Abdulwahab Sahyoun
commited on
Commit
•
63d6951
1
Parent(s):
2b31db8
update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,128 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- generated_from_trainer
|
4 |
+
model-index:
|
5 |
+
- name: aradia-ctc-data2vec-ft
|
6 |
+
results: []
|
7 |
+
---
|
8 |
+
|
9 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
10 |
+
should probably proofread and complete it, then remove this comment. -->
|
11 |
+
|
12 |
+
# aradia-ctc-data2vec-ft
|
13 |
+
|
14 |
+
This model is a fine-tuned version of [facebook/data2vec-audio-base](https://huggingface.co/facebook/data2vec-audio-base) on an unknown dataset.
|
15 |
+
It achieves the following results on the evaluation set:
|
16 |
+
- Loss: 3.0464
|
17 |
+
- Wer: 1.0
|
18 |
+
|
19 |
+
## Model description
|
20 |
+
|
21 |
+
More information needed
|
22 |
+
|
23 |
+
## Intended uses & limitations
|
24 |
+
|
25 |
+
More information needed
|
26 |
+
|
27 |
+
## Training and evaluation data
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Training procedure
|
32 |
+
|
33 |
+
### Training hyperparameters
|
34 |
+
|
35 |
+
The following hyperparameters were used during training:
|
36 |
+
- learning_rate: 0.0003
|
37 |
+
- train_batch_size: 32
|
38 |
+
- eval_batch_size: 32
|
39 |
+
- seed: 42
|
40 |
+
- gradient_accumulation_steps: 2
|
41 |
+
- total_train_batch_size: 64
|
42 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
43 |
+
- lr_scheduler_type: linear
|
44 |
+
- lr_scheduler_warmup_steps: 500
|
45 |
+
- num_epochs: 30.0
|
46 |
+
- mixed_precision_training: Native AMP
|
47 |
+
|
48 |
+
### Training results
|
49 |
+
|
50 |
+
| Training Loss | Epoch | Step | Validation Loss | Wer |
|
51 |
+
|:-------------:|:-----:|:----:|:---------------:|:---:|
|
52 |
+
| No log | 0.43 | 100 | 3.3600 | 1.0 |
|
53 |
+
| No log | 0.87 | 200 | 3.0887 | 1.0 |
|
54 |
+
| No log | 1.3 | 300 | 3.0779 | 1.0 |
|
55 |
+
| No log | 1.74 | 400 | 3.0551 | 1.0 |
|
56 |
+
| 4.8553 | 2.17 | 500 | 3.0526 | 1.0 |
|
57 |
+
| 4.8553 | 2.61 | 600 | 3.0560 | 1.0 |
|
58 |
+
| 4.8553 | 3.04 | 700 | 3.1251 | 1.0 |
|
59 |
+
| 4.8553 | 3.48 | 800 | 3.0870 | 1.0 |
|
60 |
+
| 4.8553 | 3.91 | 900 | 3.0822 | 1.0 |
|
61 |
+
| 3.1133 | 4.35 | 1000 | 3.0484 | 1.0 |
|
62 |
+
| 3.1133 | 4.78 | 1100 | 3.0558 | 1.0 |
|
63 |
+
| 3.1133 | 5.22 | 1200 | 3.1019 | 1.0 |
|
64 |
+
| 3.1133 | 5.65 | 1300 | 3.0914 | 1.0 |
|
65 |
+
| 3.1133 | 6.09 | 1400 | 3.0691 | 1.0 |
|
66 |
+
| 3.109 | 6.52 | 1500 | 3.0589 | 1.0 |
|
67 |
+
| 3.109 | 6.95 | 1600 | 3.0508 | 1.0 |
|
68 |
+
| 3.109 | 7.39 | 1700 | 3.0540 | 1.0 |
|
69 |
+
| 3.109 | 7.82 | 1800 | 3.0546 | 1.0 |
|
70 |
+
| 3.109 | 8.26 | 1900 | 3.0524 | 1.0 |
|
71 |
+
| 3.1106 | 8.69 | 2000 | 3.0569 | 1.0 |
|
72 |
+
| 3.1106 | 9.13 | 2100 | 3.0622 | 1.0 |
|
73 |
+
| 3.1106 | 9.56 | 2200 | 3.0518 | 1.0 |
|
74 |
+
| 3.1106 | 10.0 | 2300 | 3.0749 | 1.0 |
|
75 |
+
| 3.1106 | 10.43 | 2400 | 3.0698 | 1.0 |
|
76 |
+
| 3.1058 | 10.87 | 2500 | 3.0665 | 1.0 |
|
77 |
+
| 3.1058 | 11.3 | 2600 | 3.0555 | 1.0 |
|
78 |
+
| 3.1058 | 11.74 | 2700 | 3.0589 | 1.0 |
|
79 |
+
| 3.1058 | 12.17 | 2800 | 3.0611 | 1.0 |
|
80 |
+
| 3.1058 | 12.61 | 2900 | 3.0561 | 1.0 |
|
81 |
+
| 3.1071 | 13.04 | 3000 | 3.0480 | 1.0 |
|
82 |
+
| 3.1071 | 13.48 | 3100 | 3.0492 | 1.0 |
|
83 |
+
| 3.1071 | 13.91 | 3200 | 3.0574 | 1.0 |
|
84 |
+
| 3.1071 | 14.35 | 3300 | 3.0538 | 1.0 |
|
85 |
+
| 3.1071 | 14.78 | 3400 | 3.0505 | 1.0 |
|
86 |
+
| 3.1061 | 15.22 | 3500 | 3.0600 | 1.0 |
|
87 |
+
| 3.1061 | 15.65 | 3600 | 3.0596 | 1.0 |
|
88 |
+
| 3.1061 | 16.09 | 3700 | 3.0623 | 1.0 |
|
89 |
+
| 3.1061 | 16.52 | 3800 | 3.0800 | 1.0 |
|
90 |
+
| 3.1061 | 16.95 | 3900 | 3.0583 | 1.0 |
|
91 |
+
| 3.1036 | 17.39 | 4000 | 3.0534 | 1.0 |
|
92 |
+
| 3.1036 | 17.82 | 4100 | 3.0563 | 1.0 |
|
93 |
+
| 3.1036 | 18.26 | 4200 | 3.0481 | 1.0 |
|
94 |
+
| 3.1036 | 18.69 | 4300 | 3.0477 | 1.0 |
|
95 |
+
| 3.1036 | 19.13 | 4400 | 3.0505 | 1.0 |
|
96 |
+
| 3.1086 | 19.56 | 4500 | 3.0485 | 1.0 |
|
97 |
+
| 3.1086 | 20.0 | 4600 | 3.0481 | 1.0 |
|
98 |
+
| 3.1086 | 20.43 | 4700 | 3.0615 | 1.0 |
|
99 |
+
| 3.1086 | 20.87 | 4800 | 3.0658 | 1.0 |
|
100 |
+
| 3.1086 | 21.3 | 4900 | 3.0505 | 1.0 |
|
101 |
+
| 3.1028 | 21.74 | 5000 | 3.0492 | 1.0 |
|
102 |
+
| 3.1028 | 22.17 | 5100 | 3.0485 | 1.0 |
|
103 |
+
| 3.1028 | 22.61 | 5200 | 3.0483 | 1.0 |
|
104 |
+
| 3.1028 | 23.04 | 5300 | 3.0479 | 1.0 |
|
105 |
+
| 3.1028 | 23.48 | 5400 | 3.0509 | 1.0 |
|
106 |
+
| 3.1087 | 23.91 | 5500 | 3.0530 | 1.0 |
|
107 |
+
| 3.1087 | 24.35 | 5600 | 3.0486 | 1.0 |
|
108 |
+
| 3.1087 | 24.78 | 5700 | 3.0514 | 1.0 |
|
109 |
+
| 3.1087 | 25.22 | 5800 | 3.0505 | 1.0 |
|
110 |
+
| 3.1087 | 25.65 | 5900 | 3.0508 | 1.0 |
|
111 |
+
| 3.1043 | 26.09 | 6000 | 3.0501 | 1.0 |
|
112 |
+
| 3.1043 | 26.52 | 6100 | 3.0467 | 1.0 |
|
113 |
+
| 3.1043 | 26.95 | 6200 | 3.0466 | 1.0 |
|
114 |
+
| 3.1043 | 27.39 | 6300 | 3.0465 | 1.0 |
|
115 |
+
| 3.1043 | 27.82 | 6400 | 3.0465 | 1.0 |
|
116 |
+
| 3.1175 | 28.26 | 6500 | 3.0466 | 1.0 |
|
117 |
+
| 3.1175 | 28.69 | 6600 | 3.0466 | 1.0 |
|
118 |
+
| 3.1175 | 29.13 | 6700 | 3.0465 | 1.0 |
|
119 |
+
| 3.1175 | 29.56 | 6800 | 3.0465 | 1.0 |
|
120 |
+
| 3.1175 | 30.0 | 6900 | 3.0464 | 1.0 |
|
121 |
+
|
122 |
+
|
123 |
+
### Framework versions
|
124 |
+
|
125 |
+
- Transformers 4.18.0.dev0
|
126 |
+
- Pytorch 1.10.2+cu113
|
127 |
+
- Datasets 1.18.4
|
128 |
+
- Tokenizers 0.11.6
|