abhinavsarkar commited on
Commit
3d469de
1 Parent(s): 6aa48ce

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +97 -132
README.md CHANGED
@@ -1,199 +1,164 @@
1
  ---
2
  library_name: transformers
3
- tags: []
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
 
 
10
 
 
11
 
12
  ## Model Details
13
 
14
  ### Model Description
15
 
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
 
36
  ## Uses
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
  ### Direct Use
41
 
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
 
56
- [More Information Needed]
57
 
58
- ## Bias, Risks, and Limitations
 
 
 
59
 
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
 
70
  ## How to Get Started with the Model
71
 
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
 
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
 
 
 
 
96
 
97
- #### Speeds, Sizes, Times [optional]
 
 
 
98
 
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
 
 
100
 
101
- [More Information Needed]
 
 
102
 
103
- ## Evaluation
 
104
 
105
- <!-- This section describes the evaluation protocols and provides the results. -->
 
106
 
107
- ### Testing Data, Factors & Metrics
 
 
108
 
109
- #### Testing Data
110
 
111
- <!-- This should link to a Dataset Card if possible. -->
 
 
 
 
 
 
112
 
113
- [More Information Needed]
 
114
 
115
- #### Factors
116
 
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
 
118
 
119
- [More Information Needed]
 
120
 
121
- #### Metrics
 
 
122
 
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
 
125
- [More Information Needed]
 
 
 
 
126
 
127
- ### Results
 
 
 
 
128
 
129
- [More Information Needed]
130
 
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
 
137
- <!-- Relevant interpretability work for the model goes here -->
138
 
139
- [More Information Needed]
140
 
141
- ## Environmental Impact
142
 
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
 
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
 
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
 
153
- ## Technical Specifications [optional]
154
 
155
  ### Model Architecture and Objective
156
 
157
- [More Information Needed]
158
 
159
  ### Compute Infrastructure
160
 
161
- [More Information Needed]
162
-
163
  #### Hardware
164
 
165
- [More Information Needed]
166
 
167
  #### Software
168
 
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
 
179
- **APA:**
180
 
181
- [More Information Needed]
182
 
183
- ## Glossary [optional]
184
 
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
 
197
  ## Model Card Contact
198
 
199
- [More Information Needed]
 
 
 
1
  ---
2
  library_name: transformers
3
+ datasets:
4
+ - fka/awesome-chatgpt-prompts
5
+ base_model:
6
+ - unsloth/mistral-7b-instruct-v0.2-bnb-4bit
7
  ---
8
 
9
+ ---
 
 
10
 
11
+ # Model Card for Mistral-7B Instruct v0.2 Finetuned Prompt Generator
12
 
13
+ This model is fine-tuned for generating contextually relevant prompts for various scenarios and domains, helping users craft detailed and effective prompt instructions.
14
 
15
  ## Model Details
16
 
17
  ### Model Description
18
 
19
+ This model is a fine-tuned version of [Mistral-7B-Instruct-v0.2-bnb-4bit] aimed at providing high-quality prompt generation across diverse topics.
20
+ It excels in understanding input instructions and generating structured prompt that fit various creative, professional, and instructional needs.
 
 
 
 
 
 
 
 
 
21
 
22
+ - **Developed by:** Abhinav Sarkar
23
+ - **Shared by:** abhinavsarkar
24
+ - **Model type:** Causal Language Model
25
+ - **Languages:** English
26
+ - **Finetuned from model:** Mistral-7B-Instruct-v0.2-bnb-4bit
 
 
27
 
28
  ## Uses
29
 
 
 
30
  ### Direct Use
31
 
32
+ This model is designed for generating context-specific prompts to assist with content creation, task descriptions, and crafting prompts for AI-based systems.
33
+ It can be utilized to streamline processes in areas such as software development, customer interaction, and creative writing.
 
 
 
 
 
 
 
 
 
 
 
34
 
35
+ ### Downstream Use
36
 
37
+ This model can be incorporated into tools or systems where high-quality prompt generation is essential, such as:
38
+ - AI writing assistants
39
+ - Educational tools
40
+ - Chatbots requiring specialized responses or tailored prompts
41
 
 
 
 
 
 
 
 
 
 
42
 
43
  ## How to Get Started with the Model
44
 
45
+ Use the following peices of codes to start using the model:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
46
 
47
+ - PreRequisites
48
+ ```python
49
+ !pip install -U bitsandbytes
50
+ !pip install -U transformers
51
+ ```
52
 
53
+ - Loading the model and its tokenizer
54
+ ```python
55
+ from transformers import AutoModelForCausalLM, AutoTokenizer
56
+ import torch
57
 
58
+ model = AutoModelForCausalLM.from_pretrained("abhinavsarkar/mistral-7b-instruct-v0.2-bb-4bit-finetuned-prompt-generator")
59
+ tokenizer = AutoTokenizer.from_pretrained("abhinavsarkar/mistral-7b-instruct-v0.2-bb-4bit-finetuned-prompt-generator")
60
+ ```
61
 
62
+ - Inferencing the model
63
+ ```python
64
+ prompt = """Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
65
 
66
+ <|Instruction|>
67
+ {}
68
 
69
+ |<Input|>
70
+ {}
71
 
72
+ <|Response|>
73
+ {}
74
+ """
75
 
76
+ input_text = "Your Input text"
77
 
78
+ inputs = tokenizer([
79
+ prompt.format(
80
+ "You are a prompt engineer. Your task is to craft a prompt based on the given input that ensures the model behaves exactly as described by the provided word.", # instruction
81
+ input_text, # input
82
+ "", # output - leave this blank for generation!
83
+ )
84
+ ], return_tensors="pt").to("cuda" if torch.cuda.is_available() else "cpu")
85
 
86
+ with torch.no_grad():
87
+ output = model.generate(**inputs, max_new_tokens=512)
88
 
89
+ response = tokenizer.decode(output[0], skip_special_tokens=True)
90
 
91
+ start_token = "<|Response|>"
92
+ end_token = "<|End|>"
93
 
94
+ start_idx = response.find(start_token) + len(start_token)
95
+ end_idx = response.find(end_token)
96
 
97
+ final_response = response[start_idx:end_idx].strip()
98
+ print(final_response)
99
+ ```
100
 
101
+ ### Possible Errors and Solutions
102
 
103
+ **Quantization Warnings**:
104
+ If you receive warnings about unused arguments or quantization settings, ensure you have `bitsandbytes` installed:
105
+ ```python
106
+ !pip install -U bitsandbytes
107
+ ```
108
 
109
+ **Tokenizer Issues**:
110
+ If you encounter tokenizer-related errors, update the `transformers` library:
111
+ ```python
112
+ !pip install -U transformers
113
+ ```
114
 
115
+ Restart the session after installing these packages.
116
 
117
+ ## Training Details
 
 
 
 
118
 
119
+ ### Training Data
120
 
121
+ The model was fine-tuned on [fka/awesome-chatgpt-prompts], a curated dataset focused on general-purpose prompt generation, ensuring broad applicability across a wide range of topics and tasks.
122
 
123
+ ### Training Procedure
124
 
125
+ The model was fine-tuned using the Hugging Face Transformers library, Unsloth in a distributed environment(Google Collab, Kaggle), leveraging mixed-precision training for optimized performance.
126
 
127
+ #### Training Hyperparameters
128
 
129
+ - **Training regime:** fp16 mixed precision
130
+ - **Epochs:** 30
131
+ - **Batch size:** 2
132
+ - **Gradient accumulation steps:** 4
133
+ - **Learning rate:** 2e-4
134
 
135
+ ## Technical Specifications
136
 
137
  ### Model Architecture and Objective
138
 
139
+ This model is based on Mistral-7B architecture, optimized for efficient inference using 4-bit quantization and fine-tuned for the task of causal language modeling.
140
 
141
  ### Compute Infrastructure
142
 
 
 
143
  #### Hardware
144
 
145
+ The fine-tuning was conducted on a setup involving two T4 GPUs.
146
 
147
  #### Software
148
 
149
+ - **Framework**: PyTorch
150
+ - **Libraries**: Hugging Face Transformers, Unsloth
 
 
 
 
 
 
 
151
 
152
+ ## More Information
153
 
154
+ For further details or inquiries, please reach out via [LinkedIn](https://www.linkedin.com/in/abhinavsarkarrr/) or email at [email protected].
155
 
156
+ ## Model Card Authors
157
 
158
+ - Abhinav Sarkar
 
 
 
 
 
 
 
 
 
 
159
 
160
  ## Model Card Contact
161
 
162
163
+
164
+ ---