--- base_model: Snowflake/snowflake-arctic-embed-m library_name: sentence-transformers metrics: - cosine_accuracy@1 - cosine_accuracy@3 - cosine_accuracy@5 - cosine_accuracy@10 - cosine_precision@1 - cosine_precision@3 - cosine_precision@5 - cosine_precision@10 - cosine_recall@1 - cosine_recall@3 - cosine_recall@5 - cosine_recall@10 - cosine_ndcg@10 - cosine_mrr@10 - cosine_map@100 - dot_accuracy@1 - dot_accuracy@3 - dot_accuracy@5 - dot_accuracy@10 - dot_precision@1 - dot_precision@3 - dot_precision@5 - dot_precision@10 - dot_recall@1 - dot_recall@3 - dot_recall@5 - dot_recall@10 - dot_ndcg@10 - dot_mrr@10 - dot_map@100 pipeline_tag: sentence-similarity tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:600 - loss:MatryoshkaLoss - loss:MultipleNegativesRankingLoss widget: - source_sentence: What considerations should be taken into account regarding the specific set or types of users for the AI system? sentences: - "46 \nMG-4.3-003 \nReport GAI incidents in compliance with legal and regulatory\ \ requirements (e.g., \nHIPAA breach reporting, e.g., OCR (2023) or NHTSA (2022)\ \ autonomous vehicle \ncrash reporting requirements. \nInformation Security; Data\ \ Privacy \nAI Actor Tasks: AI Deployment, Affected Individuals and Communities,\ \ Domain Experts, End-Users, Human Factors, Operation and \nMonitoring" - "reporting, data protection, data privacy, or other laws. \nData Privacy; Human-AI\ \ \nConfiguration; Information \nSecurity; Value Chain and \nComponent Integration;\ \ Harmful \nBias and Homogenization \nGV-6.2-004 \nEstablish policies and procedures\ \ for continuous monitoring of third-party GAI \nsystems in deployment. \nValue\ \ Chain and Component \nIntegration \nGV-6.2-005 \nEstablish policies and procedures\ \ that address GAI data redundancy, including \nmodel weights and other system\ \ artifacts." - "times, and availability of critical support. \nHuman-AI Configuration; \nInformation\ \ Security; Value Chain \nand Component Integration \nAI Actor Tasks: AI Deployment,\ \ Operation and Monitoring, TEVV, Third-party entities \n \nMAP 1.1: Intended\ \ purposes, potentially beneficial uses, context specific laws, norms and expectations,\ \ and prospective settings in \nwhich the AI system will be deployed are understood\ \ and documented. Considerations include: the specific set or types of users" - source_sentence: What should organizations leverage when deploying GAI applications and using third-party pre-trained models? sentences: - "external use, narrow vs. broad application scope, fine-tuning, and varieties of\ \ \ndata sources (e.g., grounding, retrieval-augmented generation). \nData Privacy;\ \ Intellectual \nProperty" - "44 \nMG-3.2-007 \nLeverage feedback and recommendations from organizational boards\ \ or \ncommittees related to the deployment of GAI applications and content \n\ provenance when using third-party pre-trained models. \nInformation Integrity;\ \ Value Chain \nand Component Integration \nMG-3.2-008 \nUse human moderation\ \ systems where appropriate to review generated content \nin accordance with human-AI\ \ configuration policies established in the Govern" - "Security \nMS-2.7-003 \nConduct user surveys to gather user satisfaction with\ \ the AI-generated content \nand user perceptions of content authenticity. Analyze\ \ user feedback to identify \nconcerns and/or current literacy levels related\ \ to content provenance and \nunderstanding of labels on content. \nHuman-AI Configuration;\ \ \nInformation Integrity \nMS-2.7-004 \nIdentify metrics that reflect the effectiveness\ \ of security measures, such as data" - source_sentence: What are the potential positive and negative impacts of AI system uses on individuals and communities? sentences: - "and Homogenization \nAI Actor Tasks: AI Deployment, Affected Individuals and Communities,\ \ End-Users, Operation and Monitoring, TEVV \n \nMEASURE 4.2: Measurement results\ \ regarding AI system trustworthiness in deployment context(s) and across the\ \ AI lifecycle are \ninformed by input from domain experts and relevant AI Actors\ \ to validate whether the system is performing consistently as \nintended. Results\ \ are documented. \nAction ID \nSuggested Action \nGAI Risks \nMS-4.2-001" - "bias based on race, gender, disability, or other protected classes. \nHarmful\ \ bias in GAI systems can also lead to harms via disparities between how a model\ \ performs for \ndifferent subgroups or languages (e.g., an LLM may perform less\ \ well for non-English languages or \ncertain dialects). Such disparities can\ \ contribute to discriminatory decision-making or amplification of \nexisting societal\ \ biases. In addition, GAI systems may be inappropriately trusted to perform similarly" - "along with their expectations; potential positive and negative impacts of system\ \ uses to individuals, communities, organizations, \nsociety, and the planet;\ \ assumptions and related limitations about AI system purposes, uses, and risks\ \ across the development or \nproduct AI lifecycle; and related TEVV and system\ \ metrics. \nAction ID \nSuggested Action \nGAI Risks \nMP-1.1-001 \nWhen identifying\ \ intended purposes, consider factors such as internal vs." - source_sentence: How does the suggested action MG-41-001 aim to address GAI risks? sentences: - "most appropriate baseline is to compare against, which can result in divergent\ \ views on when a disparity between \nAI behaviors for different subgroups constitutes\ \ a harm. In discussing harms from disparities such as biased \nbehavior, this\ \ document highlights examples where someone’s situation is worsened relative\ \ to what it would have \nbeen in the absence of any AI system, making the outcome\ \ unambiguously a harm of the system." - "Harmful Bias Managed, Privacy Enhanced, Safe, Secure and Resilient, Valid and\ \ Reliable \n3. \nSuggested Actions to Manage GAI Risks \nThe following suggested\ \ actions target risks unique to or exacerbated by GAI. \nIn addition to the suggested\ \ actions below, AI risk management activities and actions set forth in the AI\ \ \nRMF 1.0 and Playbook are already applicable for managing GAI risks. Organizations\ \ are encouraged to" - "MANAGE 4.1: Post-deployment AI system monitoring plans are implemented, including\ \ mechanisms for capturing and evaluating \ninput from users and other relevant\ \ AI Actors, appeal and override, decommissioning, incident response, recovery,\ \ and change \nmanagement. \nAction ID \nSuggested Action \nGAI Risks \nMG-4.1-001\ \ \nCollaborate with external researchers, industry experts, and community \n\ representatives to maintain awareness of emerging best practices and" - source_sentence: What are some examples of input data features that may serve as proxies for demographic group membership in GAI systems? sentences: - "data privacy violations, obscenity, extremism, violence, or CBRN information\ \ in \nsystem training data. \nData Privacy; Intellectual Property; \nObscene,\ \ Degrading, and/or \nAbusive Content; Harmful Bias and \nHomogenization; Dangerous,\ \ \nViolent, or Hateful Content; CBRN \nInformation or Capabilities \nMS-2.6-003\ \ Re-evaluate safety features of fine-tuned models when the negative risk exceeds\ \ \norganizational risk tolerance. \nDangerous, Violent, or Hateful \nContent" - "GAI. \nInformation Integrity; Intellectual \nProperty \nAI Actor Tasks: Governance\ \ and Oversight, Operation and Monitoring \n \nGOVERN 1.6: Mechanisms are in place\ \ to inventory AI systems and are resourced according to organizational risk priorities.\ \ \nAction ID \nSuggested Action \nGAI Risks \nGV-1.6-001 Enumerate organizational\ \ GAI systems for incorporation into AI system inventory \nand adjust AI system\ \ inventory requirements to account for GAI risks. \nInformation Security" - "complex or unstructured data; Input data features that may serve as proxies for\ \ \ndemographic group membership (i.e., image metadata, language dialect) or \n\ otherwise give rise to emergent bias within GAI systems; The extent to which \n\ the digital divide may negatively impact representativeness in GAI system \ntraining\ \ and TEVV data; Filtering of hate speech or content in GAI system \ntraining\ \ data; Prevalence of GAI-generated data in GAI system training data. \nHarmful\ \ Bias and Homogenization" model-index: - name: SentenceTransformer based on Snowflake/snowflake-arctic-embed-m results: - task: type: information-retrieval name: Information Retrieval dataset: name: Unknown type: unknown metrics: - type: cosine_accuracy@1 value: 0.85 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.975 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 1.0 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 1.0 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.85 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.325 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.19999999999999998 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.09999999999999999 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.85 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.975 name: Cosine Recall@3 - type: cosine_recall@5 value: 1.0 name: Cosine Recall@5 - type: cosine_recall@10 value: 1.0 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.9341754705038519 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.911875 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.9118749999999999 name: Cosine Map@100 - type: dot_accuracy@1 value: 0.85 name: Dot Accuracy@1 - type: dot_accuracy@3 value: 0.975 name: Dot Accuracy@3 - type: dot_accuracy@5 value: 1.0 name: Dot Accuracy@5 - type: dot_accuracy@10 value: 1.0 name: Dot Accuracy@10 - type: dot_precision@1 value: 0.85 name: Dot Precision@1 - type: dot_precision@3 value: 0.325 name: Dot Precision@3 - type: dot_precision@5 value: 0.19999999999999998 name: Dot Precision@5 - type: dot_precision@10 value: 0.09999999999999999 name: Dot Precision@10 - type: dot_recall@1 value: 0.85 name: Dot Recall@1 - type: dot_recall@3 value: 0.975 name: Dot Recall@3 - type: dot_recall@5 value: 1.0 name: Dot Recall@5 - type: dot_recall@10 value: 1.0 name: Dot Recall@10 - type: dot_ndcg@10 value: 0.9341754705038519 name: Dot Ndcg@10 - type: dot_mrr@10 value: 0.911875 name: Dot Mrr@10 - type: dot_map@100 value: 0.9118749999999999 name: Dot Map@100 --- # SentenceTransformer based on Snowflake/snowflake-arctic-embed-m This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Snowflake/snowflake-arctic-embed-m](https://huggingface.co/Snowflake/snowflake-arctic-embed-m). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [Snowflake/snowflake-arctic-embed-m](https://huggingface.co/Snowflake/snowflake-arctic-embed-m) - **Maximum Sequence Length:** 512 tokens - **Output Dimensionality:** 768 tokens - **Similarity Function:** Cosine Similarity ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("sentence_transformers_model_id") # Run inference sentences = [ 'What are some examples of input data features that may serve as proxies for demographic group membership in GAI systems?', 'complex or unstructured data; Input data features that may serve as proxies for \ndemographic group membership (i.e., image metadata, language dialect) or \notherwise give rise to emergent bias within GAI systems; The extent to which \nthe digital divide may negatively impact representativeness in GAI system \ntraining and TEVV data; Filtering of hate speech or content in GAI system \ntraining data; Prevalence of GAI-generated data in GAI system training data. \nHarmful Bias and Homogenization', 'GAI. \nInformation Integrity; Intellectual \nProperty \nAI Actor Tasks: Governance and Oversight, Operation and Monitoring \n \nGOVERN 1.6: Mechanisms are in place to inventory AI systems and are resourced according to organizational risk priorities. \nAction ID \nSuggested Action \nGAI Risks \nGV-1.6-001 Enumerate organizational GAI systems for incorporation into AI system inventory \nand adjust AI system inventory requirements to account for GAI risks. \nInformation Security', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 768] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` ## Evaluation ### Metrics #### Information Retrieval * Evaluated with [InformationRetrievalEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) | Metric | Value | |:--------------------|:-----------| | cosine_accuracy@1 | 0.85 | | cosine_accuracy@3 | 0.975 | | cosine_accuracy@5 | 1.0 | | cosine_accuracy@10 | 1.0 | | cosine_precision@1 | 0.85 | | cosine_precision@3 | 0.325 | | cosine_precision@5 | 0.2 | | cosine_precision@10 | 0.1 | | cosine_recall@1 | 0.85 | | cosine_recall@3 | 0.975 | | cosine_recall@5 | 1.0 | | cosine_recall@10 | 1.0 | | cosine_ndcg@10 | 0.9342 | | cosine_mrr@10 | 0.9119 | | **cosine_map@100** | **0.9119** | | dot_accuracy@1 | 0.85 | | dot_accuracy@3 | 0.975 | | dot_accuracy@5 | 1.0 | | dot_accuracy@10 | 1.0 | | dot_precision@1 | 0.85 | | dot_precision@3 | 0.325 | | dot_precision@5 | 0.2 | | dot_precision@10 | 0.1 | | dot_recall@1 | 0.85 | | dot_recall@3 | 0.975 | | dot_recall@5 | 1.0 | | dot_recall@10 | 1.0 | | dot_ndcg@10 | 0.9342 | | dot_mrr@10 | 0.9119 | | dot_map@100 | 0.9119 | ## Training Details ### Training Dataset #### Unnamed Dataset * Size: 600 training samples * Columns: sentence_0 and sentence_1 * Approximate statistics based on the first 600 samples: | | sentence_0 | sentence_1 | |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------| | type | string | string | | details | | | * Samples: | sentence_0 | sentence_1 | |:-------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | What is the title of the publication related to Artificial Intelligence Risk Management by NIST? | NIST Trustworthy and Responsible AI
NIST AI 600-1
Artificial Intelligence Risk Management
Framework: Generative Artificial
Intelligence Profile



This publication is available free of charge from:
https://doi.org/10.6028/NIST.AI.600-1
| | Where can the NIST AI 600-1 publication be accessed for free? | NIST Trustworthy and Responsible AI
NIST AI 600-1
Artificial Intelligence Risk Management
Framework: Generative Artificial
Intelligence Profile



This publication is available free of charge from:
https://doi.org/10.6028/NIST.AI.600-1
| | What is the title of the publication released by NIST in July 2024 regarding artificial intelligence? | NIST Trustworthy and Responsible AI
NIST AI 600-1
Artificial Intelligence Risk Management
Framework: Generative Artificial
Intelligence Profile



This publication is available free of charge from:
https://doi.org/10.6028/NIST.AI.600-1

July 2024




U.S. Department of Commerce
Gina M. Raimondo, Secretary
National Institute of Standards and Technology
Laurie E. Locascio, NIST Director and Under Secretary of Commerce for Standards and Technology
| * Loss: [MatryoshkaLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters: ```json { "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: steps - `per_device_train_batch_size`: 20 - `per_device_eval_batch_size`: 20 - `num_train_epochs`: 5 - `multi_dataset_batch_sampler`: round_robin #### All Hyperparameters
Click to expand - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: steps - `prediction_loss_only`: True - `per_device_train_batch_size`: 20 - `per_device_eval_batch_size`: 20 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 1 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 5e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1 - `num_train_epochs`: 5 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.0 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: False - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: False - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: False - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `eval_use_gather_object`: False - `batch_sampler`: batch_sampler - `multi_dataset_batch_sampler`: round_robin
### Training Logs | Epoch | Step | cosine_map@100 | |:------:|:----:|:--------------:| | 1.0 | 30 | 0.9271 | | 1.6667 | 50 | 0.9306 | | 2.0 | 60 | 0.9187 | | 3.0 | 90 | 0.9244 | | 3.3333 | 100 | 0.9244 | | 4.0 | 120 | 0.9244 | | 5.0 | 150 | 0.9119 | ### Framework Versions - Python: 3.10.12 - Sentence Transformers: 3.1.1 - Transformers: 4.44.2 - PyTorch: 2.4.1+cu121 - Accelerate: 0.34.2 - Datasets: 3.0.0 - Tokenizers: 0.19.1 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### MatryoshkaLoss ```bibtex @misc{kusupati2024matryoshka, title={Matryoshka Representation Learning}, author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi}, year={2024}, eprint={2205.13147}, archivePrefix={arXiv}, primaryClass={cs.LG} } ``` #### MultipleNegativesRankingLoss ```bibtex @misc{henderson2017efficient, title={Efficient Natural Language Response Suggestion for Smart Reply}, author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, year={2017}, eprint={1705.00652}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```