File size: 4,537 Bytes
7729017 70205df 7729017 70205df 01da337 70205df 01da337 70205df 01da337 70205df 01da337 70205df 9dadabc 769d8e7 ae839da 769d8e7 ae839da 769d8e7 ae839da f39b6ca ae839da f39b6ca 769d8e7 70205df c2a56ad 70205df 1e35d17 43166cf 1d5405d 769d8e7 1d5405d 547548c 9a480ee 547548c 1d5405d 547548c 1d5405d 547548c 1d5405d 547548c 43166cf 934ec51 1269097 934ec51 b8efbc1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 |
---
license: apache-2.0
datasets:
- irlab-udc/alpaca_data_galician
language:
- gl
- en
---
# Llama3-8B Adapter Fine-Tuned for Galician language
This repository contains a Lora adapter to finetune Meta's LLaMA 3-8B Instruct LLM to Galician language.
## Model Description
This Lora adapter has been specifically fine-tuned to understand and generate text in Galician. It was refined using a modified version of the [irlab-udc/alpaca_data_galician](https://huggingface.co/datasets/irlab-udc/alpaca_data_galician) dataset, enriched with synthetic data to enhance its text generation and comprehension capabilities in specific contexts.
### Technical Details
- **Base Model**: Unsloth Meta's LLaMA 3 8B Instruct (https://huggingface.co/unsloth/llama-3-8b-Instruct-bnb-4bit)
- **Fine-Tuning Platform**: LLaMA Factory
- **Infrastructure**: Finisterrae III, CESGA
- **Dataset**: [irlab-udc/alpaca_data_galician](https://huggingface.co/datasets/irlab-udc/alpaca_data_galician) (with modifications)
- **Fine-Tuning Objective**: To improve text comprehension and generation in Galician.
### Trainning parameters
The project is still in the testing phase, and the training parameters will continue to vary to find the values that result in a more accurate model. Currently, the model is trained with a set of **5000 random entries** from the dataset and the following values:
- num_train_epochs=3.0
- finetuning_type="lora"
- per_device_train_batch_size=2
- gradient_accumulation_steps=4
- lr_scheduler_type="cosine"
- learning_rate=5e-5
- max_grad_norm=1.0
## Testing The Model
Below, we have several examples of question-answer pairs comparing the pure Llama3 model with the Llama3 model fine tunned for the Galician language.
*Llama3-8B* 👎
```bash
User: Cal é a capital de Canadá?
Assistant: Não! Cal não é a capital de Canadá. A capital de Canadá é Ottawa.
```
*Llama3-8B-Galician-Chat* ✅ 👍
```bash
User: Cal é a capital de Canadá?
Assistant: A capital de Canadá é Ottawa.
```
*Llama3-8B* 👎
```bash
User: Cantos habitantes ten Galicia?
Assistant: Según el Instituto Nacional de Estadística (INE) de España, la población residente en Galicia al 1 de enero de 2021 era de aproximadamente 2.79 millones de personas.
```
*Llama3-8B-Galician-Chat* ✅ 👍
```bash
User: Cantos habitantes ten Galicia?
Assistant: Segundo as últimas estimacións, Galicia ten uns 2,8 millóns de habitantes.
```
## How to Use the Model
To use this model, follow the example code provided below. Ensure you have the necessary libraries installed (e.g., Hugging Face's `transformers`).
### Installation
```bash
git clone https://huggingface.co/abrahammg/Llama3-8B-Galician-Chat
```
```bash
pip install transformers bitsandbytes "unsloth[colab-new] @ git+https://github.com/unslothai/unsloth.git" llmtuner xformers
```
### Run the model
```bash
from llmtuner import ChatModel
from llmtuner.extras.misc import torch_gc
chat_model = ChatModel(dict(
model_name_or_path="unsloth/llama-3-8b-Instruct-bnb-4bit", # use bnb-4bit-quantized Llama-3-8B-Instruct model
adapter_name_or_path="./", # load the saved LoRA adapters
finetuning_type="lora", # same to the one in training
template="llama3", # same to the one in training
quantization_bit=4, # load 4-bit quantized model
use_unsloth=True, # use UnslothAI's LoRA optimization for 2x faster generation
))
messages = []
while True:
query = input("\nUser: ")
if query.strip() == "exit":
break
if query.strip() == "clear":
messages = []
torch_gc()
print("History has been removed.")
continue
messages.append({"role": "user", "content": query}) # add query to messages
print("Assistant: ", end="", flush=True)
response = ""
for new_text in chat_model.stream_chat(messages): # stream generation
print(new_text, end="", flush=True)
response += new_text
print()
messages.append({"role": "assistant", "content": response}) # add response to messages
torch_gc()
```
## Citation
```markdown
@misc{Llama3-8B-Galician-Chat,
author = {Abraham Martínez Gracia},
organization={Galicia Supercomputing Center},
title = {Llama3-8B-Galician-Chat: A finetuned chat model for Galician language},
year = {2024},
url = {https://huggingface.co/abrahammg/Llama3-8B-Galician-Chat}
}
```
## Acknowledgement
- [meta-llama/llama3](https://github.com/meta-llama/llama3)
- [hiyouga/LLaMA-Factory](https://github.com/hiyouga/LLaMA-Factory)
|