File size: 27,653 Bytes
e77855f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
---
base_model: Snowflake/snowflake-arctic-embed-m
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
- dot_accuracy@1
- dot_accuracy@3
- dot_accuracy@5
- dot_accuracy@10
- dot_precision@1
- dot_precision@3
- dot_precision@5
- dot_precision@10
- dot_recall@1
- dot_recall@3
- dot_recall@5
- dot_recall@10
- dot_ndcg@10
- dot_mrr@10
- dot_map@100
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:600
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: What considerations should be taken into account regarding the
    specific set or types of users for the AI system?
  sentences:
  - "46 \nMG-4.3-003 \nReport GAI incidents in compliance with legal and regulatory\
    \ requirements (e.g., \nHIPAA breach reporting, e.g., OCR (2023) or NHTSA (2022)\
    \ autonomous vehicle \ncrash reporting requirements. \nInformation Security; Data\
    \ Privacy \nAI Actor Tasks: AI Deployment, Affected Individuals and Communities,\
    \ Domain Experts, End-Users, Human Factors, Operation and \nMonitoring"
  - "reporting, data protection, data privacy, or other laws. \nData Privacy; Human-AI\
    \ \nConfiguration; Information \nSecurity; Value Chain and \nComponent Integration;\
    \ Harmful \nBias and Homogenization \nGV-6.2-004 \nEstablish policies and procedures\
    \ for continuous monitoring of third-party GAI \nsystems in deployment. \nValue\
    \ Chain and Component \nIntegration \nGV-6.2-005 \nEstablish policies and procedures\
    \ that address GAI data redundancy, including \nmodel weights and other system\
    \ artifacts."
  - "times, and availability of critical support. \nHuman-AI Configuration; \nInformation\
    \ Security; Value Chain \nand Component Integration \nAI Actor Tasks: AI Deployment,\
    \ Operation and Monitoring, TEVV, Third-party entities \n \nMAP 1.1: Intended\
    \ purposes, potentially beneficial uses, context specific laws, norms and expectations,\
    \ and prospective settings in \nwhich the AI system will be deployed are understood\
    \ and documented. Considerations include: the specific set or types of users"
- source_sentence: What should organizations leverage when deploying GAI applications
    and using third-party pre-trained models?
  sentences:
  - "external use, narrow vs. broad application scope, fine-tuning, and varieties of\
    \ \ndata sources (e.g., grounding, retrieval-augmented generation). \nData Privacy;\
    \ Intellectual \nProperty"
  - "44 \nMG-3.2-007 \nLeverage feedback and recommendations from organizational boards\
    \ or \ncommittees related to the deployment of GAI applications and content \n\
    provenance when using third-party pre-trained models. \nInformation Integrity;\
    \ Value Chain \nand Component Integration \nMG-3.2-008 \nUse human moderation\
    \ systems where appropriate to review generated content \nin accordance with human-AI\
    \ configuration policies established in the Govern"
  - "Security \nMS-2.7-003 \nConduct user surveys to gather user satisfaction with\
    \ the AI-generated content \nand user perceptions of content authenticity. Analyze\
    \ user feedback to identify \nconcerns and/or current literacy levels related\
    \ to content provenance and \nunderstanding of labels on content. \nHuman-AI Configuration;\
    \ \nInformation Integrity \nMS-2.7-004 \nIdentify metrics that reflect the effectiveness\
    \ of security measures, such as data"
- source_sentence: What are the potential positive and negative impacts of AI system
    uses on individuals and communities?
