File size: 2,124 Bytes
af3bf0c 5a209e3 af3bf0c 5a209e3 af3bf0c 5a209e3 af3bf0c 5a209e3 af3bf0c 5a209e3 af3bf0c 5a209e3 af3bf0c 5a209e3 af3bf0c 5a209e3 af3bf0c 5a209e3 af3bf0c 5a209e3 af3bf0c 5a209e3 af3bf0c 5a209e3 af3bf0c 5a209e3 af3bf0c 5a209e3 af3bf0c 5a209e3 af3bf0c 5a209e3 af3bf0c 5a209e3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 |
---
library_name: transformers
license: mit
base_model: facebook/w2v-bert-2.0
tags:
- generated_from_trainer
datasets:
- common_voice_16_0
metrics:
- wer
model-index:
- name: w2v-bert-2.0-mongolian-colab-CV16.0
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: common_voice_16_0
type: common_voice_16_0
config: mn
split: test
args: mn
metrics:
- name: Wer
type: wer
value: 0.3261909941266043
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# w2v-bert-2.0-mongolian-colab-CV16.0
This model is a fine-tuned version of [facebook/w2v-bert-2.0](https://huggingface.co/facebook/w2v-bert-2.0) on the common_voice_16_0 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5208
- Wer: 0.3262
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 10
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:------:|:----:|:---------------:|:------:|
| 0.4267 | 2.3794 | 300 | 0.6658 | 0.5124 |
| 0.3386 | 4.7510 | 600 | 0.5587 | 0.4490 |
| 0.1766 | 7.1225 | 900 | 0.5474 | 0.3609 |
| 0.0746 | 9.4941 | 1200 | 0.5208 | 0.3262 |
### Framework versions
- Transformers 4.46.2
- Pytorch 2.4.1+cu121
- Datasets 2.18.0
- Tokenizers 0.20.0
|