File size: 17,490 Bytes
e3cd295 81ceef8 e3cd295 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 |
"""Copyright (c) 2024 Andrei Betlen
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE."""
import os
import json
import typing
import pathlib
import argparse
import numpy as np
import numpy.typing as npt
import gguf
from safetensors import safe_open
class SafetensorsIndexFile(typing.TypedDict):
weight_map: typing.Dict[str, str]
class SafetensorsIndex:
def __init__(self, index_file_path: str):
directory = os.path.dirname(index_file_path)
self.index = typing.cast(SafetensorsIndexFile, json.load(open(index_file_path)))
self.weight_map = self.index["weight_map"]
files = set(self.weight_map.values())
self.tensors = {file: safe_open(os.path.join(directory, file), framework="np") for file in files}
def get_tensor(self, key: str) -> npt.NDArray[np.float32]:
return typing.cast(npt.NDArray[np.float32], self.tensors[self.weight_map[key]].get_tensor(key)) # type: ignore
def k(raw_key: str, arch: str) -> str:
return raw_key.format(arch=arch)
def does_token_look_special(token: typing.Union[str, bytes]) -> bool:
if isinstance(token, (bytes, bytearray)):
token_text = token.decode(encoding="utf-8")
elif isinstance(token, memoryview):
token_text = token.tobytes().decode(encoding="utf-8")
else:
token_text = token
# Some models mark some added tokens which ought to be control tokens as not special.
# (e.g. command-r, command-r-plus, deepseek-coder, gemma{,-2})
seems_special = token_text in (
"<pad>", # deepseek-coder
"<mask>", "<2mass>", "[@BOS@]", # gemma{,-2}
)
seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>"))
seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>")) # deepseek-coder
# TODO: should these be marked as UNUSED instead? (maybe not)
seems_special = seems_special or (token_text.startswith("<unused") and token_text.endswith(">")) # gemma{,-2}
return seems_special
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"-d",
"--dir-model",
required=True,
help="path to directory containing the tokenizer",
)
args = parser.parse_args()
dir_model = pathlib.Path(args.dir_model)
# set model name to folder name
name = dir_model.name
tensors = SafetensorsIndex((dir_model / "model.safetensors.index.json").as_posix())
config = json.load(open(dir_model / "config.json"))
text_config = {
"max_position_embeddings": 8192,
"rms_norm_eps": 1e-6,
"head_dim": 256
}
text_config.update(config["text_config"])
vision_config = config["vision_config"]
preprocessor_config = json.load(open(dir_model / "preprocessor_config.json"))
### Vision model
ftype = 1 # fp16
fname_middle = "mmproj-"
has_text_encoder = False
has_llava_projector = True
n_layers_clip = vision_config["num_hidden_layers"]
fname_out = f"{name}-mmproj-f16.gguf"
fout = gguf.GGUFWriter(fname_out, arch="clip")
fout.add_bool("clip.has_text_encoder", False)
fout.add_bool("clip.has_vision_encoder", True)
fout.add_bool("clip.has_llava_projector", True)
fout.add_file_type(ftype) # fp16
model_name = f"google/{name}"
fout.add_name(model_name)
fout.add_description("image encoder for " + model_name)
fout.add_string("clip.projector_type", "mlp")
image_size = vision_config.get("image_size", preprocessor_config["size"]["height"])
# vision model hparams
VISION = "clip.vision"
fout.add_uint32("clip.vision.image_size", image_size)
fout.add_uint32("clip.vision.patch_size", vision_config["patch_size"])