  sentences:
  - "and Homogenization \nAI Actor Tasks: AI Deployment, Affected Individuals and Communities,\
    \ End-Users, Operation and Monitoring, TEVV \n \nMEASURE 4.2: Measurement results\
    \ regarding AI system trustworthiness in deployment context(s) and across the\
    \ AI lifecycle are \ninformed by input from domain experts and relevant AI Actors\
    \ to validate whether the system is performing consistently as \nintended. Results\
    \ are documented. \nAction ID \nSuggested Action \nGAI Risks \nMS-4.2-001"
  - "bias based on race, gender, disability, or other protected classes.  \nHarmful\
    \ bias in GAI systems can also lead to harms via disparities between how a model\
    \ performs for \ndifferent subgroups or languages (e.g., an LLM may perform less\
    \ well for non-English languages or \ncertain dialects). Such disparities can\
    \ contribute to discriminatory decision-making or amplification of \nexisting societal\
    \ biases. In addition, GAI systems may be inappropriately trusted to perform similarly"
  - "along with their expectations; potential positive and negative impacts of system\
    \ uses to individuals, communities, organizations, \nsociety, and the planet;\
    \ assumptions and related limitations about AI system purposes, uses, and risks\
    \ across the development or \nproduct AI lifecycle; and related TEVV and system\
    \ metrics. \nAction ID \nSuggested Action \nGAI Risks \nMP-1.1-001 \nWhen identifying\
    \ intended purposes, consider factors such as internal vs."
- source_sentence: How does the suggested action MG-41-001 aim to address GAI risks?
  sentences:
  - "most appropriate baseline is to compare against, which can result in divergent\
    \ views on when a disparity between \nAI behaviors for different subgroups constitutes\
    \ a harm. In discussing harms from disparities such as biased \nbehavior, this\
    \ document highlights examples where someone’s situation is worsened relative\
    \ to what it would have \nbeen in the absence of any AI system, making the outcome\
    \ unambiguously a harm of the system."
  - "Harmful Bias Managed, Privacy Enhanced, Safe, Secure and Resilient, Valid and\
    \ Reliable \n3. \nSuggested Actions to Manage GAI Risks \nThe following suggested\
    \ actions target risks unique to or exacerbated by GAI. \nIn addition to the suggested\
    \ actions below, AI risk management activities and actions set forth in the AI\
    \ \nRMF 1.0 and Playbook are already applicable for managing GAI risks. Organizations\
    \ are encouraged to"
  - "MANAGE 4.1: Post-deployment AI system monitoring plans are implemented, including\
    \ mechanisms for capturing and evaluating \ninput from users and other relevant\
    \ AI Actors, appeal and override, decommissioning, incident response, recovery,\
    \ and change \nmanagement. \nAction ID \nSuggested Action \nGAI Risks \nMG-4.1-001\
    \ \nCollaborate with external researchers, industry experts, and community \n\
    representatives to maintain awareness of emerging best practices and"
- source_sentence: What are some examples of input data features that may serve as
    proxies for demographic group membership in GAI systems?
  sentences:
  - "data privacy violations, obscenity, extremism, violence, or CBRN information\
    \ in \nsystem training data. \nData Privacy; Intellectual Property; \nObscene,\
    \ Degrading, and/or \nAbusive Content; Harmful Bias and \nHomogenization; Dangerous,\
    \ \nViolent, or Hateful Content; CBRN \nInformation or Capabilities \nMS-2.6-003\
    \ Re-evaluate safety features of fine-tuned models when the negative risk exceeds\
    \ \norganizational risk tolerance. \nDangerous, Violent, or Hateful \nContent"
  - "GAI. \nInformation Integrity; Intellectual \nProperty \nAI Actor Tasks: Governance\
    \ and Oversight, Operation and Monitoring \n \nGOVERN 1.6: Mechanisms are in place\
    \ to inventory AI systems and are resourced according to organizational risk priorities.\
    \ \nAction ID \nSuggested Action \nGAI Risks \nGV-1.6-001 Enumerate organizational\
    \ GAI systems for incorporation into AI system inventory \nand adjust AI system\
    \ inventory requirements to account for GAI risks. \nInformation Security"
  - "complex or unstructured data; Input data features that may serve as proxies for\
    \ \ndemographic group membership (i.e., image metadata, language dialect) or \n\
    otherwise give rise to emergent bias within GAI systems; The extent to which \n\
    the digital divide may negatively impact representativeness in GAI system \ntraining\
    \ and TEVV data; Filtering of hate speech or content in GAI system \ntraining\
    \ data; Prevalence of GAI-generated data in GAI system training data. \nHarmful\
    \ Bias and Homogenization"
model-index:
