abhiixxhek
commited on
Commit
•
9eb86cf
1
Parent(s):
fb2baaa
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,198 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import requests
|
2 |
+
from bs4 import BeautifulSoup
|
3 |
+
import pandas as pd
|
4 |
+
import gradio as gr
|
5 |
+
from groq import Groq
|
6 |
+
|
7 |
+
# Step 1: Scrape free courses from Analytics Vidhya
|
8 |
+
def fetch_free_courses():
|
9 |
+
url = "https://courses.analyticsvidhya.com/pages/all-free-courses"
|
10 |
+
response = requests.get(url)
|
11 |
+
soup = BeautifulSoup(response.content, 'html.parser')
|
12 |
+
|
13 |
+
courses_data = []
|
14 |
+
|
15 |
+
# Extract course details
|
16 |
+
for card in soup.select('header.course-card__img-container'):
|
17 |
+
image_element = card.find('img', class_='course-card__img')
|
18 |
+
|
19 |
+
if image_element:
|
20 |
+
title = image_element.get('alt')
|
21 |
+
img_url = image_element.get('src')
|
22 |
+
|
23 |
+
link = card.find_previous('a')
|
24 |
+
if link:
|
25 |
+
course_link = link.get('href')
|
26 |
+
if not course_link.startswith('http'):
|
27 |
+
course_link = 'https://courses.analyticsvidhya.com' + course_link
|
28 |
+
|
29 |
+
courses_data.append({
|
30 |
+
'title': title,
|
31 |
+
'image_url': img_url,
|
32 |
+
'course_link': course_link
|
33 |
+
})
|
34 |
+
return courses_data
|
35 |
+
|
36 |
+
courses = fetch_free_courses()
|
37 |
+
|
38 |
+
# Step 2: Load data into a DataFrame
|
39 |
+
df = pd.DataFrame(courses)
|
40 |
+
|
41 |
+
client = Groq()
|
42 |
+
|
43 |
+
# Course search function using Groq
|
44 |
+
def course_recommendation(query):
|
45 |
+
try:
|
46 |
+
print(f"Search query: {query}")
|
47 |
+
print(f"Total available courses: {len(df)}")
|
48 |
+
|
49 |
+
# Prompt construction for Groq
|
50 |
+
prompt = f"""
|
51 |
+
Based on the query: "{query}",
|
52 |
+
Rank the courses below based on relevance (0 to 1), with 1 being highly relevant.
|
53 |
+
Filter out courses with relevance scores below 0.5.
|
54 |
+
|
55 |
+
Courses:
|
56 |
+
{df['title'].to_string(index=False)}
|
57 |
+
"""
|
58 |
+
|
59 |
+
print("Sending query to Groq for recommendation...")
|
60 |
+
# Sending the request to Groq for results
|
61 |
+
response = client.chat.completions.create(
|
62 |
+
model="mixtral-8x7b-32768",
|
63 |
+
messages=[
|
64 |
+
{"role": "system", "content": "You are a course recommendation assistant."},
|
65 |
+
{"role": "user", "content": prompt}
|
66 |
+
],
|
67 |
+
temperature=0.3,
|
68 |
+
max_tokens=800
|
69 |
+
)
|
70 |
+
print("Response received from Groq.")
|
71 |
+
|
72 |
+
# Parse the Groq response
|
73 |
+
recommended_courses = []
|
74 |
+
content = response.choices[0].message.content
|
75 |
+
print("Groq's response:\n", content)
|
76 |
+
|
77 |
+
for line in content.split('\n'):
|
78 |
+
if line.startswith('Title:'):
|
79 |
+
course_title = line.split('Title:')[1].strip()
|
80 |
+
elif line.startswith('Relevance:'):
|
81 |
+
score = float(line.split('Relevance:')[1].strip())
|
82 |
+
if score >= 0.5:
|
83 |
+
matching_course = df[df['title'] == course_title]
|
84 |
+
if not matching_course.empty:
|
85 |
+
course_data = matching_course.iloc[0]
|
86 |
+
recommended_courses.append({
|
87 |
+
'title': course_title,
|
88 |
+
'image_url': course_data['image_url'],
|
89 |
+
'course_link': course_data['course_link'],
|
90 |
+
'score': score
|
91 |
+
})
|
92 |
+
|
93 |
+
return sorted(recommended_courses, key=lambda x: x['score'], reverse=True)[:10]
|
94 |
+
|
95 |
+
except Exception as e:
|
96 |
+
print(f"Error during course search: {e}")
|
97 |
+
return []
|
98 |
+
|
99 |
+
# Gradio function to search and display courses
|
100 |
+
def gradio_search_interface(query):
|
101 |
+
results = course_recommendation(query)
|
102 |
+
|
103 |
+
if results:
|
104 |
+
html_output = '<div class="results-section">'
|
105 |
+
for course in results:
|
106 |
+
html_output += f"""
|
107 |
+
<div class="course-item">
|
108 |
+
<img src="{course['image_url']}" alt="{course['title']}" class="course-thumbnail"/>
|
109 |
+
<div class="course-details">
|
110 |
+
<h4>{course['title']}</h4>
|
111 |
+
<p>Relevance: {round(course['score'] * 100, 2)}%</p>
|
112 |
+
<a href="{course['course_link']}" target="_blank" class="course-link-button">Explore Course</a>
|
113 |
+
</div>
|
114 |
+
</div>"""
|
115 |
+
html_output += '</div>'
|
116 |
+
return html_output
|
117 |
+
else:
|
118 |
+
return '<p class="no-courses-message">No matching courses found. Try another search.</p>'
|
119 |
+
|
120 |
+
# Custom CSS to make the interface attractive
|
121 |
+
custom_css = """
|
122 |
+
body {
|
123 |
+
background-color: #eaeef3;
|
124 |
+
font-family: 'Montserrat', sans-serif;
|
125 |
+
}
|
126 |
+
.results-section {
|
127 |
+
display: flex;
|
128 |
+
flex-wrap: wrap;
|
129 |
+
gap: 20px;
|
130 |
+
}
|
131 |
+
.course-item {
|
132 |
+
background-color: white;
|
133 |
+
border-radius: 12px;
|
134 |
+
box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1);
|
135 |
+
overflow: hidden;
|
136 |
+
width: 48%;
|
137 |
+
transition: transform 0.3s ease;
|
138 |
+
}
|
139 |
+
.course-item:hover {
|
140 |
+
transform: translateY(-10px);
|
141 |
+
}
|
142 |
+
.course-thumbnail {
|
143 |
+
width: 100%;
|
144 |
+
height: 160px;
|
145 |
+
object-fit: cover;
|
146 |
+
}
|
147 |
+
.course-details {
|
148 |
+
padding: 15px;
|
149 |
+
text-align: center;
|
150 |
+
}
|
151 |
+
.course-details h4 {
|
152 |
+
font-size: 18px;
|
153 |
+
color: #333;
|
154 |
+
margin: 10px 0;
|
155 |
+
}
|
156 |
+
.course-details p {
|
157 |
+
color: #555;
|
158 |
+
font-size: 14px;
|
159 |
+
}
|
160 |
+
.course-link-button {
|
161 |
+
display: inline-block;
|
162 |
+
background-color: #ff5733;
|
163 |
+
color: white;
|
164 |
+
padding: 8px 16px;
|
165 |
+
text-decoration: none;
|
166 |
+
border-radius: 6px;
|
167 |
+
margin-top: 10px;
|
168 |
+
}
|
169 |
+
.course-link-button:hover {
|
170 |
+
background-color: #c44524;
|
171 |
+
}
|
172 |
+
.no-courses-message {
|
173 |
+
text-align: center;
|
174 |
+
color: #777;
|
175 |
+
font-size: 16px;
|
176 |
+
}
|
177 |
+
"""
|
178 |
+
|
179 |
+
# Setting up the Gradio interface
|
180 |
+
iface = gr.Interface(
|
181 |
+
fn=gradio_search_interface,
|
182 |
+
inputs=gr.Textbox(label="Search for a course", placeholder="e.g., Python for data analysis, ML basics"),
|
183 |
+
outputs=gr.HTML(label="Course Results"),
|
184 |
+
title="Analytics Vidhya Course Finder",
|
185 |
+
description="Discover the best free courses from Analytics Vidhya tailored to your query.",
|
186 |
+
theme="compact",
|
187 |
+
css=custom_css,
|
188 |
+
examples=[
|
189 |
+
["Data Science for Beginners"],
|
190 |
+
["Python Programming"],
|
191 |
+
["Advanced Machine Learning"],
|
192 |
+
["Business Analytics"],
|
193 |
+
]
|
194 |
+
)
|
195 |
+
|
196 |
+
# Run the Gradio interface
|
197 |
+
if __name__ == "__main__":
|
198 |
+
iface.launch()
|