--- library_name: transformers license: mit base_model: microsoft/deberta-v3-base tags: - generated_from_trainer metrics: - accuracy - precision - recall model-index: - name: finetuning_test results: [] --- # finetuning_test This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6970 - Accuracy: 0.5 - F1-score: 0.6667 - Precision: 0.5 - Recall: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1-score | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:|:---------:|:------:| | 0.7485 | 0.1 | 1 | 0.6990 | 0.5 | 0.6667 | 0.5 | 1.0 | | 0.6785 | 0.2 | 2 | 0.6984 | 0.5 | 0.6667 | 0.5 | 1.0 | | 0.6803 | 0.3 | 3 | 0.6982 | 0.5 | 0.6667 | 0.5 | 1.0 | | 0.6517 | 0.4 | 4 | 0.6983 | 0.5 | 0.6667 | 0.5 | 1.0 | | 0.7254 | 0.5 | 5 | 0.6980 | 0.5 | 0.6667 | 0.5 | 1.0 | | 0.6979 | 0.6 | 6 | 0.6978 | 0.5 | 0.6667 | 0.5 | 1.0 | | 0.7064 | 0.7 | 7 | 0.6975 | 0.5 | 0.6667 | 0.5 | 1.0 | | 0.6709 | 0.8 | 8 | 0.6973 | 0.5 | 0.6667 | 0.5 | 1.0 | | 0.7092 | 0.9 | 9 | 0.6971 | 0.5 | 0.6667 | 0.5 | 1.0 | | 0.6975 | 1.0 | 10 | 0.6970 | 0.5 | 0.6667 | 0.5 | 1.0 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.5.0+cu121 - Datasets 3.1.0 - Tokenizers 0.19.1