38:50<15:22:46, 3.41it/s] 49%|████▉ | 182464/371472 [3:38:50<15:54:44, 3.30it/s] 49%|████▉ | 182465/371472 [3:38:51<16:35:03, 3.17it/s] 49%|████▉ | 182466/371472 [3:38:51<15:49:07, 3.32it/s] 49%|████▉ | 182467/371472 [3:38:51<15:09:00, 3.47it/s] 49%|████▉ | 182468/371472 [3:38:51<14:59:14, 3.50it/s] 49%|████▉ | 182469/371472 [3:38:52<14:54:41, 3.52it/s] 49%|████▉ | 182470/371472 [3:38:52<14:40:16, 3.58it/s] 49%|████▉ | 182471/371472 [3:38:52<15:09:25, 3.46it/s] 49%|████▉ | 182472/371472 [3:38:53<15:17:54, 3.43it/s] 49%|████▉ | 182473/371472 [3:38:53<15:17:19, 3.43it/s] 49%|████▉ | 182474/371472 [3:38:53<15:20:24, 3.42it/s] 49%|████▉ | 182475/371472 [3:38:54<15:00:20, 3.50it/s] 49%|████▉ | 182476/371472 [3:38:54<14:52:29, 3.53it/s] 49%|████▉ | 182477/371472 [3:38:54<14:55:06, 3.52it/s] 49%|████▉ | 182478/371472 [3:38:54<14:59:10, 3.50it/s] 49%|████▉ | 182479/371472 [3:38:55<15:11:18, 3.46it/s] 49%|████▉ | 182480/371472 [3:38:55<15:33:53, 3.37it/s] {'loss': 3.0389, 'learning_rate': 5.581352754853585e-07, 'epoch': 7.86} + 49%|████▉ | 182480/371472 [3:38:55<15:33:53, 3.37it/s] 49%|████▉ | 182481/371472 [3:38:55<16:03:24, 3.27it/s] 49%|████▉ | 182482/371472 [3:38:56<15:31:52, 3.38it/s] 49%|████▉ | 182483/371472 [3:38:56<15:29:55, 3.39it/s] 49%|████▉ | 182484/371472 [3:38:56<15:37:31, 3.36it/s] 49%|████▉ | 182485/371472 [3:38:56<16:06:11, 3.26it/s] 49%|████▉ | 182486/371472 [3:38:57<16:09:42, 3.25it/s] 49%|████▉ | 182487/371472 [3:38:57<15:49:57, 3.32it/s] 49%|████▉ | 182488/371472 [3:38:57<15:24:34, 3.41it/s] 49%|████▉ | 182489/371472 [3:38:58<16:35:34, 3.16it/s] 49%|████▉ | 182490/371472 [3:38:58<16:56:07, 3.10it/s] 49%|████▉ | 182491/371472 [3:38:58<16:08:54, 3.25it/s] 49%|████▉ | 182492/371472 [3:38:59<15:40:34, 3.35it/s] 49%|████▉ | 182493/371472 [3:38:59<15:29:01, 3.39it/s] 49%|████▉ | 182494/371472 [3:38:59<16:17:55, 3.22it/s] 49%|████▉ | 182495/371472 [3:39:00<16:38:02, 3.16it/s] 49%|████▉ | 182496/371472 [3:39:00<16:08:22, 3.25it/s] 49%|████▉ | 182497/371472 [3:39:00<16:00:06, 3.28it/s] 49%|████▉ | 182498/371472 [3:39:00<16:14:33, 3.23it/s] 49%|████▉ | 182499/371472 [3:39:01<16:19:41, 3.21it/s] 49%|████▉ | 182500/371472 [3:39:01<16:12:02, 3.24it/s] {'loss': 2.69, 'learning_rate': 5.580867935098797e-07, 'epoch': 7.86} + 49%|████▉ | 182500/371472 [3:39:01<16:12:02, 3.24it/s] 49%|████▉ | 182501/371472 [3:39:01<16:16:25, 3.23it/s] 49%|████▉ | 182502/371472 [3:39:02<16:07:59, 3.25it/s] 49%|████▉ | 182503/371472 [3:39:02<17:36:44, 2.98it/s] 49%|████▉ | 182504/371472 [3:39:02<16:41:44, 3.14it/s] 49%|████▉ | 182505/371472 [3:39:03<16:36:22, 3.16it/s] 49%|████▉ | 182506/371472 [3:39:03<16:13:43, 3.23it/s] 49%|████▉ | 182507/371472 [3:39:03<15:55:48, 3.30it/s] 49%|████▉ | 182508/371472 [3:39:04<15:23:26, 3.41it/s] 49%|████▉ | 182509/371472 [3:39:04<15:03:25, 3.49it/s] 49%|████▉ | 182510/371472 [3:39:04<14:34:34, 3.60it/s] 49%|████▉ | 182511/371472 [3:39:04<14:26:01, 3.64it/s] 49%|████▉ | 182512/371472 [3:39:05<14:34:04, 3.60it/s] 49%|████▉ | 182513/371472 [3:39:05<14:30:07, 3.62it/s] 49%|████▉ | 182514/371472 [3:39:05<15:18:39, 3.43it/s] 49%|████▉ | 182515/371472 [3:39:06<14:48:39, 3.54it/s] 49%|████▉ | 182516/371472 [3:39:06<14:48:59, 3.54it/s] 49%|████▉ | 182517/371472 [3:39:06<15:52:25, 3.31it/s] 49%|████▉ | 182518/371472 [3:39:06<15:39:04, 3.35it/s] 49%|████▉ | 182519/371472 [3:39:07<15:29:17, 3.39it/s] 49%|████▉ | 182520/371472 [3:39:07<15:32:24, 3.38it/s] {'loss': 2.9931, 'learning_rate': 5.580383115344007e-07, 'epoch': 7.86} + 49%|████▉ | 182520/371472 [3:39:07<15:32:24, 3.38it/s] 49%|████▉ | 182521/371472 [3:39:07<15:49:27, 3.32it/s] 49%|████▉ | 182522/371472 [3:39:08<15:59:46, 3.28it/s] 49%|████▉ | 182523/371472 [3:39:08<16:52:05, 3.11it/s] 49%|████▉ | 182524/371472 [3:39:08<16:11:58, 3.24it/s] 49%|████▉ | 182525/371472 [3:39:09<16:12:56, 3.24it/s] 49%|████▉ | 182526/371472 [3:39:09<16:01:56, 3.27it/s] 49%|████▉ | 182527/371472 [3:39:09<15:42:20, 3.34it/s] 49%|████▉ | 182528/371472 [3:39:09<15:15:48, 3.44it/s] 49%|████▉ | 182529/371472 [3:39:10<15:13:37, 3.45it/s] 49%|████▉ | 182530/371472 [3:39:10<15:08:06, 3.47it/s] 49%|████▉ | 182531/371472 [3:39:10<15:02:04, 3.49it/s] 49%|████▉ | 182532/371472 [3:39:11<15:18:29, 3.43it/s] 49%|████▉ | 182533/371472 [3:39:11<15:22:09, 3.41it/s] 49%|████▉ | 182534/371472 [3:39:11<15:19:11, 3.43it/s] 49%|████▉ | 182535/371472 [3:39:11<15:06:08, 3.48it/s] 49%|████▉ | 182536/371472 [3:39:12<15:37:23, 3.36it/s] 49%|████▉ | 182537/371472 [3:39:12<15:57:24, 3.29it/s] 49%|████▉ | 182538/371472 [3:39:13<17:24:04, 3.02it/s] 49%|████▉ | 182539/371472 [3:39:13<18:01:01, 2.91it/s] 49%|████▉ | 182540/371472 [3:39:13<18:08:49, 2.89it/s] {'loss': 2.9962, 'learning_rate': 5.579898295589217e-07, 'epoch': 7.86} + 49%|████▉ | 182540/371472 [3:39:13<18:08:49, 2.89it/s] 49%|████▉ | 182541/371472 [3:39:14<17:31:52, 2.99it/s] 49%|████▉ | 182542/371472 [3:39:14<17:31:58, 2.99it/s] 49%|████▉ | 182543/371472 [3:39:14<16:56:06, 3.10it/s] 49%|████▉ | 182544/371472 [3:39:14<16:09:46, 3.25it/s] 49%|████▉ | 182545/371472 [3:39:15<15:35:32, 3.37it/s] 49%|████▉ | 182546/371472 [3:39:15<15:24:35, 3.41it/s] 49%|████▉ | 182547/371472 [3:39:15<15:12:24, 3.45it/s] 49%|████▉ | 182548/371472 [3:39:16<15:11:31, 3.45it/s] 49%|████▉ | 182549/371472 [3:39:16<15:18:52, 3.43it/s] 49%|████▉ | 182550/371472 [3:39:16<15:45:33, 3.33it/s] 49%|████▉ | 182551/371472 [3:39:16<15:35:16, 3.37it/s] 49%|████▉ | 182552/371472 [3:39:17<16:25:00, 3.20it/s] 49%|████▉ | 182553/371472 [3:39:17<16:43:21, 3.14it/s] 49%|████▉ | 182554/371472 [3:39:17<16:37:33, 3.16it/s] 49%|████▉ | 182555/371472 [3:39:18<15:52:00, 3.31it/s] 49%|████▉ | 182556/371472 [3:39:18<15:45:59, 3.33it/s] 49%|████▉ | 182557/371472 [3:39:18<15:55:34, 3.29it/s] 49%|████▉ | 182558/371472 [3:39:19<15:58:59, 3.28it/s] 49%|████▉ | 182559/371472 [3:39:19<16:22:39, 3.20it/s] 49%|████▉ | 182560/371472 [3:39:19<17:46:31, 2.95it/s] {'loss': 2.9083, 'learning_rate': 5.579413475834428e-07, 'epoch': 7.86} + 49%|████▉ | 182560/371472 [3:39:19<17:46:31, 2.95it/s] 49%|████▉ | 182561/371472 [3:39:20<16:44:00, 3.14it/s] 49%|████▉ | 182562/371472 [3:39:20<16:17:20, 3.22it/s] 49%|████▉ | 182563/371472 [3:39:20<16:43:10, 3.14it/s] 49%|████▉ | 182564/371472 [3:39:21<16:15:47, 3.23it/s] 49%|████▉ | 182565/371472 [3:39:21<16:23:24, 3.20it/s] 49%|████▉ | 182566/371472 [3:39:21<15:47:22, 3.32it/s] 49%|████▉ | 182567/371472 [3:39:21<15:27:37, 3.39it/s] 49%|████▉ | 182568/371472 [3:39:22<15:13:36, 3.45it/s] 49%|████▉ | 182569/371472 [3:39:22<16:46:02, 3.13it/s] 49%|████▉ | 182570/371472 [3:39:22<16:15:07, 3.23it/s] 49%|████▉ | 182571/371472 [3:39:23<16:11:24, 3.24it/s] 49%|████▉ | 182572/371472 [3:39:23<15:44:32, 3.33it/s] 49%|████▉ | 182573/371472 [3:39:23<15:23:34, 3.41it/s] 49%|████▉ | 182574/371472 [3:39:24<15:10:27, 3.46it/s] 49%|████▉ | 182575/371472 [3:39:24<14:56:14, 3.51it/s] 49%|████▉ | 182576/371472 [3:39:24<16:14:55, 3.23it/s] 49%|████▉ | 182577/371472 [3:39:25<16:38:21, 3.15it/s] 49%|████▉ | 182578/371472 [3:39:25<16:10:08, 3.25it/s] 49%|████▉ | 182579/371472 [3:39:25<18:19:09, 2.86it/s] 49%|████▉ | 182580/371472 [3:39:26<18:16:56, 2.87it/s] {'loss': 2.9395, 'learning_rate': 5.578928656079639e-07, 'epoch': 7.86} + 49%|████▉ | 182580/371472 [3:39:26<18:16:56, 2.87it/s] 49%|████▉ | 182581/371472 [3:39:26<17:17:14, 3.04it/s] 49%|████▉ | 182582/371472 [3:39:26<16:59:50, 3.09it/s] 49%|████▉ | 182583/371472 [3:39:26<16:30:50, 3.18it/s] 49%|████▉ | 182584/371472 [3:39:27<16:37:16, 3.16it/s] 49%|████▉ | 182585/371472 [3:39:27<16:13:57, 3.23it/s] 49%|████▉ | 182586/371472 [3:39:27<16:25:21, 3.19it/s] 49%|████▉ | 182587/371472 [3:39:28<16:02:11, 3.27it/s] 49%|████▉ | 182588/371472 [3:39:28<15:44:26, 3.33it/s] 49%|████▉ | 182589/371472 [3:39:28<16:38:27, 3.15it/s] 49%|████▉ | 182590/371472 [3:39:29<16:04:19, 3.26it/s] 49%|████▉ | 182591/371472 [3:39:29<15:50:43, 3.31it/s] 49%|████▉ | 182592/371472 [3:39:29<15:54:44, 3.30it/s] 49%|████▉ | 182593/371472 [3:39:30<15:57:19, 3.29it/s] 49%|████▉ | 182594/371472 [3:39:30<15:40:43, 3.35it/s] 49%|████▉ | 182595/371472 [3:39:30<15:29:50, 3.39it/s] 49%|████▉ | 182596/371472 [3:39:30<15:01:41, 3.49it/s] 49%|████▉ | 182597/371472 [3:39:31<15:04:14, 3.48it/s] 49%|████▉ | 182598/371472 [3:39:31<14:46:31, 3.55it/s] 49%|████▉ | 182599/371472 [3:39:31<14:57:07, 3.51it/s] 49%|████▉ | 182600/371472 [3:39:32<15:03:11, 3.49it/s] {'loss': 2.8333, 'learning_rate': 5.578443836324849e-07, 'epoch': 7.86} + 49%|████▉ | 182600/371472 [3:39:32<15:03:11, 3.49it/s] 49%|████▉ | 182601/371472 [3:39:32<15:14:36, 3.44it/s] 49%|████▉ | 182602/371472 [3:39:32<14:58:15, 3.50it/s] 49%|████▉ | 182603/371472 [3:39:32<14:54:16, 3.52it/s] 49%|████▉ | 182604/371472 [3:39:33<14:42:54, 3.57it/s] 49%|████▉ | 182605/371472 [3:39:33<15:01:43, 3.49it/s] 49%|████▉ | 182606/371472 [3:39:33<14:57:20, 3.51it/s] 49%|████▉ | 182607/371472 [3:39:34<15:06:19, 3.47it/s] 49%|████▉ | 182608/371472 [3:39:34<15:15:52, 3.44it/s] 49%|████▉ | 182609/371472 [3:39:34<15:22:41, 3.41it/s] 49%|████▉ | 182610/371472 [3:39:34<15:10:59, 3.46it/s] 49%|████▉ | 182611/371472 [3:39:35<15:30:53, 3.38it/s] 49%|████▉ | 182612/371472 [3:39:35<15:39:49, 3.35it/s] 49%|████▉ | 182613/371472 [3:39:35<15:34:47, 3.37it/s] 49%|████▉ | 182614/371472 [3:39:36<15:39:44, 3.35it/s] 49%|████▉ | 182615/371472 [3:39:36<15:15:21, 3.44it/s] 49%|████▉ | 182616/371472 [3:39:36<14:47:44, 3.55it/s] 49%|████▉ | 182617/371472 [3:39:37<16:48:38, 3.12it/s] 49%|████▉ | 182618/371472 [3:39:37<16:07:01, 3.25it/s] 49%|████▉ | 182619/371472 [3:39:37<15:27:55, 3.39it/s] 49%|████▉ | 182620/371472 [3:39:37<15:51:03, 3.31it/s] {'loss': 2.9175, 'learning_rate': 5.577959016570061e-07, 'epoch': 7.87} + 49%|████▉ | 182620/371472 [3:39:37<15:51:03, 3.31it/s] 49%|████▉ | 182621/371472 [3:39:38<15:33:56, 3.37it/s] 49%|████▉ | 182622/371472 [3:39:38<15:31:57, 3.38it/s] 49%|████▉ | 182623/371472 [3:39:38<15:39:01, 3.35it/s] 49%|████▉ | 182624/371472 [3:39:39<15:29:31, 3.39it/s] 49%|████▉ | 182625/371472 [3:39:39<17:13:21, 3.05it/s] 49%|████▉ | 182626/371472 [3:39:39<17:11:11, 3.05it/s] 49%|████▉ | 182627/371472 [3:39:40<16:14:07, 3.23it/s] 49%|████▉ | 182628/371472 [3:39:40<16:07:06, 3.25it/s] 49%|████▉ | 182629/371472 [3:39:40<16:59:42, 3.09it/s] 49%|████▉ | 182630/371472 [3:39:41<16:08:31, 3.25it/s] 49%|████▉ | 182631/371472 [3:39:41<16:00:55, 3.28it/s] 49%|████▉ | 182632/371472 [3:39:41<15:54:37, 3.30it/s] 49%|████▉ | 182633/371472 [3:39:41<16:00:17, 3.28it/s] 49%|████▉ | 182634/371472 [3:39:42<15:49:03, 3.32it/s] 49%|████▉ | 182635/371472 [3:39:42<15:27:35, 3.39it/s] 49%|████▉ | 182636/371472 [3:39:42<15:39:49, 3.35it/s] 49%|████▉ | 182637/371472 [3:39:43<15:18:54, 3.42it/s] 49%|████▉ | 182638/371472 [3:39:43<15:43:08, 3.34it/s] 49%|████▉ | 182639/371472 [3:39:43<15:35:28, 3.36it/s] 49%|████▉ | 182640/371472 [3:39:44<16:03:29, 3.27it/s] {'loss': 3.083, 'learning_rate': 5.577474196815273e-07, 'epoch': 7.87} + 49%|████▉ | 182640/371472 [3:39:44<16:03:29, 3.27it/s] 49%|████▉ | 182641/371472 [3:39:44<16:21:28, 3.21it/s] 49%|████▉ | 182642/371472 [3:39:44<16:15:51, 3.23it/s] 49%|████▉ | 182643/371472 [3:39:44<15:47:51, 3.32it/s] 49%|████▉ | 182644/371472 [3:39:45<15:30:29, 3.38it/s] 49%|████▉ | 182645/371472 [3:39:45<15:38:25, 3.35it/s] 49%|████▉ | 182646/371472 [3:39:45<15:42:18, 3.34it/s] 49%|████▉ | 182647/371472 [3:39:46<15:20:17, 3.42it/s] 49%|████▉ | 182648/371472 [3:39:46<15:48:46, 3.32it/s] 49%|████▉ | 182649/371472 [3:39:46<15:25:41, 3.40it/s] 49%|████▉ | 182650/371472 [3:39:46<15:32:53, 3.37it/s] 49%|████▉ | 182651/371472 [3:39:47<15:43:16, 3.34it/s] 49%|████▉ | 182652/371472 [3:39:47<16:43:58, 3.13it/s] 49%|████▉ | 182653/371472 [3:39:48<17:16:30, 3.04it/s] 49%|████▉ | 182654/371472 [3:39:48<16:40:27, 3.15it/s] 49%|████▉ | 182655/371472 [3:39:48<16:07:45, 3.25it/s] 49%|████▉ | 182656/371472 [3:39:48<16:00:57, 3.27it/s] 49%|████▉ | 182657/371472 [3:39:49<15:37:20, 3.36it/s] 49%|████▉ | 182658/371472 [3:39:49<16:28:54, 3.18it/s] 49%|████▉ | 182659/371472 [3:39:49<16:04:27, 3.26it/s] 49%|████▉ | 182660/371472 [3:39:50<15:29:00, 3.39it/s] {'loss': 2.9667, 'learning_rate': 5.576989377060484e-07, 'epoch': 7.87} + 49%|████▉ | 182660/371472 [3:39:50<15:29:00, 3.39it/s] 49%|████▉ | 182661/371472 [3:39:50<16:01:58, 3.27it/s] 49%|████▉ | 182662/371472 [3:39:50<16:05:10, 3.26it/s] 49%|████▉ | 182663/371472 [3:39:51<16:13:40, 3.23it/s] 49%|████▉ | 182664/371472 [3:39:51<16:14:18, 3.23it/s] 49%|████▉ | 182665/371472 [3:39:51<16:09:41, 3.25it/s] 49%|████▉ | 182666/371472 [3:39:51<15:56:42, 3.29it/s] 49%|████▉ | 182667/371472 [3:39:52<15:45:34, 3.33it/s] 49%|████▉ | 182668/371472 [3:39:52<15:28:29, 3.39it/s] 49%|████▉ | 182669/371472 [3:39:52<15:23:38, 3.41it/s] 49%|████▉ | 182670/371472 [3:39:53<15:19:54, 3.42it/s] 49%|████▉ | 182671/371472 [3:39:53<15:14:51, 3.44it/s] 49%|████▉ | 182672/371472 [3:39:53<15:13:36, 3.44it/s] 49%|████▉ | 182673/371472 [3:39:53<15:33:42, 3.37it/s] 49%|████▉ | 182674/371472 [3:39:54<15:51:27, 3.31it/s] 49%|████▉ | 182675/371472 [3:39:54<15:38:18, 3.35it/s] 49%|████▉ | 182676/371472 [3:39:54<15:40:30, 3.35it/s] 49%|████▉ | 182677/371472 [3:39:55<16:41:30, 3.14it/s] 49%|████▉ | 182678/371472 [3:39:55<17:49:51, 2.94it/s] 49%|████▉ | 182679/371472 [3:39:55<17:23:52, 3.01it/s] 49%|████▉ | 182680/371472 [3:39:56<17:12:25, 3.05it/s] {'loss': 2.9499, 'learning_rate': 5.576504557305694e-07, 'epoch': 7.87} + 49%|████▉ | 182680/371472 [3:39:56<17:12:25, 3.05it/s] 49%|████▉ | 182681/371472 [3:39:56<16:33:43, 3.17it/s] 49%|████▉ | 182682/371472 [3:39:56<16:03:12, 3.27it/s] 49%|████▉ | 182683/371472 [3:39:57<15:32:15, 3.38it/s] 49%|████▉ | 182684/371472 [3:39:57<15:41:57, 3.34it/s] 49%|████▉ | 182685/371472 [3:39:57<15:30:52, 3.38it/s] 49%|████▉ | 182686/371472 [3:39:58<15:44:03, 3.33it/s] 49%|████▉ | 182687/371472 [3:39:58<16:15:06, 3.23it/s] 49%|████▉ | 182688/371472 [3:39:58<16:02:59, 3.27it/s] 49%|████▉ | 182689/371472 [3:39:58<15:44:42, 3.33it/s] 49%|████▉ | 182690/371472 [3:39:59<15:55:26, 3.29it/s] 49%|████▉ | 182691/371472 [3:39:59<16:10:29, 3.24it/s] 49%|████▉ | 182692/371472 [3:39:59<15:58:58, 3.28it/s] 49%|████▉ | 182693/371472 [3:40:00<15:40:34, 3.35it/s] 49%|████▉ | 182694/371472 [3:40:00<16:03:58, 3.26it/s] 49%|████▉ | 182695/371472 [3:40:00<16:00:53, 3.27it/s] 49%|████▉ | 182696/371472 [3:40:01<15:56:22, 3.29it/s] 49%|████▉ | 182697/371472 [3:40:01<15:38:49, 3.35it/s] 49%|████▉ | 182698/371472 [3:40:01<15:37:24, 3.36it/s] 49%|████▉ | 182699/371472 [3:40:01<15:08:35, 3.46it/s] 49%|████▉ | 182700/371472 [3:40:02<14:46:13, 3.55it/s] {'loss': 2.7947, 'learning_rate': 5.576019737550905e-07, 'epoch': 7.87} + 49%|████▉ | 182700/371472 [3:40:02<14:46:13, 3.55it/s] 49%|████▉ | 182701/371472 [3:40:02<15:25:30, 3.40it/s] 49%|████▉ | 182702/371472 [3:40:02<15:11:52, 3.45it/s] 49%|████▉ | 182703/371472 [3:40:03<14:44:31, 3.56it/s] 49%|████▉ | 182704/371472 [3:40:03<14:43:47, 3.56it/s] 49%|████▉ | 182705/371472 [3:40:03<14:55:23, 3.51it/s] 49%|████▉ | 182706/371472 [3:40:03<15:28:15, 3.39it/s] 49%|████▉ | 182707/371472 [3:40:04<15:10:42, 3.45it/s] 49%|████▉ | 182708/371472 [3:40:04<15:22:04, 3.41it/s] 49%|████▉ | 182709/371472 [3:40:04<15:50:45, 3.31it/s] 49%|████▉ | 182710/371472 [3:40:05<15:29:45, 3.38it/s] 49%|████▉ | 182711/371472 [3:40:05<15:23:07, 3.41it/s] 49%|████▉ | 182712/371472 [3:40:05<15:15:55, 3.43it/s] 49%|████▉ | 182713/371472 [3:40:05<15:02:20, 3.49it/s] 49%|████▉ | 182714/371472 [3:40:06<14:55:33, 3.51it/s] 49%|████▉ | 182715/371472 [3:40:06<14:57:22, 3.51it/s] 49%|████▉ | 182716/371472 [3:40:06<14:59:58, 3.50it/s] 49%|████▉ | 182717/371472 [3:40:07<15:49:39, 3.31it/s] 49%|████▉ | 182718/371472 [3:40:07<16:52:02, 3.11it/s] 49%|████▉ | 182719/371472 [3:40:07<16:13:14, 3.23it/s] 49%|████▉ | 182720/371472 [3:40:08<16:08:28, 3.25it/s] {'loss': 3.0048, 'learning_rate': 5.575534917796118e-07, 'epoch': 7.87} + 49%|████▉ | 182720/371472 [3:40:08<16:08:28, 3.25it/s] 49%|████▉ | 182721/371472 [3:40:08<16:55:37, 3.10it/s] 49%|████▉ | 182722/371472 [3:40:08<16:19:28, 3.21it/s] 49%|████▉ | 182723/371472 [3:40:09<15:43:53, 3.33it/s] 49%|████▉ | 182724/371472 [3:40:09<15:26:59, 3.39it/s] 49%|████▉ | 182725/371472 [3:40:09<15:22:57, 3.41it/s] 49%|████▉ | 182726/371472 [3:40:09<15:33:05, 3.37it/s] 49%|████▉ | 182727/371472 [3:40:10<15:20:57, 3.42it/s] 49%|████▉ | 182728/371472 [3:40:10<15:41:47, 3.34it/s] 49%|████▉ | 182729/371472 [3:40:10<15:18:42, 3.42it/s] 49%|████▉ | 182730/371472 [3:40:11<15:38:10, 3.35it/s] 49%|████▉ | 182731/371472 [3:40:11<15:37:43, 3.35it/s] 49%|████▉ | 182732/371472 [3:40:11<15:36:22, 3.36it/s] 49%|████▉ | 182733/371472 [3:40:12<15:44:47, 3.33it/s] 49%|████▉ | 182734/371472 [3:40:12<16:40:12, 3.14it/s] 49%|████▉ | 182735/371472 [3:40:12<16:02:29, 3.27it/s] 49%|████▉ | 182736/371472 [3:40:12<16:33:12, 3.17it/s] 49%|████▉ | 182737/371472 [3:40:13<16:11:29, 3.24it/s] 49%|████▉ | 182738/371472 [3:40:13<15:54:13, 3.30it/s] 49%|████▉ | 182739/371472 [3:40:13<15:47:47, 3.32it/s] 49%|████▉ | 182740/371472 [3:40:14<15:45:30, 3.33it/s] {'loss': 2.8448, 'learning_rate': 5.575050098041328e-07, 'epoch': 7.87} + 49%|████▉ | 182740/371472 [3:40:14<15:45:30, 3.33it/s] 49%|████▉ | 182741/371472 [3:40:14<15:48:37, 3.32it/s] 49%|████▉ | 182742/371472 [3:40:14<15:59:44, 3.28it/s] 49%|████▉ | 182743/371472 [3:40:15<15:52:41, 3.30it/s] 49%|████▉ | 182744/371472 [3:40:15<16:14:33, 3.23it/s] 49%|████▉ | 182745/371472 [3:40:15<16:32:16, 3.17it/s] 49%|████▉ | 182746/371472 [3:40:16<16:11:18, 3.24it/s] 49%|████▉ | 182747/371472 [3:40:16<16:22:31, 3.20it/s] 49%|████▉ | 182748/371472 [3:40:16<16:08:41, 3.25it/s] 49%|████▉ | 182749/371472 [3:40:16<16:16:07, 3.22it/s] 49%|████▉ | 182750/371472 [3:40:17<15:42:31, 3.34it/s] 49%|████▉ | 182751/371472 [3:40:17<15:40:41, 3.34it/s] 49%|█��██▉ | 182752/371472 [3:40:17<15:16:18, 3.43it/s] 49%|████▉ | 182753/371472 [3:40:18<15:37:46, 3.35it/s] 49%|████▉ | 182754/371472 [3:40:18<15:31:52, 3.38it/s] 49%|████▉ | 182755/371472 [3:40:18<15:07:48, 3.46it/s] 49%|████▉ | 182756/371472 [3:40:19<15:55:14, 3.29it/s] 49%|████▉ | 182757/371472 [3:40:19<16:02:00, 3.27it/s] 49%|████▉ | 182758/371472 [3:40:19<15:49:38, 3.31it/s] 49%|████▉ | 182759/371472 [3:40:19<15:32:29, 3.37it/s] 49%|████▉ | 182760/371472 [3:40:20<15:49:03, 3.31it/s] {'loss': 2.9344, 'learning_rate': 5.574565278286538e-07, 'epoch': 7.87} + 49%|████▉ | 182760/371472 [3:40:20<15:49:03, 3.31it/s] 49%|████▉ | 182761/371472 [3:40:20<17:19:01, 3.03it/s] 49%|████▉ | 182762/371472 [3:40:20<16:42:13, 3.14it/s] 49%|████▉ | 182763/371472 [3:40:21<16:20:08, 3.21it/s] 49%|████▉ | 182764/371472 [3:40:21<15:42:17, 3.34it/s] 49%|████▉ | 182765/371472 [3:40:21<16:52:19, 3.11it/s] 49%|████▉ | 182766/371472 [3:40:22<17:11:37, 3.05it/s] 49%|████▉ | 182767/371472 [3:40:22<16:49:27, 3.12it/s] 49%|████▉ | 182768/371472 [3:40:22<16:44:54, 3.13it/s] 49%|████▉ | 182769/371472 [3:40:23<16:30:04, 3.18it/s] 49%|████▉ | 182770/371472 [3:40:23<16:24:40, 3.19it/s] 49%|████▉ | 182771/371472 [3:40:23<16:22:30, 3.20it/s] 49%|████▉ | 182772/371472 [3:40:24<15:49:43, 3.31it/s] 49%|████▉ | 182773/371472 [3:40:24<15:36:28, 3.36it/s] 49%|████▉ | 182774/371472 [3:40:24<15:13:27, 3.44it/s] 49%|████▉ | 182775/371472 [3:40:24<15:44:55, 3.33it/s] 49%|████▉ | 182776/371472 [3:40:25<15:51:21, 3.31it/s] 49%|████▉ | 182777/371472 [3:40:25<15:52:27, 3.30it/s] 49%|████▉ | 182778/371472 [3:40:25<15:34:56, 3.36it/s] 49%|████▉ | 182779/371472 [3:40:26<15:24:13, 3.40it/s] 49%|████▉ | 182780/371472 [3:40:26<15:41:10, 3.34it/s] {'loss': 2.8774, 'learning_rate': 5.57408045853175e-07, 'epoch': 7.87} + 49%|████▉ | 182780/371472 [3:40:26<15:41:10, 3.34it/s] 49%|████▉ | 182781/371472 [3:40:26<15:39:30, 3.35it/s] 49%|████▉ | 182782/371472 [3:40:26<15:30:34, 3.38it/s] 49%|████▉ | 182783/371472 [3:40:27<16:00:51, 3.27it/s] 49%|████▉ | 182784/371472 [3:40:27<15:56:12, 3.29it/s] 49%|████▉ | 182785/371472 [3:40:27<15:50:34, 3.31it/s] 49%|████▉ | 182786/371472 [3:40:28<15:38:55, 3.35it/s] 49%|████▉ | 182787/371472 [3:40:28<16:28:58, 3.18it/s] 49%|████▉ | 182788/371472 [3:40:28<16:12:33, 3.23it/s] 49%|████▉ | 182789/371472 [3:40:29<15:53:42, 3.30it/s] 49%|████▉ | 182790/371472 [3:40:29<16:08:49, 3.25it/s] 49%|████▉ | 182791/371472 [3:40:29<16:10:42, 3.24it/s] 49%|████▉ | 182792/371472 [3:40:30<15:46:41, 3.32it/s] 49%|████▉ | 182793/371472 [3:40:30<15:38:05, 3.35it/s] 49%|████▉ | 182794/371472 [3:40:30<15:22:36, 3.41it/s] 49%|████▉ | 182795/371472 [3:40:30<15:14:50, 3.44it/s] 49%|████▉ | 182796/371472 [3:40:31<14:57:40, 3.50it/s] 49%|████▉ | 182797/371472 [3:40:31<14:59:24, 3.50it/s] 49%|████▉ | 182798/371472 [3:40:31<15:34:29, 3.37it/s] 49%|████▉ | 182799/371472 [3:40:32<15:39:53, 3.35it/s] 49%|████▉ | 182800/371472 [3:40:32<15:21:30, 3.41it/s] {'loss': 2.7459, 'learning_rate': 5.573595638776961e-07, 'epoch': 7.87} + 49%|████▉ | 182800/371472 [3:40:32<15:21:30, 3.41it/s] 49%|████▉ | 182801/371472 [3:40:32<16:09:06, 3.24it/s] 49%|████▉ | 182802/371472 [3:40:33<15:58:05, 3.28it/s] 49%|████▉ | 182803/371472 [3:40:33<15:53:55, 3.30it/s] 49%|████▉ | 182804/371472 [3:40:33<15:24:52, 3.40it/s] 49%|████▉ | 182805/371472 [3:40:33<15:05:24, 3.47it/s] 49%|████▉ | 182806/371472 [3:40:34<14:45:45, 3.55it/s] 49%|████▉ | 182807/371472 [3:40:34<14:47:49, 3.54it/s] 49%|████▉ | 182808/371472 [3:40:34<14:55:38, 3.51it/s] 49%|████▉ | 182809/371472 [3:40:35<15:04:45, 3.48it/s] 49%|████▉ | 182810/371472 [3:40:35<15:06:14, 3.47it/s] 49%|████▉ | 182811/371472 [3:40:35<15:13:33, 3.44it/s] 49%|████▉ | 182812/371472 [3:40:35<15:46:24, 3.32it/s] 49%|████▉ | 182813/371472 [3:40:36<15:53:05, 3.30it/s] 49%|████▉ | 182814/371472 [3:40:36<15:37:05, 3.36it/s] 49%|████▉ | 182815/371472 [3:40:36<15:52:32, 3.30it/s] 49%|████▉ | 182816/371472 [3:40:37<16:00:08, 3.27it/s] 49%|████▉ | 182817/371472 [3:40:37<15:58:57, 3.28it/s] 49%|████▉ | 182818/371472 [3:40:37<15:50:23, 3.31it/s] 49%|████▉ | 182819/371472 [3:40:38<15:56:26, 3.29it/s] 49%|████▉ | 182820/371472 [3:40:38<15:58:54, 3.28it/s] {'loss': 2.8585, 'learning_rate': 5.573110819022173e-07, 'epoch': 7.87} + 49%|████▉ | 182820/371472 [3:40:38<15:58:54, 3.28it/s] 49%|████▉ | 182821/371472 [3:40:38<15:58:29, 3.28it/s] 49%|████▉ | 182822/371472 [3:40:38<16:08:58, 3.24it/s] 49%|████▉ | 182823/371472 [3:40:39<15:54:48, 3.29it/s] 49%|████▉ | 182824/371472 [3:40:39<15:36:47, 3.36it/s] 49%|████▉ | 182825/371472 [3:40:39<15:08:45, 3.46it/s] 49%|████▉ | 182826/371472 [3:40:40<15:28:32, 3.39it/s] 49%|████▉ | 182827/371472 [3:40:40<15:19:08, 3.42it/s] 49%|████▉ | 182828/371472 [3:40:40<15:58:10, 3.28it/s] 49%|████▉ | 182829/371472 [3:40:41<17:02:29, 3.07it/s] 49%|████▉ | 182830/371472 [3:40:41<16:28:00, 3.18it/s] 49%|████▉ | 182831/371472 [3:40:41<16:14:49, 3.23it/s] 49%|████▉ | 182832/371472 [3:40:42<16:32:54, 3.17it/s] 49%|████▉ | 182833/371472 [3:40:42<17:57:31, 2.92it/s] 49%|████▉ | 182834/371472 [3:40:42<17:19:04, 3.03it/s] 49%|████▉ | 182835/371472 [3:40:43<16:33:35, 3.16it/s] 49%|████▉ | 182836/371472 [3:40:43<17:06:02, 3.06it/s] 49%|████▉ | 182837/371472 [3:40:43<16:01:58, 3.27it/s] 49%|████▉ | 182838/371472 [3:40:43<15:43:26, 3.33it/s] 49%|████▉ | 182839/371472 [3:40:44<15:14:55, 3.44it/s] 49%|████▉ | 182840/371472 [3:40:44<15:24:10, 3.40it/s] {'loss': 2.975, 'learning_rate': 5.572625999267382e-07, 'epoch': 7.88} + 49%|████▉ | 182840/371472 [3:40:44<15:24:10, 3.40it/s] 49%|████▉ | 182841/371472 [3:40:44<15:14:03, 3.44it/s] 49%|████▉ | 182842/371472 [3:40:45<15:18:34, 3.42it/s] 49%|████▉ | 182843/371472 [3:40:45<14:49:57, 3.53it/s] 49%|████▉ | 182844/371472 [3:40:45<15:10:16, 3.45it/s] 49%|████▉ | 182845/371472 [3:40:45<14:54:09, 3.52it/s] 49%|████▉ | 182846/371472 [3:40:46<14:41:14, 3.57it/s] 49%|████▉ | 182847/371472 [3:40:46<14:24:13, 3.64it/s] 49%|████▉ | 182848/371472 [3:40:46<15:05:57, 3.47it/s] 49%|████▉ | 182849/371472 [3:40:47<14:59:20, 3.50it/s] 49%|████▉ | 182850/371472 [3:40:47<15:08:39, 3.46it/s] 49%|████▉ | 182851/371472 [3:40:47<15:10:09, 3.45it/s] 49%|████▉ | 182852/371472 [3:40:47<15:04:34, 3.48it/s] 49%|████▉ | 182853/371472 [3:40:48<15:24:33, 3.40it/s] 49%|████▉ | 182854/371472 [3:40:48<16:26:55, 3.19it/s] 49%|████▉ | 182855/371472 [3:40:48<16:48:49, 3.12it/s] 49%|████▉ | 182856/371472 [3:40:49<16:08:23, 3.25it/s] 49%|████▉ | 182857/371472 [3:40:49<15:44:46, 3.33it/s] 49%|████▉ | 182858/371472 [3:40:49<15:42:02, 3.34it/s] 49%|████▉ | 182859/371472 [3:40:50<15:27:10, 3.39it/s] 49%|████▉ | 182860/371472 [3:40:50<15:19:06, 3.42it/s] {'loss': 3.0125, 'learning_rate': 5.572141179512595e-07, 'epoch': 7.88} + 49%|████▉ | 182860/371472 [3:40:50<15:19:06, 3.42it/s] 49%|████▉ | 182861/371472 [3:40:50<15:21:53, 3.41it/s] 49%|████▉ | 182862/371472 [3:40:51<16:44:15, 3.13it/s] 49%|████▉ | 182863/371472 [3:40:51<16:01:42, 3.27it/s] 49%|████▉ | 182864/371472 [3:40:51<15:46:33, 3.32it/s] 49%|████▉ | 182865/371472 [3:40:51<15:31:37, 3.37it/s] 49%|████▉ | 182866/371472 [3:40:52<15:25:35, 3.40it/s] 49%|████▉ | 182867/371472 [3:40:52<16:52:01, 3.11it/s] 49%|████▉ | 182868/371472 [3:40:52<16:29:49, 3.18it/s] 49%|████▉ | 182869/371472 [3:40:53<16:15:48, 3.22it/s] 49%|████▉ | 182870/371472 [3:40:53<15:49:04, 3.31it/s] 49%|████▉ | 182871/371472 [3:40:53<15:32:31, 3.37it/s] 49%|████▉ | 182872/371472 [3:40:54<15:29:40, 3.38it/s] 49%|████▉ | 182873/371472 [3:40:54<15:49:12, 3.31it/s] 49%|████▉ | 182874/371472 [3:40:54<15:39:48, 3.34it/s] 49%|████▉ | 182875/371472 [3:40:54<16:05:51, 3.25it/s] 49%|████▉ | 182876/371472 [3:40:55<15:44:49, 3.33it/s] 49%|████▉ | 182877/371472 [3:40:55<17:16:34, 3.03it/s] 49%|████▉ | 182878/371472 [3:40:55<16:37:59, 3.15it/s] 49%|████▉ | 182879/371472 [3:40:56<16:12:42, 3.23it/s] 49%|████▉ | 182880/371472 [3:40:56<16:14:57, 3.22it/s] {'loss': 2.9091, 'learning_rate': 5.571656359757806e-07, 'epoch': 7.88} + 49%|████▉ | 182880/371472 [3:40:56<16:14:57, 3.22it/s] 49%|████▉ | 182881/371472 [3:40:56<16:22:41, 3.20it/s] 49%|████▉ | 182882/371472 [3:40:57<16:37:12, 3.15it/s] 49%|████▉ | 182883/371472 [3:40:57<16:54:12, 3.10it/s] 49%|████▉ | 182884/371472 [3:40:57<16:24:01, 3.19it/s] 49%|████▉ | 182885/371472 [3:40:58<16:41:35, 3.14it/s] 49%|████▉ | 182886/371472 [3:40:58<16:11:28, 3.24it/s] 49%|████▉ | 182887/371472 [3:40:58<16:08:35, 3.24it/s] 49%|████▉ | 182888/371472 [3:40:58<15:43:31, 3.33it/s] 49%|████▉ | 182889/371472 [3:40:59<15:38:41, 3.35it/s] 49%|████▉ | 182890/371472 [3:40:59<16:27:20, 3.18it/s] 49%|████▉ | 182891/371472 [3:40:59<16:48:36, 3.12it/s] 49%|████▉ | 182892/371472 [3:41:00<16:37:17, 3.15it/s] 49%|████▉ | 182893/371472 [3:41:00<16:13:08, 3.23it/s] 49%|████▉ | 182894/371472 [3:41:00<15:58:19, 3.28it/s] 49%|████▉ | 182895/371472 [3:41:01<15:50:25, 3.31it/s] 49%|████▉ | 182896/371472 [3:41:01<15:49:27, 3.31it/s] 49%|████▉ | 182897/371472 [3:41:01<16:01:07, 3.27it/s] 49%|████▉ | 182898/371472 [3:41:02<16:07:58, 3.25it/s] 49%|████▉ | 182899/371472 [3:41:02<15:50:06, 3.31it/s] 49%|████▉ | 182900/371472 [3:41:02<16:18:26, 3.21it/s] {'loss': 2.894, 'learning_rate': 5.571171540003017e-07, 'epoch': 7.88} + 49%|████▉ | 182900/371472 [3:41:02<16:18:26, 3.21it/s] 49%|████▉ | 182901/371472 [3:41:03<16:58:27, 3.09it/s] 49%|████▉ | 182902/371472 [3:41:03<17:19:18, 3.02it/s] 49%|████▉ | 182903/371472 [3:41:03<16:47:41, 3.12it/s] 49%|████▉ | 182904/371472 [3:41:04<16:31:13, 3.17it/s] 49%|████▉ | 182905/371472 [3:41:04<17:11:43, 3.05it/s] 49%|████▉ | 182906/371472 [3:41:04<17:20:22, 3.02it/s] 49%|████▉ | 182907/371472 [3:41:05<16:41:01, 3.14it/s] 49%|████▉ | 182908/371472 [3:41:05<16:05:59, 3.25it/s] 49%|████▉ | 182909/371472 [3:41:05<15:37:09, 3.35it/s] 49%|████▉ | 182910/371472 [3:41:05<16:31:20, 3.17it/s] 49%|████▉ | 182911/371472 [3:41:06<16:10:35, 3.24it/s] 49%|████▉ | 182912/371472 [3:41:06<16:09:15, 3.24it/s] 49%|████▉ | 182913/371472 [3:41:06<16:02:20, 3.27it/s] 49%|████▉ | 182914/371472 [3:41:07<15:42:44, 3.33it/s] 49%|████▉ | 182915/371472 [3:41:07<16:15:55, 3.22it/s] 49%|████▉ | 182916/371472 [3:41:07<16:52:01, 3.11it/s] 49%|████▉ | 182917/371472 [3:41:08<17:37:29, 2.97it/s] 49%|████▉ | 182918/371472 [3:41:08<17:07:14, 3.06it/s] 49%|████▉ | 182919/371472 [3:41:08<16:37:41, 3.15it/s] 49%|████▉ | 182920/371472 [3:41:09<15:51:02, 3.30it/s] {'loss': 2.9009, 'learning_rate': 5.570686720248227e-07, 'epoch': 7.88} + 49%|████▉ | 182920/371472 [3:41:09<15:51:02, 3.30it/s] 49%|████▉ | 182921/371472 [3:41:09<15:45:57, 3.32it/s] 49%|████▉ | 182922/371472 [3:41:09<15:28:39, 3.38it/s] 49%|████▉ | 182923/371472 [3:41:09<15:46:29, 3.32it/s] 49%|████▉ | 182924/371472 [3:41:10<15:48:57, 3.31it/s] 49%|████▉ | 182925/371472 [3:41:10<15:53:57, 3.29it/s] 49%|████▉ | 182926/371472 [3:41:10<15:45:17, 3.32it/s] 49%|████▉ | 182927/371472 [3:41:11<16:25:51, 3.19it/s] 49%|████▉ | 182928/371472 [3:41:11<15:48:00, 3.31it/s] 49%|████▉ | 182929/371472 [3:41:11<15:32:40, 3.37it/s] 49%|████▉ | 182930/371472 [3:41:12<16:52:27, 3.10it/s] 49%|████▉ | 182931/371472 [3:41:12<17:02:22, 3.07it/s] 49%|████▉ | 182932/371472 [3:41:12<16:28:12, 3.18it/s] 49%|████▉ | 182933/371472 [3:41:13<16:36:21, 3.15it/s] 49%|████▉ | 182934/371472 [3:41:13<16:11:17, 3.24it/s] 49%|████▉ | 182935/371472 [3:41:13<16:13:54, 3.23it/s] 49%|████▉ | 182936/371472 [3:41:13<16:01:29, 3.27it/s] 49%|████▉ | 182937/371472 [3:41:14<16:02:05, 3.27it/s] 49%|████▉ | 182938/371472 [3:41:14<16:44:10, 3.13it/s] 49%|████▉ | 182939/371472 [3:41:14<17:24:04, 3.01it/s] 49%|████▉ | 182940/371472 [3:41:15<17:15:20, 3.03it/s] {'loss': 2.6669, 'learning_rate': 5.570201900493438e-07, 'epoch': 7.88} + 49%|████▉ | 182940/371472 [3:41:15<17:15:20, 3.03it/s] 49%|████▉ | 182941/371472 [3:41:15<16:59:14, 3.08it/s] 49%|████▉ | 182942/371472 [3:41:15<16:11:29, 3.23it/s] 49%|████▉ | 182943/371472 [3:41:16<15:52:25, 3.30it/s] 49%|████▉ | 182944/371472 [3:41:16<15:53:53, 3.29it/s] 49%|████▉ | 182945/371472 [3:41:16<15:22:44, 3.41it/s] 49%|████▉ | 182946/371472 [3:41:17<15:27:24, 3.39it/s] 49%|████▉ | 182947/371472 [3:41:17<15:51:18, 3.30it/s] 49%|████▉ | 182948/371472 [3:41:17<15:59:12, 3.28it/s] 49%|████▉ | 182949/371472 [3:41:17<16:01:27, 3.27it/s] 49%|████▉ | 182950/371472 [3:41:18<16:33:01, 3.16it/s] 49%|████▉ | 182951/371472 [3:41:18<16:58:11, 3.09it/s] 49%|████▉ | 182952/371472 [3:41:18<16:24:36, 3.19it/s] 49%|████▉ | 182953/371472 [3:41:19<16:02:59, 3.26it/s] 49%|████▉ | 182954/371472 [3:41:19<15:50:35, 3.31it/s] 49%|████▉ | 182955/371472 [3:41:19<15:40:16, 3.34it/s] 49%|████▉ | 182956/371472 [3:41:20<15:29:57, 3.38it/s] 49%|████▉ | 182957/371472 [3:41:20<15:16:58, 3.43it/s] 49%|████▉ | 182958/371472 [3:41:20<15:20:06, 3.41it/s] 49%|████▉ | 182959/371472 [3:41:20<15:04:58, 3.47it/s] 49%|████▉ | 182960/371472 [3:41:21<15:12:39, 3.44it/s] {'loss': 2.8498, 'learning_rate': 5.569717080738651e-07, 'epoch': 7.88} + 49%|████▉ | 182960/371472 [3:41:21<15:12:39, 3.44it/s] 49%|████▉ | 182961/371472 [3:41:21<15:06:31, 3.47it/s] 49%|████▉ | 182962/371472 [3:41:21<15:07:15, 3.46it/s] 49%|████▉ | 182963/371472 [3:41:22<14:52:57, 3.52it/s] 49%|████▉ | 182964/371472 [3:41:22<14:40:24, 3.57it/s] 49%|████▉ | 182965/371472 [3:41:22<17:32:58, 2.98it/s] 49%|████▉ | 182966/371472 [3:41:23<17:14:43, 3.04it/s] 49%|████▉ | 182967/371472 [3:41:23<16:09:18, 3.24it/s] 49%|████▉ | 182968/371472 [3:41:23<16:11:41, 3.23it/s] 49%|████▉ | 182969/371472 [3:41:24<16:22:38, 3.20it/s] 49%|████▉ | 182970/371472 [3:41:24<15:39:27, 3.34it/s] 49%|████▉ | 182971/371472 [3:41:24<15:29:16, 3.38it/s] 49%|████▉ | 182972/371472 [3:41:24<15:41:54, 3.34it/s] 49%|████▉ | 182973/371472 [3:41:25<15:30:21, 3.38it/s] 49%|████▉ | 182974/371472 [3:41:25<16:04:21, 3.26it/s] 49%|████▉ | 182975/371472 [3:41:25<15:33:52, 3.36it/s] 49%|████▉ | 182976/371472 [3:41:26<15:06:18, 3.47it/s] 49%|████▉ | 182977/371472 [3:41:26<15:31:38, 3.37it/s] 49%|████▉ | 182978/371472 [3:41:26<15:32:32, 3.37it/s] 49%|████▉ | 182979/371472 [3:41:26<15:32:01, 3.37it/s] 49%|████▉ | 182980/371472 [3:41:27<15:28:19, 3.38it/s] {'loss': 2.9496, 'learning_rate': 5.569232260983861e-07, 'epoch': 7.88} + 49%|████▉ | 182980/371472 [3:41:27<15:28:19, 3.38it/s] 49%|████▉ | 182981/371472 [3:41:27<15:36:38, 3.35it/s] 49%|████▉ | 182982/371472 [3:41:27<15:26:07, 3.39it/s] 49%|████▉ | 182983/371472 [3:41:28<16:02:31, 3.26it/s] 49%|████▉ | 182984/371472 [3:41:28<16:06:55, 3.25it/s] 49%|████▉ | 182985/371472 [3:41:28<16:18:01, 3.21it/s] 49%|████▉ | 182986/371472 [3:41:29<15:43:20, 3.33it/s] 49%|████▉ | 182987/371472 [3:41:29<15:44:28, 3.33it/s] 49%|████▉ | 182988/371472 [3:41:29<15:32:00, 3.37it/s] 49%|████▉ | 182989/371472 [3:41:30<15:31:35, 3.37it/s] 49%|████▉ | 182990/371472 [3:41:30<15:05:50, 3.47it/s] 49%|████▉ | 182991/371472 [3:41:30<15:06:24, 3.47it/s] 49%|████▉ | 182992/371472 [3:41:30<14:43:09, 3.56it/s] 49%|████▉ | 182993/371472 [3:41:31<14:49:18, 3.53it/s] 49%|████▉ | 182994/371472 [3:41:31<14:31:38, 3.60it/s] 49%|████▉ | 182995/371472 [3:41:31<14:43:11, 3.56it/s] 49%|████▉ | 182996/371472 [3:41:31<14:34:49, 3.59it/s] 49%|████▉ | 182997/371472 [3:41:32<14:36:21, 3.58it/s] 49%|████▉ | 182998/371472 [3:41:32<14:50:07, 3.53it/s] 49%|████▉ | 182999/371472 [3:41:32<14:56:59, 3.50it/s] 49%|████▉ | 183000/371472 [3:41:33<14:56:10, 3.51it/s] {'loss': 3.0787, 'learning_rate': 5.568747441229071e-07, 'epoch': 7.88} + 49%|████▉ | 183000/371472 [3:41:33<14:56:10, 3.51it/s] 49%|████▉ | 183001/371472 [3:41:33<15:01:25, 3.48it/s] 49%|████▉ | 183002/371472 [3:41:33<15:00:03, 3.49it/s] 49%|████▉ | 183003/371472 [3:41:33<14:59:50, 3.49it/s] 49%|████▉ | 183004/371472 [3:41:34<15:34:59, 3.36it/s] 49%|████▉ | 183005/371472 [3:41:34<16:12:57, 3.23it/s] 49%|████▉ | 183006/371472 [3:41:34<16:00:34, 3.27it/s] 49%|████▉ | 183007/371472 [3:41:35<15:37:41, 3.35it/s] 49%|████▉ | 183008/371472 [3:41:35<15:26:23, 3.39it/s] 49%|████▉ | 183009/371472 [3:41:35<15:04:18, 3.47it/s] 49%|████▉ | 183010/371472 [3:41:36<14:58:43, 3.50it/s] 49%|████▉ | 183011/371472 [3:41:36<15:09:36, 3.45it/s] 49%|████▉ | 183012/371472 [3:41:36<16:49:40, 3.11it/s] 49%|████▉ | 183013/371472 [3:41:37<17:02:28, 3.07it/s] 49%|████▉ | 183014/371472 [3:41:37<16:01:39, 3.27it/s] 49%|████▉ | 183015/371472 [3:41:37<15:55:22, 3.29it/s] 49%|████▉ | 183016/371472 [3:41:37<16:14:23, 3.22it/s] 49%|████▉ | 183017/371472 [3:41:38<15:50:32, 3.30it/s] 49%|████▉ | 183018/371472 [3:41:38<16:13:58, 3.22it/s] 49%|████▉ | 183019/371472 [3:41:38<15:52:58, 3.30it/s] 49%|████▉ | 183020/371472 [3:41:39<15:49:54, 3.31it/s] {'loss': 2.8212, 'learning_rate': 5.568262621474283e-07, 'epoch': 7.88} + 49%|████▉ | 183020/371472 [3:41:39<15:49:54, 3.31it/s] 49%|████▉ | 183021/371472 [3:41:39<15:34:52, 3.36it/s] 49%|████▉ | 183022/371472 [3:41:39<16:19:58, 3.21it/s] 49%|████▉ | 183023/371472 [3:41:40<15:50:53, 3.30it/s] 49%|████▉ | 183024/371472 [3:41:40<15:50:19, 3.30it/s] 49%|████▉ | 183025/371472 [3:41:40<15:43:26, 3.33it/s] 49%|████▉ | 183026/371472 [3:41:41<16:41:35, 3.14it/s] 49%|████▉ | 183027/371472 [3:41:41<16:11:12, 3.23it/s] 49%|████▉ | 183028/371472 [3:41:41<15:43:46, 3.33it/s] 49%|████▉ | 183029/371472 [3:41:41<15:33:02, 3.37it/s] 49%|████▉ | 183030/371472 [3:41:42<15:34:04, 3.36it/s] 49%|████▉ | 183031/371472 [3:41:42<15:27:25, 3.39it/s] 49%|████▉ | 183032/371472 [3:41:42<15:40:07, 3.34it/s] 49%|████▉ | 183033/371472 [3:41:43<15:51:26, 3.30it/s] 49%|████▉ | 183034/371472 [3:41:43<15:28:30, 3.38it/s] 49%|████▉ | 183035/371472 [3:41:43<18:18:24, 2.86it/s] 49%|████▉ | 183036/371472 [3:41:44<17:03:33, 3.07it/s] 49%|████▉ | 183037/371472 [3:41:44<16:28:00, 3.18it/s] 49%|████▉ | 183038/371472 [3:41:44<16:06:09, 3.25it/s] 49%|████▉ | 183039/371472 [3:41:44<15:49:29, 3.31it/s] 49%|████▉ | 183040/371472 [3:41:45<16:45:58, 3.12it/s] {'loss': 2.8339, 'learning_rate': 5.567777801719495e-07, 'epoch': 7.88} + 49%|████▉ | 183040/371472 [3:41:45<16:45:58, 3.12it/s] 49%|████▉ | 183041/371472 [3:41:45<16:06:22, 3.25it/s] 49%|████▉ | 183042/371472 [3:41:45<15:32:09, 3.37it/s] 49%|████▉ | 183043/371472 [3:41:46<16:08:28, 3.24it/s] 49%|████▉ | 183044/371472 [3:41:46<16:51:56, 3.10it/s] 49%|████▉ | 183045/371472 [3:41:46<16:39:53, 3.14it/s] 49%|████▉ | 183046/371472 [3:41:47<16:23:06, 3.19it/s] 49%|████▉ | 183047/371472 [3:41:47<15:37:40, 3.35it/s] 49%|████▉ | 183048/371472 [3:41:47<15:25:16, 3.39it/s] 49%|████▉ | 183049/371472 [3:41:48<17:29:07, 2.99it/s] 49%|████▉ | 183050/371472 [3:41:48<16:56:10, 3.09it/s] 49%|████▉ | 183051/371472 [3:41:48<16:20:38, 3.20it/s] 49%|████▉ | 183052/371472 [3:41:49<15:53:40, 3.29it/s] 49%|████▉ | 183053/371472 [3:41:49<15:31:47, 3.37it/s] 49%|████▉ | 183054/371472 [3:41:49<15:39:21, 3.34it/s] 49%|████▉ | 183055/371472 [3:41:49<15:44:09, 3.33it/s] 49%|████▉ | 183056/371472 [3:41:50<15:26:00, 3.39it/s] 49%|████▉ | 183057/371472 [3:41:50<15:20:10, 3.41it/s] 49%|████▉ | 183058/371472 [3:41:50<15:23:26, 3.40it/s] 49%|████▉ | 183059/371472 [3:41:51<15:05:11, 3.47it/s] 49%|████▉ | 183060/371472 [3:41:51<15:21:10, 3.41it/s] {'loss': 3.0194, 'learning_rate': 5.567292981964704e-07, 'epoch': 7.88} + 49%|████▉ | 183060/371472 [3:41:51<15:21:10, 3.41it/s] 49%|████▉ | 183061/371472 [3:41:51<15:13:32, 3.44it/s] 49%|████▉ | 183062/371472 [3:41:51<15:21:30, 3.41it/s] 49%|████▉ | 183063/371472 [3:41:52<15:03:53, 3.47it/s] 49%|████▉ | 183064/371472 [3:41:52<14:58:26, 3.50it/s] 49%|████▉ | 183065/371472 [3:41:52<15:37:09, 3.35it/s] 49%|████▉ | 183066/371472 [3:41:53<15:26:25, 3.39it/s] 49%|████▉ | 183067/371472 [3:41:53<15:36:53, 3.35it/s] 49%|████▉ | 183068/371472 [3:41:53<15:21:16, 3.41it/s] 49%|████▉ | 183069/371472 [3:41:54<15:37:08, 3.35it/s] 49%|████▉ | 183070/371472 [3:41:54<15:28:08, 3.38it/s] 49%|████▉ | 183071/371472 [3:41:54<15:35:29, 3.36it/s] 49%|████▉ | 183072/371472 [3:41:54<15:17:02, 3.42it/s] 49%|████▉ | 183073/371472 [3:41:55<15:58:50, 3.27it/s] 49%|████▉ | 183074/371472 [3:41:55<15:38:25, 3.35it/s] 49%|████▉ | 183075/371472 [3:41:55<15:06:44, 3.46it/s] 49%|████▉ | 183076/371472 [3:41:56<16:19:01, 3.21it/s] 49%|████▉ | 183077/371472 [3:41:56<15:40:27, 3.34it/s] 49%|████▉ | 183078/371472 [3:41:56<15:16:55, 3.42it/s] 49%|████▉ | 183079/371472 [3:41:57<16:01:36, 3.27it/s] 49%|████▉ | 183080/371472 [3:41:57<16:27:50, 3.18it/s] {'loss': 2.828, 'learning_rate': 5.566808162209915e-07, 'epoch': 7.89} + 49%|████▉ | 183080/371472 [3:41:57<16:27:50, 3.18it/s] 49%|████▉ | 183081/371472 [3:41:57<16:05:36, 3.25it/s] 49%|████▉ | 183082/371472 [3:41:57<16:13:30, 3.23it/s] 49%|████▉ | 183083/371472 [3:41:58<16:54:24, 3.10it/s] 49%|████▉ | 183084/371472 [3:41:58<16:26:27, 3.18it/s] 49%|████▉ | 183085/371472 [3:41:58<16:03:09, 3.26it/s] 49%|████▉ | 183086/371472 [3:41:59<15:42:31, 3.33it/s] 49%|████▉ | 183087/371472 [3:41:59<18:38:33, 2.81it/s] 49%|████▉ | 183088/371472 [3:41:59<17:17:22, 3.03it/s] 49%|████▉ | 183089/371472 [3:42:00<16:33:43, 3.16it/s] 49%|████▉ | 183090/371472 [3:42:00<16:33:43, 3.16it/s] 49%|████▉ | 183091/371472 [3:42:00<16:00:49, 3.27it/s] 49%|████▉ | 183092/371472 [3:42:01<16:13:20, 3.23it/s] 49%|████▉ | 183093/371472 [3:42:01<15:45:54, 3.32it/s] 49%|████▉ | 183094/371472 [3:42:01<15:12:33, 3.44it/s] 49%|████▉ | 183095/371472 [3:42:01<15:09:00, 3.45it/s] 49%|████▉ | 183096/371472 [3:42:02<15:00:39, 3.49it/s] 49%|████▉ | 183097/371472 [3:42:02<14:51:24, 3.52it/s] 49%|████▉ | 183098/371472 [3:42:02<14:40:51, 3.56it/s] 49%|████▉ | 183099/371472 [3:42:03<14:26:53, 3.62it/s] 49%|████▉ | 183100/371472 [3:42:03<14:58:42, 3.49it/s] {'loss': 2.9469, 'learning_rate': 5.566323342455128e-07, 'epoch': 7.89} + 49%|████▉ | 183100/371472 [3:42:03<14:58:42, 3.49it/s] 49%|████▉ | 183101/371472 [3:42:03<15:10:03, 3.45it/s] 49%|████▉ | 183102/371472 [3:42:03<15:17:27, 3.42it/s] 49%|████▉ | 183103/371472 [3:42:04<15:01:03, 3.48it/s] 49%|████▉ | 183104/371472 [3:42:04<15:33:19, 3.36it/s] 49%|████▉ | 183105/371472 [3:42:04<15:42:15, 3.33it/s] 49%|████▉ | 183106/371472 [3:42:05<15:54:03, 3.29it/s] 49%|████▉ | 183107/371472 [3:42:05<16:04:04, 3.26it/s] 49%|████▉ | 183108/371472 [3:42:05<16:19:34, 3.20it/s] 49%|████▉ | 183109/371472 [3:42:06<16:10:39, 3.23it/s] 49%|████▉ | 183110/371472 [3:42:06<16:02:15, 3.26it/s] 49%|████▉ | 183111/371472 [3:42:06<15:45:18, 3.32it/s] 49%|████▉ | 183112/371472 [3:42:07<15:24:12, 3.40it/s] 49%|████▉ | 183113/371472 [3:42:07<16:19:22, 3.21it/s] 49%|████▉ | 183114/371472 [3:42:07<16:07:53, 3.24it/s] 49%|████▉ | 183115/371472 [3:42:07<16:25:27, 3.19it/s] 49%|████▉ | 183116/371472 [3:42:08<16:08:38, 3.24it/s] 49%|████▉ | 183117/371472 [3:42:08<15:38:17, 3.35it/s] 49%|████▉ | 183118/371472 [3:42:08<15:57:55, 3.28it/s] 49%|████▉ | 183119/371472 [3:42:09<15:58:10, 3.28it/s] 49%|████▉ | 183120/371472 [3:42:09<16:48:54, 3.11it/s] {'loss': 2.9783, 'learning_rate': 5.565838522700339e-07, 'epoch': 7.89} + 49%|████▉ | 183120/371472 [3:42:09<16:48:54, 3.11it/s] 49%|████▉ | 183121/371472 [3:42:09<17:19:01, 3.02it/s] 49%|████▉ | 183122/371472 [3:42:10<16:41:28, 3.13it/s] 49%|████▉ | 183123/371472 [3:42:10<15:45:23, 3.32it/s] 49%|████▉ | 183124/371472 [3:42:10<15:24:06, 3.40it/s] 49%|████▉ | 183125/371472 [3:42:11<15:41:44, 3.33it/s] 49%|████▉ | 183126/371472 [3:42:11<15:30:39, 3.37it/s] 49%|████▉ | 183127/371472 [3:42:11<16:05:02, 3.25it/s] 49%|████▉ | 183128/371472 [3:42:11<15:35:57, 3.35it/s] 49%|████▉ | 183129/371472 [3:42:12<15:40:04, 3.34it/s] 49%|████▉ | 183130/371472 [3:42:12<15:20:43, 3.41it/s] 49%|████▉ | 183131/371472 [3:42:12<15:01:41, 3.48it/s] 49%|████▉ | 183132/371472 [3:42:13<14:49:33, 3.53it/s] 49%|████▉ | 183133/371472 [3:42:13<14:59:55, 3.49it/s] 49%|████▉ | 183134/371472 [3:42:13<15:04:27, 3.47it/s] 49%|████▉ | 183135/371472 [3:42:13<15:07:24, 3.46it/s] 49%|████▉ | 183136/371472 [3:42:14<15:50:55, 3.30it/s] 49%|████▉ | 183137/371472 [3:42:14<15:29:49, 3.38it/s] 49%|████▉ | 183138/371472 [3:42:14<15:13:04, 3.44it/s] 49%|████▉ | 183139/371472 [3:42:15<14:58:51, 3.49it/s] 49%|████▉ | 183140/371472 [3:42:15<14:54:27, 3.51it/s] {'loss': 3.1139, 'learning_rate': 5.565353702945548e-07, 'epoch': 7.89} + 49%|████▉ | 183140/371472 [3:42:15<14:54:27, 3.51it/s] 49%|████▉ | 183141/371472 [3:42:15<15:51:26, 3.30it/s] 49%|████▉ | 183142/371472 [3:42:16<16:46:15, 3.12it/s] 49%|████▉ | 183143/371472 [3:42:16<16:21:02, 3.20it/s] 49%|████▉ | 183144/371472 [3:42:16<16:47:45, 3.11it/s] 49%|████▉ | 183145/371472 [3:42:17<17:05:34, 3.06it/s] 49%|████▉ | 183146/371472 [3:42:17<17:04:01, 3.07it/s] 49%|████▉ | 183147/371472 [3:42:17<16:18:38, 3.21it/s] 49%|████▉ | 183148/371472 [3:42:18<16:24:36, 3.19it/s] 49%|████▉ | 183149/371472 [3:42:18<16:46:56, 3.12it/s] 49%|████▉ | 183150/371472 [3:42:18<17:48:37, 2.94it/s] 49%|████▉ | 183151/371472 [3:42:19<17:05:56, 3.06it/s] 49%|████▉ | 183152/371472 [3:42:19<16:31:43, 3.16it/s] 49%|████▉ | 183153/371472 [3:42:19<16:07:56, 3.24it/s] 49%|████▉ | 183154/371472 [3:42:19<15:53:15, 3.29it/s] 49%|████▉ | 183155/371472 [3:42:20<15:34:05, 3.36it/s] 49%|████▉ | 183156/371472 [3:42:20<16:03:06, 3.26it/s] 49%|████▉ | 183157/371472 [3:42:20<15:57:14, 3.28it/s] 49%|████▉ | 183158/371472 [3:42:21<16:31:18, 3.17it/s] 49%|████▉ | 183159/371472 [3:42:21<16:32:25, 3.16it/s] 49%|████▉ | 183160/371472 [3:42:21<15:49:53, 3.30it/s] {'loss': 2.9093, 'learning_rate': 5.56486888319076e-07, 'epoch': 7.89} + 49%|████▉ | 183160/371472 [3:42:21<15:49:53, 3.30it/s] 49%|████▉ | 183161/371472 [3:42:22<15:55:43, 3.28it/s] 49%|████▉ | 183162/371472 [3:42:22<15:33:48, 3.36it/s] 49%|████▉ | 183163/371472 [3:42:22<15:27:16, 3.38it/s] 49%|████▉ | 183164/371472 [3:42:22<15:24:59, 3.39it/s] 49%|████▉ | 183165/371472 [3:42:23<15:33:26, 3.36it/s] 49%|████▉ | 183166/371472 [3:42:23<15:15:51, 3.43it/s] 49%|████▉ | 183167/371472 [3:42:23<15:06:50, 3.46it/s] 49%|████▉ | 183168/371472 [3:42:24<14:46:46, 3.54it/s] 49%|████▉ | 183169/371472 [3:42:24<15:26:50, 3.39it/s] 49%|████▉ | 183170/371472 [3:42:24<15:04:48, 3.47it/s] 49%|████▉ | 183171/371472 [3:42:24<14:55:01, 3.51it/s] 49%|████▉ | 183172/371472 [3:42:25<14:34:42, 3.59it/s] 49%|████▉ | 183173/371472 [3:42:25<14:46:23, 3.54it/s] 49%|████▉ | 183174/371472 [3:42:25<14:33:34, 3.59it/s] 49%|████▉ | 183175/371472 [3:42:26<14:30:51, 3.60it/s] 49%|████▉ | 183176/371472 [3:42:26<14:38:28, 3.57it/s] 49%|████▉ | 183177/371472 [3:42:26<14:34:16, 3.59it/s] 49%|████▉ | 183178/371472 [3:42:26<14:28:49, 3.61it/s] 49%|████▉ | 183179/371472 [3:42:27<14:53:40, 3.51it/s] 49%|████▉ | 183180/371472 [3:42:27<14:52:18, 3.52it/s] {'loss': 2.8876, 'learning_rate': 5.564384063435972e-07, 'epoch': 7.89} + 49%|████▉ | 183180/371472 [3:42:27<14:52:18, 3.52it/s] 49%|████▉ | 183181/371472 [3:42:27<14:56:48, 3.50it/s] 49%|████▉ | 183182/371472 [3:42:28<15:10:22, 3.45it/s] 49%|████▉ | 183183/371472 [3:42:28<14:44:25, 3.55it/s] 49%|████▉ | 183184/371472 [3:42:28<14:52:57, 3.51it/s] 49%|████▉ | 183185/371472 [3:42:28<14:44:06, 3.55it/s] 49%|████▉ | 183186/371472 [3:42:29<15:11:30, 3.44it/s] 49%|████▉ | 183187/371472 [3:42:29<15:25:20, 3.39it/s] 49%|████▉ | 183188/371472 [3:42:29<15:13:14, 3.44it/s] 49%|████▉ | 183189/371472 [3:42:30<17:04:35, 3.06it/s] 49%|████▉ | 183190/371472 [3:42:30<16:38:54, 3.14it/s] 49%|████▉ | 183191/371472 [3:42:30<16:08:26, 3.24it/s] 49%|████▉ | 183192/371472 [3:42:31<15:52:14, 3.30it/s] 49%|██���█▉ | 183193/371472 [3:42:31<15:39:18, 3.34it/s] 49%|████▉ | 183194/371472 [3:42:31<15:19:27, 3.41it/s] 49%|████▉ | 183195/371472 [3:42:31<15:02:25, 3.48it/s] 49%|████▉ | 183196/371472 [3:42:32<16:19:03, 3.21it/s] 49%|████▉ | 183197/371472 [3:42:32<15:57:24, 3.28it/s] 49%|████▉ | 183198/371472 [3:42:32<15:34:56, 3.36it/s] 49%|████▉ | 183199/371472 [3:42:33<16:59:36, 3.08it/s] 49%|████▉ | 183200/371472 [3:42:33<16:44:12, 3.12it/s] {'loss': 2.813, 'learning_rate': 5.563899243681181e-07, 'epoch': 7.89} + 49%|████▉ | 183200/371472 [3:42:33<16:44:12, 3.12it/s] 49%|████▉ | 183201/371472 [3:42:33<16:15:08, 3.22it/s] 49%|████▉ | 183202/371472 [3:42:34<15:40:59, 3.33it/s] 49%|████▉ | 183203/371472 [3:42:34<15:17:11, 3.42it/s] 49%|████▉ | 183204/371472 [3:42:34<14:39:00, 3.57it/s] 49%|████▉ | 183205/371472 [3:42:34<14:34:57, 3.59it/s] 49%|████▉ | 183206/371472 [3:42:35<14:45:21, 3.54it/s] 49%|████▉ | 183207/371472 [3:42:35<15:30:20, 3.37it/s] 49%|████▉ | 183208/371472 [3:42:35<15:30:39, 3.37it/s] 49%|████▉ | 183209/371472 [3:42:36<15:14:07, 3.43it/s] 49%|████▉ | 183210/371472 [3:42:36<14:59:20, 3.49it/s] 49%|████▉ | 183211/371472 [3:42:36<15:05:01, 3.47it/s] 49%|████▉ | 183212/371472 [3:42:36<14:49:59, 3.53it/s] 49%|████▉ | 183213/371472 [3:42:37<15:10:40, 3.45it/s] 49%|████▉ | 183214/371472 [3:42:37<14:46:05, 3.54it/s] 49%|████▉ | 183215/371472 [3:42:37<15:10:22, 3.45it/s] 49%|████▉ | 183216/371472 [3:42:38<15:46:58, 3.31it/s] 49%|████▉ | 183217/371472 [3:42:38<15:29:03, 3.38it/s] 49%|████▉ | 183218/371472 [3:42:38<15:50:20, 3.30it/s] 49%|████▉ | 183219/371472 [3:42:39<16:17:25, 3.21it/s] 49%|████▉ | 183220/371472 [3:42:39<16:11:21, 3.23it/s] {'loss': 2.8334, 'learning_rate': 5.563414423926392e-07, 'epoch': 7.89} + 49%|████▉ | 183220/371472 [3:42:39<16:11:21, 3.23it/s] 49%|████▉ | 183221/371472 [3:42:39<15:58:25, 3.27it/s] 49%|████▉ | 183222/371472 [3:42:39<16:15:57, 3.21it/s] 49%|████▉ | 183223/371472 [3:42:40<16:15:39, 3.22it/s] 49%|████▉ | 183224/371472 [3:42:40<15:44:29, 3.32it/s] 49%|████▉ | 183225/371472 [3:42:40<16:34:24, 3.16it/s] 49%|████▉ | 183226/371472 [3:42:41<16:22:09, 3.19it/s] 49%|████▉ | 183227/371472 [3:42:41<15:54:18, 3.29it/s] 49%|████▉ | 183228/371472 [3:42:41<15:39:31, 3.34it/s] 49%|████▉ | 183229/371472 [3:42:42<15:28:06, 3.38it/s] 49%|████▉ | 183230/371472 [3:42:42<15:54:03, 3.29it/s] 49%|████▉ | 183231/371472 [3:42:42<15:30:11, 3.37it/s] 49%|████▉ | 183232/371472 [3:42:43<15:41:04, 3.33it/s] 49%|████▉ | 183233/371472 [3:42:43<17:08:38, 3.05it/s] 49%|████▉ | 183234/371472 [3:42:43<18:08:25, 2.88it/s] 49%|████▉ | 183235/371472 [3:42:44<17:08:00, 3.05it/s] 49%|████▉ | 183236/371472 [3:42:44<16:40:55, 3.13it/s] 49%|████▉ | 183237/371472 [3:42:44<16:25:37, 3.18it/s] 49%|████▉ | 183238/371472 [3:42:44<16:15:24, 3.22it/s] 49%|████▉ | 183239/371472 [3:42:45<15:47:51, 3.31it/s] 49%|████▉ | 183240/371472 [3:42:45<15:44:05, 3.32it/s] {'loss': 2.9396, 'learning_rate': 5.562929604171605e-07, 'epoch': 7.89} + 49%|████▉ | 183240/371472 [3:42:45<15:44:05, 3.32it/s] 49%|████▉ | 183241/371472 [3:42:45<16:00:26, 3.27it/s] 49%|████▉ | 183242/371472 [3:42:46<15:14:52, 3.43it/s] 49%|████▉ | 183243/371472 [3:42:46<14:54:50, 3.51it/s] 49%|████▉ | 183244/371472 [3:42:46<15:23:32, 3.40it/s] 49%|████▉ | 183245/371472 [3:42:47<16:27:19, 3.18it/s] 49%|████▉ | 183246/371472 [3:42:47<15:43:47, 3.32it/s] 49%|████▉ | 183247/371472 [3:42:47<15:30:29, 3.37it/s] 49%|████▉ | 183248/371472 [3:42:47<15:50:47, 3.30it/s] 49%|████▉ | 183249/371472 [3:42:48<15:43:42, 3.32it/s] 49%|████▉ | 183250/371472 [3:42:48<15:29:22, 3.38it/s] 49%|████▉ | 183251/371472 [3:42:48<15:12:54, 3.44it/s] 49%|████▉ | 183252/371472 [3:42:49<15:08:34, 3.45it/s] 49%|████▉ | 183253/371472 [3:42:49<14:49:46, 3.53it/s] 49%|████▉ | 183254/371472 [3:42:49<15:07:02, 3.46it/s] 49%|████▉ | 183255/371472 [3:42:49<15:13:06, 3.44it/s] 49%|████▉ | 183256/371472 [3:42:50<15:09:48, 3.45it/s] 49%|████▉ | 183257/371472 [3:42:50<15:05:04, 3.47it/s] 49%|████▉ | 183258/371472 [3:42:50<15:02:08, 3.48it/s] 49%|████▉ | 183259/371472 [3:42:51<14:51:45, 3.52it/s] 49%|████▉ | 183260/371472 [3:42:51<14:53:22, 3.51it/s] {'loss': 3.0149, 'learning_rate': 5.562444784416816e-07, 'epoch': 7.89} + 49%|████▉ | 183260/371472 [3:42:51<14:53:22, 3.51it/s] 49%|████▉ | 183261/371472 [3:42:51<14:33:50, 3.59it/s] 49%|████▉ | 183262/371472 [3:42:51<14:57:49, 3.49it/s] 49%|████▉ | 183263/371472 [3:42:52<17:07:26, 3.05it/s] 49%|████▉ | 183264/371472 [3:42:52<16:47:07, 3.11it/s] 49%|████▉ | 183265/371472 [3:42:53<17:37:16, 2.97it/s] 49%|████▉ | 183266/371472 [3:42:53<17:28:23, 2.99it/s] 49%|████▉ | 183267/371472 [3:42:53<17:05:19, 3.06it/s] 49%|████▉ | 183268/371472 [3:42:53<16:12:46, 3.22it/s] 49%|████▉ | 183269/371472 [3:42:54<16:26:07, 3.18it/s] 49%|████▉ | 183270/371472 [3:42:54<15:52:02, 3.29it/s] 49%|████▉ | 183271/371472 [3:42:54<15:30:19, 3.37it/s] 49%|████▉ | 183272/371472 [3:42:55<15:28:28, 3.38it/s] 49%|████▉ | 183273/371472 [3:42:55<15:28:20, 3.38it/s] 49%|████▉ | 183274/371472 [3:42:55<15:32:35, 3.36it/s] 49%|████▉ | 183275/371472 [3:42:56<15:21:46, 3.40it/s] 49%|████▉ | 183276/371472 [3:42:56<15:36:09, 3.35it/s] 49%|████▉ | 183277/371472 [3:42:56<15:03:44, 3.47it/s] 49%|████▉ | 183278/371472 [3:42:56<15:34:37, 3.36it/s] 49%|████▉ | 183279/371472 [3:42:57<16:14:17, 3.22it/s] 49%|████▉ | 183280/371472 [3:42:57<15:39:22, 3.34it/s] {'loss': 2.848, 'learning_rate': 5.561959964662026e-07, 'epoch': 7.89} + 49%|████▉ | 183280/371472 [3:42:57<15:39:22, 3.34it/s] 49%|████▉ | 183281/371472 [3:42:57<16:49:58, 3.11it/s] 49%|████▉ | 183282/371472 [3:42:58<16:58:32, 3.08it/s] 49%|████▉ | 183283/371472 [3:42:58<16:04:35, 3.25it/s] 49%|████▉ | 183284/371472 [3:42:58<15:52:27, 3.29it/s] 49%|████▉ | 183285/371472 [3:42:59<16:31:21, 3.16it/s] 49%|████▉ | 183286/371472 [3:42:59<16:00:26, 3.27it/s] 49%|████▉ | 183287/371472 [3:42:59<16:47:48, 3.11it/s] 49%|████▉ | 183288/371472 [3:43:00<16:17:06, 3.21it/s] 49%|████▉ | 183289/371472 [3:43:00<16:01:35, 3.26it/s] 49%|████▉ | 183290/371472 [3:43:00<15:48:58, 3.30it/s] 49%|████▉ | 183291/371472 [3:43:00<15:34:10, 3.36it/s] 49%|████▉ | 183292/371472 [3:43:01<15:52:16, 3.29it/s] 49%|████▉ | 183293/371472 [3:43:01<16:59:35, 3.08it/s] 49%|████▉ | 183294/371472 [3:43:01<16:30:48, 3.17it/s] 49%|████▉ | 183295/371472 [3:43:02<16:12:21, 3.23it/s] 49%|████▉ | 183296/371472 [3:43:02<15:32:45, 3.36it/s] 49%|████▉ | 183297/371472 [3:43:02<15:23:42, 3.40it/s] 49%|████▉ | 183298/371472 [3:43:03<15:20:47, 3.41it/s] 49%|████▉ | 183299/371472 [3:43:03<15:15:16, 3.43it/s] 49%|████▉ | 183300/371472 [3:43:03<14:56:11, 3.50it/s] {'loss': 2.8675, 'learning_rate': 5.561475144907237e-07, 'epoch': 7.9} + 49%|████▉ | 183300/371472 [3:43:03<14:56:11, 3.50it/s] 49%|████▉ | 183301/371472 [3:43:03<14:58:42, 3.49it/s] 49%|████▉ | 183302/371472 [3:43:04<16:20:07, 3.20it/s] 49%|████▉ | 183303/371472 [3:43:04<15:50:30, 3.30it/s] 49%|████▉ | 183304/371472 [3:43:04<15:40:06, 3.34it/s] 49%|████▉ | 183305/371472 [3:43:05<15:56:54, 3.28it/s] 49%|████▉ | 183306/371472 [3:43:05<15:33:02, 3.36it/s] 49%|████▉ | 183307/371472 [3:43:05<16:21:30, 3.20it/s] 49%|████▉ | 183308/371472 [3:43:06<15:58:15, 3.27it/s] 49%|████▉ | 183309/371472 [3:43:06<15:30:22, 3.37it/s] 49%|████▉ | 183310/371472 [3:43:06<15:19:03, 3.41it/s] 49%|████▉ | 183311/371472 [3:43:06<15:34:20, 3.36it/s] 49%|████▉ | 183312/371472 [3:43:07<15:19:31, 3.41it/s] 49%|████▉ | 183313/371472 [3:43:07<15:22:57, 3.40it/s] 49%|████▉ | 183314/371472 [3:43:07<15:53:54, 3.29it/s] 49%|████▉ | 183315/371472 [3:43:08<15:49:11, 3.30it/s] 49%|████▉ | 183316/371472 [3:43:08<16:24:37, 3.18it/s] 49%|████▉ | 183317/371472 [3:43:08<15:50:11, 3.30it/s] 49%|████▉ | 183318/371472 [3:43:09<15:53:38, 3.29it/s] 