"""Copyright (c) 2024 Andrei Betlen Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.""" import os import json import typing import pathlib import argparse import numpy as np import numpy.typing as npt import gguf from safetensors import safe_open class SafetensorsIndexFile(typing.TypedDict): weight_map: typing.Dict[str, str] class SafetensorsIndex: def __init__(self, index_file_path: str): directory = os.path.dirname(index_file_path) self.index = typing.cast(SafetensorsIndexFile, json.load(open(index_file_path))) self.weight_map = self.index["weight_map"] files = set(self.weight_map.values()) self.tensors = {file: safe_open(os.path.join(directory, file), framework="np") for file in files} def get_tensor(self, key: str) -> npt.NDArray[np.float32]: return typing.cast(npt.NDArray[np.float32], self.tensors[self.weight_map[key]].get_tensor(key)) # type: ignore def k(raw_key: str, arch: str) -> str: return raw_key.format(arch=arch) def does_token_look_special(token: typing.Union[str, bytes]) -> bool: if isinstance(token, (bytes, bytearray)): token_text = token.decode(encoding="utf-8") elif isinstance(token, memoryview): token_text = token.tobytes().decode(encoding="utf-8") else: token_text = token # Some models mark some added tokens which ought to be control tokens as not special. # (e.g. command-r, command-r-plus, deepseek-coder, gemma{,-2}) seems_special = token_text in ( "", # deepseek-coder "", "<2mass>", "[@BOS@]", # gemma{,-2} ) seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>")) seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>")) # deepseek-coder # TODO: should these be marked as UNUSED instead? (maybe not) seems_special = seems_special or (token_text.startswith("")) # gemma{,-2} return seems_special if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "-d", "--dir-model", required=True, help="path to directory containing the tokenizer", ) args = parser.parse_args() dir_model = pathlib.Path(args.dir_model) # set model name to folder name name = dir_model.name tensors = SafetensorsIndex((dir_model / "model.safetensors.index.json").as_posix()) config = json.load(open(dir_model / "config.json")) text_config = { "max_position_embeddings": 8192, "rms_norm_eps": 1e-6, "head_dim": 256 } text_config.update(config["text_config"]) vision_config = config["vision_config"] preprocessor_config = json.load(open(dir_model / "preprocessor_config.json")) ### Vision model ftype = 1 # fp16 fname_middle = "mmproj-" has_text_encoder = False has_llava_projector = True n_layers_clip = vision_config["num_hidden_layers"] fname_out = f"{name}-mmproj-f16.gguf" fout = gguf.GGUFWriter(fname_out, arch="clip") fout.add_bool("clip.has_text_encoder", False) fout.add_bool("clip.has_vision_encoder", True) fout.add_bool("clip.has_llava_projector", True) fout.add_file_type(ftype) # fp16 model_name = f"google/{name}" fout.add_name(model_name) fout.add_description("image encoder for " + model_name) fout.add_string("clip.projector_type", "mlp") image_size = vision_config.get("image_size", preprocessor_config["size"]["height"]) # vision model hparams VISION = "clip.vision" fout.add_uint32("clip.vision.image_size", image_size) fout.add_uint32("clip.vision.patch_size", vision_config["patch_size"]) fout.add_uint32(k(gguf.KEY_EMBEDDING_LENGTH, VISION), vision_config["hidden_size"]) fout.add_uint32(k(gguf.KEY_FEED_FORWARD_LENGTH, VISION), vision_config["intermediate_size"]) fout.add_uint32("clip.vision.projection_dim", vision_config["projection_dim"]) fout.add_uint32(k(gguf.KEY_ATTENTION_HEAD_COUNT, VISION), vision_config["num_attention_heads"]) fout.add_float32(k(gguf.KEY_ATTENTION_LAYERNORM_EPS, VISION), 1e-6) fout.add_uint32(k(gguf.KEY_BLOCK_COUNT, VISION), n_layers_clip + 1) fout.add_array("clip.vision.image_mean", preprocessor_config["image_mean"]) fout.add_array("clip.vision.image_std", preprocessor_config["image_std"]) fout.add_bool("clip.use_gelu", vision_config["projector_hidden_act"] == "gelu") fout.add_float32("clip.embeddings_scale", 1.0 / (config["projection_dim"]**0.5)) # vision projection fout.add_tensor( "mm.0.weight", tensors.get_tensor("multi_modal_projector.linear.weight").astype(np.float16), ) fout.add_tensor( "mm.0.bias", tensors.get_tensor("multi_modal_projector.linear.bias").astype(np.float32), ) # encoder (siglip) fout.add_tensor( "v.position_embd.weight", tensors.get_tensor("vision_tower.vision_model.embeddings.position_embedding.weight").astype(np.float16), ) fout.add_tensor( "v.patch_embd.weight", tensors.get_tensor("vision_tower.vision_model.embeddings.patch_embedding.weight") .reshape(vision_config["hidden_size"], 3, vision_config["patch_size"], vision_config["patch_size"]) .astype(np.float16), ) fout.add_tensor( "v.patch_embd.bias", tensors.get_tensor("vision_tower.vision_model.embeddings.patch_embedding.bias").astype(np.float32), ) fout.add_tensor( "v.post_ln.weight", tensors.get_tensor("vision_tower.vision_model.post_layernorm.weight").astype(np.float32), ) fout.add_tensor( "v.post_ln.bias", tensors.get_tensor("vision_tower.vision_model.post_layernorm.bias").astype(np.float32), ) def blk_tensor(i: int, name: str): return tensors.get_tensor( rf"vision_tower.vision_model.encoder.layers.{i}.{name}" ) def add_tensor(blk_id: int, gguf_id: typing.Optional[int] = None): if gguf_id is None: gguf_id = blk_id q_w = blk_tensor(blk_id, "self_attn.q_proj.weight") k_w = blk_tensor(blk_id, "self_attn.k_proj.weight") v_w = blk_tensor(blk_id, "self_attn.v_proj.weight") q_b = blk_tensor(blk_id, "self_attn.q_proj.bias") k_b = blk_tensor(blk_id, "self_attn.k_proj.bias") v_b = blk_tensor(blk_id, "self_attn.v_proj.bias") fout.add_tensor(f"v.blk.{gguf_id}.attn_q.weight", q_w.astype(np.float16)) fout.add_tensor(f"v.blk.{gguf_id}.attn_q.bias", q_b.astype(np.float32)) fout.add_tensor(f"v.blk.{gguf_id}.attn_k.weight", k_w.astype(np.float16)) fout.add_tensor(f"v.blk.{gguf_id}.attn_k.bias", k_b.astype(np.float32)) fout.add_tensor(f"v.blk.{gguf_id}.attn_v.weight", v_w.astype(np.float16)) fout.add_tensor(f"v.blk.{gguf_id}.attn_v.bias", v_b.astype(np.float32)) fout.add_tensor( f"v.blk.{gguf_id}.attn_out.weight", blk_tensor(blk_id, "self_attn.out_proj.weight").astype(np.float16), ) fout.add_tensor( f"v.blk.{gguf_id}.attn_out.bias", blk_tensor(blk_id, "self_attn.out_proj.bias").astype(np.float32), ) fout.add_tensor( f"v.blk.{gguf_id}.ln1.weight", blk_tensor(blk_id, "layer_norm1.weight").astype(np.float32), ) fout.add_tensor( f"v.blk.{gguf_id}.ln1.bias", blk_tensor(blk_id, "layer_norm1.bias").astype(np.float32), ) fout.add_tensor( f"v.blk.{gguf_id}.ffn_down.weight", blk_tensor(blk_id, "mlp.fc1.weight").astype(np.float16), ) fout.add_tensor( f"v.blk.{gguf_id}.ffn_down.bias", blk_tensor(blk_id, "mlp.fc1.bias").astype(np.float32), ) fout.add_tensor( f"v.blk.{gguf_id}.ffn_up.weight", blk_tensor(blk_id, "mlp.fc2.weight").astype(np.float16), ) fout.add_tensor( f"v.blk.{gguf_id}.ffn_up.bias", blk_tensor(blk_id, "mlp.fc2.bias").astype(np.float32), ) fout.add_tensor( f"v.blk.{gguf_id}.ln2.weight", blk_tensor(blk_id, "layer_norm2.weight").astype(np.float32), ) fout.add_tensor( f"v.blk.{gguf_id}.ln2.bias", blk_tensor(blk_id, "layer_norm2.bias").astype(np.float32), ) for i in range(n_layers_clip): add_tensor(i) # Duplicate the last block (llava-cli skips over this) add_tensor(n_layers_clip - 1, n_layers_clip) fout.write_header_to_file() fout.write_kv_data_to_file() fout.write_tensors_to_file() fout.close() print(f"GGUF written to {fname_out}") ### Text model # general GGUF init fname_out = f"{name}-text-model-f16.gguf" fout = gguf.GGUFWriter(fname_out, arch="gemma") ftype = 1 block_count = text_config["num_hidden_layers"] fout.add_name(name) fout.add_context_length(text_config["max_position_embeddings"]) fout.add_embedding_length(text_config["hidden_size"]) fout.add_block_count(block_count) fout.add_feed_forward_length(text_config["intermediate_size"]) fout.add_head_count(text_config["num_attention_heads"]) fout.add_head_count_kv(text_config.get("num_key_value_heads") or text_config["num_attention_heads"]) fout.add_layer_norm_rms_eps(text_config["rms_norm_eps"]) fout.add_key_length(text_config["head_dim"]) fout.add_value_length(text_config["head_dim"]) fout.add_file_type(ftype) # fout.add_add_bos_token(True) ### Tokenizer # Taken from _set_vocab_sentencepiece from enum import IntEnum class SentencePieceTokenTypes(IntEnum): NORMAL = 1 UNKNOWN = 2 CONTROL = 3 USER_DEFINED = 4 UNUSED = 5 BYTE = 6 from sentencepiece import SentencePieceProcessor tokenizer_path = dir_model / 'tokenizer.model' tokens: typing.List[bytes] = [] scores: typing.List[float] = [] toktypes: typing.List[int] = [] if not tokenizer_path.is_file(): raise FileNotFoundError(f"File not found: {tokenizer_path}") tokenizer = SentencePieceProcessor() tokenizer.LoadFromFile(str(tokenizer_path)) vocab_size = config["vocab_size"] tokens: typing.List[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)] scores: typing.List[float] = [-10000.0] * vocab_size toktypes: typing.List[int] = [SentencePieceTokenTypes.UNKNOWN] * vocab_size for token_id in range(tokenizer.vocab_size()): piece = tokenizer.IdToPiece(token_id) text = piece.encode("utf-8") score = tokenizer.GetScore(token_id) toktype = SentencePieceTokenTypes.NORMAL if tokenizer.IsUnknown(token_id): toktype = SentencePieceTokenTypes.UNKNOWN elif tokenizer.IsControl(token_id): toktype = SentencePieceTokenTypes.CONTROL elif tokenizer.IsUnused(token_id): toktype = SentencePieceTokenTypes.UNUSED elif tokenizer.IsByte(token_id): toktype = SentencePieceTokenTypes.BYTE tokens[token_id] = text scores[token_id] = score toktypes[token_id] = toktype added_tokens_file = dir_model / 'added_tokens.json' if added_tokens_file.is_file(): with open(added_tokens_file, "r", encoding="utf-8") as f: added_tokens_json = json.load(f) for key in added_tokens_json: token_id = added_tokens_json[key] if (token_id >= vocab_size): print(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}') continue tokens[token_id] = key.encode("utf-8") scores[token_id] = -1000.0 toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED tokenizer_config_file = dir_model / 'tokenizer_config.json' if tokenizer_config_file.is_file(): with open(tokenizer_config_file, "r", encoding="utf-8") as f: tokenizer_config_json = json.load(f) added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {}) for token_id, token_data in added_tokens_decoder.items(): token_id = int(token_id) token: str = token_data["content"] if toktypes[token_id] != SentencePieceTokenTypes.UNUSED: if tokens[token_id] != token.encode("utf-8"): logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token!r}') if token_data.get("special") or does_token_look_special(token): toktypes[token_id] = SentencePieceTokenTypes.CONTROL else: token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED scores[token_id] = -1000.0 tokens[token_id] = token.encode("utf-8") if vocab_size > len(tokens): pad_count = vocab_size - len(tokens) print(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]") for i in range(1, pad_count + 1): tokens.append(bytes(f"[PAD{i}]", encoding="utf-8")) scores.append(-1000.0) toktypes.append(SentencePieceTokenTypes.UNUSED) fout.add_tokenizer_model("llama") fout.add_tokenizer_pre("default") fout.add_token_list(tokens) fout.add_token_scores(scores) fout.add_token_types(toktypes) special_vocab = gguf.SpecialVocab(dir_model, n_vocab=len(tokens)) special_vocab.add_to_gguf(fout) fout.add_add_space_prefix(False) ### Text model fout.add_tensor( "token_embd.weight", tensors.get_tensor("language_model.model.embed_tokens.weight").astype(np.float16), ) for i in range(text_config["num_hidden_layers"]): fout.add_tensor( f"blk.{i}.attn_norm.weight", tensors.get_tensor(f"language_model.model.layers.{i}.input_layernorm.weight").astype( np.float32 # https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89 ) + 1, ) fout.add_tensor( f"blk.{i}.ffn_down.weight", tensors.get_tensor(f"language_model.model.layers.{i}.mlp.down_proj.weight").astype( np.float16 ), ) fout.add_tensor( f"blk.{i}.ffn_gate.weight", tensors.get_tensor(f"language_model.model.layers.{i}.mlp.gate_proj.weight").astype( np.float16 ), ) fout.add_tensor( f"blk.{i}.ffn_up.weight", tensors.get_tensor(f"language_model.model.layers.{i}.mlp.up_proj.weight").astype( np.float16 ), ) fout.add_tensor( f"blk.{i}.ffn_norm.weight", tensors.get_tensor(f"language_model.model.layers.{i}.post_attention_layernorm.weight").astype( np.float32 ) + 1, ) fout.add_tensor( f"blk.{i}.attn_k.weight", tensors.get_tensor( f"language_model.model.layers.{i}.self_attn.k_proj.weight" ).astype(np.float16), ) fout.add_tensor( f"blk.{i}.attn_output.weight", tensors.get_tensor( f"language_model.model.layers.{i}.self_attn.o_proj.weight" ).astype(np.float16), ) fout.add_tensor( f"blk.{i}.attn_q.weight", tensors.get_tensor( f"language_model.model.layers.{i}.self_attn.q_proj.weight" ).astype(np.float16), ) fout.add_tensor( f"blk.{i}.attn_v.weight", tensors.get_tensor( f"language_model.model.layers.{i}.self_attn.v_proj.weight" ).astype(np.float16), ) fout.add_tensor( "output_norm.weight", tensors.get_tensor("language_model.model.norm.weight").astype(np.float32) + 1, ) # save gguf fout.write_header_to_file() fout.write_kv_data_to_file() fout.write_tensors_to_file() fout.close() print(f"GGUF written to {fname_out}")