- name: SentenceTransformer based on Snowflake/snowflake-arctic-embed-m
  results:
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: Unknown
      type: unknown
    metrics:
    - type: cosine_accuracy@1
      value: 0.85
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.975
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 1.0
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 1.0
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.85
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.325
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.19999999999999998
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.09999999999999999
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.85
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.975
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 1.0
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 1.0
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.9341754705038519
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.911875
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.9118749999999999
      name: Cosine Map@100
    - type: dot_accuracy@1
      value: 0.85
      name: Dot Accuracy@1
    - type: dot_accuracy@3
      value: 0.975
      name: Dot Accuracy@3
    - type: dot_accuracy@5
      value: 1.0
      name: Dot Accuracy@5
    - type: dot_accuracy@10
      value: 1.0
      name: Dot Accuracy@10
    - type: dot_precision@1
      value: 0.85
      name: Dot Precision@1
    - type: dot_precision@3
      value: 0.325
      name: Dot Precision@3
    - type: dot_precision@5
      value: 0.19999999999999998
      name: Dot Precision@5
    - type: dot_precision@10
      value: 0.09999999999999999
      name: Dot Precision@10
    - type: dot_recall@1
      value: 0.85
      name: Dot Recall@1
    - type: dot_recall@3
      value: 0.975
      name: Dot Recall@3
    - type: dot_recall@5
      value: 1.0
      name: Dot Recall@5
    - type: dot_recall@10
      value: 1.0
      name: Dot Recall@10
    - type: dot_ndcg@10
      value: 0.9341754705038519
      name: Dot Ndcg@10
    - type: dot_mrr@10
      value: 0.911875
      name: Dot Mrr@10
    - type: dot_map@100
      value: 0.9118749999999999
      name: Dot Map@100
---

# SentenceTransformer based on Snowflake/snowflake-arctic-embed-m

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Snowflake/snowflake-arctic-embed-m](https://huggingface.co/Snowflake/snowflake-arctic-embed-m). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [Snowflake/snowflake-arctic-embed-m](https://huggingface.co/Snowflake/snowflake-arctic-embed-m) <!-- at revision e2b128b9fa60c82b4585512b33e1544224ffff42 -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
    'What are some examples of input data features that may serve as proxies for demographic group membership in GAI systems?',
    'complex or unstructured data; Input data features that may serve as proxies for \ndemographic group membership (i.e., image metadata, language dialect) or \notherwise give rise to emergent bias within GAI systems; The extent to which \nthe digital divide may negatively impact representativeness in GAI system \ntraining and TEVV data; Filtering of hate speech or content in GAI system \ntraining data; Prevalence of GAI-generated data in GAI system training data. \nHarmful Bias and Homogenization',
    'GAI. \nInformation Integrity; Intellectual \nProperty \nAI Actor Tasks: Governance and Oversight, Operation and Monitoring \n \nGOVERN 1.6: Mechanisms are in place to inventory AI systems and are resourced according to organizational risk priorities. \nAction ID \nSuggested Action \nGAI Risks \nGV-1.6-001 Enumerate organizational GAI systems for incorporation into AI system inventory \nand adjust AI system inventory requirements to account for GAI risks. \nInformation Security',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Information Retrieval

* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.85       |
| cosine_accuracy@3   | 0.975      |
| cosine_accuracy@5   | 1.0        |
| cosine_accuracy@10  | 1.0        |
| cosine_precision@1  | 0.85       |
| cosine_precision@3  | 0.325      |
| cosine_precision@5  | 0.2        |
| cosine_precision@10 | 0.1        |
| cosine_recall@1     | 0.85       |
| cosine_recall@3     | 0.975      |
| cosine_recall@5     | 1.0        |
| cosine_recall@10    | 1.0        |
| cosine_ndcg@10      | 0.9342     |
| cosine_mrr@10       | 0.9119     |
| **cosine_map@100**  | **0.9119** |
| dot_accuracy@1      | 0.85       |
| dot_accuracy@3      | 0.975      |
| dot_accuracy@5      | 1.0        |
| dot_accuracy@10     | 1.0        |
| dot_precision@1     | 0.85       |
| dot_precision@3     | 0.325      |
| dot_precision@5     | 0.2        |
| dot_precision@10    | 0.1        |
| dot_recall@1        | 0.85       |
| dot_recall@3        | 0.975      |
| dot_recall@5        | 1.0        |
| dot_recall@10       | 1.0        |
| dot_ndcg@10         | 0.9342     |
| dot_mrr@10          | 0.9119     |
| dot_map@100         | 0.9119     |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### Unnamed Dataset


* Size: 600 training samples
* Columns: <code>sentence_0</code> and <code>sentence_1</code>
* Approximate statistics based on the first 600 samples:
  |         | sentence_0                                                                         | sentence_1                                                                         |
  |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
  | type    | string                                                                             | string                                                                             |
  | details | <ul><li>min: 11 tokens</li><li>mean: 20.85 tokens</li><li>max: 35 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 89.39 tokens</li><li>max: 335 tokens</li></ul> |
* Samples:
  | sentence_0                                                                                                         | sentence_1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
  |:-------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>What is the title of the publication related to Artificial Intelligence Risk Management by NIST?</code>      | <code>NIST Trustworthy and Responsible AI  <br>NIST AI 600-1 <br>Artificial Intelligence Risk Management <br>Framework: Generative Artificial <br>Intelligence Profile <br> <br> <br> <br>This publication is available free of charge from: <br>https://doi.org/10.6028/NIST.AI.600-1</code>                                                                                                                                                                                                                                                                |
  | <code>Where can the NIST AI 600-1 publication be accessed for free?</code>                                         | <code>NIST Trustworthy and Responsible AI  <br>NIST AI 600-1 <br>Artificial Intelligence Risk Management <br>Framework: Generative Artificial <br>Intelligence Profile <br> <br> <br> <br>This publication is available free of charge from: <br>https://doi.org/10.6028/NIST.AI.600-1</code>                                                                                                                                                                                                                                                                |
  | <code>What is the title of the publication released by NIST in July 2024 regarding artificial intelligence?</code> | <code>NIST Trustworthy and Responsible AI  <br>NIST AI 600-1 <br>Artificial Intelligence Risk Management <br>Framework: Generative Artificial <br>Intelligence Profile <br> <br> <br> <br>This publication is available free of charge from: <br>https://doi.org/10.6028/NIST.AI.600-1 <br> <br>July 2024 <br> <br> <br> <br> <br>U.S. Department of Commerce  <br>Gina M. Raimondo, Secretary <br>National Institute of Standards and Technology  <br>Laurie E. Locascio, NIST Director and Under Secretary of Commerce for Standards and Technology</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
  ```json
  {
      "loss": "MultipleNegativesRankingLoss",
      "matryoshka_dims": [
          768,
          512,
          256,
          128,
          64
      ],
      "matryoshka_weights": [
          1,
          1,
          1,
          1,
          1
      ],
      "n_dims_per_step": -1
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: steps
- `per_device_train_batch_size`: 20
- `per_device_eval_batch_size`: 20
- `num_train_epochs`: 5
- `multi_dataset_batch_sampler`: round_robin

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 20
- `per_device_eval_batch_size`: 20
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1
- `num_train_epochs`: 5
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.0
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `eval_use_gather_object`: False
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: round_robin

</details>

### Training Logs
| Epoch  | Step | cosine_map@100 |
|:------:|:----:|:--------------:|
| 1.0    | 30   | 0.9271         |
| 1.6667 | 50   | 0.9306         |
| 2.0    | 60   | 0.9187         |
| 3.0    | 90   | 0.9244         |
| 3.3333 | 100  | 0.9244         |
| 4.0    | 120  | 0.9244         |
| 5.0    | 150  | 0.9119         |


### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.1.1
- Transformers: 4.44.2
- PyTorch: 2.4.1+cu121
- Accelerate: 0.34.2
- Datasets: 3.0.0
- Tokenizers: 0.19.1

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning},
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}
```

#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->