49%|████▉ | 183319/371472 [3:43:09<15:32:02, 3.36it/s] 49%|████▉ | 183320/371472 [3:43:09<15:29:14, 3.37it/s] {'loss': 2.8603, 'learning_rate': 5.560990325152448e-07, 'epoch': 7.9} + 49%|████▉ | 183320/371472 [3:43:09<15:29:14, 3.37it/s] 49%|████▉ | 183321/371472 [3:43:09<15:21:59, 3.40it/s] 49%|████▉ | 183322/371472 [3:43:10<15:51:10, 3.30it/s] 49%|████▉ | 183323/371472 [3:43:10<15:42:55, 3.33it/s] 49%|████▉ | 183324/371472 [3:43:10<15:38:23, 3.34it/s] 49%|████▉ | 183325/371472 [3:43:11<15:46:01, 3.31it/s] 49%|████▉ | 183326/371472 [3:43:11<16:48:45, 3.11it/s] 49%|████▉ | 183327/371472 [3:43:11<16:34:21, 3.15it/s] 49%|████▉ | 183328/371472 [3:43:12<16:23:02, 3.19it/s] 49%|████▉ | 183329/371472 [3:43:12<15:56:04, 3.28it/s] 49%|████▉ | 183330/371472 [3:43:12<15:35:34, 3.35it/s] 49%|████▉ | 183331/371472 [3:43:13<15:23:36, 3.40it/s] 49%|████▉ | 183332/371472 [3:43:13<15:04:12, 3.47it/s] 49%|████▉ | 183333/371472 [3:43:13<15:04:19, 3.47it/s] 49%|████▉ | 183334/371472 [3:43:13<15:12:09, 3.44it/s] 49%|████▉ | 183335/371472 [3:43:14<15:37:24, 3.34it/s] 49%|████▉ | 183336/371472 [3:43:14<16:27:25, 3.18it/s] 49%|████▉ | 183337/371472 [3:43:14<16:40:16, 3.13it/s] 49%|████▉ | 183338/371472 [3:43:15<16:33:48, 3.16it/s] 49%|████▉ | 183339/371472 [3:43:15<16:07:00, 3.24it/s] 49%|████▉ | 183340/371472 [3:43:15<15:33:00, 3.36it/s] {'loss': 2.8728, 'learning_rate': 5.56050550539766e-07, 'epoch': 7.9} + 49%|████▉ | 183340/371472 [3:43:15<15:33:00, 3.36it/s] 49%|████▉ | 183341/371472 [3:43:16<15:59:39, 3.27it/s] 49%|████▉ | 183342/371472 [3:43:16<15:37:28, 3.34it/s] 49%|████▉ | 183343/371472 [3:43:16<15:20:48, 3.41it/s] 49%|████▉ | 183344/371472 [3:43:16<15:29:46, 3.37it/s] 49%|████▉ | 183345/371472 [3:43:17<15:32:44, 3.36it/s] 49%|████▉ | 183346/371472 [3:43:17<15:47:17, 3.31it/s] 49%|████▉ | 183347/371472 [3:43:17<17:22:40, 3.01it/s] 49%|████▉ | 183348/371472 [3:43:18<16:58:15, 3.08it/s] 49%|████▉ | 183349/371472 [3:43:18<16:36:56, 3.15it/s] 49%|████▉ | 183350/371472 [3:43:18<16:19:20, 3.20it/s] 49%|████▉ | 183351/371472 [3:43:19<16:06:00, 3.25it/s] 49%|████▉ | 183352/371472 [3:43:19<16:03:56, 3.25it/s] 49%|████▉ | 183353/371472 [3:43:19<16:04:36, 3.25it/s] 49%|████▉ | 183354/371472 [3:43:20<15:26:49, 3.38it/s] 49%|████▉ | 183355/371472 [3:43:20<15:56:30, 3.28it/s] 49%|████▉ | 183356/371472 [3:43:20<15:44:37, 3.32it/s] 49%|████▉ | 183357/371472 [3:43:20<15:27:56, 3.38it/s] 49%|████▉ | 183358/371472 [3:43:21<16:10:15, 3.23it/s] 49%|████▉ | 183359/371472 [3:43:21<16:04:03, 3.25it/s] 49%|████▉ | 183360/371472 [3:43:21<16:20:59, 3.20it/s] {'loss': 2.7816, 'learning_rate': 5.560020685642871e-07, 'epoch': 7.9} + 49%|████▉ | 183360/371472 [3:43:21<16:20:59, 3.20it/s] 49%|████▉ | 183361/371472 [3:43:22<17:13:59, 3.03it/s] 49%|████▉ | 183362/371472 [3:43:22<17:25:30, 3.00it/s] 49%|████▉ | 183363/371472 [3:43:22<16:41:28, 3.13it/s] 49%|████▉ | 183364/371472 [3:43:23<16:18:36, 3.20it/s] 49%|████▉ | 183365/371472 [3:43:23<15:57:49, 3.27it/s] 49%|████▉ | 183366/371472 [3:43:23<16:37:47, 3.14it/s] 49%|████▉ | 183367/371472 [3:43:24<17:31:32, 2.98it/s] 49%|████▉ | 183368/371472 [3:43:24<17:20:23, 3.01it/s] 49%|████▉ | 183369/371472 [3:43:24<17:39:18, 2.96it/s] 49%|████▉ | 183370/371472 [3:43:25<16:56:56, 3.08it/s] 49%|████▉ | 183371/371472 [3:43:25<16:30:51, 3.16it/s] 49%|████▉ | 183372/371472 [3:43:25<15:44:20, 3.32it/s] 49%|████▉ | 183373/371472 [3:43:26<16:17:39, 3.21it/s] 49%|████▉ | 183374/371472 [3:43:26<16:26:06, 3.18it/s] 49%|████▉ | 183375/371472 [3:43:26<16:31:28, 3.16it/s] 49%|████▉ | 183376/371472 [3:43:27<15:55:35, 3.28it/s] 49%|████▉ | 183377/371472 [3:43:27<15:53:34, 3.29it/s] 49%|████▉ | 183378/371472 [3:43:27<16:36:51, 3.14it/s] 49%|████▉ | 183379/371472 [3:43:28<16:51:59, 3.10it/s] 49%|████▉ | 183380/371472 [3:43:28<16:55:59, 3.09it/s] {'loss': 2.8735, 'learning_rate': 5.559535865888081e-07, 'epoch': 7.9} + 49%|████▉ | 183380/371472 [3:43:28<16:55:59, 3.09it/s] 49%|████▉ | 183381/371472 [3:43:28<17:10:16, 3.04it/s] 49%|████▉ | 183382/371472 [3:43:29<17:46:10, 2.94it/s] 49%|████▉ | 183383/371472 [3:43:29<17:33:39, 2.98it/s] 49%|████▉ | 183384/371472 [3:43:29<17:05:03, 3.06it/s] 49%|████▉ | 183385/371472 [3:43:29<16:23:23, 3.19it/s] 49%|████▉ | 183386/371472 [3:43:30<16:00:25, 3.26it/s] 49%|████▉ | 183387/371472 [3:43:30<16:31:13, 3.16it/s] 49%|████▉ | 183388/371472 [3:43:30<16:31:36, 3.16it/s] 49%|████▉ | 183389/371472 [3:43:31<16:09:14, 3.23it/s] 49%|████▉ | 183390/371472 [3:43:31<16:28:23, 3.17it/s] 49%|████▉ | 183391/371472 [3:43:31<16:13:52, 3.22it/s] 49%|████▉ | 183392/371472 [3:43:32<16:03:52, 3.25it/s] 49%|████▉ | 183393/371472 [3:43:32<16:10:20, 3.23it/s] 49%|████▉ | 183394/371472 [3:43:32<16:24:07, 3.19it/s] 49%|████▉ | 183395/371472 [3:43:33<16:07:55, 3.24it/s] 49%|████▉ | 183396/371472 [3:43:33<15:51:51, 3.29it/s] 49%|████▉ | 183397/371472 [3:43:33<15:42:58, 3.32it/s] 49%|████▉ | 183398/371472 [3:43:33<15:52:13, 3.29it/s] 49%|████▉ | 183399/371472 [3:43:34<15:40:33, 3.33it/s] 49%|████▉ | 183400/371472 [3:43:34<15:28:52, 3.37it/s] {'loss': 2.8137, 'learning_rate': 5.559051046133293e-07, 'epoch': 7.9} + 49%|████▉ | 183400/371472 [3:43:34<15:28:52, 3.37it/s] 49%|████▉ | 183401/371472 [3:43:34<15:39:09, 3.34it/s] 49%|████▉ | 183402/371472 [3:43:35<17:07:02, 3.05it/s] 49%|████▉ | 183403/371472 [3:43:35<16:31:28, 3.16it/s] 49%|████▉ | 183404/371472 [3:43:35<15:57:28, 3.27it/s] 49%|████▉ | 183405/371472 [3:43:36<16:05:06, 3.25it/s] 49%|████▉ | 183406/371472 [3:43:36<16:06:20, 3.24it/s] 49%|████▉ | 183407/371472 [3:43:36<18:00:54, 2.90it/s] 49%|████▉ | 183408/371472 [3:43:37<17:05:27, 3.06it/s] 49%|████▉ | 183409/371472 [3:43:37<16:30:25, 3.16it/s] 49%|████▉ | 183410/371472 [3:43:37<16:13:20, 3.22it/s] 49%|████▉ | 183411/371472 [3:43:38<16:05:57, 3.24it/s] 49%|████▉ | 183412/371472 [3:43:38<15:57:26, 3.27it/s] 49%|████▉ | 183413/371472 [3:43:38<17:26:03, 3.00it/s] 49%|████▉ | 183414/371472 [3:43:39<17:33:11, 2.98it/s] 49%|████▉ | 183415/371472 [3:43:39<18:39:37, 2.80it/s] 49%|████▉ | 183416/371472 [3:43:39<17:40:30, 2.96it/s] 49%|████▉ | 183417/371472 [3:43:40<17:13:47, 3.03it/s] 49%|████▉ | 183418/371472 [3:43:40<16:31:23, 3.16it/s] 49%|████▉ | 183419/371472 [3:43:40<16:19:24, 3.20it/s] 49%|████▉ | 183420/371472 [3:43:40<16:11:52, 3.22it/s] {'loss': 2.9221, 'learning_rate': 5.558566226378505e-07, 'epoch': 7.9} + 49%|████▉ | 183420/371472 [3:43:40<16:11:52, 3.22it/s] 49%|████▉ | 183421/371472 [3:43:41<16:25:34, 3.18it/s] 49%|████▉ | 183422/371472 [3:43:41<16:53:09, 3.09it/s] 49%|████▉ | 183423/371472 [3:43:41<16:38:39, 3.14it/s] 49%|████▉ | 183424/371472 [3:43:42<16:32:23, 3.16it/s] 49%|████▉ | 183425/371472 [3:43:42<16:30:05, 3.17it/s] 49%|████▉ | 183426/371472 [3:43:42<17:24:24, 3.00it/s] 49%|████▉ | 183427/371472 [3:43:43<17:42:11, 2.95it/s] 49%|████▉ | 183428/371472 [3:43:43<16:51:57, 3.10it/s] 49%|████▉ | 183429/371472 [3:43:43<16:29:40, 3.17it/s] 49%|████▉ | 183430/371472 [3:43:44<16:17:28, 3.21it/s] 49%|████▉ | 183431/371472 [3:43:44<15:53:13, 3.29it/s] 49%|████▉ | 183432/371472 [3:43:44<16:39:08, 3.14it/s] 49%|████▉ | 183433/371472 [3:43:45<16:15:01, 3.21it/s] 49%|████▉ | 183434/371472 [3:43:45<15:43:42, 3.32it/s] 49%|████▉ | 183435/371472 [3:43:45<15:27:24, 3.38it/s] 49%|████▉ | 183436/371472 [3:43:46<16:00:46, 3.26it/s] 49%|████▉ | 183437/371472 [3:43:46<15:42:37, 3.32it/s] 49%|████▉ | 183438/371472 [3:43:46<15:40:30, 3.33it/s] 49%|████▉ | 183439/371472 [3:43:46<16:32:17, 3.16it/s] 49%|████▉ | 183440/371472 [3:43:47<17:20:00, 3.01it/s] {'loss': 2.7331, 'learning_rate': 5.558081406623714e-07, 'epoch': 7.9} + 49%|████▉ | 183440/371472 [3:43:47<17:20:00, 3.01it/s] 49%|████▉ | 183441/371472 [3:43:47<17:05:09, 3.06it/s] 49%|████▉ | 183442/371472 [3:43:47<16:57:02, 3.08it/s] 49%|████▉ | 183443/371472 [3:43:48<16:41:19, 3.13it/s] 49%|████▉ | 183444/371472 [3:43:48<16:29:07, 3.17it/s] 49%|████▉ | 183445/371472 [3:43:48<16:12:00, 3.22it/s] 49%|████▉ | 183446/371472 [3:43:49<16:19:47, 3.20it/s] 49%|████▉ | 183447/371472 [3:43:49<16:39:56, 3.13it/s] 49%|████▉ | 183448/371472 [3:43:49<15:55:26, 3.28it/s] 49%|████▉ | 183449/371472 [3:43:50<15:32:09, 3.36it/s] 49%|████▉ | 183450/371472 [3:43:50<15:10:44, 3.44it/s] 49%|████▉ | 183451/371472 [3:43:50<15:04:19, 3.47it/s] 49%|████▉ | 183452/371472 [3:43:50<15:00:58, 3.48it/s] 49%|████▉ | 183453/371472 [3:43:51<14:58:05, 3.49it/s] 49%|████▉ | 183454/371472 [3:43:51<15:19:00, 3.41it/s] 49%|████▉ | 183455/371472 [3:43:51<15:48:05, 3.31it/s] 49%|████▉ | 183456/371472 [3:43:52<16:25:52, 3.18it/s] 49%|████▉ | 183457/371472 [3:43:52<16:42:20, 3.13it/s] 49%|████▉ | 183458/371472 [3:43:52<17:49:11, 2.93it/s] 49%|████▉ | 183459/371472 [3:43:53<17:13:44, 3.03it/s] 49%|████▉ | 183460/371472 [3:43:53<16:49:21, 3.10it/s] {'loss': 2.9545, 'learning_rate': 5.557596586868925e-07, 'epoch': 7.9} + 49%|████▉ | 183460/371472 [3:43:53<16:49:21, 3.10it/s] 49%|████▉ | 183461/371472 [3:43:53<16:11:56, 3.22it/s] 49%|████▉ | 183462/371472 [3:43:54<15:55:54, 3.28it/s] 49%|████▉ | 183463/371472 [3:43:54<15:52:44, 3.29it/s] 49%|████▉ | 183464/371472 [3:43:54<15:40:35, 3.33it/s] 49%|████▉ | 183465/371472 [3:43:54<15:18:15, 3.41it/s] 49%|████▉ | 183466/371472 [3:43:55<15:42:22, 3.33it/s] 49%|████▉ | 183467/371472 [3:43:55<15:36:35, 3.35it/s] 49%|████▉ | 183468/371472 [3:43:55<15:32:55, 3.36it/s] 49%|████▉ | 183469/371472 [3:43:56<15:13:11, 3.43it/s] 49%|████▉ | 183470/371472 [3:43:56<15:59:45, 3.26it/s] 49%|████▉ | 183471/371472 [3:43:56<15:37:42, 3.34it/s] 49%|████▉ | 183472/371472 [3:43:57<17:16:00, 3.02it/s] 49%|████▉ | 183473/371472 [3:43:57<16:52:53, 3.09it/s] 49%|████▉ | 183474/371472 [3:43:57<16:55:52, 3.08it/s] 49%|████▉ | 183475/371472 [3:43:58<16:33:01, 3.16it/s] 49%|████▉ | 183476/371472 [3:43:58<16:36:37, 3.14it/s] 49%|████▉ | 183477/371472 [3:43:58<16:18:50, 3.20it/s] 49%|████▉ | 183478/371472 [3:43:59<16:16:14, 3.21it/s] 49%|████▉ | 183479/371472 [3:43:59<15:59:41, 3.26it/s] 49%|████▉ | 183480/371472 [3:43:59<15:32:27, 3.36it/s] {'loss': 3.0222, 'learning_rate': 5.557111767114138e-07, 'epoch': 7.9} + 49%|████▉ | 183480/371472 [3:43:59<15:32:27, 3.36it/s] 49%|████▉ | 183481/371472 [3:43:59<15:18:55, 3.41it/s] 49%|████▉ | 183482/371472 [3:44:00<15:25:05, 3.39it/s] 49%|████▉ | 183483/371472 [3:44:00<15:27:36, 3.38it/s] 49%|████▉ | 183484/371472 [3:44:00<16:31:20, 3.16it/s] 49%|████▉ | 183485/371472 [3:44:01<16:36:46, 3.14it/s] 49%|████▉ | 183486/371472 [3:44:01<16:11:49, 3.22it/s] 49%|████▉ | 183487/371472 [3:44:01<15:39:17, 3.34it/s] 49%|████▉ | 183488/371472 [3:44:02<15:21:28, 3.40it/s] 49%|████▉ | 183489/371472 [3:44:02<15:23:41, 3.39it/s] 49%|████▉ | 183490/371472 [3:44:02<15:40:22, 3.33it/s] 49%|████▉ | 183491/371472 [3:44:02<15:45:12, 3.31it/s] 49%|████▉ | 183492/371472 [3:44:03<15:21:02, 3.40it/s] 49%|████▉ | 183493/371472 [3:44:03<15:05:40, 3.46it/s] 49%|████▉ | 183494/371472 [3:44:03<15:06:13, 3.46it/s] 49%|████▉ | 183495/371472 [3:44:04<15:33:51, 3.35it/s] 49%|████▉ | 183496/371472 [3:44:04<15:39:23, 3.34it/s] 49%|████▉ | 183497/371472 [3:44:04<15:28:51, 3.37it/s] 49%|████▉ | 183498/371472 [3:44:04<15:24:14, 3.39it/s] 49%|████▉ | 183499/371472 [3:44:05<15:14:21, 3.43it/s] 49%|████▉ | 183500/371472 [3:44:05<15:12:24, 3.43it/s] {'loss': 2.8649, 'learning_rate': 5.556626947359349e-07, 'epoch': 7.9} + 49%|████▉ | 183500/371472 [3:44:05<15:12:24, 3.43it/s] 49%|████▉ | 183501/371472 [3:44:05<15:11:25, 3.44it/s] 49%|████▉ | 183502/371472 [3:44:06<15:21:05, 3.40it/s] 49%|████▉ | 183503/371472 [3:44:06<14:49:19, 3.52it/s] 49%|████▉ | 183504/371472 [3:44:06<15:55:49, 3.28it/s] 49%|████▉ | 183505/371472 [3:44:07<15:42:19, 3.32it/s] 49%|████▉ | 183506/371472 [3:44:07<16:39:17, 3.13it/s] 49%|████▉ | 183507/371472 [3:44:07<16:15:49, 3.21it/s] 49%|████▉ | 183508/371472 [3:44:08<16:41:54, 3.13it/s] 49%|████▉ | 183509/371472 [3:44:08<16:22:26, 3.19it/s] 49%|████▉ | 183510/371472 [3:44:08<15:51:50, 3.29it/s] 49%|████▉ | 183511/371472 [3:44:08<15:34:24, 3.35it/s] 49%|████▉ | 183512/371472 [3:44:09<15:41:23, 3.33it/s] 49%|████▉ | 183513/371472 [3:44:09<15:50:02, 3.30it/s] 49%|████▉ | 183514/371472 [3:44:09<15:25:11, 3.39it/s] 49%|████▉ | 183515/371472 [3:44:10<16:17:45, 3.20it/s] 49%|████▉ | 183516/371472 [3:44:10<15:48:43, 3.30it/s] 49%|████▉ | 183517/371472 [3:44:10<15:33:12, 3.36it/s] 49%|████▉ | 183518/371472 [3:44:11<15:12:57, 3.43it/s] 49%|████▉ | 183519/371472 [3:44:11<14:56:21, 3.49it/s] 49%|████▉ | 183520/371472 [3:44:11<15:04:20, 3.46it/s] {'loss': 2.9137, 'learning_rate': 5.556142127604559e-07, 'epoch': 7.9} + 49%|████▉ | 183520/371472 [3:44:11<15:04:20, 3.46it/s] 49%|████▉ | 183521/371472 [3:44:11<14:54:51, 3.50it/s] 49%|████▉ | 183522/371472 [3:44:12<14:42:18, 3.55it/s] 49%|████▉ | 183523/371472 [3:44:12<14:26:54, 3.61it/s] 49%|████▉ | 183524/371472 [3:44:12<14:26:13, 3.62it/s] 49%|████▉ | 183525/371472 [3:44:12<14:46:31, 3.53it/s] 49%|████▉ | 183526/371472 [3:44:13<15:01:36, 3.47it/s] 49%|████▉ | 183527/371472 [3:44:13<14:56:50, 3.49it/s] 49%|████▉ | 183528/371472 [3:44:13<14:48:25, 3.53it/s] 49%|████▉ | 183529/371472 [3:44:14<14:53:33, 3.51it/s] 49%|████▉ | 183530/371472 [3:44:14<14:39:58, 3.56it/s] 49%|████▉ | 183531/371472 [3:44:14<15:24:32, 3.39it/s] 49%|████▉ | 183532/371472 [3:44:15<15:32:09, 3.36it/s] 49%|████▉ | 183533/371472 [3:44:15<15:22:44, 3.39it/s] 49%|████▉ | 183534/371472 [3:44:15<16:43:00, 3.12it/s] 49%|████▉ | 183535/371472 [3:44:15<15:59:32, 3.26it/s] 49%|████▉ | 183536/371472 [3:44:16<15:40:30, 3.33it/s] 49%|████▉ | 183537/371472 [3:44:16<15:27:11, 3.38it/s] 49%|████▉ | 183538/371472 [3:44:16<15:23:39, 3.39it/s] 49%|████▉ | 183539/371472 [3:44:17<15:57:40, 3.27it/s] 49%|████▉ | 183540/371472 [3:44:17<16:03:30, 3.25it/s] {'loss': 2.9703, 'learning_rate': 5.55565730784977e-07, 'epoch': 7.91} + 49%|████▉ | 183540/371472 [3:44:17<16:03:30, 3.25it/s] 49%|████▉ | 183541/371472 [3:44:17<15:31:27, 3.36it/s] 49%|████▉ | 183542/371472 [3:44:18<15:42:22, 3.32it/s] 49%|████▉ | 183543/371472 [3:44:18<15:57:45, 3.27it/s] 49%|████▉ | 183544/371472 [3:44:18<15:40:26, 3.33it/s] 49%|████▉ | 183545/371472 [3:44:18<15:24:55, 3.39it/s] 49%|████▉ | 183546/371472 [3:44:19<15:11:47, 3.44it/s] 49%|████▉ | 183547/371472 [3:44:19<15:13:39, 3.43it/s] 49%|████▉ | 183548/371472 [3:44:19<15:14:58, 3.42it/s] 49%|████▉ | 183549/371472 [3:44:20<15:10:21, 3.44it/s] 49%|████▉ | 183550/371472 [3:44:20<14:41:36, 3.55it/s] 49%|████▉ | 183551/371472 [3:44:20<15:35:19, 3.35it/s] 49%|████▉ | 183552/371472 [3:44:20<15:16:05, 3.42it/s] 49%|████▉ | 183553/371472 [3:44:21<15:20:00, 3.40it/s] 49%|████▉ | 183554/371472 [3:44:21<15:20:17, 3.40it/s] 49%|████▉ | 183555/371472 [3:44:21<15:25:08, 3.39it/s] 49%|████▉ | 183556/371472 [3:44:22<15:46:40, 3.31it/s] 49%|████▉ | 183557/371472 [3:44:22<16:28:08, 3.17it/s] 49%|████▉ | 183558/371472 [3:44:22<16:13:17, 3.22it/s] 49%|████▉ | 183559/371472 [3:44:23<15:28:22, 3.37it/s] 49%|████▉ | 183560/371472 [3:44:23<15:48:21, 3.30it/s] {'loss': 2.9942, 'learning_rate': 5.555172488094982e-07, 'epoch': 7.91} + 49%|████▉ | 183560/371472 [3:44:23<15:48:21, 3.30it/s] 49%|████▉ | 183561/371472 [3:44:23<16:08:03, 3.24it/s] 49%|████▉ | 183562/371472 [3:44:24<15:56:15, 3.28it/s] 49%|████▉ | 183563/371472 [3:44:24<15:49:30, 3.30it/s] 49%|████▉ | 183564/371472 [3:44:24<15:29:02, 3.37it/s] 49%|████▉ | 183565/371472 [3:44:24<14:58:55, 3.48it/s] 49%|████▉ | 183566/371472 [3:44:25<14:46:11, 3.53it/s] 49%|████▉ | 183567/371472 [3:44:25<15:00:37, 3.48it/s] 49%|████▉ | 183568/371472 [3:44:25<15:43:59, 3.32it/s] 49%|████▉ | 183569/371472 [3:44:26<15:21:25, 3.40it/s] 49%|████▉ | 183570/371472 [3:44:26<15:32:36, 3.36it/s] 49%|████▉ | 183571/371472 [3:44:26<16:42:33, 3.12it/s] 49%|████▉ | 183572/371472 [3:44:27<17:26:11, 2.99it/s] 49%|████▉ | 183573/371472 [3:44:27<18:17:06, 2.85it/s] 49%|████▉ | 183574/371472 [3:44:27<18:38:54, 2.80it/s] 49%|████▉ | 183575/371472 [3:44:28<18:06:26, 2.88it/s] 49%|████▉ | 183576/371472 [3:44:28<17:06:57, 3.05it/s] 49%|████▉ | 183577/371472 [3:44:28<16:35:21, 3.15it/s] 49%|████▉ | 183578/371472 [3:44:29<16:13:34, 3.22it/s] 49%|████▉ | 183579/371472 [3:44:29<15:32:29, 3.36it/s] 49%|████▉ | 183580/371472 [3:44:29<15:37:48, 3.34it/s] {'loss': 2.9615, 'learning_rate': 5.554687668340194e-07, 'epoch': 7.91} + 49%|████▉ | 183580/371472 [3:44:29<15:37:48, 3.34it/s] 49%|████▉ | 183581/371472 [3:44:29<15:44:38, 3.32it/s] 49%|████▉ | 183582/371472 [3:44:30<16:07:02, 3.24it/s] 49%|████▉ | 183583/371472 [3:44:30<15:50:20, 3.30it/s] 49%|████▉ | 183584/371472 [3:44:30<15:48:39, 3.30it/s] 49%|████▉ | 183585/371472 [3:44:31<15:28:20, 3.37it/s] 49%|████▉ | 183586/371472 [3:44:31<15:20:50, 3.40it/s] 49%|████▉ | 183587/371472 [3:44:31<16:28:35, 3.17it/s] 49%|████▉ | 183588/371472 [3:44:32<15:42:06, 3.32it/s] 49%|████▉ | 183589/371472 [3:44:32<15:54:00, 3.28it/s] 49%|████▉ | 183590/371472 [3:44:32<15:14:42, 3.42it/s] 49%|████▉ | 183591/371472 [3:44:32<16:12:36, 3.22it/s] 49%|████▉ | 183592/371472 [3:44:33<15:50:39, 3.29it/s] 49%|████▉ | 183593/371472 [3:44:33<15:34:50, 3.35it/s] 49%|████▉ | 183594/371472 [3:44:33<15:29:25, 3.37it/s] 49%|████▉ | 183595/371472 [3:44:34<15:36:15, 3.34it/s] 49%|████▉ | 183596/371472 [3:44:34<15:20:59, 3.40it/s] 49%|████▉ | 183597/371472 [3:44:34<15:39:00, 3.33it/s] 49%|████▉ | 183598/371472 [3:44:35<15:35:27, 3.35it/s] 49%|████▉ | 183599/371472 [3:44:35<15:15:21, 3.42it/s] 49%|████▉ | 183600/371472 [3:44:35<15:21:27, 3.40it/s] {'loss': 2.9507, 'learning_rate': 5.554202848585404e-07, 'epoch': 7.91} + 49%|████▉ | 183600/371472 [3:44:35<15:21:27, 3.40it/s] 49%|████▉ | 183601/371472 [3:44:35<16:08:57, 3.23it/s] 49%|████▉ | 183602/371472 [3:44:36<15:36:56, 3.34it/s] 49%|████▉ | 183603/371472 [3:44:36<15:33:53, 3.35it/s] 49%|████▉ | 183604/371472 [3:44:36<15:35:48, 3.35it/s] 49%|████▉ | 183605/371472 [3:44:37<15:23:33, 3.39it/s] 49%|████▉ | 183606/371472 [3:44:37<15:40:34, 3.33it/s] 49%|████▉ | 183607/371472 [3:44:37<15:24:05, 3.39it/s] 49%|████▉ | 183608/371472 [3:44:38<16:01:05, 3.26it/s] 49%|████▉ | 183609/371472 [3:44:38<15:40:19, 3.33it/s] 49%|████▉ | 183610/371472 [3:44:38<15:23:36, 3.39it/s] 49%|████▉ | 183611/371472 [3:44:38<15:42:25, 3.32it/s] 49%|████▉ | 183612/371472 [3:44:39<15:05:59, 3.46it/s] 49%|████▉ | 183613/371472 [3:44:39<15:09:59, 3.44it/s] 49%|████▉ | 183614/371472 [3:44:39<15:37:04, 3.34it/s] 49%|████▉ | 183615/371472 [3:44:40<15:42:27, 3.32it/s] 49%|████▉ | 183616/371472 [3:44:40<16:13:56, 3.21it/s] 49%|████▉ | 183617/371472 [3:44:40<15:58:51, 3.27it/s] 49%|████▉ | 183618/371472 [3:44:41<16:37:43, 3.14it/s] 49%|████▉ | 183619/371472 [3:44:41<16:06:36, 3.24it/s] 49%|████▉ | 183620/371472 [3:44:41<16:05:38, 3.24it/s] {'loss': 2.7534, 'learning_rate': 5.553718028830615e-07, 'epoch': 7.91} + 49%|████▉ | 183620/371472 [3:44:41<16:05:38, 3.24it/s] 49%|████▉ | 183621/371472 [3:44:41<16:04:37, 3.25it/s] 49%|████▉ | 183622/371472 [3:44:42<15:51:16, 3.29it/s] 49%|████▉ | 183623/371472 [3:44:42<15:44:49, 3.31it/s] 49%|████▉ | 183624/371472 [3:44:42<15:43:30, 3.32it/s] 49%|████▉ | 183625/371472 [3:44:43<15:16:03, 3.42it/s] 49%|████▉ | 183626/371472 [3:44:43<14:46:28, 3.53it/s] 49%|████▉ | 183627/371472 [3:44:43<15:07:48, 3.45it/s] 49%|████▉ | 183628/371472 [3:44:43<14:52:34, 3.51it/s] 49%|████▉ | 183629/371472 [3:44:44<14:45:13, 3.54it/s] 49%|████▉ | 183630/371472 [3:44:44<16:52:10, 3.09it/s] 49%|████▉ | 183631/371472 [3:44:44<16:15:37, 3.21it/s] 49%|████▉ | 183632/371472 [3:44:45<16:05:25, 3.24it/s] 49%|████▉ | 183633/371472 [3:44:45<15:42:00, 3.32it/s] 49%|████▉ | 183634/371472 [3:44:45<15:24:47, 3.39it/s] 49%|████▉ | 183635/371472 [3:44:46<15:10:20, 3.44it/s] 49%|████▉ | 183636/371472 [3:44:46<18:14:34, 2.86it/s] 49%|████▉ | 183637/371472 [3:44:46<17:18:28, 3.01it/s] 49%|████▉ | 183638/371472 [3:44:47<17:53:06, 2.92it/s] 49%|████▉ | 183639/371472 [3:44:47<16:54:05, 3.09it/s] 49%|████▉ | 183640/371472 [3:44:47<16:38:47, 3.13it/s] {'loss': 2.9526, 'learning_rate': 5.553233209075826e-07, 'epoch': 7.91} + 49%|████▉ | 183640/371472 [3:44:47<16:38:47, 3.13it/s] 49%|████▉ | 183641/371472 [3:44:48<16:23:53, 3.18it/s] 49%|████▉ | 183642/371472 [3:44:48<16:08:34, 3.23it/s] 49%|████▉ | 183643/371472 [3:44:48<15:40:32, 3.33it/s] 49%|████▉ | 183644/371472 [3:44:49<15:45:28, 3.31it/s] 49%|████▉ | 183645/371472 [3:44:49<15:28:18, 3.37it/s] 49%|████▉ | 183646/371472 [3:44:49<15:15:34, 3.42it/s] 49%|████▉ | 183647/371472 [3:44:49<15:08:16, 3.45it/s] 49%|████▉ | 183648/371472 [3:44:50<15:20:04, 3.40it/s] 49%|████▉ | 183649/371472 [3:44:50<15:29:35, 3.37it/s] 49%|████▉ | 183650/371472 [3:44:50<16:12:09, 3.22it/s] 49%|████▉ | 183651/371472 [3:44:51<15:21:36, 3.40it/s] 49%|████▉ | 183652/371472 [3:44:51<15:42:12, 3.32it/s] 49%|████▉ | 183653/371472 [3:44:51<15:27:04, 3.38it/s] 49%|████▉ | 183654/371472 [3:44:52<16:15:26, 3.21it/s] 49%|████▉ | 183655/371472 [3:44:52<16:05:33, 3.24it/s] 49%|████▉ | 183656/371472 [3:44:52<15:41:13, 3.33it/s] 49%|████▉ | 183657/371472 [3:44:52<15:18:25, 3.41it/s] 49%|████▉ | 183658/371472 [3:44:53<15:47:07, 3.30it/s] 49%|████▉ | 183659/371472 [3:44:53<15:45:07, 3.31it/s] 49%|████▉ | 183660/371472 [3:44:53<15:40:51, 3.33it/s] {'loss': 2.932, 'learning_rate': 5.552748389321035e-07, 'epoch': 7.91} + 49%|████▉ | 183660/371472 [3:44:53<15:40:51, 3.33it/s] 49%|████▉ | 183661/371472 [3:44:54<15:51:53, 3.29it/s] 49%|████▉ | 183662/371472 [3:44:54<16:01:16, 3.26it/s] 49%|████▉ | 183663/371472 [3:44:54<16:07:04, 3.24it/s] 49%|████▉ | 183664/371472 [3:44:55<15:32:50, 3.36it/s] 49%|████▉ | 183665/371472 [3:44:55<15:20:43, 3.40it/s] 49%|████▉ | 183666/371472 [3:44:55<15:08:14, 3.45it/s] 49%|████▉ | 183667/371472 [3:44:55<15:22:19, 3.39it/s] 49%|████▉ | 183668/371472 [3:44:56<15:20:26, 3.40it/s] 49%|████▉ | 183669/371472 [3:44:56<15:19:29, 3.40it/s] 49%|████▉ | 183670/371472 [3:44:56<16:06:32, 3.24it/s] 49%|████▉ | 183671/371472 [3:44:57<16:32:40, 3.15it/s] 49%|████▉ | 183672/371472 [3:44:57<16:01:47, 3.25it/s] 49%|████▉ | 183673/371472 [3:44:57<16:14:08, 3.21it/s] 49%|████▉ | 183674/371472 [3:44:58<16:53:04, 3.09it/s] 49%|████▉ | 183675/371472 [3:44:58<18:15:08, 2.86it/s] 49%|████▉ | 183676/371472 [3:44:58<18:55:03, 2.76it/s] 49%|████▉ | 183677/371472 [3:44:59<19:09:57, 2.72it/s] 49%|████▉ | 183678/371472 [3:44:59<18:50:24, 2.77it/s] 49%|████▉ | 183679/371472 [3:44:59<17:35:38, 2.96it/s] 49%|████▉ | 183680/371472 [3:45:00<16:43:56, 3.12it/s] {'loss': 2.7313, 'learning_rate': 5.552263569566247e-07, 'epoch': 7.91} + 49%|████▉ | 183680/371472 [3:45:00<16:43:56, 3.12it/s] 49%|████▉ | 183681/371472 [3:45:00<16:38:21, 3.13it/s] 49%|████▉ | 183682/371472 [3:45:00<16:09:02, 3.23it/s] 49%|████▉ | 183683/371472 [3:45:01<16:00:52, 3.26it/s] 49%|████▉ | 183684/371472 [3:45:01<15:44:03, 3.32it/s] 49%|████▉ | 183685/371472 [3:45:01<15:17:55, 3.41it/s] 49%|████▉ | 183686/371472 [3:45:01<15:18:56, 3.41it/s] 49%|████▉ | 183687/371472 [3:45:02<15:49:05, 3.30it/s] 49%|████▉ | 183688/371472 [3:45:02<15:49:49, 3.30it/s] 49%|████▉ | 183689/371472 [3:45:02<15:57:30, 3.27it/s] 49%|████▉ | 183690/371472 [3:45:03<15:41:25, 3.32it/s] 49%|████▉ | 183691/371472 [3:45:03<22:17:36, 2.34it/s] 49%|████▉ | 183692/371472 [3:45:04<20:21:09, 2.56it/s] 49%|████▉ | 183693/371472 [3:45:04<19:01:32, 2.74it/s] 49%|████▉ | 183694/371472 [3:45:04<18:01:37, 2.89it/s] 49%|████▉ | 183695/371472 [3:45:05<17:02:01, 3.06it/s] 49%|████▉ | 183696/371472 [3:45:05<18:40:02, 2.79it/s] 49%|████▉ | 183697/371472 [3:45:05<18:22:19, 2.84it/s] 49%|████▉ | 183698/371472 [3:45:06<17:31:35, 2.98it/s] 49%|████▉ | 183699/371472 [3:45:06<16:53:08, 3.09it/s] 49%|████▉ | 183700/371472 [3:45:06<16:21:08, 3.19it/s] {'loss': 2.9417, 'learning_rate': 5.551778749811458e-07, 'epoch': 7.91} + 49%|████▉ | 183700/371472 [3:45:06<16:21:08, 3.19it/s] 49%|████▉ | 183701/371472 [3:45:07<15:36:41, 3.34it/s] 49%|████▉ | 183702/371472 [3:45:07<15:19:15, 3.40it/s] 49%|████▉ | 183703/371472 [3:45:07<15:33:49, 3.35it/s] 49%|████▉ | 183704/371472 [3:45:07<15:12:54, 3.43it/s] 49%|████▉ | 183705/371472 [3:45:08<15:27:30, 3.37it/s] 49%|████▉ | 183706/371472 [3:45:08<15:25:36, 3.38it/s] 49%|████▉ | 183707/371472 [3:45:08<15:39:59, 3.33it/s] 49%|████▉ | 183708/371472 [3:45:09<15:27:24, 3.37it/s] 49%|████▉ | 183709/371472 [3:45:09<15:51:15, 3.29it/s] 49%|████▉ | 183710/371472 [3:45:09<15:30:46, 3.36it/s] 49%|████▉ | 183711/371472 [3:45:10<15:43:31, 3.32it/s] 49%|████▉ | 183712/371472 [3:45:10<15:20:12, 3.40it/s] 49%|████▉ | 183713/371472 [3:45:10<15:18:26, 3.41it/s] 49%|████▉ | 183714/371472 [3:45:10<15:31:23, 3.36it/s] 49%|████▉ | 183715/371472 [3:45:11<15:17:14, 3.41it/s] 49%|████▉ | 183716/371472 [3:45:11<15:16:59, 3.41it/s] 49%|████▉ | 183717/371472 [3:45:11<14:58:48, 3.48it/s] 49%|████▉ | 183718/371472 [3:45:12<15:07:51, 3.45it/s] 49%|████▉ | 183719/371472 [3:45:12<16:27:27, 3.17it/s] 49%|████▉ | 183720/371472 [3:45:12<15:54:21, 3.28it/s] {'loss': 2.6892, 'learning_rate': 5.551293930056671e-07, 'epoch': 7.91} + 49%|████▉ | 183720/371472 [3:45:12<15:54:21, 3.28it/s] 49%|████▉ | 183721/371472 [3:45:13<16:22:14, 3.19it/s] 49%|████▉ | 183722/371472 [3:45:13<16:30:02, 3.16it/s] 49%|████▉ | 183723/371472 [3:45:13<15:56:34, 3.27it/s] 49%|████▉ | 183724/371472 [3:45:13<15:13:51, 3.42it/s] 49%|████▉ | 183725/371472 [3:45:14<15:07:47, 3.45it/s] 49%|████▉ | 183726/371472 [3:45:14<15:54:15, 3.28it/s] 49%|████▉ | 183727/371472 [3:45:14<15:42:23, 3.32it/s] 49%|████▉ | 183728/371472 [3:45:15<15:21:25, 3.40it/s] 49%|████▉ | 183729/371472 [3:45:15<15:18:32, 3.41it/s] 49%|████▉ | 183730/371472 [3:45:15<15:19:01, 3.40it/s] 49%|████▉ | 183731/371472 [3:45:15<15:16:43, 3.41it/s] 49%|████▉ | 183732/371472 [3:45:16<18:06:27, 2.88it/s] 49%|████▉ | 183733/371472 [3:45:16<17:38:00, 2.96it/s] 49%|████▉ | 183734/371472 [3:45:17<16:47:21, 3.11it/s] 49%|████▉ | 183735/371472 [3:45:17<17:11:22, 3.03it/s] 49%|████▉ | 183736/371472 [3:45:17<17:10:36, 3.04it/s] 49%|████▉ | 183737/371472 [3:45:18<16:53:37, 3.09it/s] 49%|████▉ | 183738/371472 [3:45:18<16:14:03, 3.21it/s] 49%|████▉ | 183739/371472 [3:45:18<17:21:43, 3.00it/s] 49%|████▉ | 183740/371472 [3:45:18<16:40:02, 3.13it/s] {'loss': 2.9362, 'learning_rate': 5.550809110301881e-07, 'epoch': 7.91} + 49%|████▉ | 183740/371472 [3:45:18<16:40:02, 3.13it/s] 49%|████▉ | 183741/371472 [3:45:19<16:01:30, 3.25it/s] 49%|████▉ | 183742/371472 [3:45:19<15:54:13, 3.28it/s] 49%|████▉ | 183743/371472 [3:45:19<16:03:20, 3.25it/s] 49%|████▉ | 183744/371472 [3:45:20<15:36:30, 