--- license: apache-2.0 tags: - AWQ inference: false --- # CodeGen2.5-7B-multi (4-bit 128g AWQ Quantized) Title: [**CodeGen2.5: Small, but mighty**](https://blog.salesforceairesearch.com/codegen25) Authors: [Erik Nijkamp](https://eriknijkamp.com)\*, [Hiroaki Hayashi](https://hiroakih.me)\*, Yingbo Zhou, Caiming Xiong (\* equal contribution) ## Model description [CodeGen2.5](https://github.com/salesforce/CodeGen) is a family of autoregressive language models for **program synthesis**. This model is a 4-bit 128 group size AWQ quantized model. For more information about AWQ quantization, please click [here](https://github.com/mit-han-lab/llm-awq). ## Model Date July 5, 2023 ## Model License Please refer to original CodeGen2.5 model license ([link](https://huggingface.co/Salesforce/codegen25-7b-multi)). Please refer to the AWQ quantization license ([link](https://github.com/llm-awq/blob/main/LICENSE)). ## CUDA Version This model was successfully tested on CUDA driver v530.30.02 and runtime v11.7 with Python v3.10.11. Please note that AWQ requires NVIDIA GPUs with compute capability of `8.0` or higher. For Docker users, the `nvcr.io/nvidia/pytorch:23.06-py3` image is runtime v12.1 but otherwise the same as the configuration above and has also been verified to work. ## How to Use ```bash git clone https://github.com/mit-han-lab/llm-awq \ && cd llm-awq \ && git checkout ce4a6bb1c238c014a06672cb74f6865573494d66 \ && pip install -e . \ && cd awq/kernels \ && python setup.py install ``` ```python import time import torch from awq.quantize.quantizer import real_quantize_model_weight from transformers import AutoModelForCausalLM, AutoConfig, AutoTokenizer, TextStreamer from accelerate import init_empty_weights, load_checkpoint_and_dispatch from huggingface_hub import snapshot_download model_name = "abhinavkulkarni/Salesforce-codegen25-7b-multi-w4-g128-awq" # Config config = AutoConfig.from_pretrained(model_name, trust_remote_code=True) # Tokenizer tokenizer = AutoTokenizer.from_pretrained(config.tokenizer_name, trust_remote_code=True) # Model w_bit = 4 q_config = { "zero_point": True, "q_group_size": 128, } load_quant = snapshot_download(model_name) with init_empty_weights(): model = AutoModelForCausalLM.from_config(config=config, torch_dtype=torch.float16, trust_remote_code=True) real_quantize_model_weight(model, w_bit=w_bit, q_config=q_config, init_only=True) model.tie_weights() model = load_checkpoint_and_dispatch(model, load_quant, device_map="balanced") # Inference prompt = f'''def hello_world():\n''' input_ids = tokenizer(prompt, return_tensors='pt').input_ids.cuda() output = model.generate( inputs=input_ids, temperature=0.7, max_new_tokens=512, top_p=0.15, top_k=0, repetition_penalty=1.1, eos_token_id=tokenizer.eos_token_id, streamer=streamer) ``` ## Evaluation This evaluation was done using [LM-Eval](https://github.com/EleutherAI/lm-evaluation-harness). [CodeGen2.5-7B-multi](https://huggingface.co/Salesforce/codegen25-7b-multi) | Task |Version| Metric | Value | |Stderr| |--------|------:|---------------|------:|---|------| |wikitext| 1|word_perplexity|28.8147| | | | | |byte_perplexity| 1.8748| | | | | |bits_per_byte | 0.9067| | | [CodeGen2.5-7B-multi (4-bit 128-group AWQ)](https://huggingface.co/abhinavkulkarni/Salesforce-codegen25-7b-multi-w4-g128-awq) | Task |Version| Metric | Value | |Stderr| |--------|------:|---------------|------:|---|------| |wikitext| 1|word_perplexity|29.4323| | | | | |byte_perplexity| 1.8823| | | | | |bits_per_byte | 0.9125| | | ## Acknowledgements Please cite CodeGen2 paper: ```bibtex @article{Nijkamp2023codegen2, title={CodeGen2: Lessons for Training LLMs on Programming and Natural Languages}, author={Nijkamp, Erik and Hayashi, Hiroaki and Xiong, Caiming and Savarese, Silvio and Zhou, Yingbo}, journal={arXiv preprint}, year={2023} } ``` The model was quantized with AWQ technique. If you find AWQ useful or relevant to your research, please kindly cite the paper: ``` @article{lin2023awq, title={AWQ: Activation-aware Weight Quantization for LLM Compression and Acceleration}, author={Lin, Ji and Tang, Jiaming and Tang, Haotian and Yang, Shang and Dang, Xingyu and Han, Song}, journal={arXiv}, year={2023} } ```