File size: 27,653 Bytes
e77855f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 |
---
base_model: Snowflake/snowflake-arctic-embed-m
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
- dot_accuracy@1
- dot_accuracy@3
- dot_accuracy@5
- dot_accuracy@10
- dot_precision@1
- dot_precision@3
- dot_precision@5
- dot_precision@10
- dot_recall@1
- dot_recall@3
- dot_recall@5
- dot_recall@10
- dot_ndcg@10
- dot_mrr@10
- dot_map@100
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:600
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: What considerations should be taken into account regarding the
specific set or types of users for the AI system?
sentences:
- "46 \nMG-4.3-003 \nReport GAI incidents in compliance with legal and regulatory\
\ requirements (e.g., \nHIPAA breach reporting, e.g., OCR (2023) or NHTSA (2022)\
\ autonomous vehicle \ncrash reporting requirements. \nInformation Security; Data\
\ Privacy \nAI Actor Tasks: AI Deployment, Affected Individuals and Communities,\
\ Domain Experts, End-Users, Human Factors, Operation and \nMonitoring"
- "reporting, data protection, data privacy, or other laws. \nData Privacy; Human-AI\
\ \nConfiguration; Information \nSecurity; Value Chain and \nComponent Integration;\
\ Harmful \nBias and Homogenization \nGV-6.2-004 \nEstablish policies and procedures\
\ for continuous monitoring of third-party GAI \nsystems in deployment. \nValue\
\ Chain and Component \nIntegration \nGV-6.2-005 \nEstablish policies and procedures\
\ that address GAI data redundancy, including \nmodel weights and other system\
\ artifacts."
- "times, and availability of critical support. \nHuman-AI Configuration; \nInformation\
\ Security; Value Chain \nand Component Integration \nAI Actor Tasks: AI Deployment,\
\ Operation and Monitoring, TEVV, Third-party entities \n \nMAP 1.1: Intended\
\ purposes, potentially beneficial uses, context specific laws, norms and expectations,\
\ and prospective settings in \nwhich the AI system will be deployed are understood\
\ and documented. Considerations include: the specific set or types of users"
- source_sentence: What should organizations leverage when deploying GAI applications
and using third-party pre-trained models?
sentences:
- "external use, narrow vs. broad application scope, fine-tuning, and varieties of\
\ \ndata sources (e.g., grounding, retrieval-augmented generation). \nData Privacy;\
\ Intellectual \nProperty"
- "44 \nMG-3.2-007 \nLeverage feedback and recommendations from organizational boards\
\ or \ncommittees related to the deployment of GAI applications and content \n\
provenance when using third-party pre-trained models. \nInformation Integrity;\
\ Value Chain \nand Component Integration \nMG-3.2-008 \nUse human moderation\
\ systems where appropriate to review generated content \nin accordance with human-AI\
\ configuration policies established in the Govern"
- "Security \nMS-2.7-003 \nConduct user surveys to gather user satisfaction with\
\ the AI-generated content \nand user perceptions of content authenticity. Analyze\
\ user feedback to identify \nconcerns and/or current literacy levels related\
\ to content provenance and \nunderstanding of labels on content. \nHuman-AI Configuration;\
\ \nInformation Integrity \nMS-2.7-004 \nIdentify metrics that reflect the effectiveness\
\ of security measures, such as data"
- source_sentence: What are the potential positive and negative impacts of AI system
uses on individuals and communities?
sentences:
- "and Homogenization \nAI Actor Tasks: AI Deployment, Affected Individuals and Communities,\
\ End-Users, Operation and Monitoring, TEVV \n \nMEASURE 4.2: Measurement results\
\ regarding AI system trustworthiness in deployment context(s) and across the\
\ AI lifecycle are \ninformed by input from domain experts and relevant AI Actors\
\ to validate whether the system is performing consistently as \nintended. Results\
\ are documented. \nAction ID \nSuggested Action \nGAI Risks \nMS-4.2-001"
- "bias based on race, gender, disability, or other protected classes. \nHarmful\
\ bias in GAI systems can also lead to harms via disparities between how a model\
\ performs for \ndifferent subgroups or languages (e.g., an LLM may perform less\
\ well for non-English languages or \ncertain dialects). Such disparities can\
\ contribute to discriminatory decision-making or amplification of \nexisting societal\
\ biases. In addition, GAI systems may be inappropriately trusted to perform similarly"
- "along with their expectations; potential positive and negative impacts of system\
\ uses to individuals, communities, organizations, \nsociety, and the planet;\
\ assumptions and related limitations about AI system purposes, uses, and risks\
\ across the development or \nproduct AI lifecycle; and related TEVV and system\
\ metrics. \nAction ID \nSuggested Action \nGAI Risks \nMP-1.1-001 \nWhen identifying\
\ intended purposes, consider factors such as internal vs."