3.34it/s] 49%|████▉ | 183745/371472 [3:45:20<15:23:43, 3.39it/s] 49%|████▉ | 183746/371472 [3:45:20<14:51:47, 3.51it/s] 49%|████▉ | 183747/371472 [3:45:21<15:28:06, 3.37it/s] 49%|████▉ | 183748/371472 [3:45:21<15:04:00, 3.46it/s] 49%|████▉ | 183749/371472 [3:45:21<15:36:11, 3.34it/s] 49%|████▉ | 183750/371472 [3:45:21<16:14:50, 3.21it/s] 49%|████▉ | 183751/371472 [3:45:22<16:01:27, 3.25it/s] 49%|████▉ | 183752/371472 [3:45:22<16:20:34, 3.19it/s] 49%|████▉ | 183753/371472 [3:45:22<15:28:13, 3.37it/s] 49%|████▉ | 183754/371472 [3:45:23<15:20:28, 3.40it/s] 49%|████▉ | 183755/371472 [3:45:23<15:43:59, 3.31it/s] 49%|████▉ | 183756/371472 [3:45:23<15:58:50, 3.26it/s] 49%|████▉ | 183757/371472 [3:45:24<15:36:19, 3.34it/s] 49%|████▉ | 183758/371472 [3:45:24<16:18:50, 3.20it/s] 49%|████▉ | 183759/371472 [3:45:24<15:40:27, 3.33it/s] 49%|████▉ | 183760/371472 [3:45:24<15:28:55, 3.37it/s] {'loss': 2.8431, 'learning_rate': 5.550324290547093e-07, 'epoch': 7.91} + 49%|████▉ | 183760/371472 [3:45:24<15:28:55, 3.37it/s] 49%|████▉ | 183761/371472 [3:45:25<15:22:33, 3.39it/s] 49%|████▉ | 183762/371472 [3:45:25<15:28:41, 3.37it/s] 49%|████▉ | 183763/371472 [3:45:25<15:04:01, 3.46it/s] 49%|████▉ | 183764/371472 [3:45:26<15:06:10, 3.45it/s] 49%|████▉ | 183765/371472 [3:45:26<15:07:46, 3.45it/s] 49%|████▉ | 183766/371472 [3:45:26<14:48:26, 3.52it/s] 49%|████▉ | 183767/371472 [3:45:26<14:33:52, 3.58it/s] 49%|████▉ | 183768/371472 [3:45:27<14:55:41, 3.49it/s] 49%|████▉ | 183769/371472 [3:45:27<14:52:58, 3.50it/s] 49%|████▉ | 183770/371472 [3:45:27<15:28:49, 3.37it/s] 49%|████▉ | 183771/371472 [3:45:28<15:14:08, 3.42it/s] 49%|████▉ | 183772/371472 [3:45:28<15:17:25, 3.41it/s] 49%|████▉ | 183773/371472 [3:45:28<15:47:10, 3.30it/s] 49%|████▉ | 183774/371472 [3:45:29<15:49:14, 3.30it/s] 49%|████▉ | 183775/371472 [3:45:29<15:14:59, 3.42it/s] 49%|████▉ | 183776/371472 [3:45:29<15:59:55, 3.26it/s] 49%|████▉ | 183777/371472 [3:45:30<16:47:04, 3.11it/s] 49%|████▉ | 183778/371472 [3:45:30<16:48:08, 3.10it/s] 49%|████▉ | 183779/371472 [3:45:30<16:38:16, 3.13it/s] 49%|████▉ | 183780/371472 [3:45:30<16:11:36, 3.22it/s] {'loss': 2.9966, 'learning_rate': 5.549839470792303e-07, 'epoch': 7.92} + 49%|████▉ | 183780/371472 [3:45:30<16:11:36, 3.22it/s] 49%|████▉ | 183781/371472 [3:45:31<16:34:07, 3.15it/s] 49%|████▉ | 183782/371472 [3:45:31<16:04:04, 3.24it/s] 49%|████▉ | 183783/371472 [3:45:31<15:42:50, 3.32it/s] 49%|████▉ | 183784/371472 [3:45:32<15:34:52, 3.35it/s] 49%|████▉ | 183785/371472 [3:45:32<15:20:40, 3.40it/s] 49%|████▉ | 183786/371472 [3:45:32<16:09:32, 3.23it/s] 49%|████▉ | 183787/371472 [3:45:33<16:58:21, 3.07it/s] 49%|████▉ | 183788/371472 [3:45:33<16:51:12, 3.09it/s] 49%|████▉ | 183789/371472 [3:45:33<16:32:27, 3.15it/s] 49%|████▉ | 183790/371472 [3:45:34<16:19:07, 3.19it/s] 49%|████▉ | 183791/371472 [3:45:34<16:30:40, 3.16it/s] 49%|████▉ | 183792/371472 [3:45:34<16:53:13, 3.09it/s] 49%|████▉ | 183793/371472 [3:45:35<16:15:04, 3.21it/s] 49%|████▉ | 183794/371472 [3:45:35<16:58:21, 3.07it/s] 49%|████▉ | 183795/371472 [3:45:35<17:02:57, 3.06it/s] 49%|████▉ | 183796/371472 [3:45:36<16:44:07, 3.12it/s] 49%|████▉ | 183797/371472 [3:45:36<16:08:37, 3.23it/s] 49%|████▉ | 183798/371472 [3:45:36<15:53:53, 3.28it/s] 49%|████▉ | 183799/371472 [3:45:36<17:00:59, 3.06it/s] 49%|████▉ | 183800/371472 [3:45:37<16:29:41, 3.16it/s] {'loss': 2.7752, 'learning_rate': 5.549354651037515e-07, 'epoch': 7.92} + 49%|████▉ | 183800/371472 [3:45:37<16:29:41, 3.16it/s] 49%|████▉ | 183801/371472 [3:45:37<16:23:12, 3.18it/s] 49%|████▉ | 183802/371472 [3:45:37<16:17:04, 3.20it/s] 49%|████▉ | 183803/371472 [3:45:38<16:12:02, 3.22it/s] 49%|████▉ | 183804/371472 [3:45:38<15:54:51, 3.28it/s] 49%|████▉ | 183805/371472 [3:45:38<15:34:03, 3.35it/s] 49%|████▉ | 183806/371472 [3:45:39<15:13:02, 3.43it/s] 49%|████▉ | 183807/371472 [3:45:39<15:02:46, 3.46it/s] 49%|████▉ | 183808/371472 [3:45:39<15:21:29, 3.39it/s] 49%|████▉ | 183809/371472 [3:45:39<15:13:27, 3.42it/s] 49%|████▉ | 183810/371472 [3:45:40<15:34:29, 3.35it/s] 49%|████▉ | 183811/371472 [3:45:40<15:39:00, 3.33it/s] 49%|████▉ | 183812/371472 [3:45:40<15:34:24, 3.35it/s] 49%|████▉ | 183813/371472 [3:45:41<15:32:04, 3.36it/s] 49%|████▉ | 183814/371472 [3:45:41<16:02:52, 3.25it/s] 49%|████▉ | 183815/371472 [3:45:41<15:57:56, 3.26it/s] 49%|████▉ | 183816/371472 [3:45:42<16:05:05, 3.24it/s] 49%|████▉ | 183817/371472 [3:45:42<18:17:13, 2.85it/s] 49%|████▉ | 183818/371472 [3:45:42<17:17:04, 3.02it/s] 49%|████▉ | 183819/371472 [3:45:43<17:03:27, 3.06it/s] 49%|████▉ | 183820/371472 [3:45:43<16:34:01, 3.15it/s] {'loss': 3.0113, 'learning_rate': 5.548869831282724e-07, 'epoch': 7.92} + 49%|████▉ | 183820/371472 [3:45:43<16:34:01, 3.15it/s] 49%|████▉ | 183821/371472 [3:45:43<16:36:00, 3.14it/s] 49%|████▉ | 183822/371472 [3:45:44<16:44:18, 3.11it/s] 49%|████▉ | 183823/371472 [3:45:44<16:17:47, 3.20it/s] 49%|████▉ | 183824/371472 [3:45:44<16:28:59, 3.16it/s] 49%|████▉ | 183825/371472 [3:45:44<15:50:54, 3.29it/s] 49%|████▉ | 183826/371472 [3:45:45<15:13:38, 3.42it/s] 49%|████▉ | 183827/371472 [3:45:45<14:50:26, 3.51it/s] 49%|████▉ | 183828/371472 [3:45:45<15:00:52, 3.47it/s] 49%|████▉ | 183829/371472 [3:45:46<15:05:10, 3.46it/s] 49%|████▉ | 183830/371472 [3:45:46<15:01:24, 3.47it/s] 49%|████▉ | 183831/371472 [3:45:46<14:40:11, 3.55it/s] 49%|████▉ | 183832/371472 [3:45:46<14:41:47, 3.55it/s] 49%|████▉ | 183833/371472 [3:45:47<14:45:58, 3.53it/s] 49%|████▉ | 183834/371472 [3:45:47<16:00:56, 3.25it/s] 49%|████▉ | 183835/371472 [3:45:47<16:53:27, 3.09it/s] 49%|████▉ | 183836/371472 [3:45:48<16:30:23, 3.16it/s] 49%|████▉ | 183837/371472 [3:45:48<16:59:43, 3.07it/s] 49%|████▉ | 183838/371472 [3:45:48<16:29:05, 3.16it/s] 49%|████▉ | 183839/371472 [3:45:49<16:04:48, 3.24it/s] 49%|████▉ | 183840/371472 [3:45:49<15:52:39, 3.28it/s] {'loss': 2.8056, 'learning_rate': 5.548385011527935e-07, 'epoch': 7.92} + 49%|████▉ | 183840/371472 [3:45:49<15:52:39, 3.28it/s] 49%|████▉ | 183841/371472 [3:45:49<16:13:34, 3.21it/s] 49%|████▉ | 183842/371472 [3:45:50<15:52:40, 3.28it/s] 49%|████▉ | 183843/371472 [3:45:50<15:58:21, 3.26it/s] 49%|████▉ | 183844/371472 [3:45:50<15:34:41, 3.35it/s] 49%|████▉ | 183845/371472 [3:45:50<15:34:42, 3.35it/s] 49%|████▉ | 183846/371472 [3:45:51<15:14:59, 3.42it/s] 49%|████▉ | 183847/371472 [3:45:51<15:21:49, 3.39it/s] 49%|████▉ | 183848/371472 [3:45:51<16:11:37, 3.22it/s] 49%|████▉ | 183849/371472 [3:45:52<16:19:12, 3.19it/s] 49%|████▉ | 183850/371472 [3:45:52<16:30:44, 3.16it/s] 49%|████▉ | 183851/371472 [3:45:52<15:52:42, 3.28it/s] 49%|████▉ | 183852/371472 [3:45:53<15:53:31, 3.28it/s] 49%|████▉ | 183853/371472 [3:45:53<15:42:56, 3.32it/s] 49%|████▉ | 183854/371472 [3:45:53<16:13:41, 3.21it/s] 49%|████▉ | 183855/371472 [3:45:54<15:47:44, 3.30it/s] 49%|████▉ | 183856/371472 [3:45:54<16:15:21, 3.21it/s] 49%|████▉ | 183857/371472 [3:45:54<15:35:21, 3.34it/s] 49%|████▉ | 183858/371472 [3:45:54<15:14:10, 3.42it/s] 49%|████▉ | 183859/371472 [3:45:55<15:33:06, 3.35it/s] 49%|████▉ | 183860/371472 [3:45:55<15:09:05, 3.44it/s] {'loss': 2.8115, 'learning_rate': 5.547900191773148e-07, 'epoch': 7.92} + 49%|████▉ | 183860/371472 [3:45:55<15:09:05, 3.44it/s] 49%|████▉ | 183861/371472 [3:45:55<15:35:24, 3.34it/s] 49%|████▉ | 183862/371472 [3:45:56<15:25:19, 3.38it/s] 49%|████▉ | 183863/371472 [3:45:56<17:38:15, 2.95it/s] 49%|████▉ | 183864/371472 [3:45:56<16:45:18, 3.11it/s] 49%|████▉ | 183865/371472 [3:45:57<16:24:38, 3.18it/s] 49%|████▉ | 183866/371472 [3:45:57<16:07:05, 3.23it/s] 49%|████▉ | 183867/371472 [3:45:57<15:37:24, 3.34it/s] 49%|████▉ | 183868/371472 [3:45:58<15:54:56, 3.27it/s] 49%|████▉ | 183869/371472 [3:45:58<15:46:53, 3.30it/s] 49%|████▉ | 183870/371472 [3:45:58<15:23:26, 3.39it/s] 49%|████▉ | 183871/371472 [3:45:58<15:36:36, 3.34it/s] 49%|████▉ | 183872/371472 [3:45:59<15:50:44, 3.29it/s] 49%|████▉ | 183873/371472 [3:45:59<15:33:37, 3.35it/s] 49%|████▉ | 183874/371472 [3:45:59<15:16:21, 3.41it/s] 49%|████▉ | 183875/371472 [3:46:00<15:05:12, 3.45it/s] 49%|████▉ | 183876/371472 [3:46:00<15:04:51, 3.46it/s] 49%|████▉ | 183877/371472 [3:46:00<15:12:54, 3.42it/s] 49%|████▉ | 183878/371472 [3:46:00<15:24:38, 3.38it/s] 50%|████▉ | 183879/371472 [3:46:01<15:03:21, 3.46it/s] 50%|████▉ | 183880/371472 [3:46:01<15:29:11, 3.36it/s] {'loss': 2.9027, 'learning_rate': 5.547415372018358e-07, 'epoch': 7.92} + 50%|████▉ | 183880/371472 [3:46:01<15:29:11, 3.36it/s] 50%|████▉ | 183881/371472 [3:46:01<16:02:31, 3.25it/s] 50%|████▉ | 183882/371472 [3:46:02<15:40:29, 3.32it/s] 50%|████▉ | 183883/371472 [3:46:02<16:04:44, 3.24it/s] 50%|████▉ | 183884/371472 [3:46:02<16:02:04, 3.25it/s] 50%|��███▉ | 183885/371472 [3:46:03<15:26:59, 3.37it/s] 50%|████▉ | 183886/371472 [3:46:03<15:33:56, 3.35it/s] 50%|████▉ | 183887/371472 [3:46:03<16:05:14, 3.24it/s] 50%|████▉ | 183888/371472 [3:46:03<15:52:51, 3.28it/s] 50%|████▉ | 183889/371472 [3:46:04<15:45:47, 3.31it/s] 50%|████▉ | 183890/371472 [3:46:04<15:44:06, 3.31it/s] 50%|████▉ | 183891/371472 [3:46:05<17:27:23, 2.98it/s] 50%|████▉ | 183892/371472 [3:46:05<17:32:40, 2.97it/s] 50%|████▉ | 183893/371472 [3:46:05<16:27:41, 3.17it/s] 50%|████▉ | 183894/371472 [3:46:05<16:16:19, 3.20it/s] 50%|████▉ | 183895/371472 [3:46:06<15:58:02, 3.26it/s] 50%|████▉ | 183896/371472 [3:46:06<16:46:41, 3.11it/s] 50%|████▉ | 183897/371472 [3:46:06<16:12:12, 3.22it/s] 50%|████▉ | 183898/371472 [3:46:07<16:37:18, 3.13it/s] 50%|████▉ | 183899/371472 [3:46:07<16:09:43, 3.22it/s] 50%|████▉ | 183900/371472 [3:46:07<16:07:39, 3.23it/s] {'loss': 2.8213, 'learning_rate': 5.546930552263569e-07, 'epoch': 7.92} + 50%|████▉ | 183900/371472 [3:46:07<16:07:39, 3.23it/s] 50%|████▉ | 183901/371472 [3:46:08<16:34:03, 3.14it/s] 50%|████▉ | 183902/371472 [3:46:08<16:14:17, 3.21it/s] 50%|████▉ | 183903/371472 [3:46:08<15:41:52, 3.32it/s] 50%|████▉ | 183904/371472 [3:46:08<15:31:22, 3.36it/s] 50%|████▉ | 183905/371472 [3:46:09<15:16:16, 3.41it/s] 50%|████▉ | 183906/371472 [3:46:09<15:42:29, 3.32it/s] 50%|████▉ | 183907/371472 [3:46:09<15:27:21, 3.37it/s] 50%|████▉ | 183908/371472 [3:46:10<15:11:03, 3.43it/s] 50%|████▉ | 183909/371472 [3:46:10<14:47:44, 3.52it/s] 50%|████▉ | 183910/371472 [3:46:10<15:01:45, 3.47it/s] 50%|████▉ | 183911/371472 [3:46:11<15:38:46, 3.33it/s] 50%|████▉ | 183912/371472 [3:46:11<15:36:45, 3.34it/s] 50%|████▉ | 183913/371472 [3:46:11<16:29:58, 3.16it/s] 50%|████▉ | 183914/371472 [3:46:12<16:14:55, 3.21it/s] 50%|████▉ | 183915/371472 [3:46:12<16:10:53, 3.22it/s] 50%|████▉ | 183916/371472 [3:46:12<15:40:27, 3.32it/s] 50%|████▉ | 183917/371472 [3:46:12<15:46:29, 3.30it/s] 50%|████▉ | 183918/371472 [3:46:13<15:51:13, 3.29it/s] 50%|████▉ | 183919/371472 [3:46:13<15:31:47, 3.35it/s] 50%|████▉ | 183920/371472 [3:46:13<17:14:50, 3.02it/s] {'loss': 2.9637, 'learning_rate': 5.54644573250878e-07, 'epoch': 7.92} + 50%|████▉ | 183920/371472 [3:46:13<17:14:50, 3.02it/s] 50%|████▉ | 183921/371472 [3:46:14<16:28:18, 3.16it/s] 50%|████▉ | 183922/371472 [3:46:14<16:18:10, 3.20it/s] 50%|████▉ | 183923/371472 [3:46:14<16:54:38, 3.08it/s] 50%|████▉ | 183924/371472 [3:46:15<16:21:51, 3.18it/s] 50%|████▉ | 183925/371472 [3:46:15<16:43:01, 3.12it/s] 50%|████▉ | 183926/371472 [3:46:15<16:07:26, 3.23it/s] 50%|████▉ | 183927/371472 [3:46:16<16:25:17, 3.17it/s] 50%|████▉ | 183928/371472 [3:46:16<15:53:58, 3.28it/s] 50%|████▉ | 183929/371472 [3:46:16<16:30:04, 3.16it/s] 50%|████▉ | 183930/371472 [3:46:16<16:02:13, 3.25it/s] 50%|████▉ | 183931/371472 [3:46:17<15:48:23, 3.30it/s] 50%|████▉ | 183932/371472 [3:46:17<15:59:43, 3.26it/s] 50%|████▉ | 183933/371472 [3:46:17<16:17:59, 3.20it/s] 50%|████▉ | 183934/371472 [3:46:18<15:35:08, 3.34it/s] 50%|████▉ | 183935/371472 [3:46:18<15:29:09, 3.36it/s] 50%|████▉ | 183936/371472 [3:46:18<15:28:46, 3.37it/s] 50%|████▉ | 183937/371472 [3:46:19<15:59:47, 3.26it/s] 50%|████▉ | 183938/371472 [3:46:19<15:51:53, 3.28it/s] 50%|████▉ | 183939/371472 [3:46:19<16:57:27, 3.07it/s] 50%|████▉ | 183940/371472 [3:46:20<16:07:03, 3.23it/s] {'loss': 2.922, 'learning_rate': 5.545960912753992e-07, 'epoch': 7.92} + 50%|████▉ | 183940/371472 [3:46:20<16:07:03, 3.23it/s] 50%|████▉ | 183941/371472 [3:46:20<15:51:56, 3.28it/s] 50%|████▉ | 183942/371472 [3:46:20<15:22:28, 3.39it/s] 50%|████▉ | 183943/371472 [3:46:20<16:16:11, 3.20it/s] 50%|████▉ | 183944/371472 [3:46:21<16:25:35, 3.17it/s] 50%|████▉ | 183945/371472 [3:46:21<15:56:26, 3.27it/s] 50%|████▉ | 183946/371472 [3:46:21<15:48:20, 3.30it/s] 50%|████▉ | 183947/371472 [3:46:22<16:04:25, 3.24it/s] 50%|████▉ | 183948/371472 [3:46:22<15:49:41, 3.29it/s] 50%|████▉ | 183949/371472 [3:46:22<16:36:07, 3.14it/s] 50%|████▉ | 183950/371472 [3:46:23<15:49:58, 3.29it/s] 50%|████▉ | 183951/371472 [3:46:23<15:27:36, 3.37it/s] 50%|████▉ | 183952/371472 [3:46:23<15:22:12, 3.39it/s] 50%|████▉ | 183953/371472 [3:46:23<15:11:59, 3.43it/s] 50%|████▉ | 183954/371472 [3:46:24<15:19:30, 3.40it/s] 50%|████▉ | 183955/371472 [3:46:24<15:02:08, 3.46it/s] 50%|████▉ | 183956/371472 [3:46:24<14:57:27, 3.48it/s] 50%|████▉ | 183957/371472 [3:46:25<14:52:55, 3.50it/s] 50%|████▉ | 183958/371472 [3:46:25<15:34:36, 3.34it/s] 50%|████▉ | 183959/371472 [3:46:25<15:24:43, 3.38it/s] 50%|████▉ | 183960/371472 [3:46:26<16:16:15, 3.20it/s] {'loss': 2.9792, 'learning_rate': 5.545476092999203e-07, 'epoch': 7.92} + 50%|████▉ | 183960/371472 [3:46:26<16:16:15, 3.20it/s] 50%|████▉ | 183961/371472 [3:46:26<16:02:23, 3.25it/s] 50%|████▉ | 183962/371472 [3:46:26<15:31:11, 3.36it/s] 50%|████▉ | 183963/371472 [3:46:27<16:38:37, 3.13it/s] 50%|████▉ | 183964/371472 [3:46:27<15:53:09, 3.28it/s] 50%|████▉ | 183965/371472 [3:46:27<15:40:58, 3.32it/s] 50%|████▉ | 183966/371472 [3:46:27<15:31:43, 3.35it/s] 50%|████▉ | 183967/371472 [3:46:28<15:56:45, 3.27it/s] 50%|████▉ | 183968/371472 [3:46:28<16:10:29, 3.22it/s] 50%|████▉ | 183969/371472 [3:46:28<15:42:32, 3.32it/s] 50%|████▉ | 183970/371472 [3:46:29<16:03:32, 3.24it/s] 50%|████▉ | 183971/371472 [3:46:29<15:46:26, 3.30it/s] 50%|████▉ | 183972/371472 [3:46:29<15:49:24, 3.29it/s] 50%|████▉ | 183973/371472 [3:46:30<15:38:46, 3.33it/s] 50%|████▉ | 183974/371472 [3:46:30<15:16:57, 3.41it/s] 50%|████▉ | 183975/371472 [3:46:30<14:58:51, 3.48it/s] 50%|████▉ | 183976/371472 [3:46:30<15:20:15, 3.40it/s] 50%|████▉ | 183977/371472 [3:46:31<15:04:26, 3.46it/s] 50%|████▉ | 183978/371472 [3:46:31<14:55:27, 3.49it/s] 50%|████▉ | 183979/371472 [3:46:31<15:13:23, 3.42it/s] 50%|████▉ | 183980/371472 [3:46:32<15:34:24, 3.34it/s] {'loss': 3.0949, 'learning_rate': 5.544991273244414e-07, 'epoch': 7.92} + 50%|████▉ | 183980/371472 [3:46:32<15:34:24, 3.34it/s] 50%|████▉ | 183981/371472 [3:46:32<15:15:45, 3.41it/s] 50%|████▉ | 183982/371472 [3:46:32<15:08:55, 3.44it/s] 50%|████▉ | 183983/371472 [3:46:32<15:40:40, 3.32it/s] 50%|████▉ | 183984/371472 [3:46:33<16:06:29, 3.23it/s] 50%|████▉ | 183985/371472 [3:46:33<16:16:09, 3.20it/s] 50%|████▉ | 183986/371472 [3:46:33<16:02:45, 3.25it/s] 50%|████▉ | 183987/371472 [3:46:34<15:54:03, 3.28it/s] 50%|████▉ | 183988/371472 [3:46:34<18:56:46, 2.75it/s] 50%|████▉ | 183989/371472 [3:46:34<17:40:48, 2.95it/s] 50%|████▉ | 183990/371472 [3:46:35<16:52:31, 3.09it/s] 50%|████▉ | 183991/371472 [3:46:35<16:03:23, 3.24it/s] 50%|████▉ | 183992/371472 [3:46:35<16:11:10, 3.22it/s] 50%|████▉ | 183993/371472 [3:46:36<16:21:52, 3.18it/s] 50%|████▉ | 183994/371472 [3:46:36<16:33:43, 3.14it/s] 50%|████▉ | 183995/371472 [3:46:36<15:58:23, 3.26it/s] 50%|████▉ | 183996/371472 [3:46:37<16:30:05, 3.16it/s] 50%|████▉ | 183997/371472 [3:46:37<15:49:14, 3.29it/s] 50%|████▉ | 183998/371472 [3:46:37<15:50:24, 3.29it/s] 50%|████▉ | 183999/371472 [3:46:38<16:17:23, 3.20it/s] 50%|████▉ | 184000/371472 [3:46:38<16:06:06, 3.23it/s] {'loss': 2.807, 'learning_rate': 5.544506453489625e-07, 'epoch': 7.93} + 50%|████▉ | 184000/371472 [3:46:38<16:06:06, 3.23it/s] 50%|████▉ | 184001/371472 [3:46:38<16:31:17, 3.15it/s] 50%|████▉ | 184002/371472 [3:46:38<16:08:14, 3.23it/s] 50%|████▉ | 184003/371472 [3:46:39<16:22:46, 3.18it/s] 50%|████▉ | 184004/371472 [3:46:39<15:53:52, 3.28it/s] 50%|████▉ | 184005/371472 [3:46:39<15:42:20, 3.32it/s] 50%|████▉ | 184006/371472 [3:46:40<15:37:45, 3.33it/s] 50%|████▉ | 184007/371472 [3:46:40<15:24:32, 3.38it/s] 50%|████▉ | 184008/371472 [3:46:40<16:00:00, 3.25it/s] 50%|████▉ | 184009/371472 [3:46:41<15:56:51, 3.27it/s] 50%|████▉ | 184010/371472 [3:46:41<16:01:06, 3.25it/s] 50%|████▉ | 184011/371472 [3:46:41<16:31:24, 3.15it/s] 50%|████▉ | 184012/371472 [3:46:42<15:48:32, 3.29it/s] 50%|████▉ | 184013/371472 [3:46:42<15:24:28, 3.38it/s] 50%|████▉ | 184014/371472 [3:46:42<15:22:36, 3.39it/s] 50%|████▉ | 184015/371472 [3:46:42<15:36:17, 3.34it/s] 50%|████▉ | 184016/371472 [3:46:43<16:04:53, 3.24it/s] 50%|████▉ | 184017/371472 [3:46:43<15:48:04, 3.30it/s] 50%|████▉ | 184018/371472 [3:46:43<15:43:25, 3.31it/s] 50%|████▉ | 184019/371472 [3:46:44<16:08:56, 3.22it/s] 50%|████▉ | 184020/371472 [3:46:44<16:38:35, 3.13it/s] {'loss': 2.9191, 'learning_rate': 5.544021633734836e-07, 'epoch': 7.93} + 50%|████▉ | 184020/371472 [3:46:44<16:38:35, 3.13it/s] 50%|████▉ | 184021/371472 [3:46:44<18:27:45, 2.82it/s] 50%|████▉ | 184022/371472 [3:46:45<17:35:00, 2.96it/s] 50%|████▉ | 184023/371472 [3:46:45<16:50:10, 3.09it/s] 50%|████▉ | 184024/371472 [3:46:45<16:55:33, 3.08it/s] 50%|████▉ | 184025/371472 [3:46:46<17:27:31, 2.98it/s] 50%|████▉ | 184026/371472 [3:46:46<16:49:08, 3.10it/s] 50%|████▉ | 184027/371472 [3:46:46<16:15:33, 3.20it/s] 50%|████▉ | 184028/371472 [3:46:47<15:40:28, 3.32it/s] 50%|████▉ | 184029/371472 [3:46:47<15:51:57, 3.28it/s] 50%|████▉ | 184030/371472 [3:46:47<15:32:47, 3.35it/s] 50%|████▉ | 184031/371472 [3:46:47<15:53:44, 3.28it/s] 50%|████▉ | 184032/371472 [3:46:48<15:49:52, 3.29it/s] 50%|████▉ | 184033/371472 [3:46:48<15:25:34, 3.38it/s] 50%|████▉ | 184034/371472 [3:46:48<14:53:51, 3.49it/s] 50%|████▉ | 184035/371472 [3:46:49<15:09:58, 3.43it/s] 50%|████▉ | 184036/371472 [3:46:49<16:55:06, 3.08it/s] 50%|████▉ | 184037/371472 [3:46:49<16:08:30, 3.23it/s] 50%|████▉ | 184038/371472 [3:46:50<15:35:44, 3.34it/s] 50%|████▉ | 184039/371472 [3:46:50<16:14:28, 3.21it/s] 50%|████▉ | 184040/371472 [3:46:50<16:06:44, 3.23it/s] {'loss': 2.865, 'learning_rate': 5.543536813980047e-07, 'epoch': 7.93} + 50%|████▉ | 184040/371472 [3:46:50<16:06:44, 3.23it/s] 50%|████▉ | 184041/371472 [3:46:51<17:17:39, 3.01it/s] 50%|████▉ | 184042/371472 [3:46:51<16:23:39, 3.18it/s] 50%|████▉ | 184043/371472 [3:46:51<16:14:52, 3.20it/s] 50%|████▉ | 184044/371472 [3:46:52<16:55:16, 3.08it/s] 50%|████▉ | 184045/371472 [3:46:52<16:41:35, 3.12it/s] 50%|████▉ | 184046/371472 [3:46:52<16:07:36, 3.23it/s] 50%|████▉ | 184047/371472 [3:46:52<16:03:55, 3.24it/s] 50%|████▉ | 184048/371472 [3:46:53<16:03:14, 3.24it/s] 50%|████▉ | 184049/371472 [3:46:53<15:56:03, 3.27it/s] 50%|████▉ | 184050/371472 [3:46:53<15:34:15, 3.34it/s] 50%|████▉ | 184051/371472 [3:46:54<15:26:41, 3.37it/s] 50%|████▉ | 184052/371472 [3:46:54<15:08:18, 3.44it/s] 50%|████▉ | 184053/371472 [3:46:54<14:46:15, 3.52it/s] 50%|████▉ | 184054/371472 [3:46:54<15:03:17, 3.46it/s] 50%|████▉ | 184055/371472 [3:46:55<16:30:35, 3.15it/s] 50%|████▉ | 184056/371472 [3:46:55<16:04:43, 3.24it/s] 50%|████▉ | 184057/371472 [3:46:55<15:51:12, 3.28it/s] 50%|████▉ | 184058/371472 [3:46:56<15:58:57, 3.26it/s] 50%|████▉ | 184059/371472 [3:46:56<15:41:17, 3.32it/s] 50%|████▉ | 184060/371472 [3:46:56<15:52:25, 3.28it/s] {'loss': 2.9347, 'learning_rate': 5.543051994225258e-07, 'epoch': 7.93} + 50%|████▉ | 184060/371472 [3:46:56<15:52:25, 3.28it/s] 50%|████▉ | 184061/371472 [3:46:57<15:28:13, 3.37it/s] 50%|████▉ | 184062/371472 [3:46:57<15:25:38, 3.37it/s] 50%|████▉ | 184063/371472 [3:46:57<16:42:41, 3.12it/s] 50%|████▉ | 184064/371472 [3:46:58<16:45:06, 3.11it/s] 50%|████▉ | 184065/371472 [3:46:58<15:51:09, 3.28it/s] 50%|████▉ | 184066/371472 [3:46:58<15:41:35, 3.32it/s] 50%|████▉ | 184067/371472 [3:46:58<15:16:49, 3.41it/s] 50%|████▉ | 184068/371472 [3:46:59<15:26:13, 3.37it/s] 50%|████▉ | 184069/371472 [3:46:59<15:17:00, 3.41it/s] 50%|████▉ | 184070/371472 [3:46:59<15:23:05, 3.38it/s] 50%|████▉ | 184071/371472 [3:47:00<15:24:23, 3.38it/s] 50%|████▉ | 184072/371472 [3:47:00<15:31:26, 3.35it/s] 50%|████▉ | 184073/371472 [3:47:00<15:13:22, 3.42it/s] 50%|████▉ | 184074/371472 [3:47:00<15:06:51, 3.44it/s] 50%|████▉ | 184075/371472 [3:47:01<15:09:10, 3.44it/s] 50%|████▉ | 184076/371472 [3:47:01<16:26:17, 3.17it/s] 50%|████▉ | 184077/371472 [3:47:01<15:50:18, 3.29it/s] 50%|████▉ | 184078/371472 [3:47:02<16:02:50, 3.24it/s] 50%|████▉ | 184079/371472 [3:47:02<15:50:50, 3.28it/s] 50%|████▉ | 184080/371472 [3:47:02<16:19:23, 3.19it/s] {'loss': 2.9221, 'learning_rate': 5.542567174470469e-07, 'epoch': 7.93} + 50%|████▉ | 184080/371472 [3:47:02<16:19:23, 3.19it/s] 50%|████▉ | 184081/371472 [3:47:03<15:38:08, 3.33it/s] 50%|████▉ | 184082/371472 [3:47:03<15:56:02, 3.27it/s] 50%|████▉ | 184083/371472 [3:47:03<15:50:40, 3.29it/s] 50%|████▉ | 184084/371472 [3:47:04<15:46:56, 3.30it/s] 50%|████▉ | 184085/371472 [3:47:04<16:18:25, 3.19it/s] 50%|████▉ | 184086/371472 [3:47:04<15:58:22, 3.26it/s] 50%|████▉ | 184087/371472 [3:47:05<16:04:43, 3.24it/s] 50%|████▉ | 184088/371472 [3:47:05<16:06:53, 3.23it/s] 50%|████▉ | 184089/371472 [3:47:05<15:40:42, 3.32it/s] 50%|████▉ | 184090/371472 [3:47:05<15:24:05, 3.38it/s] 50%|████▉ | 184091/371472 [3:47:06<15:58:11, 3.26it/s] 50%|████▉ | 184092/371472 [3:47:06<15:24:59, 3.38it/s] 50%|████▉ | 184093/371472 [3:47:06<15:56:37, 3.26it/s] 50%|████▉ | 184094/371472 [3:47:07<16:42:38, 3.11it/s] 50%|████▉ | 184095/371472 [3:47:07<16:42:32, 3.12it/s] 50%|████▉ | 184096/371472 [3:47:07<17:19:32, 3.00it/s] 50%|████▉ | 184097/371472 [3:47:08<16:56:39, 3.07it/s] 50%|████▉ | 184098/371472 [3:47:08<16:56:00, 3.07it/s] 50%|████▉ | 184099/371472 [3:47:08<16:37:28, 3.13it/s] 50%|████▉ | 184100/371472 [3:47:09<16:39:40, 3.12it/s] {'loss': 2.8588, 'learning_rate': 5.542082354715681e-07, 'epoch': 7.93} + 50%|████▉ | 184100/371472 [3:47:09<16:39:40, 3.12it/s] 50%|████▉ | 184101/371472 [3:47:09<16:28:02, 3.16it/s] 50%|████▉ | 184102/371472 [3:47:09<16:32:58, 3.14it/s] 50%|████▉ | 184103/371472 [3:47:10<16:15:21, 3.20it/s] 50%|████▉ | 184104/371472 [3:47:10<15:43:49, 3.31it/s] 50%|████▉ | 184105/371472 [3:47:10<15:34:28, 3.34it/s] 50%|████▉ | 184106/371472 [3:47:10<15:33:05, 3.35it/s] 50%|████▉ | 184107/371472 [3:47:11<16:22:58, 3.18it/s] 50%|████▉ | 184108/371472 [3:47:11<15:59:49, 3.25it/s] 50%|████▉ | 184109/371472 [3:47:11<15:46:02, 3.30it/s] 50%|████▉ | 184110/371472 [3:47:12<15:44:46, 3.31it/s] 50%|████▉ | 184111/371472 [3:47:12<15:21:03, 3.39it/s] 50%|████▉ | 184112/371472 [3:47:12<15:08:20, 3.44it/s] 50%|████▉ | 184113/371472 [3:47:13<14:59:36, 3.47it/s] 50%|████▉ | 184114/371472 [3:47:13<15:02:07, 3.46it/s] 50%|████▉ | 184115/371472 [3:47:13<15:03:16, 3.46it/s] 50%|████▉ | 184116/371472 [3:47:13<14:55:17, 3.49it/s] 50%|████▉ | 184117/371472 [3:47:14<14:36:47, 3.56it/s] 50%|████▉ | 184118/371472 [3:47:14<14:50:05, 3.51it/s] 50%|████▉ | 184119/371472 [3:47:14<15:06:36, 3.44it/s] 50%|████▉ | 184120/371472 [3:47:15<14:55:34, 3.49it/s] {'loss': 3.0246, 'learning_rate': 5.541597534960891e-07, 'epoch': 7.93} + 50%|████▉ | 184120/371472 [3:47:15<14:55:34, 3.49it/s] 50%|████▉ | 184121/371472 [3:47:15<15:09:19, 3.43it/s] 50%|████▉ | 184122/371472 [3:47:15<16:25:25, 3.17it/s] 50%|████▉ | 184123/371472 [3:47:15<15:53:35, 3.27it/s] 50%|████▉ | 184124/371472 [3:47:16<15:41:40, 3.32it/s] 50%|████▉ | 184125/371472 [3:47:16<15:23:09, 3.38it/s] 50%|████▉ | 184126/371472 [3:47:16<15:24:41, 3.38it/s] 50%|████▉ | 184127/371472 [3:47:17<15:23:09, 3.38it/s] 50%|████▉ | 184128/371472 [3:47:17<15:19:47, 3.39it/s] 50%|████▉ | 184129/371472 [3:47:17<16:20:46, 3.18it/s] 50%|████▉ | 184130/371472 [3:47:18<16:58:26, 3.07it/s] 50%|████▉ | 184131/371472 [3:47:18<18:06:34, 2.87it/s] 50%|████▉ | 184132/371472 [3:47:18<17:32:05, 2.97it/s] 50%|████▉ | 184133/371472 [3:47:19<16:48:45, 3.10it/s] 50%|████▉ | 184134/371472 [3:47:19<16:18:46, 3.19it/s] 50%|████▉ | 184135/371472 [3:47:19<16:00:28, 3.25it/s] 50%|████▉ | 184136/371472 [3:47:20<15:33:40, 3.34it/s] 50%|████▉ | 184137/371472 [3:47:20<15:40:05, 3.32it/s] 50%|████▉ | 184138/371472 [3:47:20<15:43:24, 3.31it/s] 50%|████▉ | 184139/371472 [3:47:20<15:55:15, 3.27it/s] 50%|████▉ | 184140/371472 [3:47:21<15:28:19, 3.36it/s] {'loss': 2.8957, 'learning_rate': 5.541112715206102e-07, 'epoch': 7.93} + 50%|████▉ | 184140/371472 [3:47:21<15:28:19, 3.36it/s] 50%|████▉ | 184141/371472 [3:47:21<15:31:38, 3.35it/s] 50%|████▉ | 184142/371472 [3:47:21<15:11:28, 3.43it/s] 50%|████▉ | 184143/371472 [3:47:22<15:03:33, 3.46it/s] 50%|████▉ | 184144/371472 [3:47:22<15:35:17, 3.34it/s] 50%|████▉ | 184145/371472 [3:47:22<16:33:43, 3.14it/s] 50%|████▉ | 184146/371472 [3:47:23<16:08:24, 3.22it/s] 50%|████▉ | 184147/371472 [3:47:23<16:12:35, 3.21it/s] 50%|████▉ | 184148/371472 [3:47:23<16:45:11, 3.11it/s] 50%|████▉ | 184149/371472 [3:47:23<16:15:36, 3.20it/s] 50%|████▉ | 184150/371472 [3:47:24<15:58:15, 3.26it/s] 50%|████▉ | 184151/371472 [3:47:24<15:53:16, 3.28it/s] 50%|████▉ | 184152/371472 [3:47:24<15:43:08, 3.31it/s] 50%|████▉ | 184153/371472 [3:47:25<15:47:42, 3.29it/s] 50%|████▉ | 184154/371472 [3:47:25<15:32:50, 3.35it/s] 50%|████▉ | 184155/371472 [3:47:25<15:43:24, 3.31it/s] 50%|████▉ | 184156/371472 [3:47:26<15:20:47, 3.39it/s] 50%|████▉ | 184157/371472 [3:47:26<16:39:44, 3.12it/s] 50%|████▉ | 184158/371472 [3:47:26<16:11:07, 3.21it/s] 50%|████▉ | 184159/371472 [3:47:27<15:50:43, 3.28it/s] 50%|████▉ | 184160/371472 [3:47:27<15:35:28, 3.34it/s] {'loss': 2.9124, 'learning_rate': 5.540627895451313e-07, 'epoch': 7.93} + 50%|████▉ | 184160/371472 [3:47:27<15:35:28, 3.34it/s] 50%|████▉ | 184161/371472 [3:47:27<16:10:53, 3.22it/s] 50%|████▉ | 184162/371472 [3:47:27<15:56:43, 3.26it/s] 50%|████▉ | 184163/371472 [3:47:28<15:58:45, 3.26it/s] 50%|████▉ | 184164/371472 [3:47:28<16:16:23, 3.20it/s] 50%|████▉ | 184165/371472 [3:47:28<15:42:51, 3.31it/s] 50%|████▉ | 184166/371472 [3:47:29<15:38:16, 3.33it/s] 50%|████▉ | 184167/371472 [3:47:29<15:17:23, 3.40it/s] 50%|████▉ | 184168/371472 [3:47:29<15:19:19, 3.40it/s] 50%|████▉ | 184169/371472 [3:47:30<15:42:33, 3.31it/s] 50%|████▉ | 184170/371472 [3:47:30<15:49:55, 3.29it/s] 50%|████▉ | 184171/371472 [3:47:30<15:36:16, 3.33it/s] 50%|████▉ | 184172/371472 [3:47:30<15:21:38, 3.39it/s] 50%|████▉ | 184173/371472 [3:47:31<15:15:50, 3.41it/s] 50%|████▉ | 184174/371472 [3:47:31<15:49:58, 3.29it/s] 50%|████▉ | 184175/371472 [3:47:31<16:05:43, 3.23it/s] 50%|████▉ | 184176/371472 [3:47:32<15:34:10, 3.34it/s] 50%|████▉ | 184177/371472 [3:47:32<15:46:15, 3.30it/s] 50%|████▉ | 184178/371472 [3:47:32<15:39:56, 3.32it/s] 50%|████▉ | 184179/371472 [3:47:33<15:39:20, 3.32it/s] 50%|████▉ | 184180/371472 [3:47:33<15:46:06, 3.30it/s] {'loss': 2.7781, 'learning_rate': 5.540143075696523e-07, 'epoch': 7.93} + 50%|████▉ | 184180/371472 [3:47:33<15:46:06, 3.30it/s] 50%|████▉ | 184181/371472 [3:47:33<15:38:50, 3.32it/s] 50%|████▉ | 184182/371472 [3:47:33<15:27:42, 3.36it/s] 50%|████▉ | 184183/371472 [3:47:34<15:53:10, 3.27it/s] 50%|████▉ | 184184/371472 [3:47:34<15:40:52, 3.32it/s] 50%|████▉ | 184185/371472 [3:47:34<15:53:44, 3.27it/s] 50%|████▉ | 184186/371472 [3:47:35<15:26:05, 3.37it/s] 50%|████▉ | 184187/371472 [3:47:35<15:41:07, 3.32it/s] 50%|████▉ | 184188/371472 [3:47:35<15:43:46, 3.31it/s] 50%|████▉ | 184189/371472 [3:47:36<15:36:12, 3.33it/s] 50%|████▉ | 184190/371472 [3:47:36<15:29:15, 3.36it/s] 50%|████▉ | 184191/371472 [3:47:36<15:13:27, 3.42it/s] 50%|████▉ | 184192/371472 [3:47:36<15:08:46, 3.43it/s] 50%|████▉ | 184193/371472 [3:47:37<14:45:22, 3.53it/s] 50%|████▉ | 184194/371472 [3:47:37<15:15:04, 3.41it/s] 50%|████▉ | 184195/371472 [3:47:37<15:22:20, 3.38it/s] 50%|████▉ | 184196/371472 [3:47:38<16:21:33, 3.18it/s] 50%|████▉ | 184197/371472 [3:47:38<16:11:20, 3.21it/s] 50%|████▉ | 184198/371472 [3:47:38<15:39:32, 3.32it/s] 50%|████▉ | 184199/371472 [3:47:39<15:52:08, 3.28it/s] 50%|████▉ | 184200/371472 [3:47:39<16:12:33, 3.21it/s] {'loss': 3.0612, 'learning_rate': 5.539658255941735e-07, 'epoch': 7.93} + 50%|████▉ | 184200/371472 [3:47:39<16:12:33, 3.21it/s] 50%|████▉ | 184201/371472 [3:47:39<15:46:54, 3.30it/s] 50%|████▉ | 184202/371472 [3:47:39<15:54:07, 3.27it/s] 50%|████▉ | 184203/371472 [3:47:40<16:10:27, 3.22it/s] 50%|████▉ | 184204/371472 [3:47:40<15:52:00, 3.28it/s] 50%|████▉ | 184205/371472 [3:47:40<16:02:14, 3.24it/s] 50%|████▉ | 184206/371472 [3:47:41<15:45:05, 3.30it/s] 50%|████▉ | 184207/371472 [3:47:41<15:39:33, 3.32it/s] 50%|████▉ | 184208/371472 [3:47:41<15:25:39, 3.37it/s] 50%|████▉ | 184209/371472 [3:47:42<16:32:38, 3.14it/s] 50%|████▉ | 184210/371472 [3:47:42<15:51:56, 3.28it/s] 50%|████▉ | 184211/371472 [3:47:42<15:51:10, 3.28it/s] 50%|████▉ | 184212/371472 [3:47:43<15:23:29, 3.38it/s] 50%|████▉ | 184213/371472 [3:47:43<15:34:05, 3.34it/s] 50%|████▉ | 184214/371472 [3:47:43<16:19:46, 3.19it/s] 50%|████▉ | 184215/371472 [3:47:43<15:48:59, 3.29it/s] 50%|████▉ | 184216/371472 [3:47:44<15:45:06, 3.30it/s] 50%|████▉ | 184217/371472 [3:47:44<15:33:01, 3.34it/s] 50%|████▉ | 184218/371472 [3:47:44<15:12:18, 3.42it/s] 50%|████▉ | 184219/371472 [3:47:45<15:20:39, 3.39it/s] 50%|████▉ | 184220/371472 [3:47:45<15:18:44, 3.40it/s] {'loss': 3.0434, 'learning_rate': 5.539173436186945e-07, 'epoch': 7.93} + 50%|████▉ | 184220/371472 [3:47:45<15:18:44, 3.40it/s] 50%|████▉ | 184221/371472 [3:47:45<15:14:03, 3.41it/s] 50%|████▉ | 184222/371472 [3:47:46<15:31:46, 3.35it/s] 50%|████▉ | 184223/371472 [3:47:46<15:29:39, 3.36it/s] 50%|████▉ | 184224/371472 [3:47:46<15:53:21, 3.27it/s] 50%|████▉ | 184225/371472 [3:47:46<15:58:10, 3.26it/s] 50%|████▉ | 184226/371472 [3:47:47<16:22:13, 3.18it/s] 50%|████▉ | 184227/371472 [3:47:47<15:52:05, 3.28it/s] 50%|████▉ | 184228/371472 [3:47:47<15:59:11, 3.25it/s] 50%|████▉ | 184229/371472 [3:47:48<15:47:01, 3.30it/s] 50%|████▉ | 184230/371472 [3:47:48<15:25:10, 3.37it/s] 50%|████▉ | 184231/371472 [3:47:48<15:08:04, 3.44it/s] 50%|████▉ | 184232/371472 [3:47:49<17:29:49, 2.97it/s] 50%|████▉ | 184233/371472 [3:47:49<16:48:27, 3.09it/s] 50%|████▉ | 184234/371472 [3:47:49<16:20:27, 3.18it/s] 50%|████▉ | 184235/371472 [3:47:50<15:50:58, 3.28it/s] 50%|████▉ | 184236/371472 [3:47:50<16:32:54, 3.14it/s] 50%|████▉ | 184237/371472 [3:47:50<15:51:32, 3.28it/s] 50%|████▉ | 184238/371472 [3:47:50<15:22:09, 3.38it/s] 50%|████▉ | 184239/371472 [3:47:51<15:13:29, 3.42it/s] 50%|████▉ | 184240/371472 [3:47:51<15:29:07, 3.36it/s] {'loss': 2.9978, 'learning_rate': 5.538688616432158e-07, 'epoch': 7.94} + 50%|████▉ | 184240/371472 [3:47:51<15:29:07, 3.36it/s] 50%|████▉ | 184241/371472 [3:47:51<15:26:14, 3.37it/s] 50%|████▉ | 184242/371472 [3:47:52<15:21:27, 3.39it/s] 50%|████▉ | 184243/371472 [3:47:52<14:55:24, 3.48it/s] 50%|████▉ | 184244/371472 [3:47:52<15:05:50, 3.44it/s] 50%|████▉ | 184245/371472 [3:47:52<15:00:00, 3.47it/s] 50%|████▉ | 184246/371472 [3:47:53<15:07:07, 3.44it/s] 50%|████▉ | 184247/371472 [3:47:53<15:24:08, 3.38it/s] 50%|████▉ | 184248/371472 [3:47:53<15:17:58, 3.40it/s] 50%|████▉ | 184249/371472 [3:47:54<15:00:24, 3.47it/s] 50%|████▉ | 184250/371472 [3:47:54<16:17:50, 3.19it/s] 50%|████▉ | 184251/371472 [3:47:54<15:51:17, 3.28it/s] 50%|████▉ | 184252/371472 [3:47:55<15:36:11, 3.33it/s] 50%|████▉ | 184253/371472 [3:47:55<15:42:25, 3.31it/s] 50%|████▉ | 184254/371472 [3:47:55<15:33:03, 3.34it/s] 50%|████▉ | 184255/371472 [3:47:56<16:21:41, 3.18it/s] 50%|████▉ | 184256/371472 [3:47:56<15:47:14, 3.29it/s] 50%|████▉ | 184257/371472 [3:47:56<15:28:43, 3.36it/s] 50%|████▉ | 184258/371472 [3:47:56<16:08:40, 3.22it/s] 50%|████▉ | 184259/371472 [3:47:57<16:10:25, 3.22it/s] 50%|████▉ | 184260/371472 [3:47:57<16:26:50, 3.16it/s] {'loss': 3.0963, 'learning_rate': 5.538203796677368e-07, 'epoch': 7.94} + 50%|████▉ | 184260/371472 [3:47:57<16:26:50, 3.16it/s] 50%|████▉ | 184261/371472 [3:47:57<16:05:21, 3.23it/s] 50%|████▉ | 184262/371472 [3:47:58<15:49:42, 3.29it/s] 50%|████▉ | 184263/371472 [3:47:58<16:08:47, 3.22it/s] 50%|████▉ | 184264/371472 [3:47:58<15:53:12, 3.27it/s] 50%|████▉ | 184265/371472 [3:47:59<16:01:13, 3.25it/s] 50%|████▉ | 184266/371472 [3:47:59<15:54:42, 3.27it/s] 50%|████▉ | 184267/371472 [3:47:59<15:30:39, 3.35it/s] 50%|████▉ | 184268/371472 [3:47:59<15:26:16, 3.37it/s] 50%|████▉ | 184269/371472 [3:48:00<15:35:28, 3.34it/s] 50%|████▉ | 184270/371472 [3:48:00<15:26:05, 3.37it/s] 50%|████▉ | 184271/371472 [3:48:00<14:57:27, 3.48it/s] 50%|████▉ | 184272/371472 [3:48:01<15:11:45, 3.42it/s] 50%|████▉ | 184273/371472 [3:48:01<15:55:16, 3.27it/s] 50%|████▉ | 184274/371472 [3:48:01<15:12:17, 3.42it/s] 50%|████▉ | 184275/371472 [3:48:02<14:54:43, 3.49it/s] 50%|████▉ | 184276/371472 [3:48:02<14:39:05, 3.55it/s] 50%|████▉ | 184277/371472 [3:48:02<15:34:04, 3.34it/s] 50%|████▉ | 184278/371472 [3:48:02<15:18:52, 3.40it/s] 50%|████▉ | 184279/371472 [3:48:03<14:52:07, 3.50it/s] 50%|████▉ | 184280/371472 [3:48:03<14:55:23, 3.48it/s] {'loss': 2.8242, 'learning_rate': 5.537718976922579e-07, 'epoch': 7.94} + 50%|████▉ | 184280/371472 [3:48:03<14:55:23, 3.48it/s] 50%|████▉ | 184281/371472 [3:48:03<15:22:58, 3.38it/s] 50%|████▉ | 184282/371472 [3:48:04<15:00:14, 3.47it/s] 50%|████▉ | 184283/371472 [3:48:04<15:54:01, 3.27it/s] 50%|████▉ | 184284/371472 [3:48:04<15:43:03, 3.31it/s] 50%|████▉ | 184285/371472 [3:48:04<15:21:43, 3.38it/s] 50%|████▉ | 184286/371472 [3:48:05<15:29:12, 3.36it/s] 50%|████▉ | 184287/371472 [3:48:05<15:21:16, 3.39it/s] 50%|████▉ | 184288/371472 [3:48:05<15:02:38, 3.46it/s] 50%|████▉ | 184289/371472 [3:48:06<16:32:00, 3.14it/s] 50%|████▉ | 184290/371472 [3:48:06<16:31:58, 3.14it/s] 50%|████▉ | 184291/371472 [3:48:06<16:54:55, 3.07it/s] 50%|████▉ | 184292/371472 [3:48:07<17:00:07, 3.06it/s] 50%|████▉ | 184293/371472 [3:48:07<17:46:40, 2.92it/s] 50%|████▉ | 184294/371472 [3:48:07<17:12:30, 3.02it/s] 50%|████▉ | 184295/371472 [3:48:08<16:43:11, 3.11it/s] 50%|████▉ | 184296/371472 [3:48:08<16:26:05, 3.16it/s] 50%|████▉ | 184297/371472 [3:48:08<16:00:07, 3.25it/s] 50%|████▉ | 184298/371472 [3:48:09<15:37:17, 3.33it/s] 50%|████▉ | 184299/371472 [3:48:09<16:27:21, 3.16it/s] 50%|████▉ | 184300/371472 [3:48:09<16:04:55, 3.23it/s] {'loss': 2.6657, 'learning_rate': 5.53723415716779e-07, 'epoch': 7.94} + 50%|████▉ | 184300/371472 [3:48:09<16:04:55, 3.23it/s] 50%|████▉ | 184301/371472 [3:48:09<15:22:44, 3.38it/s] 50%|████▉ | 184302/371472 [3:48:10<15:22:08, 3.38it/s] 50%|████▉ | 184303/371472 [3:48:10<17:02:25, 3.05it/s] 50%|████▉ | 184304/371472 [3:48:10<16:56:04, 3.07it/s] 50%|████▉ | 184305/371472 [3:48:11<16:59:46, 3.06it/s] 50%|████▉ | 184306/371472 [3:48:11<16:25:06, 3.17it/s] 50%|████▉ | 184307/371472 [3:48:11<15:42:43, 3.31it/s] 50%|████▉ | 184308/371472 [3:48:12<15:35:31, 3.33it/s] 50%|████▉ | 184309/371472 [3:48:12<15:24:58, 3.37it/s] 50%|████▉ | 184310/371472 [3:48:12<15:01:38, 3.46it/s] 50%|████▉ | 184311/371472 [3:48:13<16:35:21, 3.13it/s] 50%|████▉ | 184312/371472 [3:48:13<16:17:31, 3.19it/s] 50%|████▉ | 184313/371472 [3:48:13<16:30:22, 3.15it/s] 50%|████▉ | 184314/371472 [3:48:14<15:55:38, 3.26it/s] 50%|████▉ | 184315/371472 [3:48:14<15:30:54, 3.35it/s] 50%|████▉ | 184316/371472 [3:48:14<15:10:46, 3.42it/s] 50%|████▉ | 184317/371472 [3:48:14<15:36:32, 3.33it/s] 50%|████▉ | 184318/371472 [3:48:15<15:16:06, 3.40it/s] 50%|████▉ | 184319/371472 [3:48:15<15:14:30, 3.41it/s] 50%|████▉ | 184320/371472 [3:48:15<15:20:17, 3.39it/s] {'loss': 2.8766, 'learning_rate': 5.536749337413002e-07, 'epoch': 7.94} + 50%|████▉ | 184320/371472 [3:48:15<15:20:17, 3.39it/s] 50%|████▉ | 184321/371472 [3:48:16<15:42:36, 3.31it/s] 50%|████▉ | 184322/371472 [3:48:16<16:08:10, 3.22it/s] 50%|████▉ | 184323/371472 [3:48:16<15:49:07, 3.29it/s] 50%|████▉ | 184324/371472 [3:48:17<15:46:37, 3.29it/s] 50%|████▉ | 184325/371472 [3:48:17<17:19:23, 3.00it/s] 50%|█���██▉ | 184326/371472 [3:48:17<16:33:42, 3.14it/s] 50%|████▉ | 184327/371472 [3:48:18<16:19:33, 3.18it/s] 50%|████▉ | 184328/371472 [3:48:18<16:41:29, 3.11it/s] 50%|████▉ | 184329/371472 [3:48:18<18:27:37, 2.82it/s] 50%|████▉ | 184330/371472 [3:48:19<17:49:11, 2.92it/s] 50%|████▉ | 184331/371472 [3:48:19<18:22:21, 2.83it/s] 50%|████▉ | 184332/371472 [3:48:19<17:46:52, 2.92it/s] 50%|████▉ | 184333/371472 [3:48:20<17:23:43, 2.99it/s] 50%|████▉ | 184334/371472 [3:48:20<18:11:36, 2.86it/s] 50%|████▉ | 184335/371472 [3:48:20<16:58:32, 3.06it/s] 50%|████▉ | 184336/371472 [3:48:21<16:15:55, 3.20it/s] 50%|████▉ | 184337/371472 [3:48:21<16:20:29, 3.18it/s] 50%|████▉ | 184338/371472 [3:48:21<16:26:18, 3.16it/s] 50%|████▉ | 184339/371472 [3:48:21<15:56:44, 3.26it/s] 50%|████▉ | 184340/371472 [3:48:22<15:53:41, 3.27it/s] {'loss': 2.9144, 'learning_rate': 5.536264517658213e-07, 'epoch': 7.94} + 50%|████▉ | 184340/371472 [3:48:22<15:53:41, 3.27it/s] 50%|████▉ | 184341/371472 [3:48:22<16:12:14, 3.21it/s] 50%|████▉ | 184342/371472 [3:48:22<15:53:34, 3.27it/s] 50%|████▉ | 184343/371472 [3:48:23<16:36:45, 3.13it/s] 50%|████▉ | 184344/371472 [3:48:23<16:42:15, 3.11it/s] 50%|████▉ | 184345/371472 [3:48:23<16:22:28, 3.17it/s] 50%|████▉ | 184346/371472 [3:48:24<16:10:28, 3.21it/s] 50%|████▉ | 184347/371472 [3:48:24<15:58:39, 3.25it/s] 50%|████▉ | 184348/371472 [3:48:24<15:28:24, 3.36it/s] 50%|████▉ | 184349/371472 [3:48:25<15:34:34, 3.34it/s] 50%|████▉ | 184350/371472 [3:48:25<15:58:09, 3.25it/s] 50%|████▉ | 184351/371472 [3:48:25<15:57:41, 3.26it/s] 50%|████▉ | 184352/371472 [3:48:25<16:01:39, 3.24it/s] 50%|████▉ | 184353/371472 [3:48:26<15:44:07, 3.30it/s] 50%|████▉ | 184354/371472 [3:48:26<15:50:26, 3.28it/s] 50%|████▉ | 184355/371472 [3:48:26<16:06:03, 3.23it/s] 50%|████▉ | 184356/371472 [3:48:27<15:51:44, 3.28it/s] 50%|████▉ | 184357/371472 [3:48:27<16:07:35, 3.22it/s] 50%|████▉ | 184358/371472 [3:48:27<16:37:44, 3.13it/s] 50%|████▉ | 184359/371472 [3:48:28<16:29:57, 3.15it/s] 50%|████▉ | 184360/371472 [3:48:28<15:59:11, 3.25it/s] {'loss': 2.8125, 'learning_rate': 5.535779697903424e-07, 'epoch': 7.94} + 50%|████▉ | 184360/371472 [3:48:28<15:59:11, 3.25it/s] 50%|████▉ | 184361/371472 [3:48:28<15:59:39, 3.25it/s] 50%|████▉ | 184362/371472 [3:48:29<16:01:48, 3.24it/s] 50%|████▉ | 184363/371472 [3:48:29<16:57:59, 3.06it/s] 50%|████▉ | 184364/371472 [3:48:29<16:28:41, 3.15it/s] 50%|████▉ | 184365/371472 [3:48:30<15:56:40, 3.26it/s] 50%|████▉ | 184366/371472 [3:48:30<16:12:15, 3.21it/s] 50%|████▉ | 184367/371472 [3:48:30<15:56:16, 3.26it/s] 50%|████▉ | 184368/371472 [3:48:30<15:18:56, 3.39it/s] 50%|████▉ | 184369/371472 [3:48:31<15:34:58, 3.34it/s] 50%|████▉ | 184370/371472 [3:48:31<15:05:59, 3.44it/s] 50%|████▉ | 184371/371472 [3:48:31<16:06:45, 3.23it/s] 50%|████▉ | 184372/371472 [3:48:32<15:44:29, 3.30it/s] 50%|████▉ | 184373/371472 [3:48:32<16:16:01, 3.19it/s] 50%|████▉ | 184374/371472 [3:48:32<15:33:22, 3.34it/s] 50%|████▉ | 184375/371472 [3:48:33<15:34:28, 3.34it/s] 50%|████▉ | 184376/371472 [3:48:33<15:15:03, 3.41it/s] 50%|████▉ | 184377/371472 [3:48:33<15:17:03, 3.40it/s] 50%|████▉ | 184378/371472 [3:48:33<15:13:17, 3.41it/s] 50%|████▉ | 184379/371472 [3:48:34<15:21:37, 3.38it/s] 50%|████▉ | 184380/371472 [3:48:34<16:12:22, 3.21it/s] {'loss': 2.7815, 'learning_rate': 5.535294878148635e-07, 'epoch': 7.94} + 50%|████▉ | 184380/371472 [3:48:34<16:12:22, 3.21it/s] 50%|████▉ | 184381/371472 [3:48:34<15:51:29, 3.28it/s] 50%|████▉ | 184382/371472 [3:48:35<15:58:02, 3.25it/s] 50%|████▉ | 184383/371472 [3:48:35<15:44:17, 3.30it/s] 50%|████▉ | 184384/371472 [3:48:35<15:53:28, 3.27it/s] 50%|████▉ | 184385/371472 [3:48:36<15:44:55, 3.30it/s] 50%|████▉ | 184386/371472 [3:48:36<15:40:55, 3.31it/s] 50%|████▉ | 184387/371472 [3:48:36<15:25:02, 3.37it/s] 50%|████▉ | 184388/371472 [3:48:36<15:47:33, 3.29it/s] 50%|████▉ | 184389/371472 [3:48:37<15:39:41, 3.32it/s] 50%|████▉ | 184390/371472 [3:48:37<16:05:26, 3.23it/s] 50%|████▉ | 184391/371472 [3:48:37<16:03:08, 3.24it/s] 50%|████▉ | 184392/371472 [3:48:38<15:40:09, 3.32it/s] 50%|████▉ | 184393/371472 [3:48:38<15:53:07, 3.27it/s] 50%|████▉ | 184394/371472 [3:48:38<15:59:36, 3.25it/s] 50%|████▉ | 184395/371472 [3:48:39<15:39:07, 3.32it/s] 50%|████▉ | 184396/371472 [3:48:39<17:00:02, 3.06it/s] 50%|████▉ | 184397/371472 [3:48:39<16:30:47, 3.15it/s] 50%|████▉ | 184398/371472 [3:48:40<15:55:09, 3.26it/s] 50%|████▉ | 184399/371472 [3:48:40<15:45:16, 3.30it/s] 50%|████▉ | 184400/371472 [3:48:40<15:41:21, 3.31it/s] {'loss': 2.8472, 'learning_rate': 5.534810058393846e-07, 'epoch': 7.94} + 50%|████▉ | 184400/371472 [3:48:40<15:41:21, 3.31it/s] 50%|████▉ | 184401/371472 [3:48:40<15:40:13, 3.32it/s] 50%|████▉ | 184402/371472 [3:48:41<15:20:42, 3.39it/s] 50%|████▉ | 184403/371472 [3:48:41<15:10:42, 3.42it/s] 50%|████▉ | 184404/371472 [3:48:41<14:47:39, 3.51it/s] 50%|████▉ | 184405/371472 [3:48:42<14:56:15, 3.48it/s] 50%|████▉ | 184406/371472 [3:48:42<15:01:30, 3.46it/s] 50%|████▉ | 184407/371472 [3:48:42<15:07:41, 3.43it/s] 50%|████▉ | 184408/371472 [3:48:42<15:30:22, 3.35it/s] 50%|████▉ | 184409/371472 [3:48:43<15:27:12, 3.36it/s] 50%|████▉ | 184410/371472 [3:48:43<15:30:02, 3.35it/s] 50%|████▉ | 184411/371472 [3:48:43<16:18:22, 3.19it/s] 50%|████▉ | 184412/371472 [3:48:44<15:40:54, 3.31it/s] 50%|████▉ | 184413/371472 [3:48:44<15:32:44, 3.34it/s] 50%|████▉ | 184414/371472 [3:48:44<15:33:13, 3.34it/s] 50%|████▉ | 184415/371472 [3:48:45<15:29:56, 3.35it/s] 50%|████▉ | 184416/371472 [3:48:45<15:31:37, 3.35it/s] 50%|████▉ | 184417/371472 [3:48:45<15:12:51, 3.42it/s] 50%|████▉ | 184418/371472 [3:48:46<16:12:50, 3.20it/s] 50%|████▉ | 184419/371472 [3:48:46<15:46:33, 3.29it/s] 50%|████▉ | 184420/371472 [3:48:46<16:20:52, 3.18it/s] {'loss': 2.8719, 'learning_rate': 5.534325238639057e-07, 'epoch': 7.94} + 50%|████▉ | 184420/371472 [3:48:46<16:20:52, 3.18it/s] 50%|████▉ | 184421/371472 [3:48:46<16:06:13, 3.23it/s] 50%|████▉ | 184422/371472 [3:48:47<15:34:53, 3.33it/s] 50%|████▉ | 184423/371472 [3:48:47<15:13:52, 3.41it/s] 50%|████▉ | 184424/371472 [3:48:47<16:30:27, 3.15it/s] 50%|████▉ | 184425/371472 [3:48:48<16:15:53, 3.19it/s] 50%|████▉ | 184426/371472 [3:48:48<16:15:02, 3.20it/s] 50%|████▉ | 184427/371472 [3:48:48<16:35:24, 3.13it/s] 50%|████▉ | 184428/371472 [3:48:49<16:25:59, 3.16it/s] 50%|████▉ | 184429/371472 [3:48:49<16:20:12, 3.18it/s] 50%|████▉ | 184430/371472 [3:48:49<16:46:44, 3.10it/s] 50%|████▉ | 184431/371472 [3:48:50<16:36:58, 3.13it/s] 50%|████▉ | 184432/371472 [3:48:50<16:39:16, 3.12it/s] 50%|████▉ | 184433/371472 [3:48:50<16:25:42, 3.16it/s] 50%|████▉ | 184434/371472 [3:48:51<15:54:23, 3.27it/s] 50%|████▉ | 184435/371472 [3:48:51<15:59:04, 3.25it/s] 50%|████▉ | 184436/371472 [3:48:51<15:50:45, 3.28it/s] 50%|████▉ | 184437/371472 [3:48:51<15:45:54, 3.30it/s] 50%|████▉ | 184438/371472 [3:48:52<16:36:57, 3.13it/s] 50%|████▉ | 184439/371472 [3:48:52<16:01:16, 3.24it/s] 50%|████▉ | 184440/371472 [3:48:52<15:32:34, 3.34it/s] {'loss': 2.909, 'learning_rate': 5.533840418884268e-07, 'epoch': 7.94} + 50%|████▉ | 184440/371472 [3:48:52<15:32:34, 3.34it/s] 50%|████▉ | 184441/371472 [3:48:53<15:35:14, 3.33it/s] 50%|████▉ | 184442/371472 [3:48:53<15:25:53, 3.37it/s] 50%|████▉ | 184443/371472 [3:48:53<15:22:27, 3.38it/s] 50%|████▉ | 184444/371472 [3:48:54<15:09:36, 3.43it/s] 50%|████▉ | 184445/371472 [3:48:54<15:12:28, 3.42it/s] 50%|████▉ | 184446/371472 [3:48:54<15:35:12, 3.33it/s] 50%|████▉ | 184447/371472 [3:48:54<15:06:31, 3.44it/s] 50%|████▉ | 184448/371472 [3:48:55<14:44:50, 3.52it/s] 50%|████▉ | 184449/371472 [3:48:55<15:04:14, 3.45it/s] 50%|████▉ | 184450/371472 [3:48:55<15:22:08, 3.38it/s] 50%|████▉ | 184451/371472 [3:48:56<15:14:57, 3.41it/s] 50%|████▉ | 184452/371472 [3:48:56<15:00:37, 3.46it/s] 50%|████▉ | 184453/371472 [3:48:56<16:18:45, 3.18it/s] 50%|████▉ | 184454/371472 [3:48:57<18:46:08, 2.77it/s] 50%|████▉ | 184455/371472 [3:48:57<17:30:52, 2.97it/s] 50%|████▉ | 184456/371472 [3:48:57<16:49:33, 3.09it/s] 50%|████▉ | 184457/371472 [3:48:58<17:06:25, 3.04it/s] 50%|████▉ | 184458/371472 [3:48:58<16:32:47, 3.14it/s] 50%|████▉ | 184459/371472 [3:48:58<16:24:39, 3.17it/s] 50%|████▉ | 184460/371472 [3:48:58<16:03:35, 3.23it/s] {'loss': 2.9544, 'learning_rate': 5.533355599129478e-07, 'epoch': 7.95} + 50%|████▉ | 184460/371472 [3:48:58<16:03:35, 3.23it/s] 50%|████▉ | 184461/371472 [3:48:59<16:01:55, 3.24it/s] 50%|████▉ | 184462/371472 [3:48:59<15:47:49, 3.29it/s] 50%|████▉ | 184463/371472 [3:48:59<15:41:18, 3.31it/s] 50%|████▉ | 184464/371472 [3:49:00<15:28:09, 3.36it/s] 50%|████▉ | 184465/371472 [3:49:00<15:17:30, 3.40it/s] 50%|████▉ | 184466/371472 [3:49:00<15:13:25, 3.41it/s] 50%|████▉ | 184467/371472 [3:49:01<15:31:02, 3.35it/s] 50%|████▉ | 184468/371472 [3:49:01<15:50:47, 3.28it/s] 50%|████▉ | 184469/371472 [3:49:01<16:41:07, 3.11it/s] 50%|████▉ | 184470/371472 [3:49:02<16:51:45, 3.08it/s] 50%|████▉ | 184471/371472 [3:49:02<16:29:38, 3.15it/s] 50%|████▉ | 184472/371472 [3:49:02<16:05:32, 3.23it/s] 50%|████▉ | 184473/371472 [3:49:02<15:57:31, 3.25it/s] 50%|████▉ | 184474/371472 [3:49:03<16:22:23, 3.17it/s] 50%|████▉ | 184475/371472 [3:49:03<16:02:51, 3.24it/s] 50%|████▉ | 184476/371472 [3:49:03<16:00:15, 3.25it/s] 50%|████▉ | 184477/371472 [3:49:04<15:48:05, 3.29it/s] 50%|████▉ | 184478/371472 [3:49:04<15:31:19, 3.35it/s] 50%|████▉ | 184479/371472 [3:49:04<15:29:12, 3.35it/s] 50%|████▉ | 184480/371472 [3:49:05<15:12:06, 3.42it/s] {'loss': 2.8958, 'learning_rate': 5.53287077937469e-07, 'epoch': 7.95} + 50%|████▉ | 184480/371472 [3:49:05<15:12:06, 3.42it/s] 50%|████▉ | 184481/371472 [3:49:05<15:22:31, 3.38it/s] 50%|████▉ | 184482/371472 [3:49:05<15:15:07, 3.41it/s] 50%|████▉ | 184483/371472 [3:49:05<15:45:23, 3.30it/s] 50%|████▉ | 184484/371472 [3:49:06<15:34:21, 3.34it/s] 50%|████▉ | 184485/371472 [3:49:06<15:32:42, 3.34it/s] 50%|████▉ | 184486/371472 [3:49:06<16:13:29, 3.20it/s] 50%|████▉ | 184487/371472 [3:49:07<16:06:22, 3.22it/s] 50%|████▉ | 184488/371472 [3:49:07<16:19:41, 3.18it/s] 50%|████▉ | 184489/371472 [3:49:07<15:59:27, 3.25it/s] 50%|████▉ | 184490/371472 [3:49:08<17:00:03, 3.06it/s] 50%|████▉ | 184491/371472 [3:49:08<17:35:12, 2.95it/s] 50%|████▉ | 184492/371472 [3:49:08<16:47:30, 3.09it/s] 50%|████▉ | 184493/371472 [3:49:09<16:19:14, 3.18it/s] 50%|████▉ | 184494/371472 [3:49:09<15:55:05, 3.26it/s] 50%|████▉ | 184495/371472 [3:49:09<16:00:10, 3.25it/s] 50%|████▉ | 184496/371472 [3:49:10<16:05:05, 3.23it/s] 50%|████▉ | 184497/371472 [3:49:10<16:17:20, 3.19it/s] 50%|████▉ | 184498/371472 [3:49:10<15:57:41, 3.25it/s] 50%|████▉ | 184499/371472 [3:49:11<16:02:35, 3.24it/s] 50%|████▉ | 184500/371472 [3:49:11<15:29:17, 3.35it/s] {'loss': 2.9271, 'learning_rate': 5.532385959619901e-07, 'epoch': 7.95} + 50%|████▉ | 184500/371472 [3:49:11<15:29:17, 3.35it/s] 50%|████▉ | 184501/371472 [3:49:11<15:26:36, 3.36it/s] 50%|████▉ | 184502/371472 [3:49:11<15:05:54, 3.44it/s] 50%|████▉ | 184503/371472 [3:49:12<15:02:00, 3.45it/s] 50%|████▉ | 184504/371472 [3:49:12<15:02:25, 3.45it/s] 50%|████▉ | 184505/371472 [3:49:12<15:09:14, 3.43it/s] 50%|████▉ | 184506/371472 [3:49:13<15:30:43, 3.35it/s] 50%|████▉ | 184507/371472 [3:49:13<15:05:24, 3.44it/s] 50%|████▉ | 184508/371472 [3:49:13<14:50:00, 3.50it/s] 50%|████▉ | 184509/371472 [3:49:13<14:47:44, 3.51it/s] 50%|████▉ | 184510/371472 [3:49:14<14:45:19, 3.52it/s] 50%|████▉ | 184511/371472 [3:49:14<15:07:37, 3.43it/s] 50%|████▉ | 184512/371472 [3:49:14<15:35:33, 3.33it/s] 50%|████▉ | 184513/371472 [3:49:15<15:44:54, 3.30it/s] 50%|████▉ | 184514/371472 [3:49:15<15:22:31, 3.38it/s] 50%|████▉ | 184515/371472 [3:49:15<15:04:47, 3.44it/s] 50%|████▉ | 184516/371472 [3:49:15<15:25:27, 3.37it/s] 50%|████▉ | 184517/371472 [3:49:16<15:34:28, 3.33it/s] 50%|████▉ | 184518/371472 [3:49:16<15:22:12, 3.38it/s] 50%|████▉ | 184519/371472 [3:49:16<15:14:26, 3.41it/s] 50%|████▉ | 184520/371472 [3:49:17<15:05:58, 3.44it/s] {'loss': 2.8972, 'learning_rate': 5.531901139865112e-07, 'epoch': 7.95} + 50%|████▉ | 184520/371472 [3:49:17<15:05:58, 3.44it/s] 50%|████▉ | 184521/371472 [3:49:17<14:56:13, 3.48it/s] 50%|████▉ | 184522/371472 [3:49:17<14:57:15, 3.47it/s] 50%|████▉ | 184523/371472 [3:49:17<15:17:19, 3.40it/s] 50%|████▉ | 184524/371472 [3:49:18<14:53:33, 3.49it/s] 50%|████▉ | 184525/371472 [3:49:18<15:19:56, 3.39it/s] 50%|████▉ | 184526/371472 [3:49:18<14:56:36, 3.48it/s] 50%|████▉ | 184527/371472 [3:49:19<14:54:17, 3.48it/s] 50%|████▉ | 184528/371472 [3:49:19<14:41:17, 3.54it/s] 50%|████▉ | 184529/371472 [3:49:19<14:34:06, 3.56it/s] 50%|████▉ | 184530/371472 [3:49:20<15:09:47, 3.42it/s] 50%|████▉ | 184531/371472 [3:49:20<15:18:39, 3.39it/s] 50%|████▉ | 184532/371472 [3:49:20<15:13:46, 3.41it/s] 50%|████▉ | 184533/371472 [3:49:20<16:33:45, 3.14it/s] 50%|████▉ | 184534/371472 [3:49:21<17:19:22, 3.00it/s] 50%|████▉ | 184535/371472 [3:49:21<16:29:04, 3.15it/s] 50%|████▉ | 184536/371472 [3:49:21<16:07:03, 3.22it/s] 50%|████▉ | 184537/371472 [3:49:22<16:50:14, 3.08it/s] 50%|████▉ | 184538/371472 [3:49:22<15:59:49, 3.25it/s] 50%|████▉ | 184539/371472 [3:49:22<16:25:27, 3.16it/s] 50%|████▉ | 184540/371472 [3:49:23<15:59:23, 3.25it/s] {'loss': 3.0782, 'learning_rate': 5.531416320110323e-07, 'epoch': 7.95} + 50%|████▉ | 184540/371472 [3:49:23<15:59:23, 3.25it/s] 50%|████▉ | 184541/371472 [3:49:23<16:01:35, 3.24it/s] 50%|████▉ | 184542/371472 [3:49:23<15:49:48, 3.28it/s] 50%|████▉ | 184543/371472 [3:49:24<15:41:48, 3.31it/s] 50%|████▉ | 184544/371472 [3:49:24<15:06:40, 3.44it/s] 50%|████▉ | 184545/371472 [3:49:24<15:03:19, 3.45it/s] 50%|████▉ | 184546/371472 [3:49:24<14:56:47, 3.47it/s] 50%|████▉ | 184547/371472 [3:49:25<15:05:03, 3.44it/s] 50%|████▉ | 184548/371472 [3:49:25<14:53:24, 3.49it/s] 50%|████▉ | 184549/371472 [3:49:25<15:00:56, 3.46it/s] 50%|████▉ | 184550/371472 [3:49:26<15:11:09, 3.42it/s] 50%|████▉ | 184551/371472 [3:49:26<16:28:01, 3.15it/s] 50%|████▉ | 184552/371472 [3:49:26<17:17:18, 3.00it/s] 50%|████▉ | 184553/371472 [3:49:27<16:43:32, 3.10it/s] 50%|████▉ | 184554/371472 [3:49:27<16:09:54, 3.21it/s] 50%|████▉ | 184555/371472 [3:49:27<15:50:24, 3.28it/s] 50%|████▉ | 184556/371472 [3:49:28<16:23:45, 3.17it/s] 50%|████▉ | 184557/371472 [3:49:28<15:43:16, 3.30it/s] 50%|████▉ | 184558/371472 [3:49:28<15:10:49, 3.42it/s] 50%|████▉ | 184559/371472 [3:49:28<15:08:46, 3.43it/s] 50%|████▉ | 184560/371472 [3:49:29<15:01:48, 3.45it/s] {'loss': 2.8258, 'learning_rate': 5.530931500355534e-07, 'epoch': 7.95} + 50%|████▉ | 184560/371472 [3:49:29<15:01:48, 3.45it/s] 50%|████▉ | 184561/371472 [3:49:29<15:00:34, 3.46it/s] 50%|████▉ | 184562/371472 [3:49:29<14:45:57, 3.52it/s] 50%|████▉ | 184563/371472 [3:49:29<14:46:50, 3.51it/s] 50%|████▉ | 184564/371472 [3:49:30<14:56:56, 3.47it/s] 50%|████▉ | 184565/371472 [3:49:30<15:57:45, 3.25it/s] 50%|████▉ | 184566/371472 [3:49:30<15:37:13, 3.32it/s] 50%|████▉ | 184567/371472 [3:49:31<15:27:22, 3.36it/s] 50%|████▉ | 184568/371472 [3:49:31<15:03:38, 3.45it/s] 50%|████▉ | 184569/371472 [3:49:31<14:59:32, 3.46it/s] 50%|████▉ | 184570/371472 [3:49:32<14:55:32, 3.48it/s] 50%|████▉ | 184571/371472 [3:49:32<14:52:59, 3.49it/s] 50%|████▉ | 184572/371472 [3:49:32<15:32:53, 3.34it/s] 50%|████▉ | 184573/371472 [3:49:32<15:04:46, 3.44it/s] 50%|████▉ | 184574/371472 [3:49:33<14:59:23, 3.46it/s] 50%|████▉ | 184575/371472 [3:49:33<14:58:55, 3.47it/s] 50%|████▉ | 184576/371472 [3:49:33<16:03:29, 3.23it/s] 50%|████▉ | 184577/371472 [3:49:34<15:37:24, 3.32it/s] 50%|████▉ | 184578/371472 [3:49:34<16:26:38, 3.16it/s] 50%|████▉ | 184579/371472 [3:49:34<15:54:19, 3.26it/s] 50%|████▉ | 184580/371472 [3:49:35<15:36:25, 3.33it/s] {'loss': 2.815, 'learning_rate': 5.530446680600746e-07, 'epoch': 7.95} + 50%|████▉ | 184580/371472 [3:49:35<15:36:25, 3.33it/s] 50%|████▉ | 184581/371472 [3:49:35<15:08:04, 3.43it/s] 50%|████▉ | 184582/371472 [3:49:35<14:52:58, 3.49it/s] 50%|████▉ | 184583/371472 [3:49:35<15:09:09, 3.43it/s] 50%|████▉ | 184584/371472 [3:49:36<15:14:28, 3.41it/s] 50%|████▉ | 184585/371472 [3:49:36<15:29:51, 3.35it/s] 50%|████▉ | 184586/371472 [3:49:36<15:19:35, 3.39it/s] 50%|████▉ | 184587/371472 [3:49:37<15:09:13, 3.43it/s] 50%|████▉ | 184588/371472 [3:49:37<15:31:29, 3.34it/s] 50%|████▉ | 184589/371472 [3:49:37<15:25:15, 3.37it/s] 50%|████▉ | 184590/371472 [3:49:38<15:38:14, 3.32it/s] 50%|████▉ | 184591/371472 [3:49:38<15:39:22, 3.32it/s] 50%|████▉ | 184592/371472 [3:49:38<16:17:52, 3.19it/s] 50%|████▉ | 184593/371472 [3:49:38<15:49:33, 3.28it/s] 50%|████▉ | 184594/371472 [3:49:39<15:29:06, 3.35it/s] 50%|████▉ | 184595/371472 [3:49:39<15:10:19, 3.42it/s] 50%|████▉ | 184596/371472 [3:49:39<15:23:55, 3.37it/s] 50%|████▉ | 184597/371472 [3:49:40<15:17:12, 3.40it/s] 50%|████▉ | 184598/371472 [3:49:40<15:20:39, 3.38it/s] 50%|████▉ | 184599/371472 [3:49:40<15:30:15, 3.35it/s] 50%|████▉ | 184600/371472 [3:49:41<15:25:38, 3.36it/s] {'loss': 2.9328, 'learning_rate': 5.529961860845957e-07, 'epoch': 7.95} + 50%|████▉ | 184600/371472 [3:49:41<15:25:38, 3.36it/s] 50%|████▉ | 184601/371472 [3:49:41<15:56:20, 3.26it/s] 50%|████▉ | 184602/371472 [3:49:41<15:52:21, 3.27it/s] 50%|████▉ | 184603/371472 [3:49:41<15:26:19, 3.36it/s] 50%|████▉ | 184604/371472 [3:49:42<15:25:02, 3.37it/s] 50%|████▉ | 184605/371472 [3:49:42<15:15:05, 3.40it/s] 50%|████▉ | 184606/371472 [3:49:42<15:30:50, 3.35it/s] 50%|████▉ | 184607/371472 [3:49:43<16:20:08, 3.18it/s] 50%|████▉ | 184608/371472 [3:49:43<16:14:35, 3.20it/s] 50%|████▉ | 184609/371472 [3:49:43<16:01:56, 3.24it/s] 50%|████▉ | 184610/371472 [3:49:44<15:53:27, 3.27it/s] 50%|████▉ | 184611/371472 [3:49:44<15:18:01, 3.39it/s] 50%|████▉ | 184612/371472 [3:49:44<15:19:54, 3.39it/s] 50%|████▉ | 184613/371472 [3:49:44<15:28:18, 3.35it/s] 50%|████▉ | 184614/371472 [3:49:45<15:42:01, 3.31it/s] 50%|████▉ | 184615/371472 [3:49:45<15:29:09, 3.35it/s] 50%|████▉ | 184616/371472 [3:49:45<15:04:54, 3.44it/s] 50%|████▉ | 184617/371472 [3:49:46<14:52:27, 3.49it/s] 50%|████▉ | 184618/371472 [3:49:46<14:56:18, 3.47it/s] 50%|████▉ | 184619/371472 [3:49:46<15:16:54, 3.40it/s] 50%|████▉ | 184620/371472 [3:49:47<15:44:19, 3.30it/s] {'loss': 2.7971, 'learning_rate': 5.529477041091168e-07, 'epoch': 7.95} + 50%|████▉ | 184620/371472 [3:49:47<15:44:19, 3.30it/s] 50%|████▉ | 184621/371472 [3:49:47<15:53:08, 3.27it/s] 50%|████▉ | 184622/371472 [3:49:47<15:49:31, 3.28it/s] 50%|████▉ | 184623/371472 [3:49:47<15:55:05, 3.26it/s] 50%|████▉ | 184624/371472 [3:49:48<15:34:25, 3.33it/s] 50%|████▉ | 184625/371472 [3:49:48<15:16:40, 3.40it/s] 50%|████▉ | 184626/371472 [3:49:48<15:08:11, 3.43it/s] 50%|████▉ | 184627/371472 [3:49:49<15:44:39, 3.30it/s] 50%|████▉ | 184628/371472 [3:49:49<15:16:47, 3.40it/s] 50%|████▉ | 184629/371472 [3:49:49<15:18:46, 3.39it/s] 50%|████▉ | 184630/371472 [3:49:49<15:24:05, 3.37it/s] 50%|████▉ | 184631/371472 [3:49:50<15:44:37, 3.30it/s] 50%|████▉ | 184632/371472 [3:49:50<15:29:44, 3.35it/s] 50%|████▉ | 184633/371472 [3:49:50<16:07:36, 3.22it/s] 50%|████▉ | 184634/371472 [3:49:51<16:19:23, 3.18it/s] 50%|████▉ | 184635/371472 [3:49:51<16:00:57, 3.24it/s] 50%|████▉ | 184636/371472 [3:49:51<15:24:06, 3.37it/s] 50%|████▉ | 184637/371472 [3:49:52<15:08:13, 3.43it/s] 50%|████▉ | 184638/371472 [3:49:52<15:11:53, 3.41it/s] 50%|████▉ | 184639/371472 [3:49:52<15:37:45, 3.32it/s] 50%|████▉ | 184640/371472 [3:49:53<15:23:35, 3.37it/s] {'loss': 2.8274, 'learning_rate': 5.528992221336378e-07, 'epoch': 7.95} + 50%|████▉ | 184640/371472 [3:49:53<15:23:35, 3.37it/s] 50%|████▉ | 184641/371472 [3:49:53<15:18:25, 3.39it/s] 50%|████▉ | 184642/371472 [3:49:53<15:57:14, 3.25it/s] 50%|████▉ | 184643/371472 [3:49:53<15:40:10, 3.31it/s] 50%|████▉ | 184644/371472 [3:49:54<15:59:29, 3.25it/s] 50%|████▉ | 184645/371472 [3:49:54<15:48:12, 3.28it/s] 50%|████▉ | 184646/371472 [3:49:54<15:37:08, 3.32it/s] 50%|████▉ | 184647/371472 [3:49:55<15:24:03, 3.37it/s] 50%|████▉ | 184648/371472 [3:49:55<15:59:17, 3.25it/s] 50%|████▉ | 184649/371472 [3:49:55<15:46:31, 3.29it/s] 50%|████▉ | 184650/371472 [3:49:56<15:28:20, 3.35it/s] 50%|████▉ | 184651/371472 [3:49:56<16:51:05, 3.08it/s] 50%|████▉ | 184652/371472 [3:49:56<16:27:44, 3.15it/s] 50%|████▉ | 184653/371472 [3:49:57<16:10:10, 3.21it/s] 50%|████▉ | 184654/371472 [3:49:57<16:24:35, 3.16it/s] 50%|████▉ | 184655/371472 [3:49:57<16:11:25, 3.21it/s] 50%|████▉ | 184656/371472 [3:49:57<16:15:35, 3.19it/s] 50%|████▉ | 184657/371472 [3:49:58<15:51:21, 3.27it/s] 50%|████▉ | 184658/371472 [3:49:58<15:28:30, 3.35it/s] 50%|████▉ | 184659/371472 [3:49:58<15:24:23, 3.37it/s] 50%|████▉ | 184660/371472 [3:49:59<15:28:47, 3.35it/s] {'loss': 2.8176, 'learning_rate': 5.52850740158159e-07, 'epoch': 7.95} + 50%|████▉ | 184660/371472 [3:49:59<15:28:47, 3.35it/s] 50%|████▉ | 184661/371472 [3:49:59<16:12:17, 3.20it/s] 50%|████▉ | 184662/371472 [3:49:59<15:50:11, 3.28it/s] 50%|████▉ | 184663/371472 [3:50:00<15:27:28, 3.36it/s] 50%|████▉ | 184664/371472 [3:50:00<15:37:23, 3.32it/s] 50%|████▉ | 184665/371472 [3:50:00<16:17:08, 3.19it/s] 50%|████▉ | 184666/371472 [3:50:00<15:45:40, 3.29it/s] 50%|████▉ | 184667/371472 [3:50:01<15:56:02, 3.26it/s] 50%|████▉ | 184668/371472 [3:50:01<15:34:29, 3.33it/s] 50%|████▉ | 184669/371472 [3:50:01<15:41:32, 3.31it/s] 50%|████▉ | 184670/371472 [3:50:02<16:24:40, 3.16it/s] 50%|████▉ | 184671/371472 [3:50:02<15:37:04, 3.32it/s] 50%|████▉ | 184672/371472 [3:50:02<15:13:45, 3.41it/s] 50%|████▉ | 184673/371472 [3:50:03<15:00:03, 3.46it/s] 50%|████▉ | 184674/371472 [3:50:03<15:46:18, 3.29it/s] 50%|████▉ | 184675/371472 [3:50:03<15:36:17, 3.33it/s] 50%|████▉ | 184676/371472 [3:50:04<15:55:35, 3.26it/s] 50%|████▉ | 184677/371472 [3:50:04<15:22:38, 3.37it/s] 50%|████▉ | 184678/371472 [3:50:04<14:58:53, 3.46it/s] 50%|████▉ | 184679/371472 [3:50:04<14:53:56, 3.48it/s] 50%|████▉ | 184680/371472 [3:50:05<15:06:29, 3.43it/s] {'loss': 3.1136, 'learning_rate': 5.528022581826801e-07, 'epoch': 7.95} + 50%|████▉ | 184680/371472 [3:50:05<15:06:29, 3.43it/s] 50%|████▉ | 184681/371472 [3:50:05<15:08:33, 3.43it/s] 50%|████▉ | 184682/371472 [3:50:05<15:09:06, 3.42it/s] 50%|████▉ | 184683/371472 [3:50:05<14:51:13, 3.49it/s] 50%|████▉ | 184684/371472 [3:50:06<14:50:01, 3.50it/s] 50%|████▉ | 184685/371472 [3:50:06<15:04:32, 3.44it/s] 50%|████▉ | 184686/371472 [3:50:06<14:55:23, 3.48it/s] 50%|████▉ | 184687/371472 [3:50:07<14:37:15, 3.55it/s] 50%|████▉ | 184688/371472 [3:50:07<15:08:20, 3.43it/s] 50%|████▉ | 184689/371472 [3:50:07<14:52:44, 3.49it/s] 50%|████▉ | 184690/371472 [3:50:08<15:02:27, 3.45it/s] 50%|████▉ | 184691/371472 [3:50:08<15:04:34, 3.44it/s] 50%|████▉ | 184692/371472 [3:50:08<14:35:33, 3.56it/s] 50%|████▉ | 184693/371472 [3:50:08<14:21:58, 3.61it/s] 50%|████▉ | 184694/371472 [3:50:09<14:45:05, 3.52it/s] 50%|████▉ | 184695/371472 [3:50:09<15:33:28, 3.33it/s] 50%|████▉ | 184696/371472 [3:50:09<15:19:25, 3.39it/s] 50%|████▉ | 184697/371472 [3:50:10<15:14:05, 3.41it/s] 50%|████▉ | 184698/371472 [3:50:10<15:09:24, 3.42it/s] 50%|████▉ | 184699/371472 [3:50:10<15:08:12, 3.43it/s] 50%|████▉ | 184700/371472 [3:50:10<15:49:48, 3.28it/s] {'loss': 2.9203, 'learning_rate': 5.527537762072012e-07, 'epoch': 7.96} + 50%|████▉ | 184700/371472 [3:50:10<15:49:48, 3.28it/s] 50%|████▉ | 184701/371472 [3:50:11<15:38:17, 3.32it/s] 50%|████▉ | 184702/371472 [3:50:11<15:26:56, 3.36it/s] 50%|████▉ | 184703/371472 [3:50:11<15:35:25, 3.33it/s] 50%|████▉ | 184704/371472 [3:50:12<15:51:54, 3.27it/s] 50%|████▉ | 184705/371472 [3:50:12<15:36:05, 3.33it/s] 50%|████▉ | 184706/371472 [3:50:12<17:07:07, 3.03it/s] 50%|████▉ | 184707/371472 [3:50:13<17:40:28, 2.94it/s] 50%|████▉ | 184708/371472 [3:50:13<17:42:34, 2.93it/s] 50%|████▉ | 184709/371472 [3:50:13<18:04:40, 2.87it/s] 50%|████▉ | 184710/371472 [3:50:14<17:24:38, 2.98it/s] 50%|████▉ | 184711/371472 [3:50:14<16:42:49, 3.10it/s] 50%|████▉ | 184712/371472 [3:50:14<16:08:17, 3.21it/s] 50%|████▉ | 184713/371472 [3:50:15<15:39:21, 3.31it/s] 50%|████▉ | 184714/371472 [3:50:15<15:29:07, 3.35it/s] 50%|████▉ | 184715/371472 [3:50:15<15:24:25, 3.37it/s] 50%|████▉ | 184716/371472 [3:50:15<15:14:17, 3.40it/s] 50%|████▉ | 184717/371472 [3:50:16<14:51:09, 3.49it/s] 50%|████▉ | 184718/371472 [3:50:16<14:52:59, 3.49it/s] 50%|████▉ | 184719/371472 [3:50:16<15:00:48, 3.46it/s] 50%|████▉ | 184720/371472 [3:50:17<15:08:33, 3.43it/s] {'loss': 2.7676, 'learning_rate': 5.527052942317223e-07, 'epoch': 7.96} + 50%|████▉ | 184720/371472 [3:50:17<15:08:33, 3.43it/s] 50%|████▉ | 184721/371472 [3:50:17<15:05:22, 3.44it/s] 50%|████▉ | 184722/371472 [3:50:17<15:21:00, 3.38it/s] 50%|████▉ | 184723/371472 [3:50:18<15:22:14, 3.37it/s] 50%|████▉ | 184724/371472 [3:50:18<15:59:13, 3.24it/s] 50%|████▉ | 184725/371472 [3:50:18<15:44:26, 3.30it/s] 50%|████▉ | 184726/371472 [3:50:18<15:30:55, 3.34it/s] 50%|████▉ | 184727/371472 [3:50:19<15:46:06, 3.29it/s] 50%|████▉ | 184728/371472 [3:50:19<15:34:16, 3.33it/s] 50%|████▉ | 184729/371472 [3:50:19<15:25:41, 3.36it/s] 50%|████▉ | 184730/371472 [3:50:20<15:27:21, 3.36it/s] 50%|████▉ | 184731/371472 [3:50:20<15:19:56, 3.38it/s] 50%|████▉ | 184732/371472 [3:50:20<15:31:03, 3.34it/s] 50%|████▉ | 184733/371472 [3:50:20<15:06:51, 3.43it/s] 50%|████▉ | 184734/371472 [3:50:21<14:58:17, 3.46it/s] 50%|████▉ | 184735/371472 [3:50:21<15:23:18, 3.37it/s] 50%|████▉ | 184736/371472 [3:50:21<15:17:41, 3.39it/s] 50%|████▉ | 184737/371472 [3:50:22<14:54:43, 3.48it/s] 50%|████▉ | 184738/371472 [3:50:22<15:12:00, 3.41it/s] 50%|████▉ | 184739/371472 [3:50:22<15:39:39, 3.31it/s] 50%|████▉ | 184740/371472 [3:50:23<15:13:06, 3.41it/s] {'loss': 2.9574, 'learning_rate': 5.526568122562434e-07, 'epoch': 7.96} + 50%|████▉ | 184740/371472 [3:50:23<15:13:06, 3.41it/s] 50%|████▉ | 184741/371472 [3:50:23<15:26:12, 3.36it/s] 50%|████▉ | 184742/371472 [3:50:23<15:30:11, 3.35it/s] 50%|████▉ | 184743/371472 [3:50:23<15:49:26, 3.28it/s] 50%|████▉ | 184744/371472 [3:50:24<15:31:02, 3.34it/s] 50%|████▉ | 184745/371472 [3:50:24<16:07:49, 3.22it/s] 50%|████▉ | 184746/371472 [3:50:24<15:56:57, 3.25it/s] 50%|████▉ | 184747/371472 [3:50:25<15:40:23, 3.31it/s] 50%|████▉ | 184748/371472 [3:50:25<15:19:27, 3.38it/s] 50%|████▉ | 184749/371472 [3:50:25<15:13:56, 3.41it/s] 50%|████▉ | 184750/371472 [3:50:26<15:30:08, 3.35it/s] 50%|████▉ | 184751/371472 [3:50:26<15:28:46, 3.35it/s] 50%|████▉ | 184752/371472 [3:50:26<15:05:07, 3.44it/s] 50%|████▉ | 184753/371472 [3:50:27<17:06:41, 3.03it/s] 50%|████▉ | 184754/371472 [3:50:27<16:08:35, 3.21it/s] 50%|████▉ | 184755/371472 [3:50:27<15:45:39, 3.29it/s] 50%|████▉ | 184756/371472 [3:50:27<15:26:34, 3.36it/s] 50%|████▉ | 184757/371472 [3:50:28<15:06:31, 3.43it/s] 50%|████▉ | 184758/371472 [3:50:28<15:30:57, 3.34it/s] 50%|████▉ | 184759/371472 [3:50:28<15:11:02, 3.42it/s] 50%|████▉ | 184760/371472 [3:50:29<15:24:30, 3.37it/s] {'loss': 2.8543, 'learning_rate': 5.526083302807645e-07, 'epoch': 7.96} + 50%|████▉ | 184760/371472 [3:50:29<15:24:30, 3.37it/s] 50%|████▉ | 184761/371472 [3:50:29<15:20:53, 3.38it/s] 50%|████▉ | 184762/371472 [3:50:29<15:44:56, 3.29it/s] 50%|████▉ | 184763/371472 [3:50:30<16:08:33, 3.21it/s] 50%|████▉ | 184764/371472 [3:50:30<16:00:06, 3.24it/s] 50%|████▉ | 184765/371472 [3:50:30<16:00:09, 3.24it/s] 50%|████▉ | 184766/371472 [3:50:30<15:44:54, 3.29it/s] 50%|█��██▉ | 184767/371472 [3:50:31<15:34:30, 3.33it/s] 50%|████▉ | 184768/371472 [3:50:31<15:00:42, 3.45it/s] 50%|████▉ | 184769/371472 [3:50:31<15:11:30, 3.41it/s] 50%|████▉ | 184770/371472 [3:50:32<15:09:57, 3.42it/s] 50%|████▉ | 184771/371472 [3:50:32<14:49:07, 3.50it/s] 50%|████▉ | 184772/371472 [3:50:32<15:13:39, 3.41it/s] 50%|████▉ | 184773/371472 [3:50:33<17:18:34, 3.00it/s] 50%|████▉ | 184774/371472 [3:50:33<16:50:42, 3.08it/s] 50%|████▉ | 184775/371472 [3:50:33<16:19:59, 3.18it/s] 50%|████▉ | 184776/371472 [3:50:33<16:01:15, 3.24it/s] 50%|████▉ | 184777/371472 [3:50:34<15:28:36, 3.35it/s] 50%|████▉ | 184778/371472 [3:50:34<16:47:39, 3.09it/s] 50%|████▉ | 184779/371472 [3:50:34<15:58:34, 3.25it/s] 50%|████▉ | 184780/371472 [3:50:35<16:37:31, 3.12it/s] {'loss': 2.7526, 'learning_rate': 5.525598483052855e-07, 'epoch': 7.96} + 50%|████▉ | 184780/371472 [3:50:35<16:37:31, 3.12it/s] 50%|████▉ | 184781/371472 [3:50:35<16:22:42, 3.17it/s] 50%|████▉ | 184782/371472 [3:50:35<15:53:14, 3.26it/s] 50%|████▉ | 184783/371472 [3:50:36<15:33:53, 3.33it/s] 50%|████▉ | 184784/371472 [3:50:36<15:29:41, 3.35it/s] 50%|████▉ | 184785/371472 [3:50:36<15:36:25, 3.32it/s] 50%|████▉ | 184786/371472 [3:50:37<15:22:21, 3.37it/s] 50%|████▉ | 184787/371472 [3:50:37<15:44:59, 3.29it/s] 50%|████▉ | 184788/371472 [3:50:37<15:10:28, 3.42it/s] 50%|████▉ | 184789/371472 [3:50:37<15:23:07, 3.37it/s] 50%|████▉ | 184790/371472 [3:50:38<15:43:29, 3.30it/s] 50%|████▉ | 184791/371472 [3:50:38<15:56:21, 3.25it/s] 50%|████▉ | 184792/371472 [3:50:38<17:00:40, 3.05it/s] 50%|████▉ | 184793/371472 [3:50:39<16:11:19, 3.20it/s] 50%|████▉ | 184794/371472 [3:50:39<15:53:57, 3.26it/s] 50%|████▉ | 184795/371472 [3:50:39<17:18:00, 3.00it/s] 50%|████▉ | 184796/371472 [3:50:40<16:42:21, 3.10it/s] 50%|████▉ | 184797/371472 [3:50:40<16:21:57, 3.17it/s] 50%|████▉ | 184798/371472 [3:50:40<16:09:25, 3.21it/s] 50%|████▉ | 184799/371472 [3:50:41<16:18:40, 3.18it/s] 50%|████▉ | 184800/371472 [3:50:41<16:03:43, 3.23it/s] {'loss': 2.7772, 'learning_rate': 5.525113663298067e-07, 'epoch': 7.96} + 50%|████▉ | 184800/371472 [3:50:41<16:03:43, 3.23it/s] 50%|████▉ | 184801/371472 [3:50:41<16:18:20, 3.18it/s] 50%|████▉ | 184802/371472 [3:50:42<15:47:44, 3.28it/s] 50%|████▉ | 184803/371472 [3:50:42<15:25:46, 3.36it/s] 50%|████▉ | 184804/371472 [3:50:42<14:52:10, 3.49it/s] 50%|████▉ | 184805/371472 [3:50:42<15:23:37, 3.37it/s] 50%|████▉ | 184806/371472 [3:50:43<15:29:04, 3.35it/s] 50%|████▉ | 184807/371472 [3:50:43<15:03:34, 3.44it/s] 50%|████▉ | 184808/371472 [3:50:43<15:02:25, 3.45it/s] 50%|████▉ | 184809/371472 [3:50:44<17:02:20, 3.04it/s] 50%|████▉ | 184810/371472 [3:50:44<16:43:52, 3.10it/s] 50%|████▉ | 184811/371472 [3:50:44<16:15:02, 3.19it/s] 50%|████▉ | 184812/371472 [3:50:45<15:59:56, 3.24it/s] 50%|████▉ | 184813/371472 [3:50:45<16:02:30, 3.23it/s] 50%|████▉ | 184814/371472 [3:50:45<15:40:34, 3.31it/s] 50%|████▉ | 184815/371472 [3:50:45<15:25:14, 3.36it/s] 50%|████▉ | 184816/371472 [3:50:46<15:12:20, 3.41it/s] 50%|████▉ | 184817/371472 [3:50:46<15:27:53, 3.35it/s] 50%|████▉ | 184818/371472 [3:50:46<15:13:55, 3.40it/s] 50%|████▉ | 184819/371472 [3:50:47<15:09:53, 3.42it/s] 50%|████▉ | 184820/371472 [3:50:47<15:10:03, 3.42it/s] {'loss': 2.8461, 'learning_rate': 5.524628843543278e-07, 'epoch': 7.96} + 50%|████▉ | 184820/371472 [3:50:47<15:10:03, 3.42it/s] 50%|████▉ | 184821/371472 [3:50:47<15:10:57, 3.41it/s] 50%|████▉ | 184822/371472 [3:50:48<15:43:58, 3.30it/s] 50%|████▉ | 184823/371472 [3:50:48<15:40:45, 3.31it/s] 50%|████▉ | 184824/371472 [3:50:48<15:17:46, 3.39it/s] 50%|████▉ | 184825/371472 [3:50:48<15:09:42, 3.42it/s] 50%|████▉ | 184826/371472 [3:50:49<14:56:41, 3.47it/s] 50%|████▉ | 184827/371472 [3:50:49<14:59:17, 3.46it/s] 50%|████▉ | 184828/371472 [3:50:49<15:27:34, 3.35it/s] 50%|████▉ | 184829/371472 [3:50:50<16:12:23, 3.20it/s] 50%|████▉ | 184830/371472 [3:50:50<15:46:24, 3.29it/s] 50%|████▉ | 184831/371472 [3:50:50<16:13:53, 3.19it/s] 50%|████▉ | 184832/371472 [3:50:51<17:00:32, 3.05it/s] 50%|████▉ | 184833/371472 [3:50:51<16:15:12, 3.19it/s] 50%|████▉ | 184834/371472 [3:50:51<15:55:29, 3.26it/s] 50%|████▉ | 184835/371472 [3:50:51<15:34:47, 3.33it/s] 50%|████▉ | 184836/371472 [3:50:52<15:26:59, 3.36it/s] 50%|████▉ | 184837/371472 [3:50:52<15:30:58, 3.34it/s] 50%|████▉ | 184838/371472 [3:50:52<15:49:12, 3.28it/s] 50%|████▉ | 184839/371472 [3:50:53<15:27:28, 3.35it/s] 50%|████▉ | 184840/371472 [3:50:53<15:12:15, 3.41it/s] {'loss': 2.8869, 'learning_rate': 5.524144023788489e-07, 'epoch': 7.96} + 50%|████▉ | 184840/371472 [3:50:53<15:12:15, 3.41it/s] 50%|████▉ | 184841/371472 [3:50:53<15:29:17, 3.35it/s] 50%|████▉ | 184842/371472 [3:50:54<15:14:19, 3.40it/s] 50%|████▉ | 184843/371472 [3:50:54<15:06:25, 3.43it/s] 50%|████▉ | 184844/371472 [3:50:54<15:18:26, 3.39it/s] 50%|████▉ | 184845/371472 [3:50:54<16:17:36, 3.18it/s] 50%|████▉ | 184846/371472 [3:50:55<15:50:13, 3.27it/s] 50%|████▉ | 184847/371472 [3:50:55<16:25:05, 3.16it/s] 50%|████▉ | 184848/371472 [3:50:55<16:01:31, 3.23it/s] 50%|████▉ | 184849/371472 [3:50:56<15:44:26, 3.29it/s] 50%|████▉ | 184850/371472 [3:50:56<15:36:50, 3.32it/s] 50%|████▉ | 184851/371472 [3:50:56<15:45:00, 3.29it/s] 50%|████▉ | 184852/371472 [3:50:57<15:32:58, 3.33it/s] 50%|████▉ | 184853/371472 [3:50:57<15:09:28, 3.42it/s] 50%|████▉ | 184854/371472 [3:50:57<14:51:10, 3.49it/s] 50%|████▉ | 184855/371472 [3:50:57<15:12:29, 3.41it/s] 50%|████▉ | 184856/371472 [3:50:58<15:12:17, 3.41it/s] 50%|████▉ | 184857/371472 [3:50:58<15:33:54, 3.33it/s] 50%|████▉ | 184858/371472 [3:50:58<15:17:15, 3.39it/s] 50%|████▉ | 184859/371472 [3:50:59<15:56:16, 3.25it/s] 50%|████▉ | 184860/371472 [3:50:59<15:31:24, 3.34it/s] {'loss': 2.9518, 'learning_rate': 5.5236592040337e-07, 'epoch': 7.96} + 50%|████▉ | 184860/371472 [3:50:59<15:31:24, 3.34it/s] 50%|████▉ | 184861/371472 [3:50:59<16:16:11, 3.19it/s] 50%|████▉ | 184862/371472 [3:51:00<16:07:09, 3.22it/s] 50%|████▉ | 184863/371472 [3:51:00<15:48:00, 3.28it/s] 50%|████▉ | 184864/371472 [3:51:00<16:46:57, 3.09it/s] 50%|████▉ | 184865/371472 [3:51:01<16:38:56, 3.11it/s] 50%|████▉ | 184866/371472 [3:51:01<16:49:52, 3.08it/s] 50%|████▉ | 184867/371472 [3:51:01<16:09:27, 3.21it/s] 50%|████▉ | 184868/371472 [3:51:01<15:43:42, 3.30it/s] 50%|████▉ | 184869/371472 [3:51:02<15:37:33, 3.32it/s] 50%|████▉ | 184870/371472 [3:51:02<15:41:13, 3.30it/s] 50%|████▉ | 184871/371472 [3:51:02<15:23:56, 3.37it/s] 50%|████▉ | 184872/371472 [3:51:03<15:36:49, 3.32it/s] 50%|████▉ | 184873/371472 [3:51:03<15:28:59, 3.35it/s] 50%|████▉ | 184874/371472 [3:51:03<15:09:18, 3.42it/s] 50%|████▉ | 184875/371472 [3:51:04<15:02:28, 3.45it/s] 50%|████▉ | 184876/371472 [3:51:04<14:52:30, 3.48it/s] 50%|████▉ | 184877/371472 [3:51:04<14:49:17, 3.50it/s] 50%|████▉ | 184878/371472 [3:51:04<15:32:30, 3.34it/s] 50%|████▉ | 184879/371472 [3:51:05<15:14:18, 3.40it/s] 50%|████▉ | 184880/371472 [3:51:05<15:14:47, 3.40it/s] {'loss': 2.9137, 'learning_rate': 5.523174384278911e-07, 'epoch': 7.96} + 50%|████▉ | 184880/371472 [3:51:05<15:14:47, 3.40it/s] 50%|████▉ | 184881/371472 [3:51:05<15:08:08, 3.42it/s] 50%|████▉ | 184882/371472 [3:51:06<15:18:03, 3.39it/s] 50%|████▉ | 184883/371472 [3:51:06<14:54:49, 3.48it/s] 50%|████▉ | 184884/371472 [3:51:06<14:54:12, 3.48it/s] 50%|████▉ | 184885/371472 [3:51:06<15:03:58, 3.44it/s] 50%|████▉ | 184886/371472 [3:51:07<14:55:53, 3.47it/s] 50%|████▉ | 184887/371472 [3:51:07<15:28:40, 3.35it/s] 50%|████▉ | 184888/371472 [3:51:07<15:17:18, 3.39it/s] 50%|████▉ | 184889/371472 [3:51:08<15:23:08, 3.37it/s] 50%|████▉ | 184890/371472 [3:51:08<15:08:22, 3.42it/s] 50%|████▉ | 184891/371472 [3:51:08<15:10:12, 3.42it/s] 50%|████▉ | 184892/371472 [3:51:09<15:08:07, 3.42it/s] 50%|████▉ | 184893/371472 [3:51:09<15:04:12, 3.44it/s] 50%|████▉ | 184894/371472 [3:51:09<15:10:19, 3.42it/s] 50%|████▉ | 184895/371472 [3:51:09<15:08:16, 3.42it/s] 50%|████▉ | 184896/371472 [3:51:10<15:00:01, 3.46it/s] 50%|████▉ | 184897/371472 [3:51:10<14:56:10, 3.47it/s] 50%|████▉ | 184898/371472 [3:51:10<15:08:57, 3.42it/s] 50%|████▉ | 184899/371472 [3:51:11<15:06:08, 3.43it/s] 50%|████▉ | 184900/371472 [3:51:11<14:58:14, 3.46it/s] {'loss': 2.8664, 'learning_rate': 5.522689564524122e-07, 'epoch': 7.96} + 50%|████▉ | 184900/371472 [3:51:11<14:58:14, 3.46it/s] 50%|████▉ | 184901/371472 [3:51:11<14:49:54, 3.49it/s] 50%|████▉ | 184902/371472 [3:51:11<14:37:42, 3.54it/s] 50%|████▉ | 184903/371472 [3:51:12<14:47:18, 3.50it/s] 50%|████▉ | 184904/371472 [3:51:12<14:31:46, 3.57it/s] 50%|████▉ | 184905/371472 [3:51:12<14:45:52, 3.51it/s] 50%|████▉ | 184906/371472 [3:51:13<14:42:32, 3.52it/s] 50%|████▉ | 184907/371472 [3:51:13<15:11:14, 3.41it/s] 50%|████▉ | 184908/371472 [3:51:13<15:03:14, 3.44it/s] 50%|████▉ | 184909/371472 [3:51:13<14:37:05, 3.55it/s] 50%|████▉ | 184910/371472 [3:51:14<14:19:16, 3.62it/s] 50%|████▉ | 184911/371472 [3:51:14<14:13:50, 3.64it/s] 50%|████▉ | 184912/371472 [3:51:14<14:12:16, 3.65it/s] 50%|████▉ | 184913/371472 [3:51:14<14:28:21, 3.58it/s] 50%|████▉ | 184914/371472 [3:51:15<14:56:18, 3.47it/s] 50%|████▉ | 184915/371472 [3:51:15<16:04:09, 3.22it/s] 50%|████▉ | 184916/371472 [3:51:15<15:44:50, 3.29it/s] 50%|████▉ | 184917/371472 [3:51:16<16:11:05, 3.20it/s] 50%|████▉ | 184918/371472 [3:51:16<15:59:01, 3.24it/s] 50%|████▉ | 184919/371472 [3:51:16<15:58:28, 3.24it/s] 50%|████▉ | 184920/371472 [3:51:17<16:21:02, 3.17it/s] {'loss': 3.0343, 'learning_rate': 5.522204744769333e-07, 'epoch': 7.96} + 50%|████▉ | 184920/371472 [3:51:17<16:21:02, 3.17it/s] 50%|████▉ | 184921/371472 [3:51:17<16:01:44, 3.23it/s] 50%|████▉ | 184922/371472 [3:51:17<15:49:40, 3.27it/s] 50%|████▉ | 184923/371472 [3:51:18<16:08:20, 3.21it/s] 50%|████▉ | 184924/371472 [3:51:18<15:35:13, 3.32it/s] 50%|████▉ | 184925/371472 [3:51:18<15:12:39, 3.41it/s] 50%|████▉ | 184926/371472 [3:51:18<15:06:26, 3.43it/s] 50%|████▉ | 184927/371472 [3:51:19<14:59:03, 3.46it/s] 50%|████▉ | 184928/371472 [3:51:19<14:43:41, 3.52it/s] 50%|████▉ | 184929/371472 [3:51:19<15:21:41, 3.37it/s] 50%|████▉ | 184930/371472 [3:51:20<15:31:29, 3.34it/s] 50%|████▉ | 184931/371472 [3:51:20<15:04:50, 3.44it/s] 50%|████▉ | 184932/371472 [3:51:20<15:10:57, 3.41it/s] 50%|████▉ | 184933/371472 [3:51:21<16:52:06, 3.07it/s] 50%|████▉ | 184934/371472 [3:51:21<17:06:44, 3.03it/s] 50%|████▉ | 184935/371472 [3:51:21<17:22:58, 2.98it/s] 50%|████▉ | 184936/371472 [3:51:22<16:52:35, 3.07it/s] 50%|████▉ | 184937/371472 [3:51:22<16:09:03, 3.21it/s] 50%|████▉ | 184938/371472 [3:51:22<15:46:01, 3.29it/s] 50%|████▉ | 184939/371472 [3:51:22<15:55:45, 3.25it/s] 50%|████▉ | 184940/371472 [3:51:23<16:52:38, 3.07it/s] {'loss': 2.8583, 'learning_rate': 5.521719925014544e-07, 'epoch': 7.97} + 50%|████▉ | 184940/371472 [3:51:23<16:52:38, 3.07it/s] 50%|████▉ | 184941/371472 [3:51:23<16:03:49, 3.23it/s] 50%|████▉ | 184942/371472 [3:51:23<15:54:06, 3.26it/s] 50%|████▉ | 184943/371472 [3:51:24<15:20:29, 3.38it/s] 50%|████▉ | 184944/371472 [3:51:24<15:13:49, 3.40it/s] 50%|████▉ | 184945/371472 [3:51:24<15:41:59, 3.30it/s] 50%|████▉ | 184946/371472 [3:51:25<15:57:58, 3.25it/s] 50%|████▉ | 184947/371472 [3:51:25<17:16:37, 3.00it/s] 50%|████▉ | 184948/371472 [3:51:25<16:42:54, 3.10it/s] 50%|████▉ | 184949/371472 [3:51:26<17:09:14, 3.02it/s] 50%|████▉ | 184950/371472 [3:51:26<16:35:06, 3.12it/s] 50%|████▉ | 184951/371472 [3:51:26<16:04:04, 3.22it/s] 50%|████▉ | 184952/371472 [3:51:27<16:06:23, 3.22it/s] 50%|████▉ | 184953/371472 [3:51:27<15:26:34, 3.36it/s] 50%|████▉ | 184954/371472 [3:51:27<16:08:35, 3.21it/s] 50%|████▉ | 184955/371472 [3:51:28<16:39:59, 3.11it/s] 50%|████▉ | 184956/371472 [3:51:28<16:15:40, 3.19it/s] 50%|████▉ | 184957/371472 [3:51:28<16:04:00, 3.22it/s] 50%|████▉ | 184958/371472 [3:51:28<15:28:31, 3.35it/s] 50%|████▉ | 184959/371472 [3:51:29<15:51:00, 3.27it/s] 50%|████▉ | 184960/371472 [3:51:29<15:34:05, 3.33it/s] {'loss': 2.7853, 'learning_rate': 5.521235105259756e-07, 'epoch': 7.97} + 50%|████▉ | 184960/371472 [3:51:29<15:34:05, 3.33it/s] 50%|████▉ | 184961/371472 [3:51:29<15:37:23, 3.32it/s] 50%|████▉ | 184962/371472 [3:51:30<15:17:34, 3.39it/s] 50%|████▉ | 184963/371472 [3:51:30<15:01:06, 3.45it/s] 50%|████▉ | 184964/371472 [3:51:30<15:13:21, 3.40it/s] 50%|████▉ | 184965/371472 [3:51:30<15:05:55, 3.43it/s] 50%|████▉ | 184966/371472 [3:51:31<15:13:57, 3.40it/s] 50%|████▉ | 184967/371472 [3:51:31<15:00:04, 3.45it/s] 50%|████▉ | 184968/371472 [3:51:31<14:53:50, 3.48it/s] 50%|████▉ | 184969/371472 [3:51:32<14:59:10, 3.46it/s] 50%|████▉ | 184970/371472 [3:51:32<15:02:01, 3.45it/s] 50%|████▉ | 184971/371472 [3:51:32<15:18:11, 3.39it/s] 50%|████▉ | 184972/371472 [3:51:32<14:57:44, 3.46it/s] 50%|████▉ | 184973/371472 [3:51:33<14:56:29, 3.47it/s] 50%|████▉ | 184974/371472 [3:51:33<15:25:02, 3.36it/s] 50%|████▉ | 184975/371472 [3:51:33<15:43:22, 3.29it/s] 50%|████▉ | 184976/371472 [3:51:34<15:29:28, 3.34it/s] 50%|████▉ | 184977/371472 [3:51:34<15:47:40, 3.28it/s] 50%|████▉ | 184978/371472 [3:51:34<17:01:03, 3.04it/s] 50%|████▉ | 184979/371472 [3:51:35<16:09:36, 3.21it/s] 50%|████▉ | 184980/371472 [3:51:35<15:41:19, 3.30it/s] {'loss': 2.9354, 'learning_rate': 5.520750285504967e-07, 'epoch': 7.97} + 50%|████▉ | 184980/371472 [3:51:35<15:41:19, 3.30it/s] 50%|████▉ | 184981/371472 [3:51:35<15:28:41, 3.35it/s] 50%|████▉ | 184982/371472 [3:51:36<15:20:37, 3.38it/s] 50%|████▉ | 184983/371472 [3:51:36<14:52:53, 3.48it/s] 50%|████▉ | 184984/371472 [3:51:36<14:43:24, 3.52it/s] 50%|████▉ | 184985/371472 [3:51:36<14:45:15, 3.51it/s] 50%|████▉ | 184986/371472 [3:51:37<15:00:24, 3.45it/s] 50%|████▉ | 184987/371472 [3:51:37<16:12:44, 3.20it/s] 50%|████▉ | 184988/371472 [3:51:37<16:34:13, 3.13it/s] 50%|████▉ | 184989/371472 [3:51:38<16:21:13, 3.17it/s] 50%|████▉ | 184990/371472 [3:51:38<16:07:36, 3.21it/s] 50%|████▉ | 184991/371472 [3:51:38<15:41:22, 3.30it/s] 50%|████▉ | 184992/371472 [3:51:39<15:25:00, 3.36it/s] 50%|████▉ | 184993/371472 [3:51:39<15:27:33, 3.35it/s] 50%|████▉ | 184994/371472 [3:51:39<15:23:45, 3.36it/s] 50%|████▉ | 184995/371472 [3:51:39<15:16:37, 3.39it/s] 50%|████▉ | 184996/371472 [3:51:40<14:46:02, 3.51it/s] 50%|████▉ | 184997/371472 [3:51:40<14:49:35, 3.49it/s] 50%|████▉ | 184998/371472 [3:51:40<15:20:45, 3.38it/s] 50%|████▉ | 184999/371472 [3:51:41<14:56:01, 3.47it/s] 50%|████▉ | 185000/371472 [3:51:41<15:46:05, 3.28it/s] {'loss': 2.8865, 'learning_rate': 5.520265465750178e-07, 'epoch': 7.97} + 50%|████▉ | 185000/371472 [3:51:41<15:46:05, 3.28it/s] 50%|████▉ | 185001/371472 [3:51:41<15:20:06, 3.38it/s] 50%|████▉ | 185002/371472 [3:51:41<14:59:25, 3.46it/s] 50%|████▉ | 185003/371472 [3:51:42<15:11:42, 3.41it/s] 50%|████▉ | 185004/371472 [3:51:42<15:09:42, 3.42it/s] 50%|████▉ | 185005/371472 [3:51:42<15:09:53, 3.42it/s] 50%|████▉ | 185006/371472 [3:51:43<15:00:32, 3.45it/s] 50%|████▉ | 185007/371472 [3:51:43<15:19:53, 3.38it/s] 50%|████▉ | 185008/371472 [3:51:43<15:05:18, 3.43it/s] 50%|████▉ | 185009/371472 [3:51:44<15:52:32, 3.26it/s] 50%|████▉ | 185010/371472 [3:51:44<16:01:35, 3.23it/s] 50%|████▉ | 185011/371472 [3:51:44<16:25:16, 3.15it/s] 50%|████▉ | 185012/371472 [3:51:45<16:41:50, 3.10it/s] 50%|████▉ | 185013/371472 [3:51:45<16:24:03, 3.16it/s] 50%|████▉ | 185014/371472 [3:51:45<15:50:42, 3.27it/s] 50%|████▉ | 185015/371472 [3:51:45<16:21:55, 3.16it/s] 50%|████▉ | 185016/371472 [3:51:46<16:06:55, 3.21it/s] 50%|████▉ | 185017/371472 [3:51:46<15:42:30, 3.30it/s] 50%|████▉ | 185018/371472 [3:51:46<15:36:11, 3.32it/s] 50%|████▉ | 185019/371472 [3:51:47<16:05:59, 3.22it/s] 50%|████▉ | 185020/371472 [3:51:47<16:03:13, 3.23it/s] {'loss': 2.6633, 'learning_rate': 5.519780645995389e-07, 'epoch': 7.97} + 50%|████▉ | 185020/371472 [3:51:47<16:03:13, 3.23it/s] 50%|████▉ | 185021/371472 [3:51:47<16:10:36, 3.20it/s] 50%|████▉ | 185022/371472 [3:51:48<16:18:05, 3.18it/s] 50%|████▉ | 185023/371472 [3:51:48<16:23:35, 3.16it/s] 50%|████▉ | 185024/371472 [3:51:48<15:55:15, 3.25it/s] 50%|████▉ | 185025/371472 [3:51:49<15:51:21, 3.27it/s] 50%|████▉ | 185026/371472 [3:51:49<15:54:59, 3.25it/s] 50%|████▉ | 185027/371472 [3:51:49<15:56:11, 3.25it/s] 50%|████▉ | 185028/371472 [3:51:49<15:46:49, 3.28it/s] 50%|████▉ | 185029/371472 [3:51:50<15:47:20, 3.28it/s] 50%|████▉ | 185030/371472 [3:51:50<15:44:19, 3.29it/s] 50%|████▉ | 185031/371472 [3:51:50<15:19:41, 3.38it/s] 50%|████▉ | 185032/371472 [3:51:51<15:16:06, 3.39it/s] 50%|████▉ | 185033/371472 [3:51:51<15:30:24, 3.34it/s] 50%|████▉ | 185034/371472 [3:51:51<15:04:03, 3.44it/s] 50%|████▉ | 185035/371472 [3:51:52<14:58:28, 3.46it/s] 50%|████▉ | 185036/371472 [3:51:52<15:44:26, 3.29it/s] 50%|████▉ | 185037/371472 [3:51:52<15:29:07, 3.34it/s] 50%|████▉ | 185038/371472 [3:51:52<14:58:22, 3.46it/s] 50%|████▉ | 185039/371472 [3:51:53<15:23:51, 3.36it/s] 50%|████▉ | 185040/371472 [3:51:53<15:36:36, 3.32it/s] {'loss': 2.8873, 'learning_rate': 5.5192958262406e-07, 'epoch': 7.97} + 50%|████▉ | 185040/371472 [3:51:53<15:36:36, 3.32it/s] 50%|████▉ | 185041/371472 [3:51:53<15:28:22, 3.35it/s] 50%|████▉ | 185042/371472 [3:51:54<15:06:42, 3.43it/s] 50%|████▉ | 185043/371472 [3:51:54<15:03:59, 3.44it/s] 50%|████▉ | 185044/371472 [3:51:54<14:40:28, 3.53it/s] 50%|████▉ | 185045/371472 [3:51:54<15:33:23, 3.33it/s] 50%|████▉ | 185046/371472 [3:51:55<15:37:05, 3.32it/s] 50%|████▉ | 185047/371472 [3:51:55<15:34:36, 3.32it/s] 50%|████▉ | 185048/371472 [3:51:55<15:54:48, 3.25it/s] 50%|████▉ | 185049/371472 [3:51:56<16:15:32, 3.18it/s] 50%|████▉ | 185050/371472 [3:51:56<16:05:17, 3.22it/s] 50%|████▉ | 185051/371472 [3:51:56<16:05:06, 3.22it/s] 50%|████▉ | 185052/371472 [3:51:57<15:45:23, 3.29it/s] 50%|████▉ | 185053/371472 [3:51:57<15:53:05, 3.26it/s] 50%|████▉ | 185054/371472 [3:51:57<16:06:23, 3.22it/s] 50%|████▉ | 185055/371472 [3:51:58<17:03:46, 3.03it/s] 50%|████▉ | 185056/371472 [3:51:58<16:37:55, 3.11it/s] 50%|████▉ | 185057/371472 [3:51:58<17:16:10, 3.00it/s] 50%|████▉ | 185058/371472 [3:51:59<17:14:19, 3.00it/s] 50%|████▉ | 185059/371472 [3:51:59<17:25:40, 2.97it/s] 50%|████▉ | 185060/371472 [3:51:59<16:41:17, 3.10it/s] {'loss': 2.9029, 'learning_rate': 5.518811006485811e-07, 'epoch': 7.97} + 50%|████▉ | 185060/371472 [3:51:59<16:41:17, 3.10it/s] 50%|████▉ | 185061/371472 [3:52:00<16:13:53, 3.19it/s] 50%|████▉ | 185062/371472 [3:52:00<16:50:21, 3.07it/s] 50%|████▉ | 185063/371472 [3:52:00<16:12:51, 3.19it/s] 50%|████▉ | 185064/371472 [3:52:00<15:47:59, 3.28it/s] 50%|████▉ | 185065/371472 [3:52:01<16:38:22, 3.11it/s] 50%|████▉ | 185066/371472 [3:52:01<16:44:32, 3.09it/s] 50%|████▉ | 185067/371472 [3:52:02<17:08:07, 3.02it/s] 50%|████▉ | 185068/371472 [3:52:02<16:24:38, 3.16it/s] 50%|████▉ | 185069/371472 [3:52:02<15:50:58, 3.27it/s] 50%|████▉ | 185070/371472 [3:52:02<15:42:12, 3.30it/s] 50%|████▉ | 185071/371472 [3:52:03<15:47:28, 3.28it/s] 50%|████▉ | 185072/371472 [3:52:03<15:13:46, 3.40it/s] 50%|████▉ | 185073/371472 [3:52:03<15:16:05, 3.39it/s] 50%|████▉ | 185074/371472 [3:52:04<15:39:54, 3.31it/s] 50%|████▉ | 185075/371472 [3:52:04<15:43:08, 3.29it/s] 50%|████▉ | 185076/371472 [3:52:04<15:36:20, 3.32it/s] 50%|████▉ | 185077/371472 [3:52:04<15:35:16, 3.32it/s] 50%|████▉ | 185078/371472 [3:52:05<16:35:26, 3.12it/s] 50%|████▉ | 185079/371472 [3:52:05<16:17:36, 3.18it/s] 50%|████▉ | 185080/371472 [3:52:06<16:51:27, 3.07it/s] {'loss': 2.666, 'learning_rate': 5.518326186731021e-07, 'epoch': 7.97} + 50%|████▉ | 185080/371472 [3:52:06<16:51:27, 3.07it/s] 50%|████▉ | 185081/371472 [3:52:06<16:59:09, 3.05it/s] 50%|████▉ | 185082/371472 [3:52:06<16:21:34, 3.16it/s] 50%|████▉ | 185083/371472 [3:52:06<16:06:55, 3.21it/s] 50%|████▉ | 185084/371472 [3:52:07<16:05:08, 3.22it/s] 50%|████▉ | 185085/371472 [3:52:07<16:39:08, 3.11it/s] 50%|████▉ | 185086/371472 [3:52:07<16:09:13, 3.21it/s] 50%|████▉ | 185087/371472 [3:52:08<16:44:47, 3.09it/s] 50%|████▉ | 185088/371472 [3:52:08<16:22:36, 3.16it/s] 50%|████▉ | 185089/371472 [3:52:08<15:55:03, 3.25it/s] 50%|████▉ | 185090/371472 [3:52:09<15:33:10, 3.33it/s] 50%|████▉ | 185091/371472 [3:52:09<15:31:29, 3.33it/s] 50%|████▉ | 185092/371472 [3:52:09<15:40:22, 3.30it/s] 50%|████▉ | 185093/371472 [3:52:10<15:45:09, 3.29it/s] 50%|████▉ | 185094/371472 [3:52:10<15:24:30, 3.36it/s] 50%|████▉ | 185095/371472 [3:52:10<14:50:55, 3.49it/s] 50%|████▉ | 185096/371472 [3:52:10<14:57:33, 3.46it/s] 50%|████▉ | 185097/371472 [3:52:11<14:44:53, 3.51it/s] 50%|████▉ | 185098/371472 [3:52:11<15:13:55, 3.40it/s] 50%|████▉ | 185099/371472 [3:52:11<15:24:06, 3.36it/s] 50%|████▉ | 185100/371472 [3:52:12<15:40:00, 3.30it/s] {'loss': 2.9847, 'learning_rate': 5.517841366976233e-07, 'epoch': 7.97} + 50%|████▉ | 185100/371472 [3:52:12<15:40:00, 3.30it/s] 50%|████▉ | 185101/371472 [3:52:12<15:55:59, 3.25it/s] 50%|████▉ | 185102/371472 [3:52:12<15:21:08, 3.37it/s] 50%|████▉ | 185103/371472 [3:52:12<15:17:41, 3.38it/s] 50%|████▉ | 185104/371472 [3:52:13<15:36:59, 3.32it/s] 50%|████▉ | 185105/371472 [3:52:13<16:55:32, 3.06it/s] 50%|████▉ | 185106/371472 [3:52:13<16:26:54, 3.15it/s] 50%|████▉ | 185107/371472 [3:52:14<16:33:40, 3.13it/s] 50%|████▉ | 185108/371472 [3:52:14<15:55:41, 3.25it/s] 50%|████▉ | 185109/371472 [3:52:14<16:13:26, 3.19it/s] 50%|████▉ | 185110/371472 [3:52:15<16:10:35, 3.20it/s] 50%|████▉ | 185111/371472 [3:52:15<17:56:14, 2.89it/s] 50%|████▉ | 185112/371472 [3:52:15<17:14:23, 3.00it/s] 50%|████▉ | 185113/371472 [3:52:16<17:04:01, 3.03it/s] 50%|████▉ | 185114/371472 [3:52:16<16:02:15, 3.23it/s] 50%|████▉ | 185115/371472 [3:52:16<16:25:27, 3.15it/s] 50%|████▉ | 185116/371472 [3:52:17<15:43:27, 3.29it/s] 50%|████▉ | 185117/371472 [3:52:17<16:13:48, 3.19it/s] 50%|████▉ | 185118/371472 [3:52:17<16:37:14, 3.11it/s] 50%|████▉ | 185119/371472 [3:52:18<16:42:55, 3.10it/s] 50%|████▉ | 185120/371472 [3:52:18<16:28:11, 3.14it/s] {'loss': 2.8482, 'learning_rate': 5.517356547221444e-07, 'epoch': 7.97} + 50%|████▉ | 185120/371472 [3:52:18<16:28:11, 3.14it/s] 50%|████▉ | 185121/371472 [3:52:18<16:53:13, 3.07it/s] 50%|████▉ | 185122/371472 [3:52:19<16:47:06, 3.08it/s] 50%|████▉ | 185123/371472 [3:52:19<16:25:57, 3.15it/s] 50%|████▉ | 185124/371472 [3:52:19<16:13:06, 3.19it/s] 50%|████▉ | 185125/371472 [3:52:20<16:14:55, 3.19it/s] 50%|████▉ | 185126/371472 [3:52:20<15:54:37, 3.25it/s] 50%|████▉ | 185127/371472 [3:52:20<16:14:29, 3.19it/s] 50%|████▉ | 185128/371472 [3:52:20<15:55:58, 3.25it/s] 50%|████▉ | 185129/371472 [3:52:21<15:44:34, 3.29it/s] 50%|████▉ | 185130/371472 [3:52:21<15:59:07, 3.24it/s] 50%|████▉ | 185131/371472 [3:52:21<15:55:40, 3.25it/s] 50%|████▉ | 185132/371472 [3:52:22<15:26:29, 3.35it/s] 50%|████▉ | 185133/371472 [3:52:22<15:54:31, 3.25it/s] 50%|████▉ | 185134/371472 [3:52:22<16:17:41, 3.18it/s] 50%|████▉ | 185135/371472 [3:52:23<17:10:32, 3.01it/s] 50%|████▉ | 185136/371472 [3:52:23<16:58:53, 3.05it/s] 50%|████▉ | 185137/371472 [3:52:23<16:25:41, 3.15it/s] 50%|████▉ | 185138/371472 [3:52:24<16:12:09, 3.19it/s] 50%|████▉ | 185139/371472 [3:52:24<16:00:26, 3.23it/s] 50%|████▉ | 185140/371472 [3:52:24<15:47:21, 3.28it/s] {'loss': 2.8324, 'learning_rate': 5.516871727466655e-07, 'epoch': 7.97} + 50%|████▉ | 185140/371472 [3:52:24<15:47:21, 3.28it/s] 50%|████▉ | 185141/371472 [3:52:24<15:35:48, 3.32it/s] 50%|████▉ | 185142/371472 [3:52:25<15:16:46, 3.39it/s] 50%|████▉ | 185143/371472 [3:52:25<14:46:27, 3.50it/s] 50%|████▉ | 185144/371472 [3:52:25<15:10:21, 3.41it/s] 50%|████▉ | 185145/371472 [3:52:26<14:50:19, 3.49it/s] 50%|████▉ | 185146/371472 [3:52:26<15:11:38, 3.41it/s] 50%|████▉ | 185147/371472 [3:52:26<15:16:23, 3.39it/s] 50%|████▉ | 185148/371472 [3:52:26<15:02:43, 3.44it/s] 50%|████▉ | 185149/371472 [3:52:27<15:44:52, 3.29it/s] 50%|████▉ | 185150/371472 [3:52:27<15:24:44, 3.36it/s] 50%|████▉ | 185151/371472 [3:52:27<15:01:45, 3.44it/s] 50%|████▉ | 185152/371472 [3:52:28<15:35:40, 3.32it/s] 50%|████▉ | 185153/371472 [3:52:28<16:24:25, 3.15it/s] 50%|████▉ | 185154/371472 [3:52:28<16:03:14, 3.22it/s] 50%|████▉ | 185155/371472 [3:52:29<16:01:39, 3.23it/s] 50%|████▉ | 185156/371472 [3:52:29<15:43:25, 3.29it/s] 50%|████▉ | 185157/371472 [3:52:29<15:25:54, 3.35it/s] 50%|████▉ | 185158/371472 [3:52:30<15:50:21, 3.27it/s] 50%|████▉ | 185159/371472 [3:52:30<16:00:35, 3.23it/s] 50%|████▉ | 185160/371472 [3:52:30<15:42:45, 3.29it/s] {'loss': 3.0191, 'learning_rate': 5.516386907711865e-07, 'epoch': 7.98} + 50%|████▉ | 185160/371472 [3:52:30<15:42:45, 3.29it/s] 50%|████▉ | 185161/371472 [3:52:30<15:39:13, 3.31it/s] 50%|████▉ | 185162/371472 [3:52:31<15:35:37, 3.32it/s] 50%|████▉ | 185163/371472 [3:52:31<16:02:57, 3.22it/s] 50%|████▉ | 185164/371472 [3:52:31<16:00:54, 3.23it/s] 50%|████▉ | 185165/371472 [3:52:32<17:14:55, 3.00it/s] 50%|████▉ | 185166/371472 [3:52:32<16:39:11, 3.11it/s] 50%|████▉ | 185167/371472 [3:52:32<16:34:30, 3.12it/s] 50%|████▉ | 185168/371472 [3:52:33<16:16:52, 3.18it/s] 50%|████▉ | 185169/371472 [3:52:33<16:08:50, 3.20it/s] 50%|████▉ | 185170/371472 [3:52:33<15:53:57, 3.25it/s] 50%|████▉ | 185171/371472 [3:52:34<15:53:36, 3.26it/s] 50%|████▉ | 185172/371472 [3:52:34<15:44:15, 3.29it/s] 50%|████▉ | 185173/371472 [3:52:34<16:26:12, 3.15it/s] 50%|████▉ | 185174/371472 [3:52:35<15:58:35, 3.24it/s] 50%|████▉ | 185175/371472 [3:52:35<16:27:34, 3.14it/s] 50%|████▉ | 185176/371472 [3:52:35<16:49:30, 3.08it/s] 50%|████▉ | 185177/371472 [3:52:36<16:24:58, 3.15it/s] 50%|████▉ | 185178/371472 [3:52:36<16:10:36, 3.20it/s] 50%|████▉ | 185179/371472 [3:52:36<16:09:36, 3.20it/s] 50%|████▉ | 185180/371472 [3:52:36<15:56:40, 3.25it/s] {'loss': 2.8666, 'learning_rate': 5.515902087957077e-07, 'epoch': 7.98} + 50%|████▉ | 185180/371472 [3:52:36<15:56:40, 3.25it/s] 50%|████▉ | 185181/371472 [3:52:37<16:01:38, 3.23it/s] 50%|████▉ | 185182/371472 [3:52:37<18:33:20, 2.79it/s] 50%|████▉ | 185183/371472 [3:52:37<17:27:21, 2.96it/s] 50%|████▉ | 185184/371472 [3:52:38<16:45:12, 3.09it/s] 50%|████▉ | 185185/371472 [3:52:38<16:15:13, 3.18it/s] 50%|████▉ | 185186/371472 [3:52:38<15:40:52, 3.30it/s] 50%|████▉ | 185187/371472 [3:52:39<15:17:29, 3.38it/s] 50%|████▉ | 185188/371472 [3:52:39<15:37:34, 3.31it/s] 50%|████▉ | 185189/371472 [3:52:39<15:38:56, 3.31it/s] 50%|████▉ | 185190/371472 [3:52:40<15:14:10, 3.40it/s] 50%|████▉ | 185191/371472 [3:52:40<14:59:25, 3.45it/s] 50%|████▉ | 185192/371472 [3:52:40<15:03:35, 3.44it/s] 50%|████▉ | 185193/371472 [3:52:40<15:13:26, 3.40it/s] 50%|████▉ | 185194/371472 [3:52:41<14:57:37, 3.46it/s] 50%|████▉ | 185195/371472 [3:52:41<15:44:56, 3.29it/s] 50%|████▉ | 185196/371472 [3:52:41<15:20:34, 3.37it/s] 50%|████▉ | 185197/371472 [3:52:42<15:29:37, 3.34it/s] 50%|████▉ | 185198/371472 [3:52:42<15:09:06, 3.41it/s] 50%|████▉ | 185199/371472 [3:52:42<15:29:49, 3.34it/s] 50%|████▉ | 185200/371472 [3:52:42<15:24:49, 3.36it/s] {'loss': 3.0354, 'learning_rate': 5.515417268202289e-07, 'epoch': 7.98} + 50%|████▉ | 185200/371472 [3:52:42<15:24:49, 3.36it/s] 50%|████▉ | 185201/371472 [3:52:43<15:32:09, 3.33it/s] 50%|████▉ | 185202/371472 [3:52:43<17:04:14, 3.03it/s] 50%|████▉ | 185203/371472 [3:52:44<16:58:22, 3.05it/s] 50%|████▉ | 185204/371472 [3:52:44<16:32:46, 3.13it/s] 50%|████▉ | 185205/371472 [3:52:44<16:23:46, 3.16it/s] 50%|████▉ | 185206/371472 [3:52:44<16:08:26, 3.21it/s] 50%|████▉ | 185207/371472 [3:52:45<15:54:43, 3.25it/s] 50%|██���█▉ | 185208/371472 [3:52:45<16:19:13, 3.17it/s] 50%|████▉ | 185209/371472 [3:52:45<16:23:03, 3.16it/s] 50%|████▉ | 185210/371472 [3:52:46<16:08:10, 3.21it/s] 50%|████▉ | 185211/371472 [3:52:46<15:32:34, 3.33it/s] 50%|████▉ | 185212/371472 [3:52:46<15:21:23, 3.37it/s] 50%|████▉ | 185213/371472 [3:52:47<16:25:23, 3.15it/s] 50%|████▉ | 185214/371472 [3:52:47<16:05:48, 3.21it/s] 50%|████▉ | 185215/371472 [3:52:47<15:54:59, 3.25it/s] 50%|████▉ | 185216/371472 [3:52:48<15:56:13, 3.25it/s] 50%|████▉ | 185217/371472 [3:52:48<15:37:08, 3.31it/s] 50%|████▉ | 185218/371472 [3:52:48<15:38:58, 3.31it/s] 50%|████▉ | 185219/371472 [3:52:48<15:37:40, 3.31it/s] 50%|████▉ | 185220/371472 [3:52:49<15:06:06, 3.43it/s] {'loss': 2.9946, 'learning_rate': 5.5149324484475e-07, 'epoch': 7.98} + 50%|████▉ | 185220/371472 [3:52:49<15:06:06, 3.43it/s] 50%|████▉ | 185221/371472 [3:52:49<15:13:50, 3.40it/s] 50%|████▉ | 185222/371472 [3:52:49<15:34:12, 3.32it/s] 50%|████▉ | 185223/371472 [3:52:50<15:54:13, 3.25it/s] 50%|████▉ | 185224/371472 [3:52:50<16:01:47, 3.23it/s] 50%|████▉ | 185225/371472 [3:52:50<15:58:58, 3.24it/s] 50%|████▉ | 185226/371472 [3:52:51<15:34:39, 3.32it/s] 50%|████▉ | 185227/371472 [3:52:51<15:28:46, 3.34it/s] 50%|████▉ | 185228/371472 [3:52:51<15:00:46, 3.45it/s] 50%|████▉ | 185229/371472 [3:52:51<15:12:35, 3.40it/s] 50%|████▉ | 185230/371472 [3:52:52<15:12:20, 3.40it/s] 50%|████▉ | 185231/371472 [3:52:52<15:13:15, 3.40it/s] 50%|████▉ | 185232/371472 [3:52:52<15:16:01, 3.39it/s] 50%|████▉ | 185233/371472 [3:52:53<15:08:50, 3.42it/s] 50%|████▉ | 185234/371472 [3:52:53<15:16:35, 3.39it/s] 50%|████▉ | 185235/371472 [3:52:53<17:01:25, 3.04it/s] 50%|████▉ | 185236/371472 [3:52:54<16:46:47, 3.08it/s] 50%|████▉ | 185237/371472 [3:52:54<15:53:52, 3.25it/s] 50%|████▉ | 185238/371472 [3:52:54<16:54:17, 3.06it/s] 50%|████▉ | 185239/371472 [3:52:55<17:29:42, 2.96it/s] 50%|████▉ | 185240/371472 [3:52:55<16:33:33, 3.12it/s] {'loss': 2.8819, 'learning_rate': 5.51444762869271e-07, 'epoch': 7.98} + 50%|████▉ | 185240/371472 [3:52:55<16:33:33, 3.12it/s] 50%|████▉ | 185241/371472 [3:52:55<16:47:34, 3.08it/s] 50%|████▉ | 185242/371472 [3:52:56<16:45:31, 3.09it/s] 50%|████▉ | 185243/371472 [3:52:56<16:24:35, 3.15it/s] 50%|████▉ | 185244/371472 [3:52:56<18:31:57, 2.79it/s] 50%|████▉ | 185245/371472 [3:52:57<18:29:44, 2.80it/s] 50%|████▉ | 185246/371472 [3:52:57<17:20:26, 2.98it/s] 50%|████▉ | 185247/371472 [3:52:57<16:45:26, 3.09it/s] 50%|████▉ | 185248/371472 [3:52:58<17:05:33, 3.03it/s] 50%|████▉ | 185249/371472 [3:52:58<17:28:45, 2.96it/s] 50%|████▉ | 185250/371472 [3:52:58<17:03:30, 3.03it/s] 50%|████▉ | 185251/371472 [3:52:59<16:29:06, 3.14it/s] 50%|████▉ | 185252/371472 [3:52:59<16:16:47, 3.18it/s] 50%|████▉ | 185253/371472 [3:52:59<15:47:06, 3.28it/s] 50%|████▉ | 185254/371472 [3:52:59<15:24:31, 3.36it/s] 50%|████▉ | 185255/371472 [3:53:00<15:15:11, 3.39it/s] 50%|████▉ | 185256/371472 [3:53:00<15:12:05, 3.40it/s] 50%|████▉ | 185257/371472 [3:53:00<15:04:04, 3.43it/s] 50%|████▉ | 185258/371472 [3:53:01<14:43:14, 3.51it/s] 50%|████▉ | 185259/371472 [3:53:01<14:47:38, 3.50it/s] 50%|████▉ | 185260/371472 [3:53:01<14:38:42, 3.53it/s] {'loss': 2.9656, 'learning_rate': 5.513962808937921e-07, 'epoch': 7.98} + 50%|████▉ | 185260/371472 [3:53:01<14:38:42, 3.53it/s] 50%|████▉ | 185261/371472 [3:53:01<15:34:22, 3.32it/s] 50%|████▉ | 185262/371472 [3:53:02<15:15:19, 3.39it/s] 50%|████▉ | 185263/371472 [3:53:02<15:02:30, 3.44it/s] 50%|████▉ | 185264/371472 [3:53:02<15:12:50, 3.40it/s] 50%|████▉ | 185265/371472 [3:53:03<15:19:39, 3.37it/s] 50%|████▉ | 185266/371472 [3:53:03<15:27:01, 3.35it/s] 50%|████▉ | 185267/371472 [3:53:03<15:31:17, 3.33it/s] 50%|████▉ | 185268/371472 [3:53:03<15:09:37, 3.41it/s] 50%|████▉ | 185269/371472 [3:53:04<17:00:29, 3.04it/s] 50%|████▉ | 185270/371472 [3:53:04<16:31:25, 3.13it/s] 50%|████▉ | 185271/371472 [3:53:05<16:25:36, 3.15it/s] 50%|████▉ | 185272/371472 [3:53:05<16:08:38, 3.20it/s] 50%|████▉ | 185273/371472 [3:53:05<15:50:43, 3.26it/s] 50%|████▉ | 185274/371472 [3:53:05<15:38:58, 3.30it/s] 50%|████▉ | 185275/371472 [3:53:06<15:41:16, 3.30it/s] 50%|████▉ | 185276/371472 [3:53:06<15:48:39, 3.27it/s] 50%|████▉ | 185277/371472 [3:53:06<15:29:35, 3.34it/s] 50%|████▉ | 185278/371472 [3:53:07<15:52:00, 3.26it/s] 50%|████▉ | 185279/371472 [3:53:07<15:44:23, 3.29it/s] 50%|████▉ | 185280/371472 [3:53:07<15:39:36, 3.30it/s] {'loss': 2.8122, 'learning_rate': 5.513477989183132e-07, 'epoch': 7.98} + 50%|████▉ | 185280/371472 [3:53:07<15:39:36, 3.30it/s] 50%|████▉ | 185281/371472 [3:53:08<16:12:29, 3.19it/s] 50%|████▉ | 185282/371472 [3:53:08<16:07:24, 3.21it/s] 50%|████▉ | 185283/371472 [3:53:08<15:43:33, 3.29it/s] 50%|████▉ | 185284/371472 [3:53:08<15:32:07, 3.33it/s] 50%|████▉ | 185285/371472 [3:53:09<15:01:41, 3.44it/s] 50%|████▉ | 185286/371472 [3:53:09<15:09:16, 3.41it/s] 50%|████▉ | 185287/371472 [3:53:09<15:49:43, 3.27it/s] 50%|████▉ | 185288/371472 [3:53:10<15:20:29, 3.37it/s] 50%|████▉ | 185289/371472 [3:53:10<16:04:53, 3.22it/s] 50%|████▉ | 185290/371472 [3:53:10<15:42:19, 3.29it/s] 50%|████▉ | 185291/371472 [3:53:11<16:03:45, 3.22it/s] 50%|████▉ | 185292/371472 [3:53:11<16:19:03, 3.17it/s] 50%|████▉ | 185293/371472 [3:53:11<16:02:59, 3.22it/s] 50%|████▉ | 185294/371472 [3:53:12<15:56:13, 3.25it/s] 50%|████▉ | 185295/371472 [3:53:12<15:53:05, 3.26it/s] 50%|████▉ | 185296/371472 [3:53:12<15:24:52, 3.36it/s] 50%|████▉ | 185297/371472 [3:53:12<15:41:14, 3.30it/s] 50%|████▉ | 185298/371472 [3:53:13<15:17:26, 3.38it/s] 50%|████▉ | 185299/371472 [3:53:13<14:58:30, 3.45it/s] 50%|████▉ | 185300/371472 [3:53:13<15:26:00, 3.35it/s] {'loss': 2.786, 'learning_rate': 5.512993169428343e-07, 'epoch': 7.98} + 50%|████▉ | 185300/371472 [3:53:13<15:26:00, 3.35it/s] 50%|████▉ | 185301/371472 [3:53:14<16:17:43, 3.17it/s] 50%|████▉ | 185302/371472 [3:53:14<15:59:20, 3.23it/s] 50%|████▉ | 185303/371472 [3:53:14<15:41:30, 3.30it/s] 50%|████▉ | 185304/371472 [3:53:14<15:25:04, 3.35it/s] 50%|████▉ | 185305/371472 [3:53:15<14:54:16, 3.47it/s] 50%|████▉ | 185306/371472 [3:53:15<14:57:51, 3.46it/s] 50%|████▉ | 185307/371472 [3:53:15<15:26:20, 3.35it/s] 50%|████▉ | 185308/371472 [3:53:16<15:33:35, 3.32it/s] 50%|████▉ | 185309/371472 [3:53:16<16:08:40, 3.20it/s] 50%|████▉ | 185310/371472 [3:53:16<15:39:59, 3.30it/s] 50%|████▉ | 185311/371472 [3:53:17<15:15:28, 3.39it/s] 50%|████▉ | 185312/371472 [3:53:17<16:08:18, 3.20it/s] 50%|████▉ | 185313/371472 [3:53:17<15:40:02, 3.30it/s] 50%|████▉ | 185314/371472 [3:53:18<16:35:31, 3.12it/s] 50%|████▉ | 185315/371472 [3:53:18<15:52:22, 3.26it/s] 50%|████▉ | 185316/371472 [3:53:18<15:23:14, 3.36it/s] 50%|████▉ | 185317/371472 [3:53:18<15:40:55, 3.30it/s] 50%|████▉ | 185318/371472 [3:53:19<15:31:19, 3.33it/s] 50%|████▉ | 185319/371472 [3:53:19<15:13:59, 3.39it/s] 50%|████▉ | 185320/371472 [3:53:19<14:52:30, 3.48it/s] {'loss': 2.9515, 'learning_rate': 5.512508349673554e-07, 'epoch': 7.98} + 50%|████▉ | 185320/371472 [3:53:19<14:52:30, 3.48it/s] 50%|████▉ | 185321/371472 [3:53:20<14:56:35, 3.46it/s] 50%|████▉ | 185322/371472 [3:53:20<14:53:20, 3.47it/s] 50%|████▉ | 185323/371472 [3:53:20<14:51:56, 3.48it/s] 50%|████▉ | 185324/371472 [3:53:20<14:47:25, 3.50it/s] 50%|████▉ | 185325/371472 [3:53:21<14:51:18, 3.48it/s] 50%|████▉ | 185326/371472 [3:53:21<15:04:00, 3.43it/s] 50%|████▉ | 185327/371472 [3:53:21<15:36:33, 3.31it/s] 50%|████▉ | 185328/371472 [3:53:22<15:26:56, 3.35it/s] 50%|████▉ | 185329/371472 [3:53:22<15:02:10, 3.44it/s] 50%|████▉ | 185330/371472 [3:53:22<15:00:51, 3.44it/s] 50%|████▉ | 185331/371472 [3:53:22<15:03:03, 3.44it/s] 50%|████▉ | 185332/371472 [3:53:23<14:30:51, 3.56it/s] 50%|████▉ | 185333/371472 [3:53:23<14:21:05, 3.60it/s] 50%|████▉ | 185334/371472 [3:53:23<14:57:43, 3.46it/s] 50%|████▉ | 185335/371472 [3:53:24<14:39:36, 3.53it/s] 50%|████▉ | 185336/371472 [3:53:24<15:20:40, 3.37it/s] 50%|████▉ | 185337/371472 [3:53:24<14:51:46, 3.48it/s] 50%|████▉ | 185338/371472 [3:53:24<14:38:31, 3.53it/s] 50%|████▉ | 185339/371472 [3:53:25<14:54:44, 3.47it/s] 50%|████▉ | 185340/371472 [3:53:25<14:40:21, 3.52it/s] {'loss': 2.987, 'learning_rate': 5.512023529918766e-07, 'epoch': 7.98} + 50%|████▉ | 185340/371472 [3:53:25<14:40:21, 3.52it/s] 50%|████▉ | 185341/371472 [3:53:25<14:41:28, 3.52it/s] 50%|████▉ | 185342/371472 [3:53:26<15:36:16, 3.31it/s] 50%|████▉ | 185343/371472 [3:53:26<15:38:05, 3.31it/s] 50%|████▉ | 185344/371472 [3:53:26<16:00:25, 3.23it/s] 50%|████▉ | 185345/371472 [3:53:27<15:28:34, 3.34it/s] 50%|████▉ | 185346/371472 [3:53:27<15:14:00, 3.39it/s] 50%|████▉ | 185347/371472 [3:53:27<15:06:57, 3.42it/s] 50%|████▉ | 185348/371472 [3:53:27<15:55:34, 3.25it/s] 50%|████▉ | 185349/371472 [3:53:28<15:50:53, 3.26it/s] 50%|████▉ | 185350/371472 [3:53:28<15:35:52, 3.31it/s] 50%|████▉ | 185351/371472 [3:53:28<16:21:35, 3.16it/s] 50%|████▉ | 185352/371472 [3:53:29<16:15:19, 3.18it/s] 50%|████▉ | 185353/371472 [3:53:29<16:17:01, 3.17it/s] 50%|████▉ | 185354/371472 [3:53:29<15:58:05, 3.24it/s] 50%|████▉ | 185355/371472 [3:53:30<15:46:17, 3.28it/s] 50%|████▉ | 185356/371472 [3:53:30<15:23:20, 3.36it/s] 50%|████▉ | 185357/371472 [3:53:30<15:21:24, 3.37it/s] 50%|████▉ | 185358/371472 [3:53:31<15:16:07, 3.39it/s] 50%|████▉ | 185359/371472 [3:53:31<15:08:41, 3.41it/s] 50%|████▉ | 185360/371472 [3:53:31<14:43:33, 3.51it/s] {'loss': 2.78, 'learning_rate': 5.511538710163977e-07, 'epoch': 7.98} + 50%|████▉ | 185360/371472 [3:53:31<14:43:33, 3.51it/s] 50%|████▉ | 185361/371472 [3:53:31<14:44:55, 3.51it/s] 50%|████▉ | 185362/371472 [3:53:32<14:31:17, 3.56it/s] 50%|████▉ | 185363/371472 [3:53:32<16:12:02, 3.19it/s] 50%|████▉ | 185364/371472 [3:53:32<16:19:25, 3.17it/s] 50%|████▉ | 185365/371472 [3:53:33<15:39:33, 3.30it/s] 50%|████▉ | 185366/371472 [3:53:33<15:24:39, 3.35it/s] 50%|████▉ | 185367/371472 [3:53:33<15:01:17, 3.44it/s] 50%|████▉ | 185368/371472 [3:53:33<14:54:29, 3.47it/s] 50%|████▉ | 185369/371472 [3:53:34<15:01:28, 3.44it/s] 50%|████▉ | 185370/371472 [3:53:34<15:02:38, 3.44it/s] 50%|████▉ | 185371/371472 [3:53:34<15:06:09, 3.42it/s] 50%|████▉ | 185372/371472 [3:53:35<15:55:32, 3.25it/s] 50%|████▉ | 185373/371472 [3:53:35<15:40:36, 3.30it/s] 50%|████▉ | 185374/371472 [3:53:35<15:24:58, 3.35it/s] 50%|████▉ | 185375/371472 [3:53:36<15:04:39, 3.43it/s] 50%|████▉ | 185376/371472 [3:53:36<14:57:46, 3.45it/s] 50%|████▉ | 185377/371472 [3:53:36<15:05:09, 3.43it/s] 50%|████▉ | 185378/371472 [3:53:36<14:57:49, 3.45it/s] 50%|████▉ | 185379/371472 [3:53:37<15:04:42, 3.43it/s] 50%|████▉ | 185380/371472 [3:53:37<14:48:11, 3.49it/s] {'loss': 2.7717, 'learning_rate': 5.511053890409188e-07, 'epoch': 7.98} + 50%|████▉ | 185380/371472 [3:53:37<14:48:11, 3.49it/s] 50%|████▉ | 185381/371472 [3:53:37<15:21:26, 3.37it/s] 50%|████▉ | 185382/371472 [3:53:38<15:20:38, 3.37it/s] 50%|████▉ | 185383/371472 [3:53:38<15:12:02, 3.40it/s] 50%|████▉ | 185384/371472 [3:53:38<14:59:30, 3.45it/s] 50%|████▉ | 185385/371472 [3:53:38<14:35:43, 3.54it/s] 50%|████▉ | 185386/371472 [3:53:39<15:14:23, 3.39it/s] 50%|████▉ | 185387/371472 [3:53:39<14:44:55, 3.50it/s] 50%|████▉ | 185388/371472 [3:53:39<16:27:26, 3.14it/s] 50%|████▉ | 185389/371472 [3:53:40<15:59:11, 3.23it/s] 50%|████▉ | 185390/371472 [3:53:40<16:01:19, 3.23it/s] 50%|████▉ | 185391/371472 [3:53:40<15:43:47, 3.29it/s] 50%|████▉ | 185392/371472 [3:53:41<15:54:41, 3.25it/s] 50%|████▉ | 185393/371472 [3:53:41<16:15:36, 3.18it/s] 50%|████▉ | 185394/371472 [3:53:41<15:56:26, 3.24it/s] 50%|████▉ | 185395/371472 [3:53:42<16:21:27, 3.16it/s] 50%|████▉ | 185396/371472 [3:53:42<15:52:09, 3.26it/s] 50%|████▉ | 185397/371472 [3:53:42<15:40:31, 3.30it/s] 50%|████▉ | 185398/371472 [3:53:42<15:35:32, 3.31it/s] 50%|████▉ | 185399/371472 [3:53:43<15:29:55, 3.33it/s] 50%|████▉ | 185400/371472 [3:53:43<15:30:06, 3.33it/s] {'loss': 2.9943, 'learning_rate': 5.510569070654398e-07, 'epoch': 7.99} + 50%|████▉ | 185400/371472 [3:53:43<15:30:06, 3.33it/s] 50%|████▉ | 185401/371472 [3:53:43<15:48:06, 3.27it/s] 50%|████▉ | 185402/371472 [3:53:44<15:52:14, 3.26it/s] 50%|████▉ | 185403/371472 [3:53:44<15:55:31, 3.25it/s] 50%|████▉ | 185404/371472 [3:53:44<16:42:45, 3.09it/s] 50%|████▉ | 185405/371472 [3:53:45<16:39:48, 3.10it/s] 50%|████▉ | 185406/371472 [3:53:45<16:36:51, 3.11it/s] 50%|████▉ | 185407/371472 [3:53:45<16:21:22, 3.16it/s] 50%|████▉ | 185408/371472 [3:53:46<15:51:19, 3.26it/s] 50%|████▉ | 185409/371472 [3:53:46<15:41:04, 3.30it/s] 50%|████▉ | 185410/371472 [3:53:46<15:10:44, 3.40it/s] 50%|████▉ | 185411/371472 [3:53:46<15:29:28, 3.34it/s] 50%|████▉ | 185412/371472 [3:53:47<16:51:47, 3.06it/s] 50%|████▉ | 185413/371472 [3:53:47<16:10:40, 3.19it/s] 50%|████▉ | 185414/371472 [3:53:47<15:41:23, 3.29it/s] 50%|████▉ | 185415/371472 [3:53:48<15:30:54, 3.33it/s] 50%|████▉ | 185416/371472 [3:53:48<15:17:47, 3.38it/s] 50%|████▉ | 185417/371472 [3:53:48<15:04:32, 3.43it/s] 50%|████▉ | 185418/371472 [3:53:49<15:57:14, 3.24it/s] 50%|████▉ | 185419/371472 [3:53:49<15:58:25, 3.24it/s] 50%|████▉ | 185420/371472 [3:53:49<16:09:10, 3.20it/s] {'loss': 2.9615, 'learning_rate': 5.51008425089961e-07, 'epoch': 7.99} + 50%|████▉ | 185420/371472 [3:53:49<16:09:10, 3.20it/s] 50%|████▉ | 185421/371472 [3:53:50<15:48:39, 3.27it/s] 50%|████▉ | 185422/371472 [3:53:50<15:55:13, 3.25it/s] 50%|████▉ | 185423/371472 [3:53:50<15:34:47, 3.32it/s] 50%|████▉ | 185424/371472 [3:53:50<15:11:48, 3.40it/s] 50%|████▉ | 185425/371472 [3:53:51<15:39:55, 3.30it/s] 50%|████▉ | 185426/371472 [3:53:51<15:17:49, 3.38it/s] 50%|████▉ | 185427/371472 [3:53:51<15:08:16, 3.41it/s] 50%|████▉ | 185428/371472 [3:53:52<15:14:34, 3.39it/s] 50%|████▉ | 185429/371472 [3:53:52<15:17:43, 3.38it/s] 50%|████▉ | 185430/371472 [3:53:52<15:12:06, 3.40it/s] 50%|████▉ | 185431/371472 [3:53:53<15:56:41, 3.24it/s] 50%|████▉ | 185432/371472 [3:53:53<16:15:10, 3.18it/s] 50%|████▉ | 185433/371472 [3:53:53<15:39:27, 3.30it/s] 50%|████▉ | 185434/371472 [3:53:53<15:32:31, 3.32it/s] 50%|████▉ | 185435/371472 [3:53:54<16:03:01, 3.22it/s] 50%|████▉ | 185436/371472 [3:53:54<15:44:30, 3.28it/s] 50%|████▉ | 185437/371472 [3:53:54<15:27:49, 3.34it/s] 50%|████▉ | 185438/371472 [3:53:55<14:59:29, 3.45it/s] 50%|████▉ | 185439/371472 [3:53:55<16:24:13, 3.15it/s] 50%|████▉ | 185440/371472 [3:53:55<17:27:29, 2.96it/s] {'loss': 2.8716, 'learning_rate': 5.50959943114482e-07, 'epoch': 7.99} + 50%|████▉ | 185440/371472 [3:53:55<17:27:29, 2.96it/s] 50%|████▉ | 185441/371472 [3:53:56<16:37:48, 3.11it/s] 50%|████▉ | 185442/371472 [3:53:56<16:15:00, 3.18it/s] 50%|████▉ | 185443/371472 [3:53:56<16:33:06, 3.12it/s] 50%|████▉ | 185444/371472 [3:53:57<15:38:51, 3.30it/s] 50%|████▉ | 185445/371472 [3:53:57<15:51:22, 3.26it/s] 50%|████▉ | 185446/371472 [3:53:57<15:35:07, 3.32it/s] 50%|████▉ | 185447/371472 [3:53:58<16:13:59, 3.18it/s] 50%|████▉ | 185448/371472 [3:53:58<15:52:26, 3.26it/s] 50%|████▉ | 185449/371472 [3:53:58<16:55:20, 3.05it/s] 50%|████▉ | 185450/371472 [3:53:59<17:46:27, 2.91it/s] 50%|████▉ | 185451/371472 [3:53:59<16:54:00, 3.06it/s] 50%|████▉ | 185452/371472 [3:53:59<16:15:14, 3.18it/s] 50%|████▉ | 185453/371472 [3:53:59<16:15:27, 3.18it/s] 50%|████▉ | 185454/371472 [3:54:00<15:52:07, 3.26it/s] 50%|████▉ | 185455/371472 [3:54:00<16:54:17, 3.06it/s] 50%|████▉ | 185456/371472 [3:54:00<15:58:56, 3.23it/s] 50%|████▉ | 185457/371472 [3:54:01<16:16:01, 3.18it/s] 50%|████▉ | 185458/371472 [3:54:01<15:38:31, 3.30it/s] 50%|████▉ | 185459/371472 [3:54:01<15:26:00, 3.35it/s] 50%|████▉ | 185460/371472 [3:54:02<15:13:24, 3.39it/s] {'loss': 2.7545, 'learning_rate': 5.509114611390031e-07, 'epoch': 7.99} + 50%|████▉ | 185460/371472 [3:54:02<15:13:24, 3.39it/s] 50%|████▉ | 185461/371472 [3:54:02<14:40:55, 3.52it/s] 50%|████▉ | 185462/371472 [3:54:02<14:39:28, 3.53it/s] 50%|████▉ | 185463/371472 [3:54:02<14:37:59, 3.53it/s] 50%|████▉ | 185464/371472 [3:54:03<14:37:49, 3.53it/s] 50%|████▉ | 185465/371472 [3:54:03<14:36:43, 3.54it/s] 50%|████▉ | 185466/371472 [3:54:03<14:20:55, 3.60it/s] 50%|████▉ | 185467/371472 [3:54:03<14:10:32, 3.64it/s] 50%|████▉ | 185468/371472 [3:54:04<14:38:14, 3.53it/s] 50%|████▉ | 185469/371472 [3:54:04<14:53:29, 3.47it/s] 50%|████▉ | 185470/371472 [3:54:04<15:32:57, 3.32it/s] 50%|████▉ | 185471/371472 [3:54:05<15:25:47, 3.35it/s] 50%|████▉ | 185472/371472 [3:54:05<15:58:53, 3.23it/s] 50%|████▉ | 185473/371472 [3:54:05<15:34:15, 3.32it/s] 50%|████▉ | 185474/371472 [3:54:06<15:23:54, 3.36it/s] 50%|████▉ | 185475/371472 [3:54:06<15:44:25, 3.28it/s] 50%|████▉ | 185476/371472 [3:54:06<16:00:19, 3.23it/s] 50%|████▉ | 185477/371472 [3:54:07<15:59:30, 3.23it/s] 50%|████▉ | 185478/371472 [3:54:07<15:35:32, 3.31it/s] 50%|████▉ | 185479/371472 [3:54:07<15:41:16, 3.29it/s] 50%|████▉ | 185480/371472 [3:54:07<15:37:46, 3.31it/s] {'loss': 2.8347, 'learning_rate': 5.508629791635243e-07, 'epoch': 7.99} + 50%|████▉ | 185480/371472 [3:54:07<15:37:46, 3.31it/s] 50%|████▉ | 185481/371472 [3:54:08<16:07:19, 3.20it/s] 50%|████▉ | 185482/371472 [3:54:08<16:20:24, 3.16it/s] 50%|████▉ | 185483/371472 [3:54:08<15:38:33, 3.30it/s] 50%|████▉ | 185484/371472 [3:54:09<16:17:34, 3.17it/s] 50%|████▉ | 185485/371472 [3:54:09<16:17:03, 3.17it/s] 50%|████▉ | 185486/371472 [3:54:09<15:49:51, 3.26it/s] 50%|████▉ | 185487/371472 [3:54:10<15:49:33, 3.26it/s] 50%|████▉ | 185488/371472 [3:54:10<15:38:38, 3.30it/s] 50%|████▉ | 185489/371472 [3:54:10<15:21:52, 3.36it/s] 50%|████▉ | 185490/371472 [3:54:11<15:55:56, 3.24it/s] 50%|████▉ | 185491/371472 [3:54:11<15:32:32, 3.32it/s] 50%|████▉ | 185492/371472 [3:54:11<15:28:07, 3.34it/s] 50%|████▉ | 185493/371472 [3:54:11<15:24:39, 3.35it/s] 50%|████▉ | 185494/371472 [3:54:12<15:12:52, 3.40it/s] 50%|████▉ | 185495/371472 [3:54:12<15:04:59, 3.42it/s] 50%|████▉ | 185496/371472 [3:54:12<15:04:23, 3.43it/s] 50%|████▉ | 185497/371472 [3:54:13<15:50:17, 3.26it/s] 50%|████▉ | 185498/371472 [3:54:13<16:50:53, 3.07it/s] 50%|████▉ | 185499/371472 [3:54:13<16:21:22, 3.16it/s] 50%|████▉ | 185500/371472 [3:54:14<16:17:38, 3.17it/s] {'loss': 2.9001, 'learning_rate': 5.508144971880454e-07, 'epoch': 7.99} + 50%|████▉ | 185500/371472 [3:54:14<16:17:38, 3.17it/s] 50%|████▉ | 185501/371472 [3:54:14<15:50:10, 3.26it/s] 50%|████▉ | 185502/371472 [3:54:14<15:59:30, 3.23it/s] 50%|████▉ | 185503/371472 [3:54:15<15:58:05, 3.24it/s] 50%|████▉ | 185504/371472 [3:54:15<15:56:08, 3.24it/s] 50%|████▉ | 185505/371472 [3:54:15<16:07:55, 3.20it/s] 50%|████▉ | 185506/371472 [3:54:15<16:10:19, 3.19it/s] 50%|████▉ | 185507/371472 [3:54:16<15:59:33, 3.23it/s] 50%|████▉ | 185508/371472 [3:54:16<15:22:16, 3.36it/s] 50%|████▉ | 185509/371472 [3:54:16<15:21:41, 3.36it/s] 50%|████▉ | 185510/371472 [3:54:17<15:18:31, 3.37it/s] 50%|████▉ | 185511/371472 [3:54:17<15:07:34, 3.41it/s] 50%|████▉ | 185512/371472 [3:54:17<15:06:24, 3.42it/s] 50%|████▉ | 185513/371472 [3:54:18<15:37:52, 3.30it/s] 50%|████▉ | 185514/371472 [3:54:18<15:27:47, 3.34it/s] 50%|████▉ | 185515/371472 [3:54:18<15:12:27, 3.40it/s] 50%|████▉ | 185516/371472 [3:54:18<16:25:14, 3.15it/s] 50%|████▉ | 185517/371472 [3:54:19<16:21:22, 3.16it/s] 50%|████▉ | 185518/371472 [3:54:19<15:57:31, 3.24it/s] 50%|████▉ | 185519/371472 [3:54:19<15:50:52, 3.26it/s] 50%|████▉ | 185520/371472 [3:54:20<15:59:20, 3.23it/s] {'loss': 2.9832, 'learning_rate': 5.507660152125665e-07, 'epoch': 7.99} + 50%|████▉ | 185520/371472 [3:54:20<15:59:20, 3.23it/s] 50%|████▉ | 185521/371472 [3:54:20<15:32:14, 3.32it/s] 50%|████▉ | 185522/371472 [3:54:20<15:42:10, 3.29it/s] 50%|████▉ | 185523/371472 [3:54:21<15:49:08, 3.27it/s] 50%|████▉ | 185524/371472 [3:54:21<15:24:41, 3.35it/s] 50%|████▉ | 185525/371472 [3:54:21<15:45:51, 3.28it/s] 50%|████▉ | 185526/371472 [3:54:22<15:42:47, 3.29it/s] 50%|████▉ | 185527/371472 [3:54:22<15:17:51, 3.38it/s] 50%|████▉ | 185528/371472 [3:54:22<15:39:36, 3.30it/s] 50%|████▉ | 185529/371472 [3:54:22<15:08:03, 3.41it/s] 50%|████▉ | 185530/371472 [3:54:23<15:06:09, 3.42it/s] 50%|████▉ | 185531/371472 [3:54:23<14:49:40, 3.48it/s] 50%|████▉ | 185532/371472 [3:54:23<15:02:33, 3.43it/s] 50%|████▉ | 185533/371472 [3:54:24<16:37:23, 3.11it/s] 50%|████▉ | 185534/371472 [3:54:24<16:17:43, 3.17it/s] 50%|████▉ | 185535/371472 [3:54:24<16:10:56, 3.19it/s] 50%|████▉ | 185536/371472 [3:54:25<15:51:32, 3.26it/s] 50%|████▉ | 185537/371472 [3:54:25<16:00:50, 3.23it/s] 50%|████▉ | 185538/371472 [3:54:25<16:18:29, 3.17it/s] 50%|████▉ | 185539/371472 [3:54:25<15:50:04, 3.26it/s] 50%|████▉ | 185540/371472 [3:54:26<15:20:10, 3.37it/s] {'loss': 2.7182, 'learning_rate': 5.507175332370875e-07, 'epoch': 7.99} + 50%|████▉ | 185540/371472 [3:54:26<15:20:10, 3.37it/s] 50%|████▉ | 185541/371472 [3:54:26<15:23:47, 3.35it/s] 50%|████▉ | 185542/371472 [3:54:26<16:07:21, 3.20it/s] 50%|████▉ | 185543/371472 [3:54:27<16:41:58, 3.09it/s] 50%|████▉ | 185544/371472 [3:54:27<16:06:17, 3.21it/s] 50%|████▉ | 185545/371472 [3:54:27<15:33:55, 3.32it/s] 50%|████▉ | 185546/371472 [3:54:28<15:28:41, 3.34it/s] 50%|████▉ | 185547/371472 [3:54:28<15:44:05, 3.28it/s] 50%|████▉ | 185548/371472 [3:54:28<15:29:01, 3.34it/s] 50%|████▉ | 185549/371472 [3:54:28<15:27:28, 3.34it/s] 50%|████▉ | 185550/371472 [3:54:29<15:11:47, 3.40it/s] 50%|████▉ | 185551/371472 [3:54:29<16:19:58, 3.16it/s] 50%|████▉ | 185552/371472 [3:54:29<15:43:28, 3.28it/s] 50%|████▉ | 185553/371472 [3:54:30<15:30:33, 3.33it/s] 50%|████▉ | 185554/371472 [3:54:30<15:27:12, 3.34it/s] 50%|████▉ | 185555/371472 [3:54:30<16:20:06, 3.16it/s] 50%|████▉ | 185556/371472 [3:54:31<15:55:30, 3.24it/s] 50%|████▉ | 185557/371472 [3:54:31<15:22:20, 3.36it/s] 50%|████▉ | 185558/371472 [3:54:31<15:27:34, 3.34it/s] 50%|████▉ | 185559/371472 [3:54:31<14:56:36, 3.46it/s] 50%|████▉ | 185560/371472 [3:54:32<15:37:36, 3.30it/s] {'loss': 2.7733, 'learning_rate': 5.506690512616087e-07, 'epoch': 7.99} + 50%|████▉ | 185560/371472 [3:54:32<15:37:36, 3.30it/s] 50%|████▉ | 185561/371472 [3:54:32<15:12:05, 3.40it/s] 50%|████▉ | 185562/371472 [3:54:32<14:43:53, 3.51it/s] 50%|████▉ | 185563/371472 [3:54:33<14:47:24, 3.49it/s] 50%|████▉ | 185564/371472 [3:54:33<14:47:20, 3.49it/s] 50%|████▉ | 185565/371472 [3:54:33<14:48:52, 3.49it/s] 50%|████▉ | 185566/371472 [3:54:34<15:15:30, 3.38it/s] 50%|████▉ | 185567/371472 [3:54:34<15:05:45, 3.42it/s] 50%|████▉ | 185568/371472 [3:54:34<15:21:29, 3.36it/s] 50%|████▉ | 185569/371472 [3:54:34<15:28:56, 3.34it/s] 50%|████▉ | 185570/371472 [3:54:35<14:55:13, 3.46it/s] 50%|████▉ | 185571/371472 [3:54:35<14:41:34, 3.51it/s] 50%|████▉ | 185572/371472 [3:54:35<15:34:42, 3.31it/s] 50%|████▉ | 185573/371472 [3:54:36<15:45:53, 3.28it/s] 50%|████▉ | 185574/371472 [3:54:36<16:09:31, 3.20it/s] 50%|████▉ | 185575/371472 [3:54:36<16:02:40, 3.22it/s] 50%|████▉ | 185576/371472 [3:54:37<16:55:32, 3.05it/s] 50%|████▉ | 185577/371472 [3:54:37<16:28:04, 3.14it/s] 50%|████▉ | 185578/371472 [3:54:37<15:51:07, 3.26it/s] 50%|████▉ | 185579/371472 [3:54:38<15:43:36, 3.28it/s] 50%|████▉ | 185580/371472 [3:54:38<15:46:02, 3.27it/s] {'loss': 2.8181, 'learning_rate': 5.506205692861299e-07, 'epoch': 7.99} + 50%|████▉ | 185580/371472 [3:54:38<15:46:02, 3.27it/s] 50%|████▉ | 185581/371472 [3:54:38<15:31:20, 3.33it/s] 50%|████▉ | 185582/371472 [3:54:39<16:59:51, 3.04it/s] 50%|████▉ | 185583/371472 [3:54:39<16:18:06, 3.17it/s] 50%|████▉ | 185584/371472 [3:54:39<16:42:18, 3.09it/s] 50%|████▉ | 185585/371472 [3:54:39<16:05:43, 3.21it/s] 50%|████▉ | 185586/371472 [3:54:40<15:27:02, 3.34it/s] 50%|████▉ | 185587/371472 [3:54:40<15:05:11, 3.42it/s] 50%|████▉ | 185588/371472 [3:54:40<14:45:56, 3.50it/s] 50%|████▉ | 185589/371472 [3:54:41<14:50:09, 3.48it/s] 50%|████▉ | 185590/371472 [3:54:41<14:51:22, 3.48it/s] 50%|████▉ | 185591/371472 [3:54:41<14:48:08, 3.49it/s] 50%|████▉ | 185592/371472 [3:54:41<14:43:23, 3.51it/s] 50%|████▉ | 185593/371472 [3:54:42<14:48:26, 3.49it/s] 50%|████▉ | 185594/371472 [3:54:42<14:47:35, 3.49it/s] 50%|████▉ | 185595/371472 [3:54:42<14:59:23, 3.44it/s] 50%|████▉ | 185596/371472 [3:54:43<15:27:46, 3.34it/s] 50%|████▉ | 185597/371472 [3:54:43<15:14:43, 3.39it/s] 50%|████▉ | 185598/371472 [3:54:43<15:03:47, 3.43it/s] 50%|████▉ | 185599/371472 [3:54:43<15:16:24, 3.38it/s] 50%|████▉ | 185600/371472 [3:54:44<15:00:02, 3.44it/s] {'loss': 3.0215, 'learning_rate': 5.50572087310651e-07, 'epoch': 7.99} + 50%|████▉ | 185600/371472 [3:54:44<15:00:02, 3.44it/s] 50%|████▉ | 185601/371472 [3:54:44<15:44:58, 3.28it/s] 50%|████▉ | 185602/371472 [3:54:44<15:44:34, 3.28it/s] 50%|████▉ | 185603/371472 [3:54:45<15:28:04, 3.34it/s] 50%|████▉ | 185604/371472 [3:54:45<17:26:15, 2.96it/s] 50%|████▉ | 185605/371472 [3:54:45<16:31:30, 3.12it/s] 50%|████▉ | 185606/371472 [3:54:46<15:59:35, 3.23it/s] 50%|████▉ | 185607/371472 [3:54:46<15:43:07, 3.28it/s] 50%|████▉ | 185608/371472 [3:54:46<15:10:28, 3.40it/s] 50%|████▉ | 185609/371472 [3:54:47<15:05:16, 3.42it/s] 50%|████▉ | 185610/371472 [3:54:47<14:50:07, 3.48it/s] 50%|████▉ | 185611/371472 [3:54:47<15:02:12, 3.43it/s] 50%|████▉ | 185612/371472 [3:54:47<15:17:02, 3.38it/s] 50%|████▉ | 185613/371472 [3:54:48<15:07:32, 3.41it/s] 50%|████▉ | 185614/371472 [3:54:48<15:11:16, 3.40it/s] 50%|████▉ | 185615/371472 [3:54:48<15:12:07, 3.40it/s] 50%|████▉ | 185616/371472 [3:54:49<15:16:04, 3.38it/s] 50%|████▉ | 185617/371472 [3:54:49<15:23:58, 3.35it/s] 50%|████▉ | 185618/371472 [3:54:49<15:18:05, 3.37it/s] 50%|████▉ | 185619/371472 [3:54:49<15:15:11, 3.38it/s] 50%|████▉ | 185620/371472 [3:54:50<15:13:24, 3.39it/s] {'loss': 2.9515, 'learning_rate': 5.50523605335172e-07, 'epoch': 8.0} + 50%|████▉ | 185620/371472 [3:54:50<15:13:24, 3.39it/s] 50%|████▉ | 185621/371472 [3:54:50<15:18:16, 3.37it/s] 50%|████▉ | 185622/371472 [3:54:50<14:50:02, 3.48it/s] 50%|████▉ | 185623/371472 [3:54:51<15:07:52, 3.41it/s] 50%|████▉ | 185624/371472 [3:54:51<16:16:25, 3.17it/s] 50%|████▉ | 185625/371472 [3:54:51<16:36:46, 3.11it/s] 50%|████▉ | 185626/371472 [3:54:52<16:29:36, 3.13it/s] 50%|████▉ | 185627/371472 [3:54:52<16:25:01, 3.14it/s] 50%|████▉ | 185628/371472 [3:54:52<15:50:12, 3.26it/s] 50%|████▉ | 185629/371472 [3:54:53<15:55:06, 3.24it/s] 50%|████▉ | 185630/371472 [3:54:53<16:18:08, 3.17it/s] 50%|████▉ | 185631/371472 [3:54:53<17:10:01, 3.01it/s] 50%|████▉ | 185632/371472 [3:54:54<16:14:51, 3.18it/s] 50%|████▉ | 185633/371472 [3:54:54<15:36:12, 3.31it/s] 50%|████▉ | 185634/371472 [3:54:54<15:49:18, 3.26it/s] 50%|████▉ | 185635/371472 [3:54:54<15:33:09, 3.32it/s] 50%|████▉ | 185636/371472 [3:54:55<15:08:57, 3.41it/s] 50%|████▉ | 185637/371472 [3:54:55<15:29:23, 3.33it/s] 50%|████▉ | 185638/371472 [3:54:55<15:31:39, 3.32it/s] 50%|████▉ | 185639/371472 [3:54:56<16:06:40, 3.20it/s] 50%|████▉ | 185640/371472 [3:54:56<15:39:51, 3.30it/s] {'loss': 2.9126, 'learning_rate': 5.504751233596931e-07, 'epoch': 8.0} + 50%|████▉ | 185640/371472 [3:54:56<15:39:51, 3.30it/s] 50%|████▉ | 185641/371472 [3:54:56<15:31:44, 3.32it/s] 50%|████▉ | 185642/371472 [3:54:56<15:06:20, 3.42it/s] 50%|████▉ | 185643/371472 [3:54:57<15:04:11, 3.43it/s] 50%|████▉ | 185644/371472 [3:54:57<15:11:03, 3.40it/s] 50%|████▉ | 185645/371472 [3:54:57<15:08:26, 3.41it/s] 50%|████▉ | 185646/371472 [3:54:58<15:07:48, 3.41it/s] 50%|████▉ | 185647/371472 [3:54:58<16:24:37, 3.15it/s] 50%|████▉ | 185648/371472 [3:54:58<16:04:44, 3.21it/s] 50%|████▉ | 185649/371472 [3:54:59<15:36:10, 3.31it/s] 50%|████▉ | 185650/371472 [3:54:59<15:25:28, 3.35it/s] 50%|████▉ | 185651/371472 [3:54:59<15:04:27, 3.42it/s] 50%|████▉ | 185652/371472 [3:55:00<15:38:20, 3.30it/s] 50%|████▉ | 185653/371472 [3:55:00<15:34:42, 3.31it/s] 50%|████▉ | 185654/371472 [3:55:00<15:10:37, 3.40it/s] 50%|████▉ | 185655/371472 [3:55:00<14:48:20, 3.49it/s] 50%|████▉ | 185656/371472 [3:55:01<14:52:29, 3.47it/s] 50%|████▉ | 185657/371472 [3:55:01<15:08:25, 3.41it/s] 50%|████▉ | 185658/371472 [3:55:01<14:42:42, 3.51it/s] 50%|████▉ | 185659/371472 [3:55:02<14:45:12, 3.50it/s] 50%|████▉ | 185660/371472 [3:55:02<15:47:30, 3.27it/s] {'loss': 3.0746, 'learning_rate': 5.504266413842143e-07, 'epoch': 8.0} + 50%|████▉ | 185660/371472 [3:55:02<15:47:30, 3.27it/s] 50%|████▉ | 185661/371472 [3:55:02<15:39:31, 3.30it/s] 50%|████▉ | 185662/371472 [3:55:02<15:16:51, 3.38it/s] 50%|████▉ | 185663/371472 [3:55:03<15:03:05, 3.43it/s] 50%|████▉ | 185664/371472 [3:55:03<14:38:22, 3.53it/s] 50%|████▉ | 185665/371472 [3:55:03<14:39:41, 3.52it/s] 50%|████▉ | 185666/371472 [3:55:04<18:35:53, 2.78it/s] 50%|████▉ | 185667/371472 [3:55:04<17:27:35, 2.96it/s] 50%|████▉ | 185668/371472 [3:55:04<16:37:08, 3.11it/s] 50%|████▉ | 185669/371472 [3:55:05<16:08:08, 3.20it/s] 50%|████▉ | 185670/371472 [3:55:05<15:51:27, 3.25it/s] 50%|████▉ | 185671/371472 [3:55:05<16:42:51, 3.09it/s] 50%|████▉ | 185672/371472 [3:55:06<17:07:04, 3.02it/s] 50%|████▉ | 185673/371472 [3:55:06<17:01:08, 3.03it/s] 50%|████▉ | 185674/371472 [3:55:06<15:59:33, 3.23it/s] 50%|████▉ | 185675/371472 [3:55:07<15:31:11, 3.33it/s] 50%|████▉ | 185676/371472 [3:55:07<15:07:51, 3.41it/s] 50%|████▉ | 185677/371472 [3:55:07<15:00:35, 3.44it/s] 50%|████▉ | 185678/371472 [3:55:07<14:51:05, 3.48it/s] 50%|████▉ | 185679/371472 [3:55:08<14:51:46, 3.47it/s] 50%|████▉ | 185680/371472 [3:55:08<15:07:44, 3.41it/s] {'loss': 2.9059, 'learning_rate': 5.503781594087354e-07, 'epoch': 8.0} + 50%|████▉ | 185680/371472 [3:55:08<15:07:44, 3.41it/s] 50%|████▉ | 185681/371472 [3:55:08<15:04:04, 3.43it/s] 50%|████▉ | 185682/371472 [3:55:09<14:48:24, 3.49it/s] 50%|████▉ | 185683/371472 [3:55:09<14:59:21, 3.44it/s] 50%|████▉ | 185684/371472 [3:55:09<15:49:31, 3.26it/s] 50%|████▉ | 185685/371472 [3:55:09<15:25:45, 3.34it/s] 50%|████▉ | 185686/371472 [3:55:10<15:18:25, 3.37it/s] 50%|████▉ | 185687/371472 [3:55:10<15:28:08, 3.34it/s] 50%|████▉ | 185688/371472 [3:55:10<14:49:26, 3.48it/s] 50%|████▉ | 185689/371472 [3:55:11<15:09:15, 3.41it/s] 50%|████▉ | 185690/371472 [3:55:11<15:09:32, 3.40it/s] 50%|████▉ | 185691/371472 [3:55:11<16:18:01, 3.17it/s] 50%|████▉ | 185692/371472 [3:55:12<15:54:50, 3.24it/s] 50%|████▉ | 185693/371472 [3:55:12<15:30:08, 3.33it/s] 50%|████▉ | 185694/371472 [3:55:12<15:26:53, 3.34it/s] 50%|████▉ | 185695/371472 [3:55:13<16:10:08, 3.19it/s] 50%|████▉ | 185696/371472 [3:55:13<15:57:24, 3.23it/s] 50%|████▉ | 185697/371472 [3:55:13<15:37:58, 3.30it/s] 50%|████▉ | 185698/371472 [3:55:13<15:42:19, 3.29it/s] 50%|████▉ | 185699/371472 [3:55:14<15:28:58, 3.33it/s] 50%|████▉ | 185700/371472 [3:55:14<16:15:08, 3.18it/s] {'loss': 2.8672, 'learning_rate': 5.503296774332564e-07, 'epoch': 8.0} + 50%|████▉ | 185700/371472 [3:55:14<16:15:08, 3.18it/s] 50%|████▉ | 185701/371472 [3:55:14<16:00:50, 3.22it/s] 50%|████▉ | 185702/371472 [3:55:15<15:11:51, 3.40it/s] 50%|████▉ | 185703/371472 [3:55:15<15:08:59, 3.41it/s] 50%|████▉ | 185704/371472 [3:55:15<14:55:56, 3.46it/s] 50%|████▉ | 185705/371472 [3:55:15<15:05:46, 3.42it/s] 50%|████▉ | 185706/371472 [3:55:16<15:34:38, 3.31it/s] 50%|████▉ | 185707/371472 [3:55:16<15:36:56, 3.30it/s] 50%|████▉ | 185708/371472 [3:55:16<15:16:11, 3.38it/s] 50%|████▉ | 185709/371472 [3:55:17<16:19:22, 3.16it/s] 50%|████▉ | 185710/371472 [3:55:17<17:20:02, 2.98it/s] 50%|████▉ | 185711/371472 [3:55:17<16:52:50, 3.06it/s] 50%|████▉ | 185712/371472 [3:55:18<17:01:39, 3.03it/s] 50%|████▉ | 185713/371472 [3:55:18<16:20:30, 3.16it/s] 50%|████▉ | 185714/371472 [3:55:18<16:15:25, 3.17it/s] 50%|████▉ | 185715/371472 [3:55:19<15:47:38, 3.27it/s] 50%|████▉ | 185716/371472 [3:55:19<16:29:49, 3.13it/s] 50%|████▉ | 185717/371472 [3:55:19<16:08:23, 3.20it/s] 50%|████▉ | 185718/371472 [3:55:20<15:29:57, 3.33it/s] 50%|████▉ | 185719/371472 [3:55:20<15:37:18, 3.30it/s] 50%|████▉ | 185720/371472 [3:55:20<15:35:14, 3.31it/s] {'loss': 2.9432, 'learning_rate': 5.502811954577776e-07, 'epoch': 8.0} + 50%|████▉ | 185720/371472 [3:55:20<15:35:14, 3.31it/s] 50%|████▉ | 185721/371472 [3:55:20<15:22:19, 3.36it/s] 50%|████▉ | 185722/371472 [3:55:21<15:30:44, 3.33it/s] 50%|████▉ | 185723/371472 [3:55:21<15:57:35, 3.23it/s] 50%|████▉ | 185724/371472 [3:55:21<15:50:30, 3.26it/s] 50%|████▉ | 185725/371472 [3:55:22<16:13:28, 3.18it/s] 50%|████▉ | 185726/371472 [3:55:22<15:31:33, 3.32it/s] 50%|████▉ | 185727/371472 [3:55:22<15:23:45, 3.35it/s] 50%|████▉ | 185728/371472 [3:55:23<15:13:07, 3.39it/s] 50%|████▉ | 185729/371472 [3:55:23<15:03:43, 3.43it/s] 50%|████▉ | 185730/371472 [3:55:23<14:56:14, 3.45it/s] 50%|████▉ | 185731/371472 [3:55:24<16:52:43, 3.06it/s] 50%|████▉ | 185732/371472 [3:55:24<16:43:23, 3.09it/s] 50%|████▉ | 185733/371472 [3:55:24<16:20:40, 3.16it/s] 50%|████▉ | 185734/371472 [3:55:24<16:01:19, 3.22it/s] 50%|████▉ | 185735/371472 [3:55:25<16:06:43, 3.20it/s] 50%|█████ | 185736/371472 [3:55:25<16:37:14, 3.10it/s]Some non-default generation parameters are set in the model config. These should go into a GenerationConfig file (https://huggingface.co/docs/transformers/generation_strategies#save-a-custom-decoding-strategy-with-your-model) instead. This warning will be raised to an exception in v4.41. +Non-default generation parameters: {'max_length': 200, 'early_stopping': True, 'num_beams': 5, 'forced_eos_token_id': 2} +/opt/conda/lib/python3.10/multiprocessing/popen_fork.py:66: RuntimeWarning: os.fork() was called. os.fork() is incompatible with multithreaded code, and JAX is multithreaded, so this will likely lead to a deadlock. + self.pid = os.fork() + 50%|█████ | 185737/371472 [3:55:56<489:59:11, 9.50s/it] 50%|█████ | 185738/371472 [3:55:56<347:39:19, 6.74s/it] 50%|█████ | 185739/371472 [3:55:57<247:41:17, 4.80s/it] 50%|█████ | 185740/371472 [3:55:57<180:18:05, 3.49s/it] {'loss': 2.8989, 'learning_rate': 5.502327134822987e-07, 'epoch': 8.0} + 50%|█████ | 185740/371472 [3:55:57<180:18:05, 3.49s/it] 50%|█████ | 185741/371472 [3:55:57<131:21:48, 2.55s/it] 50%|█████ | 185742/371472 [3:55:58<96:31:43, 1.87s/it] 50%|█████ | 185743/371472 [3:55:58<72:14:00, 1.40s/it] 50%|█████ | 185744/371472 [3:55:58<55:17:01, 1.07s/it] 50%|█████ | 185745/371472 [3:55:59<43:22:45, 1.19it/s] 50%|█████ | 185746/371472 [3:55:59<36:43:34, 1.40it/s] 50%|█████ | 185747/371472 [3:55:59<31:45:35, 1.62it/s] 50%|█████ | 185748/371472 [3:56:00<28:11:07, 1.83it/s] 50%|█████ | 185749/371472 [3:56:00<25:32:42, 2.02it/s] 50%|█████ | 185750/371472 [3:56:01<24:12:55, 2.13it/s] 50%|█████ | 185751/371472 [3:56:01<22:49:49, 2.26it/s] 50%|█████ | 185752/371472 [3:56:01<20:35:32, 2.51it/s] 50%|█████ | 185753/371472 [3:56:02<19:22:04, 2.66it/s] 50%|█████ | 185754/371472 [3:56:02<18:34:40, 2.78it/s] 50%|█████ | 185755/371472 [3:56:02<17:55:00, 2.88it/s] 50%|█████ | 185756/371472 [3:56:03<18:51:43, 2.74it/s] 50%|█████ | 185757/371472 [3:56:03<17:46:02, 2.90it/s] 50%|█████ | 185758/371472 [3:56:03<18:07:20, 2.85it/s] 50%|█████ | 185759/371472 [3:56:04<17:59:32, 2.87it/s] 50%|█████ | 185760/371472 [3:56:04<17:54:29, 2.88it/s] {'loss': 2.7647, 'learning_rate': 5.501842315068197e-07, 'epoch': 8.0} + 50%|█████ | 185760/371472 [3:56:04<17:54:29, 2.88it/s] 50%|█████ | 185761/371472 [3:56:04<17:12:09, 3.00it/s] 50%|█████ | 185762/371472 [3:56:05<16:09:46, 3.19it/s] 50%|█████ | 185763/371472 [3:56:05<16:19:34, 3.16it/s] 50%|█████ | 185764/371472 [3:56:05<16:29:31, 3.13it/s] 50%|█████ | 185765/371472 [3:56:05<15:56:37, 3.24it/s] 50%|█████ | 185766/371472 [3:56:06<16:09:07, 3.19it/s] 50%|█████ | 185767/371472 [3:56:06<16:13:56, 3.18it/s] 50%|█████ | 185768/371472 [3:56:06<15:56:20, 3.24it/s] 50%|█████ | 185769/371472 [3:56:07<16:16:34, 3.17it/s] 50%|█████ | 185770/371472 [3:56:07<15:58:22, 3.23it/s] 50%|█████ | 185771/371472 [3:56:07<16:11:36, 3.19it/s] 50%|█████ | 185772/371472 [3:56:08<15:55:54, 3.24it/s] 50%|█████ | 185773/371472 [3:56:08<16:16:14, 3.17it/s] 50%|█████ | 185774/371472 [3:56:08<15:55:41, 3.24it/s] 50%|█████ | 185775/371472 [3:56:09<16:00:06, 3.22it/s] 50%|█████ | 185776/371472 [3:56:09<15:50:55, 3.25it/s] 50%|█████ | 185777/371472 [3:56:09<15:59:15, 3.23it/s] 50%|█████ | 185778/371472 [3:56:10<15:53:02, 3.25it/s] 50%|█████ | 185779/371472 [3:56:10<16:13:32, 3.18it/s] 50%|█████ | 185780/371472 [3:56:10<16:09:17, 3.19it/s] {'loss': 2.8602, 'learning_rate': 5.501357495313408e-07, 'epoch': 8.0} + 50%|█████ | 185780/371472 [3:56:10<16:09:17, 3.19it/s] 50%|█████ | 185781/371472 [3:56:11<16:38:30, 3.10it/s] 50%|█████ | 185782/371472 [3:56:11<16:49:43, 3.07it/s] 50%|█████ | 185783/371472 [3:56:11<17:55:47, 2.88it/s] 50%|█████ | 185784/371472 [3:56:12<17:57:31, 2.87it/s] 50%|█████ | 185785/371472 [3:56:12<17:24:05, 2.96it/s] 50%|█████ | 185786/371472 [3:56:12<16:49:57, 3.06it/s] 50%|█████ | 185787/371472 [3:56:13<16:53:22, 3.05it/s] 50%|█████ | 185788/371472 [3:56:13<16:15:45, 3.17it/s] 50%|█████ | 185789/371472 [3:56:13<16:11:08, 3.19it/s] 50%|█████ | 185790/371472 [3:56:13<16:09:42, 3.19it/s] 50%|█████ | 185791/371472 [3:56:14<16:11:10, 3.19it/s] 50%|█████ | 185792/371472 [3:56:14<17:06:44, 3.01it/s] 50%|█████ | 185793/371472 [3:56:14<17:31:53, 2.94it/s] 50%|█████ | 185794/371472 [3:56:15<17:39:25, 2.92it/s] 50%|█████ | 185795/371472 [3:56:15<16:45:28, 3.08it/s] 50%|█████ | 185796/371472 [3:56:16<17:42:37, 2.91it/s] 50%|█████ | 185797/371472 [3:56:16<18:18:26, 2.82it/s] 50%|█████ | 185798/371472 [3:56:16<18:22:41, 2.81it/s] 50%|█████ | 185799/371472 [3:56:17<17:30:40, 2.95it/s] 50%|█████ | 185800/371472 [3:56:17<18:16:20, 2.82it/s] {'loss': 2.8374, 'learning_rate': 5.50087267555862e-07, 'epoch': 8.0} + 50%|█████ | 185800/371472 [3:56:17<18:16:20, 2.82it/s] 50%|█████ | 185801/371472 [3:56:17<18:24:35, 2.80it/s] 50%|█████ | 185802/371472 [3:56:18<18:26:49, 2.80it/s] 50%|█████ | 185803/371472 [3:56:18<18:01:45, 2.86it/s] 50%|█████ | 185804/371472 [3:56:18<17:35:57, 2.93it/s] 50%|█████ | 185805/371472 [3:56:19<17:09:26, 3.01it/s] 50%|█████ | 185806/371472 [3:56:19<16:40:32, 3.09it/s] 50%|█████ | 185807/371472 [3:56:19<16:55:57, 3.05it/s] 50%|█████ | 185808/371472 [3:56:20<16:34:42, 3.11it/s] 50%|█████ | 185809/371472 [3:56:20<16:31:22, 3.12it/s] 50%|█████ | 185810/371472 [3:56:20<16:11:52, 3.18it/s] 50%|█████ | 185811/371472 [3:56:21<16:51:03, 3.06it/s] 50%|█████ | 185812/371472 [3:56:21<16:35:36, 3.11it/s] 50%|█████ | 185813/371472 [3:56:21<16:11:18, 3.19it/s] 50%|█████ | 185814/371472 [3:56:21<16:21:06, 3.15it/s] 50%|█████ | 185815/371472 [3:56:22<16:53:28, 3.05it/s] 50%|█████ | 185816/371472 [3:56:22<16:34:10, 3.11it/s] 50%|█████ | 185817/371472 [3:56:22<16:22:39, 3.15it/s] 50%|█████ | 185818/371472 [3:56:23<16:28:20, 3.13it/s] 50%|█████ | 185819/371472 [3:56:23<17:21:37, 2.97it/s] 50%|█████ | 185820/371472 [3:56:24<18:08:27, 2.84it/s] {'loss': 2.6321, 'learning_rate': 5.500387855803831e-07, 'epoch': 8.0} + 50%|█████ | 185820/371472 [3:56:24<18:08:27, 2.84it/s] 50%|█████ | 185821/371472 [3:56:24<17:22:11, 2.97it/s] 50%|█████ | 185822/371472 [3:56:24<16:47:04, 3.07it/s] 50%|█████ | 185823/371472 [3:56:24<16:45:02, 3.08it/s] 50%|█████ | 185824/371472 [3:56:25<16:07:29, 3.20it/s] 50%|█████ | 185825/371472 [3:56:25<15:59:33, 3.22it/s] 50%|█████ | 185826/371472 [3:56:25<16:08:51, 3.19it/s] 50%|█████ | 185827/371472 [3:56:26<16:33:49, 3.11it/s] 50%|█████ | 185828/371472 [3:56:26<16:53:58, 3.05it/s] 50%|█████ | 185829/371472 [3:56:26<16:40:48, 3.09it/s] 50%|█████ | 185830/371472 [3:56:27<16:13:07, 3.18it/s] 50%|█████ | 185831/371472 [3:56:27<16:28:33, 3.13it/s] 50%|█████ | 185832/371472 [3:56:27<16:18:13, 3.16it/s] 50%|█████ | 185833/371472 [3:56:28<17:11:52, 3.00it/s] 50%|█████ | 185834/371472 [3:56:28<16:54:49, 3.05it/s] 50%|█████ | 185835/371472 [3:56:28<16:56:51, 3.04it/s] 50%|█████ | 185836/371472 [3:56:29<17:00:54, 3.03it/s] 50%|█████ | 185837/371472 [3:56:29<18:06:13, 2.85it/s] 50%|█████ | 185838/371472 [3:56:29<17:22:26, 2.97it/s] 50%|█████ | 185839/371472 [3:56:30<16:45:48, 3.08it/s] 50%|█████ | 185840/371472 [3:56:30<16:13:46, 3.18it/s] {'loss': 2.6652, 'learning_rate': 5.499903036049042e-07, 'epoch': 8.0} + 50%|█████ | 185840/371472 [3:56:30<16:13:46, 3.18it/s] 50%|█████ | 185841/371472 [3:56:30<16:24:57, 3.14it/s] 50%|█████ | 185842/371472 [3:56:31<15:51:31, 3.25it/s] 50%|█████ | 185843/371472 [3:56:31<16:17:18, 3.17it/s] 50%|█████ | 185844/371472 [3:56:31<16:23:03, 3.15it/s] 50%|█████ | 185845/371472 [3:56:32<16:38:19, 3.10it/s] 50%|█████ | 185846/371472 [3:56:32<16:26:32, 3.14it/s] 50%|█████ | 185847/371472 [3:56:32<16:15:58, 3.17it/s] 50%|█████ | 185848/371472 [3:56:32<15:25:54, 3.34it/s] 50%|█████ | 185849/371472 [3:56:33<16:07:07, 3.20it/s] 50%|█████ | 185850/371472 [3:56:33<16:15:11, 3.17it/s] 50%|█████ | 185851/371472 [3:56:33<16:02:01, 3.22it/s] 50%|█████ | 185852/371472 [3:56:34<15:47:59, 3.26it/s] 50%|█████ | 185853/371472 [3:56:34<15:39:56, 3.29it/s] 50%|█████ | 185854/371472 [3:56:34<17:01:28, 3.03it/s] 50%|█████ | 185855/371472 [3:56:35<17:38:37, 2.92it/s] 50%|█████ | 185856/371472 [3:56:35<17:09:52, 3.00it/s] 50%|█████ | 185857/371472 [3:56:35<16:21:17, 3.15it/s] 50%|█████ | 185858/371472 [3:56:36<16:20:47, 3.15it/s] 50%|█████ | 185859/371472 [3:56:36<16:13:28, 3.18it/s] 50%|█████ | 185860/371472 [3:56:36<16:51:34, 3.06it/s] {'loss': 2.8973, 'learning_rate': 5.499418216294253e-07, 'epoch': 8.01} + 50%|█████ | 185860/371472 [3:56:36<16:51:34, 3.06it/s] 50%|█████ | 185861/371472 [3:56:37<17:37:03, 2.93it/s] 50%|█████ | 185862/371472 [3:56:37<17:16:18, 2.99it/s] 50%|█████ | 185863/371472 [3:56:37<17:44:39, 2.91it/s] 50%|█████ | 185864/371472 [3:56:38<18:58:06, 2.72it/s] 50%|█████ | 185865/371472 [3:56:38<18:28:29, 2.79it/s] 50%|█████ | 185866/371472 [3:56:38<18:07:49, 2.84it/s] 50%|█████ | 185867/371472 [3:56:39<17:35:30, 2.93it/s] 50%|█████ | 185868/371472 [3:56:39<16:55:44, 3.05it/s] \ No newline at end of file