File size: 31,888 Bytes
2d373f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
---
base_model: Snowflake/snowflake-arctic-embed-m
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
- dot_accuracy@1
- dot_accuracy@3
- dot_accuracy@5
- dot_accuracy@10
- dot_precision@1
- dot_precision@3
- dot_precision@5
- dot_precision@10
- dot_recall@1
- dot_recall@3
- dot_recall@5
- dot_recall@10
- dot_ndcg@10
- dot_mrr@10
- dot_map@100
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:800
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: What is the importance of having a human fallback system in automated
    systems, especially for the American public?
  sentences:
  - "ing a system from use. Automated systems should not be designed \nwith an intent\
    \ or reasonably foreseeable possibility of endangering \nyour safety or the safety\
    \ of your community. They should be designed \nto proactively protect you from\
    \ harms stemming from unintended, \nyet foreseeable, uses or impacts of automated\
    \ systems. You should be \nprotected from inappropriate or irrelevant data use\
    \ in the design, de­\nvelopment, and deployment of automated systems, and from\
    \ the \ncompounded harm of its reuse. Independent evaluation and report­\ning\
    \ that confirms that the system is safe and effective, including re­\nporting\
    \ of steps taken to mitigate potential harms, should be per­\nformed and the results\
    \ made public whenever possible. \n15"
  - "with disabilities. \nIn addition to being able to opt out and use a human alternative,\
    \ the American public deserves a human fallback \nsystem in the event that an\
    \ automated system fails or causes harm. No matter how rigorously an automated\
    \ system is \ntested, there will always be situations for which the system fails.\
    \ The American public deserves protection via human \nreview against these outlying\
    \ or unexpected scenarios. In the case of time-critical systems, the public should\
    \ not have \nto wait—immediate human consideration and fallback should be available.\
    \ In many time-critical systems, such a \nremedy is already immediately available,\
    \ such as a building manager who can open a door in the case an automated \ncard\
    \ access system fails."
  - "information used to build or validate the risk assessment shall be open to public\
    \ inspection,\" and that assertions \nof trade secrets cannot be used \"to quash\
    \ discovery in a criminal matter by a party to a criminal case.\" \n22"
- source_sentence: What type of information is required to be open to public inspection
    in relation to risk assessment?
  sentences:
  - "HOW THESE PRINCIPLES CAN MOVE INTO PRACTICE\nReal-life examples of how these\
    \ principles can become reality, through laws, policies, and practical \ntechnical\
    \ and sociotechnical approaches to protecting rights, opportunities, and access.\
    \ \nThe federal government is working to combat discrimination in mortgage lending.\
    \ The Depart­\nment of Justice has launched a nationwide initiative to combat\
    \ redlining, which includes reviewing how \nlenders who may be avoiding serving\
    \ communities of color are conducting targeted marketing and advertising.51 \n\
    This initiative will draw upon strong partnerships across federal agencies, including\
    \ the Consumer Financial"
  - "reuse \nRelevant and high-quality data. Data used as part of any automated system’s\
    \ creation, evaluation, or \ndeployment should be relevant, of high quality, and\
    \ tailored to the task at hand. Relevancy should be \nestablished based on research-backed\
    \ demonstration of the causal influence of the data to the specific use case \n\
    or justified more generally based on a reasonable expectation of usefulness in\
    \ the domain and/or for the \nsystem design or ongoing development. Relevance\
    \ of data should not be established solely by appealing to \nits historical connection\
    \ to the outcome. High quality and tailored data should be representative of the\
    \ task at"
  - "information used to build or validate the risk assessment shall be open to public\
    \ inspection,\" and that assertions \nof trade secrets cannot be used \"to quash\
    \ discovery in a criminal matter by a party to a criminal case.\" \n22"
- source_sentence: Who is the Senior Policy Advisor for Data and Democracy at the
    White House Office of Science and Technology Policy?
  sentences:
  - "products, advanced platforms and services, “Internet of Things” (IoT) devices,\
    \ and smart city products and \nservices. \nWelcome:\n•\nRashida Richardson, Senior\
    \ Policy Advisor for Data and Democracy, White House Office of Science and\nTechnology\
    \ Policy\n•\nKaren Kornbluh, Senior Fellow and Director of the Digital Innovation\
    \ and Democracy Initiative, German\nMarshall Fund\nModerator: \nDevin E. Willis,\
    \ Attorney, Division of Privacy and Identity Protection, Bureau of Consumer Protection,\
    \ Federal \nTrade Commission \nPanelists: \n•\nTamika L. Butler, Principal, Tamika\
    \ L. Butler Consulting\n•\nJennifer Clark, Professor and Head of City and Regional\
    \ Planning, Knowlton School of Engineering, Ohio\nState University\n•"
  - 'ENDNOTES

    35. Carrie Johnson. Flaws plague a tool meant to help low-risk federal prisoners
    win early release. NPR.

    Jan. 26, 2022. https://www.npr.org/2022/01/26/1075509175/flaws-plague-a-tool-meant-to-help-low­

    risk-federal-prisoners-win-early-release.; Carrie Johnson. Justice Department
    works to curb racial bias

    in deciding who''s released from prison. NPR. Apr. 19, 2022. https://

    www.npr.org/2022/04/19/1093538706/justice-department-works-to-curb-racial-bias-in-deciding­

    whos-released-from-pris; National Institute of Justice. 2021 Review and Revalidation
    of the First Step Act

    Risk Assessment Tool. National Institute of Justice NCJ 303859. Dec., 2021. https://www.ojp.gov/

    pdffiles1/nij/303859.pdf'
  - 'https://themarkup.org/machine-learning/2022/01/11/this-private-equity-firm-is-amassing-companies­

    that-collect-data-on-americas-children

    77. Reed Albergotti. Every employee who leaves Apple becomes an ‘associate’: In
    job databases used by

    employers to verify resume information, every former Apple employee’s title gets
    erased and replaced with

    a generic title. The Washington Post. Feb. 10, 2022.

    https://www.washingtonpost.com/technology/2022/02/10/apple-associate/

    78. National Institute of Standards and Technology. Privacy Framework Perspectives
    and Success

    Stories. Accessed May 2, 2022.

    https://www.nist.gov/privacy-framework/getting-started-0/perspectives-and-success-stories'
- source_sentence: What actions has the Consumer Financial Protection Bureau taken
    regarding black-box credit models?
  sentences:
  - 'under-ecoa-fcra/

    91. Federal Trade Commission. Using Consumer Reports for Credit Decisions: What
    to Know About

    Adverse Action and Risk-Based Pricing Notices. Accessed May 2, 2022.

    https://www.ftc.gov/business-guidance/resources/using-consumer-reports-credit-decisions-what­

    know-about-adverse-action-risk-based-pricing-notices#risk

    92. Consumer Financial Protection Bureau. CFPB Acts to Protect the Public from
    Black-Box Credit

    Models Using Complex Algorithms. May 26, 2022.

    https://www.consumerfinance.gov/about-us/newsroom/cfpb-acts-to-protect-the-public-from-black­

    box-credit-models-using-complex-algorithms/

    93. Anthony Zaller. California Passes Law Regulating Quotas In Warehouses – What
    Employers Need to'
  - 'https://www.nytimes.com/2020/12/29/technology/facial-recognition-misidentify-jail.html;
    Khari

    Johnson. How Wrongful Arrests Based on AI Derailed 3 Men''s Lives. Wired. Mar.
    7, 2022. https://

    www.wired.com/story/wrongful-arrests-ai-derailed-3-mens-lives/

    32. Student Borrower Protection Center. Educational Redlining. Student Borrower
    Protection Center

    Report. Feb. 2020. https://protectborrowers.org/wp-content/uploads/2020/02/Education-Redlining­

    Report.pdf

    33. Jeffrey Dastin. Amazon scraps secret AI recruiting tool that showed bias against
    women. Reuters. Oct.

    10, 2018. https://www.reuters.com/article/us-amazon-com-jobs-automation-insight/amazon-scraps­

    secret-ai-recruiting-tool-that-showed-bias-against-women-idUSKCN1MK08G'
  - "including automated tenant background screening and facial recognition-based\
    \ controls to enter or exit \nhousing complexes. Employment-related concerning\
    \ uses included discrimination in automated hiring \nscreening and workplace surveillance.\
    \ Various panelists raised the limitations of existing privacy law as a key \n\
    concern, pointing out that students should be able to reinvent themselves and\
    \ require privacy of their student \nrecords and education-related data in order\
    \ to do so. The overarching concerns of surveillance in these \ndomains included\
    \ concerns about the chilling effects of surveillance on student expression, inappropriate"
- source_sentence: What percentage of racy results did Google cut for searches like
    'Latina teenager' in March 2022?
  sentences:
  - "they've used drugs, or whether they've expressed interest in LGBTQI+ groups,\
    \ and then use that data to \nforecast student success.76 Parents and education\
    \ experts have expressed concern about collection of such\nsensitive data without\
    \ express parental consent, the lack of transparency in how such data is being\
    \ used, and\nthe potential for resulting discriminatory impacts.\n• Many employers\
    \ transfer employee data to third party job verification services. This information\
    \ is then used\nby potential future employers, banks, or landlords. In one case,\
    \ a former employee alleged that a\ncompany supplied false data about her job\
    \ title which resulted in a job offer being revoked.77\n37"
  - 'Software Discriminates Against Disabled Students. Center for Democracy and Technology.
    Nov. 16, 2020.

    https://cdt.org/insights/how-automated-test-proctoring-software-discriminates-against-disabled­

    students/

    46. Ziad Obermeyer, et al., Dissecting racial bias in an algorithm used to manage
    the health of

    populations, 366 Science (2019), https://www.science.org/doi/10.1126/science.aax2342.

    66'
  - '2022. https://www.reuters.com/technology/google-cuts-racy-results-by-30-searches-like-latina­

    teenager-2022-03-30/

    40. Safiya Umoja Noble. Algorithms of Oppression: How Search Engines Reinforce
    Racism. NYU Press.

    Feb. 2018. https://nyupress.org/9781479837243/algorithms-of-oppression/

    41. Paresh Dave. Google cuts racy results by 30% for searches like ''Latina teenager''.
    Reuters. Mar. 30,

    2022. https://www.reuters.com/technology/google-cuts-racy-results-by-30-searches-like-latina­

    teenager-2022-03-30/

    42. Miranda Bogen. All the Ways Hiring Algorithms Can Introduce Bias. Harvard
    Business Review. May

    6, 2019. https://hbr.org/2019/05/all-the-ways-hiring-algorithms-can-introduce-bias'
model-index:
- name: SentenceTransformer based on Snowflake/snowflake-arctic-embed-m
  results:
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: Unknown
      type: unknown
    metrics:
    - type: cosine_accuracy@1
      value: 0.815
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.935
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.95
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.965
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.815
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.31166666666666665
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.19
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.09649999999999999
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.815
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.935
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.95
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.965
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.8954135083695783
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.8723333333333333
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.8741632101558571
      name: Cosine Map@100
    - type: dot_accuracy@1
      value: 0.815
      name: Dot Accuracy@1
    - type: dot_accuracy@3
      value: 0.935
      name: Dot Accuracy@3
    - type: dot_accuracy@5
      value: 0.95
      name: Dot Accuracy@5
    - type: dot_accuracy@10
      value: 0.965
      name: Dot Accuracy@10
    - type: dot_precision@1
      value: 0.815
      name: Dot Precision@1
    - type: dot_precision@3
      value: 0.31166666666666665
      name: Dot Precision@3
    - type: dot_precision@5
      value: 0.19
      name: Dot Precision@5
    - type: dot_precision@10
      value: 0.09649999999999999
      name: Dot Precision@10
    - type: dot_recall@1
      value: 0.815
      name: Dot Recall@1
    - type: dot_recall@3
      value: 0.935
      name: Dot Recall@3
    - type: dot_recall@5
      value: 0.95
      name: Dot Recall@5
    - type: dot_recall@10
      value: 0.965
      name: Dot Recall@10
    - type: dot_ndcg@10
      value: 0.8954135083695783
      name: Dot Ndcg@10
    - type: dot_mrr@10
      value: 0.8723333333333333
      name: Dot Mrr@10
    - type: dot_map@100
      value: 0.8741632101558571
      name: Dot Map@100
---

# SentenceTransformer based on Snowflake/snowflake-arctic-embed-m

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Snowflake/snowflake-arctic-embed-m](https://huggingface.co/Snowflake/snowflake-arctic-embed-m). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [Snowflake/snowflake-arctic-embed-m](https://huggingface.co/Snowflake/snowflake-arctic-embed-m) <!-- at revision e2b128b9fa60c82b4585512b33e1544224ffff42 -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("acpotts/finetuned_arctic")
# Run inference
sentences = [
    "What percentage of racy results did Google cut for searches like 'Latina teenager' in March 2022?",
    "2022. https://www.reuters.com/technology/google-cuts-racy-results-by-30-searches-like-latina\xad\nteenager-2022-03-30/\n40. Safiya Umoja Noble. Algorithms of Oppression: How Search Engines Reinforce Racism. NYU Press.\nFeb. 2018. https://nyupress.org/9781479837243/algorithms-of-oppression/\n41. Paresh Dave. Google cuts racy results by 30% for searches like 'Latina teenager'. Reuters. Mar. 30,\n2022. https://www.reuters.com/technology/google-cuts-racy-results-by-30-searches-like-latina\xad\nteenager-2022-03-30/\n42. Miranda Bogen. All the Ways Hiring Algorithms Can Introduce Bias. Harvard Business Review. May\n6, 2019. https://hbr.org/2019/05/all-the-ways-hiring-algorithms-can-introduce-bias",
    "they've used drugs, or whether they've expressed interest in LGBTQI+ groups, and then use that data to \nforecast student success.76 Parents and education experts have expressed concern about collection of such\nsensitive data without express parental consent, the lack of transparency in how such data is being used, and\nthe potential for resulting discriminatory impacts.\n• Many employers transfer employee data to third party job verification services. This information is then used\nby potential future employers, banks, or landlords. In one case, a former employee alleged that a\ncompany supplied false data about her job title which resulted in a job offer being revoked.77\n37",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Information Retrieval

* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.815      |
| cosine_accuracy@3   | 0.935      |
| cosine_accuracy@5   | 0.95       |
| cosine_accuracy@10  | 0.965      |
| cosine_precision@1  | 0.815      |
| cosine_precision@3  | 0.3117     |
| cosine_precision@5  | 0.19       |
| cosine_precision@10 | 0.0965     |
| cosine_recall@1     | 0.815      |
| cosine_recall@3     | 0.935      |
| cosine_recall@5     | 0.95       |
| cosine_recall@10    | 0.965      |
| cosine_ndcg@10      | 0.8954     |
| cosine_mrr@10       | 0.8723     |
| **cosine_map@100**  | **0.8742** |
| dot_accuracy@1      | 0.815      |
| dot_accuracy@3      | 0.935      |
| dot_accuracy@5      | 0.95       |
| dot_accuracy@10     | 0.965      |
| dot_precision@1     | 0.815      |
| dot_precision@3     | 0.3117     |
| dot_precision@5     | 0.19       |
| dot_precision@10    | 0.0965     |
| dot_recall@1        | 0.815      |
| dot_recall@3        | 0.935      |
| dot_recall@5        | 0.95       |
| dot_recall@10       | 0.965      |
| dot_ndcg@10         | 0.8954     |
| dot_mrr@10          | 0.8723     |
| dot_map@100         | 0.8742     |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### Unnamed Dataset


* Size: 800 training samples
* Columns: <code>sentence_0</code> and <code>sentence_1</code>
* Approximate statistics based on the first 800 samples:
  |         | sentence_0                                                                         | sentence_1                                                                          |
  |:--------|:-----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
  | type    | string                                                                             | string                                                                              |
  | details | <ul><li>min: 11 tokens</li><li>mean: 20.11 tokens</li><li>max: 36 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 127.42 tokens</li><li>max: 512 tokens</li></ul> |
* Samples:
  | sentence_0                                                                                                                                  | sentence_1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
  |:--------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>What are some of the principles proposed for the ethical use of AI and automated systems?</code>                                      | <code>lems with legislation, and some courts extending longstanding statutory protections to new and emerging tech­<br>nologies. There are companies working to incorporate additional protections in their design and use of auto­<br>mated systems, and researchers developing innovative guardrails. Advocates, researchers, and government <br>organizations have proposed principles for the ethical use of AI and other automated systems. These include <br>the Organization for Economic Co-operation and Development’s (OECD’s) 2019 Recommendation on Artificial <br>Intelligence, which includes principles for responsible stewardship of trustworthy AI and which the United</code> |
  | <code>How are companies and researchers addressing the challenges posed by new and emerging technologies in relation to legislation?</code> | <code>lems with legislation, and some courts extending longstanding statutory protections to new and emerging tech­<br>nologies. There are companies working to incorporate additional protections in their design and use of auto­<br>mated systems, and researchers developing innovative guardrails. Advocates, researchers, and government <br>organizations have proposed principles for the ethical use of AI and other automated systems. These include <br>the Organization for Economic Co-operation and Development’s (OECD’s) 2019 Recommendation on Artificial <br>Intelligence, which includes principles for responsible stewardship of trustworthy AI and which the United</code> |
  | <code>What is the purpose of reporting summary information about automated systems in plain language?</code>                                | <code>any operators or others who need to understand the system, and calibrated to the level of risk based on the <br>context. Reporting that includes summary information about these automated systems in plain language and <br>assessments of the clarity and quality of the notice and explanations should be made public whenever possible. <br>6</code>                                                                                                                                                                                                                                                                                                                                   |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
  ```json
  {
      "loss": "MultipleNegativesRankingLoss",
      "matryoshka_dims": [
          768,
          512,
          256,
          128,
          64
      ],
      "matryoshka_weights": [
          1,
          1,
          1,
          1,
          1
      ],
      "n_dims_per_step": -1
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: steps
- `per_device_train_batch_size`: 20
- `per_device_eval_batch_size`: 20
- `num_train_epochs`: 5
- `multi_dataset_batch_sampler`: round_robin

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 20
- `per_device_eval_batch_size`: 20
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1
- `num_train_epochs`: 5
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.0
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `eval_use_gather_object`: False
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: round_robin

</details>

### Training Logs
| Epoch | Step | cosine_map@100 |
|:-----:|:----:|:--------------:|
| 1.0   | 40   | 0.8676         |
| 1.25  | 50   | 0.8670         |
| 2.0   | 80   | 0.8731         |
| 2.5   | 100  | 0.8722         |
| 1.0   | 40   | 0.8641         |
| 1.25  | 50   | 0.8654         |
| 2.0   | 80   | 0.8674         |
| 2.5   | 100  | 0.8706         |
| 3.0   | 120  | 0.8659         |
| 3.75  | 150  | 0.8697         |
| 4.0   | 160  | 0.8706         |
| 5.0   | 200  | 0.8742         |


### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.1.1
- Transformers: 4.44.2
- PyTorch: 2.4.1+cu121
- Accelerate: 0.34.2
- Datasets: 3.0.0
- Tokenizers: 0.19.1

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning},
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}
```

#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->