- source_sentence: How does the suggested action MG-41-001 aim to address GAI risks?
sentences:
- "most appropriate baseline is to compare against, which can result in divergent\
\ views on when a disparity between \nAI behaviors for different subgroups constitutes\
\ a harm. In discussing harms from disparities such as biased \nbehavior, this\
\ document highlights examples where someone’s situation is worsened relative\
\ to what it would have \nbeen in the absence of any AI system, making the outcome\
\ unambiguously a harm of the system."
- "Harmful Bias Managed, Privacy Enhanced, Safe, Secure and Resilient, Valid and\
\ Reliable \n3. \nSuggested Actions to Manage GAI Risks \nThe following suggested\
\ actions target risks unique to or exacerbated by GAI. \nIn addition to the suggested\
\ actions below, AI risk management activities and actions set forth in the AI\
\ \nRMF 1.0 and Playbook are already applicable for managing GAI risks. Organizations\
\ are encouraged to"
- "MANAGE 4.1: Post-deployment AI system monitoring plans are implemented, including\
\ mechanisms for capturing and evaluating \ninput from users and other relevant\
\ AI Actors, appeal and override, decommissioning, incident response, recovery,\
\ and change \nmanagement. \nAction ID \nSuggested Action \nGAI Risks \nMG-4.1-001\
\ \nCollaborate with external researchers, industry experts, and community \n\
representatives to maintain awareness of emerging best practices and"
- source_sentence: What are some examples of input data features that may serve as
proxies for demographic group membership in GAI systems?
sentences:
- "data privacy violations, obscenity, extremism, violence, or CBRN information\
\ in \nsystem training data. \nData Privacy; Intellectual Property; \nObscene,\
\ Degrading, and/or \nAbusive Content; Harmful Bias and \nHomogenization; Dangerous,\
\ \nViolent, or Hateful Content; CBRN \nInformation or Capabilities \nMS-2.6-003\
\ Re-evaluate safety features of fine-tuned models when the negative risk exceeds\
\ \norganizational risk tolerance. \nDangerous, Violent, or Hateful \nContent"
- "GAI. \nInformation Integrity; Intellectual \nProperty \nAI Actor Tasks: Governance\
\ and Oversight, Operation and Monitoring \n \nGOVERN 1.6: Mechanisms are in place\
\ to inventory AI systems and are resourced according to organizational risk priorities.\
\ \nAction ID \nSuggested Action \nGAI Risks \nGV-1.6-001 Enumerate organizational\
\ GAI systems for incorporation into AI system inventory \nand adjust AI system\
\ inventory requirements to account for GAI risks. \nInformation Security"
- "complex or unstructured data; Input data features that may serve as proxies for\
\ \ndemographic group membership (i.e., image metadata, language dialect) or \n\
otherwise give rise to emergent bias within GAI systems; The extent to which \n\
the digital divide may negatively impact representativeness in GAI system \ntraining\
\ and TEVV data; Filtering of hate speech or content in GAI system \ntraining\
\ data; Prevalence of GAI-generated data in GAI system training data. \nHarmful\
\ Bias and Homogenization"
model-index:
- name: SentenceTransformer based on Snowflake/snowflake-arctic-embed-m
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: Unknown
type: unknown
metrics:
- type: cosine_accuracy@1
value: 0.85
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.975
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 1.0
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 1.0
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.85
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.325
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.19999999999999998
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09999999999999999
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.85
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.975
name: Cosine Recall@3
- type: cosine_recall@5
value: 1.0
name: Cosine Recall@5
- type: cosine_recall@10
value: 1.0
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.9341754705038519
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.911875
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.9118749999999999
name: Cosine Map@100
- type: dot_accuracy@1
value: 0.85
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.975
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 1.0
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 1.0
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.85
name: Dot Precision@1
- type: dot_precision@3
value: 0.325
name: Dot Precision@3
- type: dot_precision@5
value: 0.19999999999999998
name: Dot Precision@5
- type: dot_precision@10
value: 0.09999999999999999
name: Dot Precision@10
- type: dot_recall@1
value: 0.85
name: Dot Recall@1
- type: dot_recall@3
value: 0.975
name: Dot Recall@3
- type: dot_recall@5
value: 1.0
name: Dot Recall@5
- type: dot_recall@10
value: 1.0
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.9341754705038519
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.911875
name: Dot Mrr@10
- type: dot_map@100
value: 0.9118749999999999
name: Dot Map@100
---
# SentenceTransformer based on Snowflake/snowflake-arctic-embed-m
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Snowflake/snowflake-arctic-embed-m](https://huggingface.co/Snowflake/snowflake-arctic-embed-m). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [Snowflake/snowflake-arctic-embed-m](https://huggingface.co/Snowflake/snowflake-arctic-embed-m) <!-- at revision e2b128b9fa60c82b4585512b33e1544224ffff42 -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'What are some examples of input data features that may serve as proxies for demographic group membership in GAI systems?',
'complex or unstructured data; Input data features that may serve as proxies for \ndemographic group membership (i.e., image metadata, language dialect) or \notherwise give rise to emergent bias within GAI systems; The extent to which \nthe digital divide may negatively impact representativeness in GAI system \ntraining and TEVV data; Filtering of hate speech or content in GAI system \ntraining data; Prevalence of GAI-generated data in GAI system training data. \nHarmful Bias and Homogenization',
'GAI. \nInformation Integrity; Intellectual \nProperty \nAI Actor Tasks: Governance and Oversight, Operation and Monitoring \n \nGOVERN 1.6: Mechanisms are in place to inventory AI systems and are resourced according to organizational risk priorities. \nAction ID \nSuggested Action \nGAI Risks \nGV-1.6-001 Enumerate organizational GAI systems for incorporation into AI system inventory \nand adjust AI system inventory requirements to account for GAI risks. \nInformation Security',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Information Retrieval
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.85 |
| cosine_accuracy@3 | 0.975 |
| cosine_accuracy@5 | 1.0 |
| cosine_accuracy@10 | 1.0 |
| cosine_precision@1 | 0.85 |
| cosine_precision@3 | 0.325 |
| cosine_precision@5 | 0.2 |
| cosine_precision@10 | 0.1 |
| cosine_recall@1 | 0.85 |
| cosine_recall@3 | 0.975 |
| cosine_recall@5 | 1.0 |
| cosine_recall@10 | 1.0 |
| cosine_ndcg@10 | 0.9342 |
| cosine_mrr@10 | 0.9119 |
| **cosine_map@100** | **0.9119** |
| dot_accuracy@1 | 0.85 |
| dot_accuracy@3 | 0.975 |
| dot_accuracy@5 | 1.0 |
| dot_accuracy@10 | 1.0 |
| dot_precision@1 | 0.85 |
| dot_precision@3 | 0.325 |
| dot_precision@5 | 0.2 |
| dot_precision@10 | 0.1 |
| dot_recall@1 | 0.85 |
| dot_recall@3 | 0.975 |
| dot_recall@5 | 1.0 |
| dot_recall@10 | 1.0 |
| dot_ndcg@10 | 0.9342 |
| dot_mrr@10 | 0.9119 |
| dot_map@100 | 0.9119 |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 600 training samples
* Columns: <code>sentence_0</code> and <code>sentence_1</code>
* Approximate statistics based on the first 600 samples:
| | sentence_0 | sentence_1 |
|:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 11 tokens</li><li>mean: 20.85 tokens</li><li>max: 35 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 89.39 tokens</li><li>max: 335 tokens</li></ul> |
* Samples:
| sentence_0 | sentence_1 |
|:-------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>What is the title of the publication related to Artificial Intelligence Risk Management by NIST?</code> | <code>NIST Trustworthy and Responsible AI <br>NIST AI 600-1 <br>Artificial Intelligence Risk Management <br>Framework: Generative Artificial <br>Intelligence Profile <br> <br> <br> <br>This publication is available free of charge from: <br>https://doi.org/10.6028/NIST.AI.600-1</code> |
| <code>Where can the NIST AI 600-1 publication be accessed for free?</code> | <code>NIST Trustworthy and Responsible AI <br>NIST AI 600-1 <br>Artificial Intelligence Risk Management <br>Framework: Generative Artificial <br>Intelligence Profile <br> <br> <br> <br>This publication is available free of charge from: <br>https://doi.org/10.6028/NIST.AI.600-1</code> |
| <code>What is the title of the publication released by NIST in July 2024 regarding artificial intelligence?</code> | <code>NIST Trustworthy and Responsible AI <br>NIST AI 600-1 <br>Artificial Intelligence Risk Management <br>Framework: Generative Artificial <br>Intelligence Profile <br> <br> <br> <br>This publication is available free of charge from: <br>https://doi.org/10.6028/NIST.AI.600-1 <br> <br>July 2024 <br> <br> <br> <br> <br>U.S. Department of Commerce <br>Gina M. Raimondo, Secretary <br>National Institute of Standards and Technology <br>Laurie E. Locascio, NIST Director and Under Secretary of Commerce for Standards and Technology</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
```json
{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 20
- `per_device_eval_batch_size`: 20
- `num_train_epochs`: 5
- `multi_dataset_batch_sampler`: round_robin
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 20
- `per_device_eval_batch_size`: 20
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1
- `num_train_epochs`: 5
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.0
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `eval_use_gather_object`: False
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: round_robin
</details>
### Training Logs
| Epoch | Step | cosine_map@100 |
|:------:|:----:|:--------------:|
| 1.0 | 30 | 0.9271 |
| 1.6667 | 50 | 0.9306 |
| 2.0 | 60 | 0.9187 |
| 3.0 | 90 | 0.9244 |
| 3.3333 | 100 | 0.9244 |
| 4.0 | 120 | 0.9244 |
| 5.0 | 150 | 0.9119 |
### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.1.1
- Transformers: 4.44.2
- PyTorch: 2.4.1+cu121
- Accelerate: 0.34.2
- Datasets: 3.0.0
- Tokenizers: 0.19.1
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
```
#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |