File size: 31,888 Bytes
2d373f7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 |
---
base_model: Snowflake/snowflake-arctic-embed-m
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
- dot_accuracy@1
- dot_accuracy@3
- dot_accuracy@5
- dot_accuracy@10
- dot_precision@1
- dot_precision@3
- dot_precision@5
- dot_precision@10
- dot_recall@1
- dot_recall@3
- dot_recall@5
- dot_recall@10
- dot_ndcg@10
- dot_mrr@10
- dot_map@100
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:800
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: What is the importance of having a human fallback system in automated
systems, especially for the American public?
sentences:
- "ing a system from use. Automated systems should not be designed \nwith an intent\
\ or reasonably foreseeable possibility of endangering \nyour safety or the safety\
\ of your community. They should be designed \nto proactively protect you from\
\ harms stemming from unintended, \nyet foreseeable, uses or impacts of automated\
\ systems. You should be \nprotected from inappropriate or irrelevant data use\
\ in the design, de\nvelopment, and deployment of automated systems, and from\
\ the \ncompounded harm of its reuse. Independent evaluation and report\ning\
\ that confirms that the system is safe and effective, including re\nporting\
\ of steps taken to mitigate potential harms, should be per\nformed and the results\
\ made public whenever possible. \n15"
- "with disabilities. \nIn addition to being able to opt out and use a human alternative,\
\ the American public deserves a human fallback \nsystem in the event that an\
\ automated system fails or causes harm. No matter how rigorously an automated\
\ system is \ntested, there will always be situations for which the system fails.\
\ The American public deserves protection via human \nreview against these outlying\
\ or unexpected scenarios. In the case of time-critical systems, the public should\
\ not have \nto wait—immediate human consideration and fallback should be available.\
\ In many time-critical systems, such a \nremedy is already immediately available,\
\ such as a building manager who can open a door in the case an automated \ncard\
\ access system fails."
- "information used to build or validate the risk assessment shall be open to public\
\ inspection,\" and that assertions \nof trade secrets cannot be used \"to quash\
\ discovery in a criminal matter by a party to a criminal case.\" \n22"
- source_sentence: What type of information is required to be open to public inspection
in relation to risk assessment?
sentences:
- "HOW THESE PRINCIPLES CAN MOVE INTO PRACTICE\nReal-life examples of how these\
\ principles can become reality, through laws, policies, and practical \ntechnical\
\ and sociotechnical approaches to protecting rights, opportunities, and access.\
\ \nThe federal government is working to combat discrimination in mortgage lending.\
\ The Depart\nment of Justice has launched a nationwide initiative to combat\
\ redlining, which includes reviewing how \nlenders who may be avoiding serving\
\ communities of color are conducting targeted marketing and advertising.51 \n\
This initiative will draw upon strong partnerships across federal agencies, including\
\ the Consumer Financial"
- "reuse \nRelevant and high-quality data. Data used as part of any automated system’s\
\ creation, evaluation, or \ndeployment should be relevant, of high quality, and\
\ tailored to the task at hand. Relevancy should be \nestablished based on research-backed\
\ demonstration of the causal influence of the data to the specific use case \n\
or justified more generally based on a reasonable expectation of usefulness in\
\ the domain and/or for the \nsystem design or ongoing development. Relevance\
\ of data should not be established solely by appealing to \nits historical connection\
\ to the outcome. High quality and tailored data should be representative of the\
\ task at"
- "information used to build or validate the risk assessment shall be open to public\
\ inspection,\" and that assertions \nof trade secrets cannot be used \"to quash\
\ discovery in a criminal matter by a party to a criminal case.\" \n22"
- source_sentence: Who is the Senior Policy Advisor for Data and Democracy at the
White House Office of Science and Technology Policy?
sentences:
- "products, advanced platforms and services, “Internet of Things” (IoT) devices,\
\ and smart city products and \nservices. \nWelcome:\n•\nRashida Richardson, Senior\
\ Policy Advisor for Data and Democracy, White House Office of Science and\nTechnology\
\ Policy\n•\nKaren Kornbluh, Senior Fellow and Director of the Digital Innovation\
\ and Democracy Initiative, German\nMarshall Fund\nModerator: \nDevin E. Willis,\
\ Attorney, Division of Privacy and Identity Protection, Bureau of Consumer Protection,\
\ Federal \nTrade Commission \nPanelists: \n•\nTamika L. Butler, Principal, Tamika\
\ L. Butler Consulting\n•\nJennifer Clark, Professor and Head of City and Regional\
\ Planning, Knowlton School of Engineering, Ohio\nState University\n•"
- 'ENDNOTES
35. Carrie Johnson. Flaws plague a tool meant to help low-risk federal prisoners
win early release. NPR.
Jan. 26, 2022. https://www.npr.org/2022/01/26/1075509175/flaws-plague-a-tool-meant-to-help-low
risk-federal-prisoners-win-early-release.; Carrie Johnson. Justice Department
works to curb racial bias
in deciding who''s released from prison. NPR. Apr. 19, 2022. https://
www.npr.org/2022/04/19/1093538706/justice-department-works-to-curb-racial-bias-in-deciding
whos-released-from-pris; National Institute of Justice. 2021 Review and Revalidation
of the First Step Act
Risk Assessment Tool. National Institute of Justice NCJ 303859. Dec., 2021. https://www.ojp.gov/
pdffiles1/nij/303859.pdf'
- 'https://themarkup.org/machine-learning/2022/01/11/this-private-equity-firm-is-amassing-companies
that-collect-data-on-americas-children
77. Reed Albergotti. Every employee who leaves Apple becomes an ‘associate’: In
job databases used by
employers to verify resume information, every former Apple employee’s title gets
erased and replaced with
a generic title. The Washington Post. Feb. 10, 2022.
https://www.washingtonpost.com/technology/2022/02/10/apple-associate/
78. National Institute of Standards and Technology. Privacy Framework Perspectives
and Success
Stories. Accessed May 2, 2022.
https://www.nist.gov/privacy-framework/getting-started-0/perspectives-and-success-stories'
- source_sentence: What actions has the Consumer Financial Protection Bureau taken
regarding black-box credit models?
sentences:
- 'under-ecoa-fcra/
91. Federal Trade Commission. Using Consumer Reports for Credit Decisions: What
to Know About
Adverse Action and Risk-Based Pricing Notices. Accessed May 2, 2022.
https://www.ftc.gov/business-guidance/resources/using-consumer-reports-credit-decisions-what
know-about-adverse-action-risk-based-pricing-notices#risk
92. Consumer Financial Protection Bureau. CFPB Acts to Protect the Public from
Black-Box Credit
Models Using Complex Algorithms. May 26, 2022.
https://www.consumerfinance.gov/about-us/newsroom/cfpb-acts-to-protect-the-public-from-black
box-credit-models-using-complex-algorithms/
93. Anthony Zaller. California Passes Law Regulating Quotas In Warehouses – What
Employers Need to'
- 'https://www.nytimes.com/2020/12/29/technology/facial-recognition-misidentify-jail.html;
Khari
Johnson. How Wrongful Arrests Based on AI Derailed 3 Men''s Lives. Wired. Mar.
7, 2022. https://
www.wired.com/story/wrongful-arrests-ai-derailed-3-mens-lives/
32. Student Borrower Protection Center. Educational Redlining. Student Borrower
Protection Center
Report. Feb. 2020. https://protectborrowers.org/wp-content/uploads/2020/02/Education-Redlining
Report.pdf
33. Jeffrey Dastin. Amazon scraps secret AI recruiting tool that showed bias against
women. Reuters. Oct.
10, 2018. https://www.reuters.com/article/us-amazon-com-jobs-automation-insight/amazon-scraps
secret-ai-recruiting-tool-that-showed-bias-against-women-idUSKCN1MK08G'
- "including automated tenant background screening and facial recognition-based\
\ controls to enter or exit \nhousing complexes. Employment-related concerning\
\ uses included discrimination in automated hiring \nscreening and workplace surveillance.\
\ Various panelists raised the limitations of existing privacy law as a key \n\
concern, pointing out that students should be able to reinvent themselves and\
\ require privacy of their student \nrecords and education-related data in order\
\ to do so. The overarching concerns of surveillance in these \ndomains included\
\ concerns about the chilling effects of surveillance on student expression, inappropriate"
- source_sentence: What percentage of racy results did Google cut for searches like
'Latina teenager' in March 2022?
sentences:
- "they've used drugs, or whether they've expressed interest in LGBTQI+ groups,\
\ and then use that data to \nforecast student success.76 Parents and education\
\ experts have expressed concern about collection of such\nsensitive data without\
\ express parental consent, the lack of transparency in how such data is being\
\ used, and\nthe potential for resulting discriminatory impacts.\n• Many employers\
\ transfer employee data to third party job verification services. This information\
\ is then used\nby potential future employers, banks, or landlords. In one case,\
\ a former employee alleged that a\ncompany supplied false data about her job\
\ title which resulted in a job offer being revoked.77\n37"
- 'Software Discriminates Against Disabled Students. Center for Democracy and Technology.