fout.add_uint32(k(gguf.KEY_EMBEDDING_LENGTH, VISION), vision_config["hidden_size"])
fout.add_uint32(k(gguf.KEY_FEED_FORWARD_LENGTH, VISION), vision_config["intermediate_size"])
fout.add_uint32("clip.vision.projection_dim", vision_config["projection_dim"])
fout.add_uint32(k(gguf.KEY_ATTENTION_HEAD_COUNT, VISION), vision_config["num_attention_heads"])
fout.add_float32(k(gguf.KEY_ATTENTION_LAYERNORM_EPS, VISION), 1e-6)
fout.add_uint32(k(gguf.KEY_BLOCK_COUNT, VISION), n_layers_clip + 1)
fout.add_array("clip.vision.image_mean", preprocessor_config["image_mean"])
fout.add_array("clip.vision.image_std", preprocessor_config["image_std"])
fout.add_bool("clip.use_gelu", vision_config["projector_hidden_act"] == "gelu")
fout.add_float32("clip.embeddings_scale", 1.0 / (config["projection_dim"]**0.5))
# vision projection
fout.add_tensor(
"mm.0.weight",
tensors.get_tensor("multi_modal_projector.linear.weight").astype(np.float16),
)
fout.add_tensor(
"mm.0.bias",
tensors.get_tensor("multi_modal_projector.linear.bias").astype(np.float32),
)
# encoder (siglip)
fout.add_tensor(
"v.position_embd.weight",
tensors.get_tensor("vision_tower.vision_model.embeddings.position_embedding.weight").astype(np.float16),
)
fout.add_tensor(
"v.patch_embd.weight",
tensors.get_tensor("vision_tower.vision_model.embeddings.patch_embedding.weight")
.reshape(vision_config["hidden_size"], 3, vision_config["patch_size"], vision_config["patch_size"])
.astype(np.float16),
)
fout.add_tensor(
"v.patch_embd.bias",
tensors.get_tensor("vision_tower.vision_model.embeddings.patch_embedding.bias").astype(np.float32),
)
fout.add_tensor(
"v.post_ln.weight",
tensors.get_tensor("vision_tower.vision_model.post_layernorm.weight").astype(np.float32),
)
fout.add_tensor(
"v.post_ln.bias",
tensors.get_tensor("vision_tower.vision_model.post_layernorm.bias").astype(np.float32),
)
def blk_tensor(i: int, name: str):
return tensors.get_tensor(
rf"vision_tower.vision_model.encoder.layers.{i}.{name}"
)
def add_tensor(blk_id: int, gguf_id: typing.Optional[int] = None):
if gguf_id is None:
gguf_id = blk_id
q_w = blk_tensor(blk_id, "self_attn.q_proj.weight")
k_w = blk_tensor(blk_id, "self_attn.k_proj.weight")
v_w = blk_tensor(blk_id, "self_attn.v_proj.weight")
q_b = blk_tensor(blk_id, "self_attn.q_proj.bias")
k_b = blk_tensor(blk_id, "self_attn.k_proj.bias")
v_b = blk_tensor(blk_id, "self_attn.v_proj.bias")
fout.add_tensor(f"v.blk.{gguf_id}.attn_q.weight", q_w.astype(np.float16))
fout.add_tensor(f"v.blk.{gguf_id}.attn_q.bias", q_b.astype(np.float32))
fout.add_tensor(f"v.blk.{gguf_id}.attn_k.weight", k_w.astype(np.float16))
fout.add_tensor(f"v.blk.{gguf_id}.attn_k.bias", k_b.astype(np.float32))
fout.add_tensor(f"v.blk.{gguf_id}.attn_v.weight", v_w.astype(np.float16))
fout.add_tensor(f"v.blk.{gguf_id}.attn_v.bias", v_b.astype(np.float32))
fout.add_tensor(
f"v.blk.{gguf_id}.attn_out.weight",
blk_tensor(blk_id, "self_attn.out_proj.weight").astype(np.float16),
)
fout.add_tensor(
f"v.blk.{gguf_id}.attn_out.bias",
blk_tensor(blk_id, "self_attn.out_proj.bias").astype(np.float32),
)
fout.add_tensor(
f"v.blk.{gguf_id}.ln1.weight",
blk_tensor(blk_id, "layer_norm1.weight").astype(np.float32),
)
fout.add_tensor(
f"v.blk.{gguf_id}.ln1.bias",
blk_tensor(blk_id, "layer_norm1.bias").astype(np.float32),
)
fout.add_tensor(
f"v.blk.{gguf_id}.ffn_down.weight",
blk_tensor(blk_id, "mlp.fc1.weight").astype(np.float16),
)
fout.add_tensor(
f"v.blk.{gguf_id}.ffn_down.bias",
blk_tensor(blk_id, "mlp.fc1.bias").astype(np.float32),
)
fout.add_tensor(
f"v.blk.{gguf_id}.ffn_up.weight",
blk_tensor(blk_id, "mlp.fc2.weight").astype(np.float16),
)
fout.add_tensor(
f"v.blk.{gguf_id}.ffn_up.bias",
blk_tensor(blk_id, "mlp.fc2.bias").astype(np.float32),
)
fout.add_tensor(
f"v.blk.{gguf_id}.ln2.weight",
blk_tensor(blk_id, "layer_norm2.weight").astype(np.float32),
)
fout.add_tensor(
f"v.blk.{gguf_id}.ln2.bias",
blk_tensor(blk_id, "layer_norm2.bias").astype(np.float32),
)
for i in range(n_layers_clip):
add_tensor(i)
# Duplicate the last block (llava-cli skips over this)
add_tensor(n_layers_clip - 1, n_layers_clip)
fout.write_header_to_file()
fout.write_kv_data_to_file()
fout.write_tensors_to_file()
fout.close()
print(f"GGUF written to {fname_out}")
### Text model
# general GGUF init
fname_out = f"{name}-text-model-f16.gguf"
fout = gguf.GGUFWriter(fname_out, arch="gemma")
ftype = 1
block_count = text_config["num_hidden_layers"]
fout.add_name(name)
fout.add_context_length(text_config["max_position_embeddings"])
fout.add_embedding_length(text_config["hidden_size"])
fout.add_block_count(block_count)
fout.add_feed_forward_length(text_config["intermediate_size"])
fout.add_head_count(text_config["num_attention_heads"])
fout.add_head_count_kv(text_config.get("num_key_value_heads") or text_config["num_attention_heads"])
fout.add_layer_norm_rms_eps(text_config["rms_norm_eps"])
fout.add_key_length(text_config["head_dim"])
fout.add_value_length(text_config["head_dim"])
fout.add_file_type(ftype)
# fout.add_add_bos_token(True)
### Tokenizer
# Taken from _set_vocab_sentencepiece
from enum import IntEnum
class SentencePieceTokenTypes(IntEnum):
NORMAL = 1
UNKNOWN = 2
CONTROL = 3
USER_DEFINED = 4
UNUSED = 5
BYTE = 6
from sentencepiece import SentencePieceProcessor
tokenizer_path = dir_model / 'tokenizer.model'
tokens: typing.List[bytes] = []
scores: typing.List[float] = []
toktypes: typing.List[int] = []
if not tokenizer_path.is_file():
raise FileNotFoundError(f"File not found: {tokenizer_path}")
tokenizer = SentencePieceProcessor()
tokenizer.LoadFromFile(str(tokenizer_path))
vocab_size = config["vocab_size"]
tokens: typing.List[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
scores: typing.List[float] = [-10000.0] * vocab_size
toktypes: typing.List[int] = [SentencePieceTokenTypes.UNKNOWN] * vocab_size
for token_id in range(tokenizer.vocab_size()):
piece = tokenizer.IdToPiece(token_id)
text = piece.encode("utf-8")
score = tokenizer.GetScore(token_id)
toktype = SentencePieceTokenTypes.NORMAL
if tokenizer.IsUnknown(token_id):
toktype = SentencePieceTokenTypes.UNKNOWN
elif tokenizer.IsControl(token_id):
toktype = SentencePieceTokenTypes.CONTROL
elif tokenizer.IsUnused(token_id):
toktype = SentencePieceTokenTypes.UNUSED
elif tokenizer.IsByte(token_id):
toktype = SentencePieceTokenTypes.BYTE
tokens[token_id] = text
scores[token_id] = score
toktypes[token_id] = toktype
added_tokens_file = dir_model / 'added_tokens.json'
if added_tokens_file.is_file():
with open(added_tokens_file, "r", encoding="utf-8") as f:
added_tokens_json = json.load(f)
for key in added_tokens_json:
token_id = added_tokens_json[key]
if (token_id >= vocab_size):
print(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
continue
tokens[token_id] = key.encode("utf-8")
scores[token_id] = -1000.0
toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
tokenizer_config_file = dir_model / 'tokenizer_config.json'
if tokenizer_config_file.is_file():
with open(tokenizer_config_file, "r", encoding="utf-8") as f:
tokenizer_config_json = json.load(f)
added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
for token_id, token_data in added_tokens_decoder.items():
token_id = int(token_id)
token: str = token_data["content"]
if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
if tokens[token_id] != token.encode("utf-8"):
logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token!r}')
if token_data.get("special") or does_token_look_special(token):
toktypes[token_id] = SentencePieceTokenTypes.CONTROL
else:
token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces
toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
scores[token_id] = -1000.0
tokens[token_id] = token.encode("utf-8")
if vocab_size > len(tokens):
pad_count = vocab_size - len(tokens)
print(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
for i in range(1, pad_count + 1):
tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
scores.append(-1000.0)
toktypes.append(SentencePieceTokenTypes.UNUSED)
fout.add_tokenizer_model("llama")
fout.add_tokenizer_pre("default")
fout.add_token_list(tokens)
fout.add_token_scores(scores)
fout.add_token_types(toktypes)
special_vocab = gguf.SpecialVocab(dir_model, n_vocab=len(tokens))
special_vocab.add_to_gguf(fout)
fout.add_add_space_prefix(False)
### Text model
fout.add_tensor(
"token_embd.weight",
tensors.get_tensor("language_model.model.embed_tokens.weight").astype(np.float16),
)
for i in range(text_config["num_hidden_layers"]):
fout.add_tensor(
f"blk.{i}.attn_norm.weight",
tensors.get_tensor(f"language_model.model.layers.{i}.input_layernorm.weight").astype(
np.float32
# https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
) + 1,
)
fout.add_tensor(
f"blk.{i}.ffn_down.weight",
tensors.get_tensor(f"language_model.model.layers.{i}.mlp.down_proj.weight").astype(
np.float16
),
)
fout.add_tensor(
f"blk.{i}.ffn_gate.weight",
tensors.get_tensor(f"language_model.model.layers.{i}.mlp.gate_proj.weight").astype(
np.float16
),
)
fout.add_tensor(
f"blk.{i}.ffn_up.weight",
tensors.get_tensor(f"language_model.model.layers.{i}.mlp.up_proj.weight").astype(
np.float16
),
)
fout.add_tensor(
f"blk.{i}.ffn_norm.weight",
tensors.get_tensor(f"language_model.model.layers.{i}.post_attention_layernorm.weight").astype(
np.float32
) + 1,
)
fout.add_tensor(
f"blk.{i}.attn_k.weight",
tensors.get_tensor(
f"language_model.model.layers.{i}.self_attn.k_proj.weight"
).astype(np.float16),
)
fout.add_tensor(
f"blk.{i}.attn_output.weight",
tensors.get_tensor(
f"language_model.model.layers.{i}.self_attn.o_proj.weight"
).astype(np.float16),
)
fout.add_tensor(
f"blk.{i}.attn_q.weight",
tensors.get_tensor(
f"language_model.model.layers.{i}.self_attn.q_proj.weight"
).astype(np.float16),
)
fout.add_tensor(
f"blk.{i}.attn_v.weight",
tensors.get_tensor(
f"language_model.model.layers.{i}.self_attn.v_proj.weight"
).astype(np.float16),
)
fout.add_tensor(
"output_norm.weight",
tensors.get_tensor("language_model.model.norm.weight").astype(np.float32) + 1,
)
# save gguf
fout.write_header_to_file()
fout.write_kv_data_to_file()
fout.write_tensors_to_file()
fout.close()
print(f"GGUF written to {fname_out}") |