abhishek-ch
commited on
Commit
•
2d06212
1
Parent(s):
b6f7ffc
updated readme
Browse files
README.md
CHANGED
@@ -18,25 +18,80 @@ tags:
|
|
18 |
- biology
|
19 |
- mlx
|
20 |
datasets:
|
21 |
-
-
|
22 |
base_model:
|
23 |
- BioMistral/BioMistral-7B
|
24 |
- mistralai/Mistral-7B-Instruct-v0.1
|
25 |
pipeline_tag: text-generation
|
26 |
---
|
27 |
-
|
28 |
# abhishek-ch/biomistral-7b-synthetic-ehr
|
|
|
|
|
|
|
|
|
29 |
This model was converted to MLX format from [`BioMistral/BioMistral-7B-DARE`]().
|
30 |
Refer to the [original model card](https://huggingface.co/BioMistral/BioMistral-7B-DARE) for more details on the model.
|
|
|
|
|
31 |
## Use with mlx
|
32 |
|
33 |
```bash
|
34 |
pip install mlx-lm
|
35 |
```
|
36 |
|
|
|
|
|
|
|
37 |
```python
|
38 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
|
|
|
|
|
40 |
model, tokenizer = load("abhishek-ch/biomistral-7b-synthetic-ehr")
|
41 |
-
response = generate(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
```
|
|
|
18 |
- biology
|
19 |
- mlx
|
20 |
datasets:
|
21 |
+
- health_fact
|
22 |
base_model:
|
23 |
- BioMistral/BioMistral-7B
|
24 |
- mistralai/Mistral-7B-Instruct-v0.1
|
25 |
pipeline_tag: text-generation
|
26 |
---
|
|
|
27 |
# abhishek-ch/biomistral-7b-synthetic-ehr
|
28 |
+
|
29 |
+
![image/png](https://cdn-uploads.huggingface.co/production/uploads/6460910f455531c6be78b2dd/tGtYB0b3eS7A4zbqp1xz0.png)
|
30 |
+
|
31 |
+
|
32 |
This model was converted to MLX format from [`BioMistral/BioMistral-7B-DARE`]().
|
33 |
Refer to the [original model card](https://huggingface.co/BioMistral/BioMistral-7B-DARE) for more details on the model.
|
34 |
+
|
35 |
+
|
36 |
## Use with mlx
|
37 |
|
38 |
```bash
|
39 |
pip install mlx-lm
|
40 |
```
|
41 |
|
42 |
+
The model was LoRA fine-tuned on [health_facts](https://huggingface.co/datasets/health_fact) and
|
43 |
+
Synthetic EHR dataset inspired by MIMIC-IV using the format below, for 1000 steps (~1M tokens) using mlx.
|
44 |
+
|
45 |
```python
|
46 |
+
def format_prompt(prompt:str, question: str) -> str:
|
47 |
+
return """<s>[INST]
|
48 |
+
## Instructions
|
49 |
+
{}
|
50 |
+
## User Question
|
51 |
+
{}.
|
52 |
+
[/INST]</s>
|
53 |
+
""".format(prompt, question)
|
54 |
+
```
|
55 |
+
|
56 |
+
Example For Synthetic EHR Diagnosis System Prompt
|
57 |
+
```
|
58 |
+
You are an expert in provide diagnosis summary based on clinical notes inspired by MIMIC-IV-Note dataset.
|
59 |
+
These notes encompass Chief Complaint along with Patient Summary & medical admission details.
|
60 |
+
```
|
61 |
+
|
62 |
+
Example for Healthfacts Check System Prompt
|
63 |
+
```
|
64 |
+
You are a Public Health AI Assistant. You can do the fact-checking of public health claims. \nEach answer labelled with true, false, unproven or mixture. \nPlease provide the reason behind the answer
|
65 |
+
```
|
66 |
+
|
67 |
+
## Loading the model using `mlx`
|
68 |
|
69 |
+
```python
|
70 |
+
from mlx_lm import generate, load
|
71 |
model, tokenizer = load("abhishek-ch/biomistral-7b-synthetic-ehr")
|
72 |
+
response = generate(
|
73 |
+
fused_model,
|
74 |
+
fused_tokenizer,
|
75 |
+
prompt=format_prompt(prompt, question),
|
76 |
+
verbose=True, # Set to True to see the prompt and response
|
77 |
+
temp=0.0,
|
78 |
+
max_tokens=512,
|
79 |
+
)
|
80 |
+
```
|
81 |
+
|
82 |
+
## Loading the model using `transformers`
|
83 |
+
|
84 |
+
```python
|
85 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
86 |
+
repo_id = "abhishek-ch/biomistral-7b-synthetic-ehr"
|
87 |
+
tokenizer = AutoTokenizer.from_pretrained(repo_id)
|
88 |
+
model = AutoModelForCausalLM.from_pretrained(repo_id)
|
89 |
+
model.to("mps")
|
90 |
+
input_text = format_prompt(system_prompt, question)
|
91 |
+
input_ids = tokenizer(input_text, return_tensors="pt").to("mps")
|
92 |
+
outputs = model.generate(
|
93 |
+
**input_ids,
|
94 |
+
max_new_tokens=512,
|
95 |
+
)
|
96 |
+
print(tokenizer.decode(outputs[0]))
|
97 |
```
|