Nov. 16, 2020.
https://cdt.org/insights/how-automated-test-proctoring-software-discriminates-against-disabled
students/
46. Ziad Obermeyer, et al., Dissecting racial bias in an algorithm used to manage
the health of
populations, 366 Science (2019), https://www.science.org/doi/10.1126/science.aax2342.
66'
- '2022. https://www.reuters.com/technology/google-cuts-racy-results-by-30-searches-like-latina
teenager-2022-03-30/
40. Safiya Umoja Noble. Algorithms of Oppression: How Search Engines Reinforce
Racism. NYU Press.
Feb. 2018. https://nyupress.org/9781479837243/algorithms-of-oppression/
41. Paresh Dave. Google cuts racy results by 30% for searches like ''Latina teenager''.
Reuters. Mar. 30,
2022. https://www.reuters.com/technology/google-cuts-racy-results-by-30-searches-like-latina
teenager-2022-03-30/
42. Miranda Bogen. All the Ways Hiring Algorithms Can Introduce Bias. Harvard
Business Review. May
6, 2019. https://hbr.org/2019/05/all-the-ways-hiring-algorithms-can-introduce-bias'
model-index:
- name: SentenceTransformer based on Snowflake/snowflake-arctic-embed-m
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: Unknown
type: unknown
metrics:
- type: cosine_accuracy@1
value: 0.815
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.935
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.95
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.965
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.815
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.31166666666666665
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.19
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09649999999999999
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.815
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.935
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.95
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.965
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8954135083695783
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.8723333333333333
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.8741632101558571
name: Cosine Map@100
- type: dot_accuracy@1
value: 0.815
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.935
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.95
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.965
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.815
name: Dot Precision@1
- type: dot_precision@3
value: 0.31166666666666665
name: Dot Precision@3
- type: dot_precision@5
value: 0.19
name: Dot Precision@5
- type: dot_precision@10
value: 0.09649999999999999
name: Dot Precision@10
- type: dot_recall@1
value: 0.815
name: Dot Recall@1
- type: dot_recall@3
value: 0.935
name: Dot Recall@3
- type: dot_recall@5
value: 0.95
name: Dot Recall@5
- type: dot_recall@10
value: 0.965
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.8954135083695783
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.8723333333333333
name: Dot Mrr@10
- type: dot_map@100
value: 0.8741632101558571
name: Dot Map@100
---
# SentenceTransformer based on Snowflake/snowflake-arctic-embed-m
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Snowflake/snowflake-arctic-embed-m](https://huggingface.co/Snowflake/snowflake-arctic-embed-m). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [Snowflake/snowflake-arctic-embed-m](https://huggingface.co/Snowflake/snowflake-arctic-embed-m) <!-- at revision e2b128b9fa60c82b4585512b33e1544224ffff42 -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("acpotts/finetuned_arctic")
# Run inference
sentences = [
"What percentage of racy results did Google cut for searches like 'Latina teenager' in March 2022?",
"2022. https://www.reuters.com/technology/google-cuts-racy-results-by-30-searches-like-latina\xad\nteenager-2022-03-30/\n40. Safiya Umoja Noble. Algorithms of Oppression: How Search Engines Reinforce Racism. NYU Press.\nFeb. 2018. https://nyupress.org/9781479837243/algorithms-of-oppression/\n41. Paresh Dave. Google cuts racy results by 30% for searches like 'Latina teenager'. Reuters. Mar. 30,\n2022. https://www.reuters.com/technology/google-cuts-racy-results-by-30-searches-like-latina\xad\nteenager-2022-03-30/\n42. Miranda Bogen. All the Ways Hiring Algorithms Can Introduce Bias. Harvard Business Review. May\n6, 2019. https://hbr.org/2019/05/all-the-ways-hiring-algorithms-can-introduce-bias",
"they've used drugs, or whether they've expressed interest in LGBTQI+ groups, and then use that data to \nforecast student success.76 Parents and education experts have expressed concern about collection of such\nsensitive data without express parental consent, the lack of transparency in how such data is being used, and\nthe potential for resulting discriminatory impacts.\n• Many employers transfer employee data to third party job verification services. This information is then used\nby potential future employers, banks, or landlords. In one case, a former employee alleged that a\ncompany supplied false data about her job title which resulted in a job offer being revoked.77\n37",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Information Retrieval
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.815 |
| cosine_accuracy@3 | 0.935 |
| cosine_accuracy@5 | 0.95 |
| cosine_accuracy@10 | 0.965 |
| cosine_precision@1 | 0.815 |
| cosine_precision@3 | 0.3117 |
| cosine_precision@5 | 0.19 |
| cosine_precision@10 | 0.0965 |
| cosine_recall@1 | 0.815 |
| cosine_recall@3 | 0.935 |
| cosine_recall@5 | 0.95 |
| cosine_recall@10 | 0.965 |
| cosine_ndcg@10 | 0.8954 |
| cosine_mrr@10 | 0.8723 |
| **cosine_map@100** | **0.8742** |
| dot_accuracy@1 | 0.815 |
| dot_accuracy@3 | 0.935 |
| dot_accuracy@5 | 0.95 |
| dot_accuracy@10 | 0.965 |
| dot_precision@1 | 0.815 |
| dot_precision@3 | 0.3117 |
| dot_precision@5 | 0.19 |
| dot_precision@10 | 0.0965 |
| dot_recall@1 | 0.815 |
| dot_recall@3 | 0.935 |
| dot_recall@5 | 0.95 |
| dot_recall@10 | 0.965 |
| dot_ndcg@10 | 0.8954 |
| dot_mrr@10 | 0.8723 |
| dot_map@100 | 0.8742 |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 800 training samples
* Columns: <code>sentence_0</code> and <code>sentence_1</code>
* Approximate statistics based on the first 800 samples:
| | sentence_0 | sentence_1 |
|:--------|:-----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 11 tokens</li><li>mean: 20.11 tokens</li><li>max: 36 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 127.42 tokens</li><li>max: 512 tokens</li></ul> |
* Samples:
| sentence_0 | sentence_1 |
|:--------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>What are some of the principles proposed for the ethical use of AI and automated systems?</code> | <code>lems with legislation, and some courts extending longstanding statutory protections to new and emerging tech<br>nologies. There are companies working to incorporate additional protections in their design and use of auto<br>mated systems, and researchers developing innovative guardrails. Advocates, researchers, and government <br>organizations have proposed principles for the ethical use of AI and other automated systems. These include <br>the Organization for Economic Co-operation and Development’s (OECD’s) 2019 Recommendation on Artificial <br>Intelligence, which includes principles for responsible stewardship of trustworthy AI and which the United</code> |
| <code>How are companies and researchers addressing the challenges posed by new and emerging technologies in relation to legislation?</code> | <code>lems with legislation, and some courts extending longstanding statutory protections to new and emerging tech<br>nologies. There are companies working to incorporate additional protections in their design and use of auto<br>mated systems, and researchers developing innovative guardrails. Advocates, researchers, and government <br>organizations have proposed principles for the ethical use of AI and other automated systems. These include <br>the Organization for Economic Co-operation and Development’s (OECD’s) 2019 Recommendation on Artificial <br>Intelligence, which includes principles for responsible stewardship of trustworthy AI and which the United</code> |
| <code>What is the purpose of reporting summary information about automated systems in plain language?</code> | <code>any operators or others who need to understand the system, and calibrated to the level of risk based on the <br>context. Reporting that includes summary information about these automated systems in plain language and <br>assessments of the clarity and quality of the notice and explanations should be made public whenever possible. <br>6</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
```json
{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 20
- `per_device_eval_batch_size`: 20
- `num_train_epochs`: 5
- `multi_dataset_batch_sampler`: round_robin
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 20
- `per_device_eval_batch_size`: 20
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1
- `num_train_epochs`: 5
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.0
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `eval_use_gather_object`: False
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: round_robin
</details>
### Training Logs
| Epoch | Step | cosine_map@100 |
|:-----:|:----:|:--------------:|
| 1.0 | 40 | 0.8676 |
| 1.25 | 50 | 0.8670 |
| 2.0 | 80 | 0.8731 |
| 2.5 | 100 | 0.8722 |
| 1.0 | 40 | 0.8641 |
| 1.25 | 50 | 0.8654 |
| 2.0 | 80 | 0.8674 |
| 2.5 | 100 | 0.8706 |
| 3.0 | 120 | 0.8659 |
| 3.75 | 150 | 0.8697 |
| 4.0 | 160 | 0.8706 |
| 5.0 | 200 | 0.8742 |
### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.1.1
- Transformers: 4.44.2
- PyTorch: 2.4.1+cu121
- Accelerate: 0.34.2
- Datasets: 3.0.0
- Tokenizers: 0.19.1
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
```
#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |