actionpace commited on
Commit
23d0743
1 Parent(s): f96f800

Upload folder using huggingface_hub

Browse files
README.md ADDED
@@ -0,0 +1,219 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: codellama/CodeLlama-7b-hf
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Shared by [optional]:** [More Information Needed]
22
+ - **Model type:** [More Information Needed]
23
+ - **Language(s) (NLP):** [More Information Needed]
24
+ - **License:** [More Information Needed]
25
+ - **Finetuned from model [optional]:** [More Information Needed]
26
+
27
+ ### Model Sources [optional]
28
+
29
+ <!-- Provide the basic links for the model. -->
30
+
31
+ - **Repository:** [More Information Needed]
32
+ - **Paper [optional]:** [More Information Needed]
33
+ - **Demo [optional]:** [More Information Needed]
34
+
35
+ ## Uses
36
+
37
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
38
+
39
+ ### Direct Use
40
+
41
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
42
+
43
+ [More Information Needed]
44
+
45
+ ### Downstream Use [optional]
46
+
47
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
48
+
49
+ [More Information Needed]
50
+
51
+ ### Out-of-Scope Use
52
+
53
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
54
+
55
+ [More Information Needed]
56
+
57
+ ## Bias, Risks, and Limitations
58
+
59
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
60
+
61
+ [More Information Needed]
62
+
63
+ ### Recommendations
64
+
65
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
66
+
67
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
68
+
69
+ ## How to Get Started with the Model
70
+
71
+ Use the code below to get started with the model.
72
+
73
+ [More Information Needed]
74
+
75
+ ## Training Details
76
+
77
+ ### Training Data
78
+
79
+ <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
80
+
81
+ [More Information Needed]
82
+
83
+ ### Training Procedure
84
+
85
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
86
+
87
+ #### Preprocessing [optional]
88
+
89
+ [More Information Needed]
90
+
91
+
92
+ #### Training Hyperparameters
93
+
94
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
95
+
96
+ #### Speeds, Sizes, Times [optional]
97
+
98
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
99
+
100
+ [More Information Needed]
101
+
102
+ ## Evaluation
103
+
104
+ <!-- This section describes the evaluation protocols and provides the results. -->
105
+
106
+ ### Testing Data, Factors & Metrics
107
+
108
+ #### Testing Data
109
+
110
+ <!-- This should link to a Data Card if possible. -->
111
+
112
+ [More Information Needed]
113
+
114
+ #### Factors
115
+
116
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
117
+
118
+ [More Information Needed]
119
+
120
+ #### Metrics
121
+
122
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
123
+
124
+ [More Information Needed]
125
+
126
+ ### Results
127
+
128
+ [More Information Needed]
129
+
130
+ #### Summary
131
+
132
+
133
+
134
+ ## Model Examination [optional]
135
+
136
+ <!-- Relevant interpretability work for the model goes here -->
137
+
138
+ [More Information Needed]
139
+
140
+ ## Environmental Impact
141
+
142
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
143
+
144
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
145
+
146
+ - **Hardware Type:** [More Information Needed]
147
+ - **Hours used:** [More Information Needed]
148
+ - **Cloud Provider:** [More Information Needed]
149
+ - **Compute Region:** [More Information Needed]
150
+ - **Carbon Emitted:** [More Information Needed]
151
+
152
+ ## Technical Specifications [optional]
153
+
154
+ ### Model Architecture and Objective
155
+
156
+ [More Information Needed]
157
+
158
+ ### Compute Infrastructure
159
+
160
+ [More Information Needed]
161
+
162
+ #### Hardware
163
+
164
+ [More Information Needed]
165
+
166
+ #### Software
167
+
168
+ [More Information Needed]
169
+
170
+ ## Citation [optional]
171
+
172
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
173
+
174
+ **BibTeX:**
175
+
176
+ [More Information Needed]
177
+
178
+ **APA:**
179
+
180
+ [More Information Needed]
181
+
182
+ ## Glossary [optional]
183
+
184
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
185
+
186
+ [More Information Needed]
187
+
188
+ ## More Information [optional]
189
+
190
+ [More Information Needed]
191
+
192
+ ## Model Card Authors [optional]
193
+
194
+ [More Information Needed]
195
+
196
+ ## Model Card Contact
197
+
198
+ [More Information Needed]
199
+
200
+
201
+ ## Training procedure
202
+
203
+
204
+ The following `bitsandbytes` quantization config was used during training:
205
+ - quant_method: bitsandbytes
206
+ - load_in_8bit: False
207
+ - load_in_4bit: True
208
+ - llm_int8_threshold: 6.0
209
+ - llm_int8_skip_modules: None
210
+ - llm_int8_enable_fp32_cpu_offload: False
211
+ - llm_int8_has_fp16_weight: False
212
+ - bnb_4bit_quant_type: nf4
213
+ - bnb_4bit_use_double_quant: True
214
+ - bnb_4bit_compute_dtype: bfloat16
215
+
216
+ ### Framework versions
217
+
218
+
219
+ - PEFT 0.6.2.dev0
adapter_config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "codellama/CodeLlama-7b-hf",
5
+ "bias": "none",
6
+ "fan_in_fan_out": null,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "lora_alpha": 16,
12
+ "lora_dropout": 0.05,
13
+ "modules_to_save": null,
14
+ "peft_type": "LORA",
15
+ "r": 32,
16
+ "rank_pattern": {},
17
+ "revision": null,
18
+ "target_modules": [
19
+ "up_proj",
20
+ "v_proj",
21
+ "o_proj",
22
+ "down_proj",
23
+ "gate_proj",
24
+ "q_proj",
25
+ "k_proj"
26
+ ],
27
+ "task_type": "CAUSAL_LM"
28
+ }
adapter_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7f401595b47c3b38a3681abb36daa3be453108ba604a56bd931a2c61ff672b99
3
+ size 319977229
checkpoint-118/README.md ADDED
@@ -0,0 +1,219 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: codellama/CodeLlama-7b-hf
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Shared by [optional]:** [More Information Needed]
22
+ - **Model type:** [More Information Needed]
23
+ - **Language(s) (NLP):** [More Information Needed]
24
+ - **License:** [More Information Needed]
25
+ - **Finetuned from model [optional]:** [More Information Needed]
26
+
27
+ ### Model Sources [optional]
28
+
29
+ <!-- Provide the basic links for the model. -->
30
+
31
+ - **Repository:** [More Information Needed]
32
+ - **Paper [optional]:** [More Information Needed]
33
+ - **Demo [optional]:** [More Information Needed]
34
+
35
+ ## Uses
36
+
37
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
38
+
39
+ ### Direct Use
40
+
41
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
42
+
43
+ [More Information Needed]
44
+
45
+ ### Downstream Use [optional]
46
+
47
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
48
+
49
+ [More Information Needed]
50
+
51
+ ### Out-of-Scope Use
52
+
53
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
54
+
55
+ [More Information Needed]
56
+
57
+ ## Bias, Risks, and Limitations
58
+
59
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
60
+
61
+ [More Information Needed]
62
+
63
+ ### Recommendations
64
+
65
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
66
+
67
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
68
+
69
+ ## How to Get Started with the Model
70
+
71
+ Use the code below to get started with the model.
72
+
73
+ [More Information Needed]
74
+
75
+ ## Training Details
76
+
77
+ ### Training Data
78
+
79
+ <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
80
+
81
+ [More Information Needed]
82
+
83
+ ### Training Procedure
84
+
85
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
86
+
87
+ #### Preprocessing [optional]
88
+
89
+ [More Information Needed]
90
+
91
+
92
+ #### Training Hyperparameters
93
+
94
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
95
+
96
+ #### Speeds, Sizes, Times [optional]
97
+
98
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
99
+
100
+ [More Information Needed]
101
+
102
+ ## Evaluation
103
+
104
+ <!-- This section describes the evaluation protocols and provides the results. -->
105
+
106
+ ### Testing Data, Factors & Metrics
107
+
108
+ #### Testing Data
109
+
110
+ <!-- This should link to a Data Card if possible. -->
111
+
112
+ [More Information Needed]
113
+
114
+ #### Factors
115
+
116
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
117
+
118
+ [More Information Needed]
119
+
120
+ #### Metrics
121
+
122
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
123
+
124
+ [More Information Needed]
125
+
126
+ ### Results
127
+
128
+ [More Information Needed]
129
+
130
+ #### Summary
131
+
132
+
133
+
134
+ ## Model Examination [optional]
135
+
136
+ <!-- Relevant interpretability work for the model goes here -->
137
+
138
+ [More Information Needed]
139
+
140
+ ## Environmental Impact
141
+
142
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
143
+
144
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
145
+
146
+ - **Hardware Type:** [More Information Needed]
147
+ - **Hours used:** [More Information Needed]
148
+ - **Cloud Provider:** [More Information Needed]
149
+ - **Compute Region:** [More Information Needed]
150
+ - **Carbon Emitted:** [More Information Needed]
151
+
152
+ ## Technical Specifications [optional]
153
+
154
+ ### Model Architecture and Objective
155
+
156
+ [More Information Needed]
157
+
158
+ ### Compute Infrastructure
159
+
160
+ [More Information Needed]
161
+
162
+ #### Hardware
163
+
164
+ [More Information Needed]
165
+
166
+ #### Software
167
+
168
+ [More Information Needed]
169
+
170
+ ## Citation [optional]
171
+
172
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
173
+
174
+ **BibTeX:**
175
+
176
+ [More Information Needed]
177
+
178
+ **APA:**
179
+
180
+ [More Information Needed]
181
+
182
+ ## Glossary [optional]
183
+
184
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
185
+
186
+ [More Information Needed]
187
+
188
+ ## More Information [optional]
189
+
190
+ [More Information Needed]
191
+
192
+ ## Model Card Authors [optional]
193
+
194
+ [More Information Needed]
195
+
196
+ ## Model Card Contact
197
+
198
+ [More Information Needed]
199
+
200
+
201
+ ## Training procedure
202
+
203
+
204
+ The following `bitsandbytes` quantization config was used during training:
205
+ - quant_method: bitsandbytes
206
+ - load_in_8bit: False
207
+ - load_in_4bit: True
208
+ - llm_int8_threshold: 6.0
209
+ - llm_int8_skip_modules: None
210
+ - llm_int8_enable_fp32_cpu_offload: False
211
+ - llm_int8_has_fp16_weight: False
212
+ - bnb_4bit_quant_type: nf4
213
+ - bnb_4bit_use_double_quant: True
214
+ - bnb_4bit_compute_dtype: bfloat16
215
+
216
+ ### Framework versions
217
+
218
+
219
+ - PEFT 0.6.2.dev0
checkpoint-118/adapter_config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "codellama/CodeLlama-7b-hf",
5
+ "bias": "none",
6
+ "fan_in_fan_out": null,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "lora_alpha": 16,
12
+ "lora_dropout": 0.05,
13
+ "modules_to_save": null,
14
+ "peft_type": "LORA",
15
+ "r": 32,
16
+ "rank_pattern": {},
17
+ "revision": null,
18
+ "target_modules": [
19
+ "up_proj",
20
+ "v_proj",
21
+ "o_proj",
22
+ "down_proj",
23
+ "gate_proj",
24
+ "q_proj",
25
+ "k_proj"
26
+ ],
27
+ "task_type": "CAUSAL_LM"
28
+ }
checkpoint-118/adapter_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e4a7093fd570d84977bbb3b8fad4808a806ebf74a41f6150aa34b05d247a37dd
3
+ size 319977229
checkpoint-118/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1d52acabf06598dc020e8bbf6f8e063b748a9ed3002548a155d55802fdb4cf75
3
+ size 639908165
checkpoint-118/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cb14416f3fde05f27e6bc711bef7700bc8c382e3b21abf322672df4f5491efd7
3
+ size 14575
checkpoint-118/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8e34d8128a244fa6cf229f0bc81147d32420a86c9a1a9e06d462b31bb885b780
3
+ size 627
checkpoint-118/trainer_state.json ADDED
@@ -0,0 +1,967 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 1.019438444924406,
5
+ "eval_steps": 4,
6
+ "global_step": 118,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.01,
13
+ "learning_rate": 2.0000000000000003e-06,
14
+ "loss": 0.3477,
15
+ "step": 1
16
+ },
17
+ {
18
+ "epoch": 0.01,
19
+ "eval_loss": 0.4987175166606903,
20
+ "eval_runtime": 3.1166,
21
+ "eval_samples_per_second": 6.417,
22
+ "eval_steps_per_second": 3.209,
23
+ "step": 1
24
+ },
25
+ {
26
+ "epoch": 0.02,
27
+ "learning_rate": 4.000000000000001e-06,
28
+ "loss": 0.3285,
29
+ "step": 2
30
+ },
31
+ {
32
+ "epoch": 0.03,
33
+ "learning_rate": 6e-06,
34
+ "loss": 0.3754,
35
+ "step": 3
36
+ },
37
+ {
38
+ "epoch": 0.03,
39
+ "learning_rate": 8.000000000000001e-06,
40
+ "loss": 0.3143,
41
+ "step": 4
42
+ },
43
+ {
44
+ "epoch": 0.03,
45
+ "eval_loss": 0.4986831247806549,
46
+ "eval_runtime": 3.101,
47
+ "eval_samples_per_second": 6.45,
48
+ "eval_steps_per_second": 3.225,
49
+ "step": 4
50
+ },
51
+ {
52
+ "epoch": 0.04,
53
+ "learning_rate": 1e-05,
54
+ "loss": 0.4661,
55
+ "step": 5
56
+ },
57
+ {
58
+ "epoch": 0.05,
59
+ "learning_rate": 1.2e-05,
60
+ "loss": 0.3726,
61
+ "step": 6
62
+ },
63
+ {
64
+ "epoch": 0.06,
65
+ "learning_rate": 1.4000000000000001e-05,
66
+ "loss": 0.3515,
67
+ "step": 7
68
+ },
69
+ {
70
+ "epoch": 0.07,
71
+ "learning_rate": 1.6000000000000003e-05,
72
+ "loss": 0.2981,
73
+ "step": 8
74
+ },
75
+ {
76
+ "epoch": 0.07,
77
+ "eval_loss": 0.4983077645301819,
78
+ "eval_runtime": 3.1103,
79
+ "eval_samples_per_second": 6.43,
80
+ "eval_steps_per_second": 3.215,
81
+ "step": 8
82
+ },
83
+ {
84
+ "epoch": 0.08,
85
+ "learning_rate": 1.8e-05,
86
+ "loss": 0.5434,
87
+ "step": 9
88
+ },
89
+ {
90
+ "epoch": 0.09,
91
+ "learning_rate": 2e-05,
92
+ "loss": 0.3998,
93
+ "step": 10
94
+ },
95
+ {
96
+ "epoch": 0.1,
97
+ "learning_rate": 2.2000000000000003e-05,
98
+ "loss": 0.31,
99
+ "step": 11
100
+ },
101
+ {
102
+ "epoch": 0.1,
103
+ "learning_rate": 2.4e-05,
104
+ "loss": 0.4314,
105
+ "step": 12
106
+ },
107
+ {
108
+ "epoch": 0.1,
109
+ "eval_loss": 0.497723788022995,
110
+ "eval_runtime": 3.1104,
111
+ "eval_samples_per_second": 6.43,
112
+ "eval_steps_per_second": 3.215,
113
+ "step": 12
114
+ },
115
+ {
116
+ "epoch": 0.11,
117
+ "learning_rate": 2.6000000000000002e-05,
118
+ "loss": 0.3478,
119
+ "step": 13
120
+ },
121
+ {
122
+ "epoch": 0.12,
123
+ "learning_rate": 2.8000000000000003e-05,
124
+ "loss": 0.3663,
125
+ "step": 14
126
+ },
127
+ {
128
+ "epoch": 0.13,
129
+ "learning_rate": 3e-05,
130
+ "loss": 0.3981,
131
+ "step": 15
132
+ },
133
+ {
134
+ "epoch": 0.14,
135
+ "learning_rate": 3.2000000000000005e-05,
136
+ "loss": 0.3959,
137
+ "step": 16
138
+ },
139
+ {
140
+ "epoch": 0.14,
141
+ "eval_loss": 0.49577316641807556,
142
+ "eval_runtime": 3.1093,
143
+ "eval_samples_per_second": 6.432,
144
+ "eval_steps_per_second": 3.216,
145
+ "step": 16
146
+ },
147
+ {
148
+ "epoch": 0.15,
149
+ "learning_rate": 3.4000000000000007e-05,
150
+ "loss": 0.4256,
151
+ "step": 17
152
+ },
153
+ {
154
+ "epoch": 0.16,
155
+ "learning_rate": 3.6e-05,
156
+ "loss": 0.3393,
157
+ "step": 18
158
+ },
159
+ {
160
+ "epoch": 0.16,
161
+ "learning_rate": 3.8e-05,
162
+ "loss": 0.4055,
163
+ "step": 19
164
+ },
165
+ {
166
+ "epoch": 0.17,
167
+ "learning_rate": 4e-05,
168
+ "loss": 0.3353,
169
+ "step": 20
170
+ },
171
+ {
172
+ "epoch": 0.17,
173
+ "eval_loss": 0.4915711581707001,
174
+ "eval_runtime": 3.1139,
175
+ "eval_samples_per_second": 6.423,
176
+ "eval_steps_per_second": 3.211,
177
+ "step": 20
178
+ },
179
+ {
180
+ "epoch": 0.18,
181
+ "learning_rate": 4.2e-05,
182
+ "loss": 0.3431,
183
+ "step": 21
184
+ },
185
+ {
186
+ "epoch": 0.19,
187
+ "learning_rate": 4.4000000000000006e-05,
188
+ "loss": 0.354,
189
+ "step": 22
190
+ },
191
+ {
192
+ "epoch": 0.2,
193
+ "learning_rate": 4.600000000000001e-05,
194
+ "loss": 0.3472,
195
+ "step": 23
196
+ },
197
+ {
198
+ "epoch": 0.21,
199
+ "learning_rate": 4.8e-05,
200
+ "loss": 0.4287,
201
+ "step": 24
202
+ },
203
+ {
204
+ "epoch": 0.21,
205
+ "eval_loss": 0.4811338782310486,
206
+ "eval_runtime": 3.1059,
207
+ "eval_samples_per_second": 6.439,
208
+ "eval_steps_per_second": 3.22,
209
+ "step": 24
210
+ },
211
+ {
212
+ "epoch": 0.22,
213
+ "learning_rate": 5e-05,
214
+ "loss": 0.3663,
215
+ "step": 25
216
+ },
217
+ {
218
+ "epoch": 0.22,
219
+ "learning_rate": 5.2000000000000004e-05,
220
+ "loss": 0.298,
221
+ "step": 26
222
+ },
223
+ {
224
+ "epoch": 0.23,
225
+ "learning_rate": 5.4000000000000005e-05,
226
+ "loss": 0.3649,
227
+ "step": 27
228
+ },
229
+ {
230
+ "epoch": 0.24,
231
+ "learning_rate": 5.6000000000000006e-05,
232
+ "loss": 0.4018,
233
+ "step": 28
234
+ },
235
+ {
236
+ "epoch": 0.24,
237
+ "eval_loss": 0.46300894021987915,
238
+ "eval_runtime": 3.1124,
239
+ "eval_samples_per_second": 6.426,
240
+ "eval_steps_per_second": 3.213,
241
+ "step": 28
242
+ },
243
+ {
244
+ "epoch": 0.25,
245
+ "learning_rate": 5.8e-05,
246
+ "loss": 0.3116,
247
+ "step": 29
248
+ },
249
+ {
250
+ "epoch": 0.26,
251
+ "learning_rate": 6e-05,
252
+ "loss": 0.3147,
253
+ "step": 30
254
+ },
255
+ {
256
+ "epoch": 0.27,
257
+ "learning_rate": 6.2e-05,
258
+ "loss": 0.2776,
259
+ "step": 31
260
+ },
261
+ {
262
+ "epoch": 0.28,
263
+ "learning_rate": 6.400000000000001e-05,
264
+ "loss": 0.3278,
265
+ "step": 32
266
+ },
267
+ {
268
+ "epoch": 0.28,
269
+ "eval_loss": 0.4446893334388733,
270
+ "eval_runtime": 3.1075,
271
+ "eval_samples_per_second": 6.436,
272
+ "eval_steps_per_second": 3.218,
273
+ "step": 32
274
+ },
275
+ {
276
+ "epoch": 0.29,
277
+ "learning_rate": 6.6e-05,
278
+ "loss": 0.2848,
279
+ "step": 33
280
+ },
281
+ {
282
+ "epoch": 0.29,
283
+ "learning_rate": 6.800000000000001e-05,
284
+ "loss": 0.2776,
285
+ "step": 34
286
+ },
287
+ {
288
+ "epoch": 0.3,
289
+ "learning_rate": 7e-05,
290
+ "loss": 0.3078,
291
+ "step": 35
292
+ },
293
+ {
294
+ "epoch": 0.31,
295
+ "learning_rate": 7.2e-05,
296
+ "loss": 0.2566,
297
+ "step": 36
298
+ },
299
+ {
300
+ "epoch": 0.31,
301
+ "eval_loss": 0.4287605881690979,
302
+ "eval_runtime": 3.1063,
303
+ "eval_samples_per_second": 6.438,
304
+ "eval_steps_per_second": 3.219,
305
+ "step": 36
306
+ },
307
+ {
308
+ "epoch": 0.32,
309
+ "learning_rate": 7.4e-05,
310
+ "loss": 0.2715,
311
+ "step": 37
312
+ },
313
+ {
314
+ "epoch": 0.33,
315
+ "learning_rate": 7.6e-05,
316
+ "loss": 0.3393,
317
+ "step": 38
318
+ },
319
+ {
320
+ "epoch": 0.34,
321
+ "learning_rate": 7.800000000000001e-05,
322
+ "loss": 0.2669,
323
+ "step": 39
324
+ },
325
+ {
326
+ "epoch": 0.35,
327
+ "learning_rate": 8e-05,
328
+ "loss": 0.3797,
329
+ "step": 40
330
+ },
331
+ {
332
+ "epoch": 0.35,
333
+ "eval_loss": 0.4169308543205261,
334
+ "eval_runtime": 3.1074,
335
+ "eval_samples_per_second": 6.436,
336
+ "eval_steps_per_second": 3.218,
337
+ "step": 40
338
+ },
339
+ {
340
+ "epoch": 0.35,
341
+ "learning_rate": 8.2e-05,
342
+ "loss": 0.2702,
343
+ "step": 41
344
+ },
345
+ {
346
+ "epoch": 0.36,
347
+ "learning_rate": 8.4e-05,
348
+ "loss": 0.3824,
349
+ "step": 42
350
+ },
351
+ {
352
+ "epoch": 0.37,
353
+ "learning_rate": 8.6e-05,
354
+ "loss": 0.274,
355
+ "step": 43
356
+ },
357
+ {
358
+ "epoch": 0.38,
359
+ "learning_rate": 8.800000000000001e-05,
360
+ "loss": 0.2966,
361
+ "step": 44
362
+ },
363
+ {
364
+ "epoch": 0.38,
365
+ "eval_loss": 0.41074520349502563,
366
+ "eval_runtime": 3.1076,
367
+ "eval_samples_per_second": 6.436,
368
+ "eval_steps_per_second": 3.218,
369
+ "step": 44
370
+ },
371
+ {
372
+ "epoch": 0.39,
373
+ "learning_rate": 9e-05,
374
+ "loss": 0.485,
375
+ "step": 45
376
+ },
377
+ {
378
+ "epoch": 0.4,
379
+ "learning_rate": 9.200000000000001e-05,
380
+ "loss": 0.2395,
381
+ "step": 46
382
+ },
383
+ {
384
+ "epoch": 0.41,
385
+ "learning_rate": 9.4e-05,
386
+ "loss": 0.3023,
387
+ "step": 47
388
+ },
389
+ {
390
+ "epoch": 0.41,
391
+ "learning_rate": 9.6e-05,
392
+ "loss": 0.2676,
393
+ "step": 48
394
+ },
395
+ {
396
+ "epoch": 0.41,
397
+ "eval_loss": 0.4023456573486328,
398
+ "eval_runtime": 3.1109,
399
+ "eval_samples_per_second": 6.429,
400
+ "eval_steps_per_second": 3.215,
401
+ "step": 48
402
+ },
403
+ {
404
+ "epoch": 0.42,
405
+ "learning_rate": 9.8e-05,
406
+ "loss": 0.2378,
407
+ "step": 49
408
+ },
409
+ {
410
+ "epoch": 0.43,
411
+ "learning_rate": 0.0001,
412
+ "loss": 0.2607,
413
+ "step": 50
414
+ },
415
+ {
416
+ "epoch": 0.44,
417
+ "learning_rate": 0.00010200000000000001,
418
+ "loss": 0.4538,
419
+ "step": 51
420
+ },
421
+ {
422
+ "epoch": 0.45,
423
+ "learning_rate": 0.00010400000000000001,
424
+ "loss": 0.2456,
425
+ "step": 52
426
+ },
427
+ {
428
+ "epoch": 0.45,
429
+ "eval_loss": 0.3957594335079193,
430
+ "eval_runtime": 3.1123,
431
+ "eval_samples_per_second": 6.426,
432
+ "eval_steps_per_second": 3.213,
433
+ "step": 52
434
+ },
435
+ {
436
+ "epoch": 0.46,
437
+ "learning_rate": 0.00010600000000000002,
438
+ "loss": 0.3435,
439
+ "step": 53
440
+ },
441
+ {
442
+ "epoch": 0.47,
443
+ "learning_rate": 0.00010800000000000001,
444
+ "loss": 0.3035,
445
+ "step": 54
446
+ },
447
+ {
448
+ "epoch": 0.48,
449
+ "learning_rate": 0.00011000000000000002,
450
+ "loss": 0.3564,
451
+ "step": 55
452
+ },
453
+ {
454
+ "epoch": 0.48,
455
+ "learning_rate": 0.00011200000000000001,
456
+ "loss": 0.3267,
457
+ "step": 56
458
+ },
459
+ {
460
+ "epoch": 0.48,
461
+ "eval_loss": 0.39143189787864685,
462
+ "eval_runtime": 3.1134,
463
+ "eval_samples_per_second": 6.424,
464
+ "eval_steps_per_second": 3.212,
465
+ "step": 56
466
+ },
467
+ {
468
+ "epoch": 0.49,
469
+ "learning_rate": 0.00011399999999999999,
470
+ "loss": 0.2641,
471
+ "step": 57
472
+ },
473
+ {
474
+ "epoch": 0.5,
475
+ "learning_rate": 0.000116,
476
+ "loss": 0.2805,
477
+ "step": 58
478
+ },
479
+ {
480
+ "epoch": 0.51,
481
+ "learning_rate": 0.000118,
482
+ "loss": 0.2784,
483
+ "step": 59
484
+ },
485
+ {
486
+ "epoch": 0.52,
487
+ "learning_rate": 0.00012,
488
+ "loss": 0.2901,
489
+ "step": 60
490
+ },
491
+ {
492
+ "epoch": 0.52,
493
+ "eval_loss": 0.38809266686439514,
494
+ "eval_runtime": 3.1079,
495
+ "eval_samples_per_second": 6.435,
496
+ "eval_steps_per_second": 3.218,
497
+ "step": 60
498
+ },
499
+ {
500
+ "epoch": 0.53,
501
+ "learning_rate": 0.000122,
502
+ "loss": 0.3039,
503
+ "step": 61
504
+ },
505
+ {
506
+ "epoch": 0.54,
507
+ "learning_rate": 0.000124,
508
+ "loss": 0.2035,
509
+ "step": 62
510
+ },
511
+ {
512
+ "epoch": 0.54,
513
+ "learning_rate": 0.000126,
514
+ "loss": 0.326,
515
+ "step": 63
516
+ },
517
+ {
518
+ "epoch": 0.55,
519
+ "learning_rate": 0.00012800000000000002,
520
+ "loss": 0.1843,
521
+ "step": 64
522
+ },
523
+ {
524
+ "epoch": 0.55,
525
+ "eval_loss": 0.3881237506866455,
526
+ "eval_runtime": 3.1107,
527
+ "eval_samples_per_second": 6.429,
528
+ "eval_steps_per_second": 3.215,
529
+ "step": 64
530
+ },
531
+ {
532
+ "epoch": 0.56,
533
+ "learning_rate": 0.00013000000000000002,
534
+ "loss": 0.296,
535
+ "step": 65
536
+ },
537
+ {
538
+ "epoch": 0.57,
539
+ "learning_rate": 0.000132,
540
+ "loss": 0.2766,
541
+ "step": 66
542
+ },
543
+ {
544
+ "epoch": 0.58,
545
+ "learning_rate": 0.000134,
546
+ "loss": 0.304,
547
+ "step": 67
548
+ },
549
+ {
550
+ "epoch": 0.59,
551
+ "learning_rate": 0.00013600000000000003,
552
+ "loss": 0.2585,
553
+ "step": 68
554
+ },
555
+ {
556
+ "epoch": 0.59,
557
+ "eval_loss": 0.3869483470916748,
558
+ "eval_runtime": 3.1091,
559
+ "eval_samples_per_second": 6.433,
560
+ "eval_steps_per_second": 3.216,
561
+ "step": 68
562
+ },
563
+ {
564
+ "epoch": 0.6,
565
+ "learning_rate": 0.000138,
566
+ "loss": 0.2639,
567
+ "step": 69
568
+ },
569
+ {
570
+ "epoch": 0.6,
571
+ "learning_rate": 0.00014,
572
+ "loss": 0.3013,
573
+ "step": 70
574
+ },
575
+ {
576
+ "epoch": 0.61,
577
+ "learning_rate": 0.000142,
578
+ "loss": 0.4263,
579
+ "step": 71
580
+ },
581
+ {
582
+ "epoch": 0.62,
583
+ "learning_rate": 0.000144,
584
+ "loss": 0.3108,
585
+ "step": 72
586
+ },
587
+ {
588
+ "epoch": 0.62,
589
+ "eval_loss": 0.3839200437068939,
590
+ "eval_runtime": 3.1098,
591
+ "eval_samples_per_second": 6.431,
592
+ "eval_steps_per_second": 3.216,
593
+ "step": 72
594
+ },
595
+ {
596
+ "epoch": 0.63,
597
+ "learning_rate": 0.000146,
598
+ "loss": 0.4283,
599
+ "step": 73
600
+ },
601
+ {
602
+ "epoch": 0.64,
603
+ "learning_rate": 0.000148,
604
+ "loss": 0.2582,
605
+ "step": 74
606
+ },
607
+ {
608
+ "epoch": 0.65,
609
+ "learning_rate": 0.00015000000000000001,
610
+ "loss": 0.2703,
611
+ "step": 75
612
+ },
613
+ {
614
+ "epoch": 0.66,
615
+ "learning_rate": 0.000152,
616
+ "loss": 0.3799,
617
+ "step": 76
618
+ },
619
+ {
620
+ "epoch": 0.66,
621
+ "eval_loss": 0.3816559314727783,
622
+ "eval_runtime": 3.1096,
623
+ "eval_samples_per_second": 6.432,
624
+ "eval_steps_per_second": 3.216,
625
+ "step": 76
626
+ },
627
+ {
628
+ "epoch": 0.67,
629
+ "learning_rate": 0.000154,
630
+ "loss": 0.252,
631
+ "step": 77
632
+ },
633
+ {
634
+ "epoch": 0.67,
635
+ "learning_rate": 0.00015600000000000002,
636
+ "loss": 0.3297,
637
+ "step": 78
638
+ },
639
+ {
640
+ "epoch": 0.68,
641
+ "learning_rate": 0.00015800000000000002,
642
+ "loss": 0.2607,
643
+ "step": 79
644
+ },
645
+ {
646
+ "epoch": 0.69,
647
+ "learning_rate": 0.00016,
648
+ "loss": 0.2064,
649
+ "step": 80
650
+ },
651
+ {
652
+ "epoch": 0.69,
653
+ "eval_loss": 0.37915611267089844,
654
+ "eval_runtime": 3.1123,
655
+ "eval_samples_per_second": 6.426,
656
+ "eval_steps_per_second": 3.213,
657
+ "step": 80
658
+ },
659
+ {
660
+ "epoch": 0.7,
661
+ "learning_rate": 0.000162,
662
+ "loss": 0.3341,
663
+ "step": 81
664
+ },
665
+ {
666
+ "epoch": 0.71,
667
+ "learning_rate": 0.000164,
668
+ "loss": 0.3159,
669
+ "step": 82
670
+ },
671
+ {
672
+ "epoch": 0.72,
673
+ "learning_rate": 0.000166,
674
+ "loss": 0.2457,
675
+ "step": 83
676
+ },
677
+ {
678
+ "epoch": 0.73,
679
+ "learning_rate": 0.000168,
680
+ "loss": 0.3176,
681
+ "step": 84
682
+ },
683
+ {
684
+ "epoch": 0.73,
685
+ "eval_loss": 0.3792770504951477,
686
+ "eval_runtime": 3.13,
687
+ "eval_samples_per_second": 6.39,
688
+ "eval_steps_per_second": 3.195,
689
+ "step": 84
690
+ },
691
+ {
692
+ "epoch": 0.73,
693
+ "learning_rate": 0.00017,
694
+ "loss": 0.3043,
695
+ "step": 85
696
+ },
697
+ {
698
+ "epoch": 0.74,
699
+ "learning_rate": 0.000172,
700
+ "loss": 0.2346,
701
+ "step": 86
702
+ },
703
+ {
704
+ "epoch": 0.75,
705
+ "learning_rate": 0.000174,
706
+ "loss": 0.2872,
707
+ "step": 87
708
+ },
709
+ {
710
+ "epoch": 0.76,
711
+ "learning_rate": 0.00017600000000000002,
712
+ "loss": 0.2307,
713
+ "step": 88
714
+ },
715
+ {
716
+ "epoch": 0.76,
717
+ "eval_loss": 0.3768787384033203,
718
+ "eval_runtime": 3.1088,
719
+ "eval_samples_per_second": 6.433,
720
+ "eval_steps_per_second": 3.217,
721
+ "step": 88
722
+ },
723
+ {
724
+ "epoch": 0.77,
725
+ "learning_rate": 0.00017800000000000002,
726
+ "loss": 0.2661,
727
+ "step": 89
728
+ },
729
+ {
730
+ "epoch": 0.78,
731
+ "learning_rate": 0.00018,
732
+ "loss": 0.3068,
733
+ "step": 90
734
+ },
735
+ {
736
+ "epoch": 0.79,
737
+ "learning_rate": 0.000182,
738
+ "loss": 0.2866,
739
+ "step": 91
740
+ },
741
+ {
742
+ "epoch": 0.79,
743
+ "learning_rate": 0.00018400000000000003,
744
+ "loss": 0.2826,
745
+ "step": 92
746
+ },
747
+ {
748
+ "epoch": 0.79,
749
+ "eval_loss": 0.3746011555194855,
750
+ "eval_runtime": 3.1104,
751
+ "eval_samples_per_second": 6.43,
752
+ "eval_steps_per_second": 3.215,
753
+ "step": 92
754
+ },
755
+ {
756
+ "epoch": 0.8,
757
+ "learning_rate": 0.00018600000000000002,
758
+ "loss": 0.4888,
759
+ "step": 93
760
+ },
761
+ {
762
+ "epoch": 0.81,
763
+ "learning_rate": 0.000188,
764
+ "loss": 0.1667,
765
+ "step": 94
766
+ },
767
+ {
768
+ "epoch": 0.82,
769
+ "learning_rate": 0.00019,
770
+ "loss": 0.2683,
771
+ "step": 95
772
+ },
773
+ {
774
+ "epoch": 0.83,
775
+ "learning_rate": 0.000192,
776
+ "loss": 0.2718,
777
+ "step": 96
778
+ },
779
+ {
780
+ "epoch": 0.83,
781
+ "eval_loss": 0.373685747385025,
782
+ "eval_runtime": 3.1134,
783
+ "eval_samples_per_second": 6.424,
784
+ "eval_steps_per_second": 3.212,
785
+ "step": 96
786
+ },
787
+ {
788
+ "epoch": 0.84,
789
+ "learning_rate": 0.000194,
790
+ "loss": 0.2193,
791
+ "step": 97
792
+ },
793
+ {
794
+ "epoch": 0.85,
795
+ "learning_rate": 0.000196,
796
+ "loss": 0.378,
797
+ "step": 98
798
+ },
799
+ {
800
+ "epoch": 0.86,
801
+ "learning_rate": 0.00019800000000000002,
802
+ "loss": 0.2917,
803
+ "step": 99
804
+ },
805
+ {
806
+ "epoch": 0.86,
807
+ "learning_rate": 0.0002,
808
+ "loss": 0.2945,
809
+ "step": 100
810
+ },
811
+ {
812
+ "epoch": 0.86,
813
+ "eval_loss": 0.3727183938026428,
814
+ "eval_runtime": 3.1085,
815
+ "eval_samples_per_second": 6.434,
816
+ "eval_steps_per_second": 3.217,
817
+ "step": 100
818
+ },
819
+ {
820
+ "epoch": 0.87,
821
+ "learning_rate": 0.00019999177886783194,
822
+ "loss": 0.2355,
823
+ "step": 101
824
+ },
825
+ {
826
+ "epoch": 0.88,
827
+ "learning_rate": 0.000199967116823068,
828
+ "loss": 0.2656,
829
+ "step": 102
830
+ },
831
+ {
832
+ "epoch": 0.89,
833
+ "learning_rate": 0.00019992601792070679,
834
+ "loss": 0.2803,
835
+ "step": 103
836
+ },
837
+ {
838
+ "epoch": 0.9,
839
+ "learning_rate": 0.00019986848891833845,
840
+ "loss": 0.2313,
841
+ "step": 104
842
+ },
843
+ {
844
+ "epoch": 0.9,
845
+ "eval_loss": 0.371459424495697,
846
+ "eval_runtime": 3.1114,
847
+ "eval_samples_per_second": 6.428,
848
+ "eval_steps_per_second": 3.214,
849
+ "step": 104
850
+ },
851
+ {
852
+ "epoch": 0.91,
853
+ "learning_rate": 0.00019979453927503364,
854
+ "loss": 0.2983,
855
+ "step": 105
856
+ },
857
+ {
858
+ "epoch": 0.92,
859
+ "learning_rate": 0.0001997041811497882,
860
+ "loss": 0.2547,
861
+ "step": 106
862
+ },
863
+ {
864
+ "epoch": 0.92,
865
+ "learning_rate": 0.00019959742939952392,
866
+ "loss": 0.2463,
867
+ "step": 107
868
+ },
869
+ {
870
+ "epoch": 0.93,
871
+ "learning_rate": 0.00019947430157664576,
872
+ "loss": 0.2519,
873
+ "step": 108
874
+ },
875
+ {
876
+ "epoch": 0.93,
877
+ "eval_loss": 0.37180376052856445,
878
+ "eval_runtime": 3.1113,
879
+ "eval_samples_per_second": 6.428,
880
+ "eval_steps_per_second": 3.214,
881
+ "step": 108
882
+ },
883
+ {
884
+ "epoch": 0.94,
885
+ "learning_rate": 0.00019933481792615583,
886
+ "loss": 0.2032,
887
+ "step": 109
888
+ },
889
+ {
890
+ "epoch": 0.95,
891
+ "learning_rate": 0.0001991790013823246,
892
+ "loss": 0.2868,
893
+ "step": 110
894
+ },
895
+ {
896
+ "epoch": 0.96,
897
+ "learning_rate": 0.0001990068775649202,
898
+ "loss": 0.2653,
899
+ "step": 111
900
+ },
901
+ {
902
+ "epoch": 0.97,
903
+ "learning_rate": 0.00019881847477499557,
904
+ "loss": 0.2468,
905
+ "step": 112
906
+ },
907
+ {
908
+ "epoch": 0.97,
909
+ "eval_loss": 0.37166160345077515,
910
+ "eval_runtime": 3.1194,
911
+ "eval_samples_per_second": 6.412,
912
+ "eval_steps_per_second": 3.206,
913
+ "step": 112
914
+ },
915
+ {
916
+ "epoch": 0.98,
917
+ "learning_rate": 0.0001986138239902355,
918
+ "loss": 0.3997,
919
+ "step": 113
920
+ },
921
+ {
922
+ "epoch": 0.98,
923
+ "learning_rate": 0.00019839295885986296,
924
+ "loss": 0.172,
925
+ "step": 114
926
+ },
927
+ {
928
+ "epoch": 0.99,
929
+ "learning_rate": 0.00019815591569910654,
930
+ "loss": 0.2713,
931
+ "step": 115
932
+ },
933
+ {
934
+ "epoch": 1.0,
935
+ "learning_rate": 0.0001979027334832293,
936
+ "loss": 0.2034,
937
+ "step": 116
938
+ },
939
+ {
940
+ "epoch": 1.0,
941
+ "eval_loss": 0.37163203954696655,
942
+ "eval_runtime": 3.1126,
943
+ "eval_samples_per_second": 6.425,
944
+ "eval_steps_per_second": 3.213,
945
+ "step": 116
946
+ },
947
+ {
948
+ "epoch": 1.01,
949
+ "learning_rate": 0.00019763345384112043,
950
+ "loss": 0.1824,
951
+ "step": 117
952
+ },
953
+ {
954
+ "epoch": 1.02,
955
+ "learning_rate": 0.00019734812104845047,
956
+ "loss": 0.3669,
957
+ "step": 118
958
+ }
959
+ ],
960
+ "logging_steps": 1,
961
+ "max_steps": 345,
962
+ "num_train_epochs": 3,
963
+ "save_steps": 500,
964
+ "total_flos": 5.999495556523622e+16,
965
+ "trial_name": null,
966
+ "trial_params": null
967
+ }
checkpoint-118/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e119793adec89e061da62a7de24a1a71fb0682ce4c3e3f95d85eab584ad38284
3
+ size 4539
checkpoint-236/README.md ADDED
@@ -0,0 +1,219 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: codellama/CodeLlama-7b-hf
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Shared by [optional]:** [More Information Needed]
22
+ - **Model type:** [More Information Needed]
23
+ - **Language(s) (NLP):** [More Information Needed]
24
+ - **License:** [More Information Needed]
25
+ - **Finetuned from model [optional]:** [More Information Needed]
26
+
27
+ ### Model Sources [optional]
28
+
29
+ <!-- Provide the basic links for the model. -->
30
+
31
+ - **Repository:** [More Information Needed]
32
+ - **Paper [optional]:** [More Information Needed]
33
+ - **Demo [optional]:** [More Information Needed]
34
+
35
+ ## Uses
36
+
37
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
38
+
39
+ ### Direct Use
40
+
41
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
42
+
43
+ [More Information Needed]
44
+
45
+ ### Downstream Use [optional]
46
+
47
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
48
+
49
+ [More Information Needed]
50
+
51
+ ### Out-of-Scope Use
52
+
53
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
54
+
55
+ [More Information Needed]
56
+
57
+ ## Bias, Risks, and Limitations
58
+
59
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
60
+
61
+ [More Information Needed]
62
+
63
+ ### Recommendations
64
+
65
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
66
+
67
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
68
+
69
+ ## How to Get Started with the Model
70
+
71
+ Use the code below to get started with the model.
72
+
73
+ [More Information Needed]
74
+
75
+ ## Training Details
76
+
77
+ ### Training Data
78
+
79
+ <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
80
+
81
+ [More Information Needed]
82
+
83
+ ### Training Procedure
84
+
85
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
86
+
87
+ #### Preprocessing [optional]
88
+
89
+ [More Information Needed]
90
+
91
+
92
+ #### Training Hyperparameters
93
+
94
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
95
+
96
+ #### Speeds, Sizes, Times [optional]
97
+
98
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
99
+
100
+ [More Information Needed]
101
+
102
+ ## Evaluation
103
+
104
+ <!-- This section describes the evaluation protocols and provides the results. -->
105
+
106
+ ### Testing Data, Factors & Metrics
107
+
108
+ #### Testing Data
109
+
110
+ <!-- This should link to a Data Card if possible. -->
111
+
112
+ [More Information Needed]
113
+
114
+ #### Factors
115
+
116
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
117
+
118
+ [More Information Needed]
119
+
120
+ #### Metrics
121
+
122
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
123
+
124
+ [More Information Needed]
125
+
126
+ ### Results
127
+
128
+ [More Information Needed]
129
+
130
+ #### Summary
131
+
132
+
133
+
134
+ ## Model Examination [optional]
135
+
136
+ <!-- Relevant interpretability work for the model goes here -->
137
+
138
+ [More Information Needed]
139
+
140
+ ## Environmental Impact
141
+
142
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
143
+
144
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
145
+
146
+ - **Hardware Type:** [More Information Needed]
147
+ - **Hours used:** [More Information Needed]
148
+ - **Cloud Provider:** [More Information Needed]
149
+ - **Compute Region:** [More Information Needed]
150
+ - **Carbon Emitted:** [More Information Needed]
151
+
152
+ ## Technical Specifications [optional]
153
+
154
+ ### Model Architecture and Objective
155
+
156
+ [More Information Needed]
157
+
158
+ ### Compute Infrastructure
159
+
160
+ [More Information Needed]
161
+
162
+ #### Hardware
163
+
164
+ [More Information Needed]
165
+
166
+ #### Software
167
+
168
+ [More Information Needed]
169
+
170
+ ## Citation [optional]
171
+
172
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
173
+
174
+ **BibTeX:**
175
+
176
+ [More Information Needed]
177
+
178
+ **APA:**
179
+
180
+ [More Information Needed]
181
+
182
+ ## Glossary [optional]
183
+
184
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
185
+
186
+ [More Information Needed]
187
+
188
+ ## More Information [optional]
189
+
190
+ [More Information Needed]
191
+
192
+ ## Model Card Authors [optional]
193
+
194
+ [More Information Needed]
195
+
196
+ ## Model Card Contact
197
+
198
+ [More Information Needed]
199
+
200
+
201
+ ## Training procedure
202
+
203
+
204
+ The following `bitsandbytes` quantization config was used during training:
205
+ - quant_method: bitsandbytes
206
+ - load_in_8bit: False
207
+ - load_in_4bit: True
208
+ - llm_int8_threshold: 6.0
209
+ - llm_int8_skip_modules: None
210
+ - llm_int8_enable_fp32_cpu_offload: False
211
+ - llm_int8_has_fp16_weight: False
212
+ - bnb_4bit_quant_type: nf4
213
+ - bnb_4bit_use_double_quant: True
214
+ - bnb_4bit_compute_dtype: bfloat16
215
+
216
+ ### Framework versions
217
+
218
+
219
+ - PEFT 0.6.2.dev0
checkpoint-236/adapter_config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "codellama/CodeLlama-7b-hf",
5
+ "bias": "none",
6
+ "fan_in_fan_out": null,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "lora_alpha": 16,
12
+ "lora_dropout": 0.05,
13
+ "modules_to_save": null,
14
+ "peft_type": "LORA",
15
+ "r": 32,
16
+ "rank_pattern": {},
17
+ "revision": null,
18
+ "target_modules": [
19
+ "up_proj",
20
+ "v_proj",
21
+ "o_proj",
22
+ "down_proj",
23
+ "gate_proj",
24
+ "q_proj",
25
+ "k_proj"
26
+ ],
27
+ "task_type": "CAUSAL_LM"
28
+ }
checkpoint-236/adapter_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7473a9433ef773d2635979551a58ea2ed02951345c4fe21fb79e3164a8fb8ff5
3
+ size 319977229
checkpoint-236/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:27b9f600cc360a7a89c801026c462545dc2778523eded60ee3dac70dfda80273
3
+ size 639908165
checkpoint-236/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0651b88029431b15b08d72edfc95c9f78985bf69797d0430716d76d491a6c6e6
3
+ size 14575
checkpoint-236/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3d25880d67522b3e746ffc650a73c9fd823cc40f7a6ecf385dfc3827145853b4
3
+ size 627
checkpoint-236/trainer_state.json ADDED
@@ -0,0 +1,1915 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 2.019438444924406,
5
+ "eval_steps": 4,
6
+ "global_step": 236,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.01,
13
+ "learning_rate": 2.0000000000000003e-06,
14
+ "loss": 0.3477,
15
+ "step": 1
16
+ },
17
+ {
18
+ "epoch": 0.01,
19
+ "eval_loss": 0.4987175166606903,
20
+ "eval_runtime": 3.1166,
21
+ "eval_samples_per_second": 6.417,
22
+ "eval_steps_per_second": 3.209,
23
+ "step": 1
24
+ },
25
+ {
26
+ "epoch": 0.02,
27
+ "learning_rate": 4.000000000000001e-06,
28
+ "loss": 0.3285,
29
+ "step": 2
30
+ },
31
+ {
32
+ "epoch": 0.03,
33
+ "learning_rate": 6e-06,
34
+ "loss": 0.3754,
35
+ "step": 3
36
+ },
37
+ {
38
+ "epoch": 0.03,
39
+ "learning_rate": 8.000000000000001e-06,
40
+ "loss": 0.3143,
41
+ "step": 4
42
+ },
43
+ {
44
+ "epoch": 0.03,
45
+ "eval_loss": 0.4986831247806549,
46
+ "eval_runtime": 3.101,
47
+ "eval_samples_per_second": 6.45,
48
+ "eval_steps_per_second": 3.225,
49
+ "step": 4
50
+ },
51
+ {
52
+ "epoch": 0.04,
53
+ "learning_rate": 1e-05,
54
+ "loss": 0.4661,
55
+ "step": 5
56
+ },
57
+ {
58
+ "epoch": 0.05,
59
+ "learning_rate": 1.2e-05,
60
+ "loss": 0.3726,
61
+ "step": 6
62
+ },
63
+ {
64
+ "epoch": 0.06,
65
+ "learning_rate": 1.4000000000000001e-05,
66
+ "loss": 0.3515,
67
+ "step": 7
68
+ },
69
+ {
70
+ "epoch": 0.07,
71
+ "learning_rate": 1.6000000000000003e-05,
72
+ "loss": 0.2981,
73
+ "step": 8
74
+ },
75
+ {
76
+ "epoch": 0.07,
77
+ "eval_loss": 0.4983077645301819,
78
+ "eval_runtime": 3.1103,
79
+ "eval_samples_per_second": 6.43,
80
+ "eval_steps_per_second": 3.215,
81
+ "step": 8
82
+ },
83
+ {
84
+ "epoch": 0.08,
85
+ "learning_rate": 1.8e-05,
86
+ "loss": 0.5434,
87
+ "step": 9
88
+ },
89
+ {
90
+ "epoch": 0.09,
91
+ "learning_rate": 2e-05,
92
+ "loss": 0.3998,
93
+ "step": 10
94
+ },
95
+ {
96
+ "epoch": 0.1,
97
+ "learning_rate": 2.2000000000000003e-05,
98
+ "loss": 0.31,
99
+ "step": 11
100
+ },
101
+ {
102
+ "epoch": 0.1,
103
+ "learning_rate": 2.4e-05,
104
+ "loss": 0.4314,
105
+ "step": 12
106
+ },
107
+ {
108
+ "epoch": 0.1,
109
+ "eval_loss": 0.497723788022995,
110
+ "eval_runtime": 3.1104,
111
+ "eval_samples_per_second": 6.43,
112
+ "eval_steps_per_second": 3.215,
113
+ "step": 12
114
+ },
115
+ {
116
+ "epoch": 0.11,
117
+ "learning_rate": 2.6000000000000002e-05,
118
+ "loss": 0.3478,
119
+ "step": 13
120
+ },
121
+ {
122
+ "epoch": 0.12,
123
+ "learning_rate": 2.8000000000000003e-05,
124
+ "loss": 0.3663,
125
+ "step": 14
126
+ },
127
+ {
128
+ "epoch": 0.13,
129
+ "learning_rate": 3e-05,
130
+ "loss": 0.3981,
131
+ "step": 15
132
+ },
133
+ {
134
+ "epoch": 0.14,
135
+ "learning_rate": 3.2000000000000005e-05,
136
+ "loss": 0.3959,
137
+ "step": 16
138
+ },
139
+ {
140
+ "epoch": 0.14,
141
+ "eval_loss": 0.49577316641807556,
142
+ "eval_runtime": 3.1093,
143
+ "eval_samples_per_second": 6.432,
144
+ "eval_steps_per_second": 3.216,
145
+ "step": 16
146
+ },
147
+ {
148
+ "epoch": 0.15,
149
+ "learning_rate": 3.4000000000000007e-05,
150
+ "loss": 0.4256,
151
+ "step": 17
152
+ },
153
+ {
154
+ "epoch": 0.16,
155
+ "learning_rate": 3.6e-05,
156
+ "loss": 0.3393,
157
+ "step": 18
158
+ },
159
+ {
160
+ "epoch": 0.16,
161
+ "learning_rate": 3.8e-05,
162
+ "loss": 0.4055,
163
+ "step": 19
164
+ },
165
+ {
166
+ "epoch": 0.17,
167
+ "learning_rate": 4e-05,
168
+ "loss": 0.3353,
169
+ "step": 20
170
+ },
171
+ {
172
+ "epoch": 0.17,
173
+ "eval_loss": 0.4915711581707001,
174
+ "eval_runtime": 3.1139,
175
+ "eval_samples_per_second": 6.423,
176
+ "eval_steps_per_second": 3.211,
177
+ "step": 20
178
+ },
179
+ {
180
+ "epoch": 0.18,
181
+ "learning_rate": 4.2e-05,
182
+ "loss": 0.3431,
183
+ "step": 21
184
+ },
185
+ {
186
+ "epoch": 0.19,
187
+ "learning_rate": 4.4000000000000006e-05,
188
+ "loss": 0.354,
189
+ "step": 22
190
+ },
191
+ {
192
+ "epoch": 0.2,
193
+ "learning_rate": 4.600000000000001e-05,
194
+ "loss": 0.3472,
195
+ "step": 23
196
+ },
197
+ {
198
+ "epoch": 0.21,
199
+ "learning_rate": 4.8e-05,
200
+ "loss": 0.4287,
201
+ "step": 24
202
+ },
203
+ {
204
+ "epoch": 0.21,
205
+ "eval_loss": 0.4811338782310486,
206
+ "eval_runtime": 3.1059,
207
+ "eval_samples_per_second": 6.439,
208
+ "eval_steps_per_second": 3.22,
209
+ "step": 24
210
+ },
211
+ {
212
+ "epoch": 0.22,
213
+ "learning_rate": 5e-05,
214
+ "loss": 0.3663,
215
+ "step": 25
216
+ },
217
+ {
218
+ "epoch": 0.22,
219
+ "learning_rate": 5.2000000000000004e-05,
220
+ "loss": 0.298,
221
+ "step": 26
222
+ },
223
+ {
224
+ "epoch": 0.23,
225
+ "learning_rate": 5.4000000000000005e-05,
226
+ "loss": 0.3649,
227
+ "step": 27
228
+ },
229
+ {
230
+ "epoch": 0.24,
231
+ "learning_rate": 5.6000000000000006e-05,
232
+ "loss": 0.4018,
233
+ "step": 28
234
+ },
235
+ {
236
+ "epoch": 0.24,
237
+ "eval_loss": 0.46300894021987915,
238
+ "eval_runtime": 3.1124,
239
+ "eval_samples_per_second": 6.426,
240
+ "eval_steps_per_second": 3.213,
241
+ "step": 28
242
+ },
243
+ {
244
+ "epoch": 0.25,
245
+ "learning_rate": 5.8e-05,
246
+ "loss": 0.3116,
247
+ "step": 29
248
+ },
249
+ {
250
+ "epoch": 0.26,
251
+ "learning_rate": 6e-05,
252
+ "loss": 0.3147,
253
+ "step": 30
254
+ },
255
+ {
256
+ "epoch": 0.27,
257
+ "learning_rate": 6.2e-05,
258
+ "loss": 0.2776,
259
+ "step": 31
260
+ },
261
+ {
262
+ "epoch": 0.28,
263
+ "learning_rate": 6.400000000000001e-05,
264
+ "loss": 0.3278,
265
+ "step": 32
266
+ },
267
+ {
268
+ "epoch": 0.28,
269
+ "eval_loss": 0.4446893334388733,
270
+ "eval_runtime": 3.1075,
271
+ "eval_samples_per_second": 6.436,
272
+ "eval_steps_per_second": 3.218,
273
+ "step": 32
274
+ },
275
+ {
276
+ "epoch": 0.29,
277
+ "learning_rate": 6.6e-05,
278
+ "loss": 0.2848,
279
+ "step": 33
280
+ },
281
+ {
282
+ "epoch": 0.29,
283
+ "learning_rate": 6.800000000000001e-05,
284
+ "loss": 0.2776,
285
+ "step": 34
286
+ },
287
+ {
288
+ "epoch": 0.3,
289
+ "learning_rate": 7e-05,
290
+ "loss": 0.3078,
291
+ "step": 35
292
+ },
293
+ {
294
+ "epoch": 0.31,
295
+ "learning_rate": 7.2e-05,
296
+ "loss": 0.2566,
297
+ "step": 36
298
+ },
299
+ {
300
+ "epoch": 0.31,
301
+ "eval_loss": 0.4287605881690979,
302
+ "eval_runtime": 3.1063,
303
+ "eval_samples_per_second": 6.438,
304
+ "eval_steps_per_second": 3.219,
305
+ "step": 36
306
+ },
307
+ {
308
+ "epoch": 0.32,
309
+ "learning_rate": 7.4e-05,
310
+ "loss": 0.2715,
311
+ "step": 37
312
+ },
313
+ {
314
+ "epoch": 0.33,
315
+ "learning_rate": 7.6e-05,
316
+ "loss": 0.3393,
317
+ "step": 38
318
+ },
319
+ {
320
+ "epoch": 0.34,
321
+ "learning_rate": 7.800000000000001e-05,
322
+ "loss": 0.2669,
323
+ "step": 39
324
+ },
325
+ {
326
+ "epoch": 0.35,
327
+ "learning_rate": 8e-05,
328
+ "loss": 0.3797,
329
+ "step": 40
330
+ },
331
+ {
332
+ "epoch": 0.35,
333
+ "eval_loss": 0.4169308543205261,
334
+ "eval_runtime": 3.1074,
335
+ "eval_samples_per_second": 6.436,
336
+ "eval_steps_per_second": 3.218,
337
+ "step": 40
338
+ },
339
+ {
340
+ "epoch": 0.35,
341
+ "learning_rate": 8.2e-05,
342
+ "loss": 0.2702,
343
+ "step": 41
344
+ },
345
+ {
346
+ "epoch": 0.36,
347
+ "learning_rate": 8.4e-05,
348
+ "loss": 0.3824,
349
+ "step": 42
350
+ },
351
+ {
352
+ "epoch": 0.37,
353
+ "learning_rate": 8.6e-05,
354
+ "loss": 0.274,
355
+ "step": 43
356
+ },
357
+ {
358
+ "epoch": 0.38,
359
+ "learning_rate": 8.800000000000001e-05,
360
+ "loss": 0.2966,
361
+ "step": 44
362
+ },
363
+ {
364
+ "epoch": 0.38,
365
+ "eval_loss": 0.41074520349502563,
366
+ "eval_runtime": 3.1076,
367
+ "eval_samples_per_second": 6.436,
368
+ "eval_steps_per_second": 3.218,
369
+ "step": 44
370
+ },
371
+ {
372
+ "epoch": 0.39,
373
+ "learning_rate": 9e-05,
374
+ "loss": 0.485,
375
+ "step": 45
376
+ },
377
+ {
378
+ "epoch": 0.4,
379
+ "learning_rate": 9.200000000000001e-05,
380
+ "loss": 0.2395,
381
+ "step": 46
382
+ },
383
+ {
384
+ "epoch": 0.41,
385
+ "learning_rate": 9.4e-05,
386
+ "loss": 0.3023,
387
+ "step": 47
388
+ },
389
+ {
390
+ "epoch": 0.41,
391
+ "learning_rate": 9.6e-05,
392
+ "loss": 0.2676,
393
+ "step": 48
394
+ },
395
+ {
396
+ "epoch": 0.41,
397
+ "eval_loss": 0.4023456573486328,
398
+ "eval_runtime": 3.1109,
399
+ "eval_samples_per_second": 6.429,
400
+ "eval_steps_per_second": 3.215,
401
+ "step": 48
402
+ },
403
+ {
404
+ "epoch": 0.42,
405
+ "learning_rate": 9.8e-05,
406
+ "loss": 0.2378,
407
+ "step": 49
408
+ },
409
+ {
410
+ "epoch": 0.43,
411
+ "learning_rate": 0.0001,
412
+ "loss": 0.2607,
413
+ "step": 50
414
+ },
415
+ {
416
+ "epoch": 0.44,
417
+ "learning_rate": 0.00010200000000000001,
418
+ "loss": 0.4538,
419
+ "step": 51
420
+ },
421
+ {
422
+ "epoch": 0.45,
423
+ "learning_rate": 0.00010400000000000001,
424
+ "loss": 0.2456,
425
+ "step": 52
426
+ },
427
+ {
428
+ "epoch": 0.45,
429
+ "eval_loss": 0.3957594335079193,
430
+ "eval_runtime": 3.1123,
431
+ "eval_samples_per_second": 6.426,
432
+ "eval_steps_per_second": 3.213,
433
+ "step": 52
434
+ },
435
+ {
436
+ "epoch": 0.46,
437
+ "learning_rate": 0.00010600000000000002,
438
+ "loss": 0.3435,
439
+ "step": 53
440
+ },
441
+ {
442
+ "epoch": 0.47,
443
+ "learning_rate": 0.00010800000000000001,
444
+ "loss": 0.3035,
445
+ "step": 54
446
+ },
447
+ {
448
+ "epoch": 0.48,
449
+ "learning_rate": 0.00011000000000000002,
450
+ "loss": 0.3564,
451
+ "step": 55
452
+ },
453
+ {
454
+ "epoch": 0.48,
455
+ "learning_rate": 0.00011200000000000001,
456
+ "loss": 0.3267,
457
+ "step": 56
458
+ },
459
+ {
460
+ "epoch": 0.48,
461
+ "eval_loss": 0.39143189787864685,
462
+ "eval_runtime": 3.1134,
463
+ "eval_samples_per_second": 6.424,
464
+ "eval_steps_per_second": 3.212,
465
+ "step": 56
466
+ },
467
+ {
468
+ "epoch": 0.49,
469
+ "learning_rate": 0.00011399999999999999,
470
+ "loss": 0.2641,
471
+ "step": 57
472
+ },
473
+ {
474
+ "epoch": 0.5,
475
+ "learning_rate": 0.000116,
476
+ "loss": 0.2805,
477
+ "step": 58
478
+ },
479
+ {
480
+ "epoch": 0.51,
481
+ "learning_rate": 0.000118,
482
+ "loss": 0.2784,
483
+ "step": 59
484
+ },
485
+ {
486
+ "epoch": 0.52,
487
+ "learning_rate": 0.00012,
488
+ "loss": 0.2901,
489
+ "step": 60
490
+ },
491
+ {
492
+ "epoch": 0.52,
493
+ "eval_loss": 0.38809266686439514,
494
+ "eval_runtime": 3.1079,
495
+ "eval_samples_per_second": 6.435,
496
+ "eval_steps_per_second": 3.218,
497
+ "step": 60
498
+ },
499
+ {
500
+ "epoch": 0.53,
501
+ "learning_rate": 0.000122,
502
+ "loss": 0.3039,
503
+ "step": 61
504
+ },
505
+ {
506
+ "epoch": 0.54,
507
+ "learning_rate": 0.000124,
508
+ "loss": 0.2035,
509
+ "step": 62
510
+ },
511
+ {
512
+ "epoch": 0.54,
513
+ "learning_rate": 0.000126,
514
+ "loss": 0.326,
515
+ "step": 63
516
+ },
517
+ {
518
+ "epoch": 0.55,
519
+ "learning_rate": 0.00012800000000000002,
520
+ "loss": 0.1843,
521
+ "step": 64
522
+ },
523
+ {
524
+ "epoch": 0.55,
525
+ "eval_loss": 0.3881237506866455,
526
+ "eval_runtime": 3.1107,
527
+ "eval_samples_per_second": 6.429,
528
+ "eval_steps_per_second": 3.215,
529
+ "step": 64
530
+ },
531
+ {
532
+ "epoch": 0.56,
533
+ "learning_rate": 0.00013000000000000002,
534
+ "loss": 0.296,
535
+ "step": 65
536
+ },
537
+ {
538
+ "epoch": 0.57,
539
+ "learning_rate": 0.000132,
540
+ "loss": 0.2766,
541
+ "step": 66
542
+ },
543
+ {
544
+ "epoch": 0.58,
545
+ "learning_rate": 0.000134,
546
+ "loss": 0.304,
547
+ "step": 67
548
+ },
549
+ {
550
+ "epoch": 0.59,
551
+ "learning_rate": 0.00013600000000000003,
552
+ "loss": 0.2585,
553
+ "step": 68
554
+ },
555
+ {
556
+ "epoch": 0.59,
557
+ "eval_loss": 0.3869483470916748,
558
+ "eval_runtime": 3.1091,
559
+ "eval_samples_per_second": 6.433,
560
+ "eval_steps_per_second": 3.216,
561
+ "step": 68
562
+ },
563
+ {
564
+ "epoch": 0.6,
565
+ "learning_rate": 0.000138,
566
+ "loss": 0.2639,
567
+ "step": 69
568
+ },
569
+ {
570
+ "epoch": 0.6,
571
+ "learning_rate": 0.00014,
572
+ "loss": 0.3013,
573
+ "step": 70
574
+ },
575
+ {
576
+ "epoch": 0.61,
577
+ "learning_rate": 0.000142,
578
+ "loss": 0.4263,
579
+ "step": 71
580
+ },
581
+ {
582
+ "epoch": 0.62,
583
+ "learning_rate": 0.000144,
584
+ "loss": 0.3108,
585
+ "step": 72
586
+ },
587
+ {
588
+ "epoch": 0.62,
589
+ "eval_loss": 0.3839200437068939,
590
+ "eval_runtime": 3.1098,
591
+ "eval_samples_per_second": 6.431,
592
+ "eval_steps_per_second": 3.216,
593
+ "step": 72
594
+ },
595
+ {
596
+ "epoch": 0.63,
597
+ "learning_rate": 0.000146,
598
+ "loss": 0.4283,
599
+ "step": 73
600
+ },
601
+ {
602
+ "epoch": 0.64,
603
+ "learning_rate": 0.000148,
604
+ "loss": 0.2582,
605
+ "step": 74
606
+ },
607
+ {
608
+ "epoch": 0.65,
609
+ "learning_rate": 0.00015000000000000001,
610
+ "loss": 0.2703,
611
+ "step": 75
612
+ },
613
+ {
614
+ "epoch": 0.66,
615
+ "learning_rate": 0.000152,
616
+ "loss": 0.3799,
617
+ "step": 76
618
+ },
619
+ {
620
+ "epoch": 0.66,
621
+ "eval_loss": 0.3816559314727783,
622
+ "eval_runtime": 3.1096,
623
+ "eval_samples_per_second": 6.432,
624
+ "eval_steps_per_second": 3.216,
625
+ "step": 76
626
+ },
627
+ {
628
+ "epoch": 0.67,
629
+ "learning_rate": 0.000154,
630
+ "loss": 0.252,
631
+ "step": 77
632
+ },
633
+ {
634
+ "epoch": 0.67,
635
+ "learning_rate": 0.00015600000000000002,
636
+ "loss": 0.3297,
637
+ "step": 78
638
+ },
639
+ {
640
+ "epoch": 0.68,
641
+ "learning_rate": 0.00015800000000000002,
642
+ "loss": 0.2607,
643
+ "step": 79
644
+ },
645
+ {
646
+ "epoch": 0.69,
647
+ "learning_rate": 0.00016,
648
+ "loss": 0.2064,
649
+ "step": 80
650
+ },
651
+ {
652
+ "epoch": 0.69,
653
+ "eval_loss": 0.37915611267089844,
654
+ "eval_runtime": 3.1123,
655
+ "eval_samples_per_second": 6.426,
656
+ "eval_steps_per_second": 3.213,
657
+ "step": 80
658
+ },
659
+ {
660
+ "epoch": 0.7,
661
+ "learning_rate": 0.000162,
662
+ "loss": 0.3341,
663
+ "step": 81
664
+ },
665
+ {
666
+ "epoch": 0.71,
667
+ "learning_rate": 0.000164,
668
+ "loss": 0.3159,
669
+ "step": 82
670
+ },
671
+ {
672
+ "epoch": 0.72,
673
+ "learning_rate": 0.000166,
674
+ "loss": 0.2457,
675
+ "step": 83
676
+ },
677
+ {
678
+ "epoch": 0.73,
679
+ "learning_rate": 0.000168,
680
+ "loss": 0.3176,
681
+ "step": 84
682
+ },
683
+ {
684
+ "epoch": 0.73,
685
+ "eval_loss": 0.3792770504951477,
686
+ "eval_runtime": 3.13,
687
+ "eval_samples_per_second": 6.39,
688
+ "eval_steps_per_second": 3.195,
689
+ "step": 84
690
+ },
691
+ {
692
+ "epoch": 0.73,
693
+ "learning_rate": 0.00017,
694
+ "loss": 0.3043,
695
+ "step": 85
696
+ },
697
+ {
698
+ "epoch": 0.74,
699
+ "learning_rate": 0.000172,
700
+ "loss": 0.2346,
701
+ "step": 86
702
+ },
703
+ {
704
+ "epoch": 0.75,
705
+ "learning_rate": 0.000174,
706
+ "loss": 0.2872,
707
+ "step": 87
708
+ },
709
+ {
710
+ "epoch": 0.76,
711
+ "learning_rate": 0.00017600000000000002,
712
+ "loss": 0.2307,
713
+ "step": 88
714
+ },
715
+ {
716
+ "epoch": 0.76,
717
+ "eval_loss": 0.3768787384033203,
718
+ "eval_runtime": 3.1088,
719
+ "eval_samples_per_second": 6.433,
720
+ "eval_steps_per_second": 3.217,
721
+ "step": 88
722
+ },
723
+ {
724
+ "epoch": 0.77,
725
+ "learning_rate": 0.00017800000000000002,
726
+ "loss": 0.2661,
727
+ "step": 89
728
+ },
729
+ {
730
+ "epoch": 0.78,
731
+ "learning_rate": 0.00018,
732
+ "loss": 0.3068,
733
+ "step": 90
734
+ },
735
+ {
736
+ "epoch": 0.79,
737
+ "learning_rate": 0.000182,
738
+ "loss": 0.2866,
739
+ "step": 91
740
+ },
741
+ {
742
+ "epoch": 0.79,
743
+ "learning_rate": 0.00018400000000000003,
744
+ "loss": 0.2826,
745
+ "step": 92
746
+ },
747
+ {
748
+ "epoch": 0.79,
749
+ "eval_loss": 0.3746011555194855,
750
+ "eval_runtime": 3.1104,
751
+ "eval_samples_per_second": 6.43,
752
+ "eval_steps_per_second": 3.215,
753
+ "step": 92
754
+ },
755
+ {
756
+ "epoch": 0.8,
757
+ "learning_rate": 0.00018600000000000002,
758
+ "loss": 0.4888,
759
+ "step": 93
760
+ },
761
+ {
762
+ "epoch": 0.81,
763
+ "learning_rate": 0.000188,
764
+ "loss": 0.1667,
765
+ "step": 94
766
+ },
767
+ {
768
+ "epoch": 0.82,
769
+ "learning_rate": 0.00019,
770
+ "loss": 0.2683,
771
+ "step": 95
772
+ },
773
+ {
774
+ "epoch": 0.83,
775
+ "learning_rate": 0.000192,
776
+ "loss": 0.2718,
777
+ "step": 96
778
+ },
779
+ {
780
+ "epoch": 0.83,
781
+ "eval_loss": 0.373685747385025,
782
+ "eval_runtime": 3.1134,
783
+ "eval_samples_per_second": 6.424,
784
+ "eval_steps_per_second": 3.212,
785
+ "step": 96
786
+ },
787
+ {
788
+ "epoch": 0.84,
789
+ "learning_rate": 0.000194,
790
+ "loss": 0.2193,
791
+ "step": 97
792
+ },
793
+ {
794
+ "epoch": 0.85,
795
+ "learning_rate": 0.000196,
796
+ "loss": 0.378,
797
+ "step": 98
798
+ },
799
+ {
800
+ "epoch": 0.86,
801
+ "learning_rate": 0.00019800000000000002,
802
+ "loss": 0.2917,
803
+ "step": 99
804
+ },
805
+ {
806
+ "epoch": 0.86,
807
+ "learning_rate": 0.0002,
808
+ "loss": 0.2945,
809
+ "step": 100
810
+ },
811
+ {
812
+ "epoch": 0.86,
813
+ "eval_loss": 0.3727183938026428,
814
+ "eval_runtime": 3.1085,
815
+ "eval_samples_per_second": 6.434,
816
+ "eval_steps_per_second": 3.217,
817
+ "step": 100
818
+ },
819
+ {
820
+ "epoch": 0.87,
821
+ "learning_rate": 0.00019999177886783194,
822
+ "loss": 0.2355,
823
+ "step": 101
824
+ },
825
+ {
826
+ "epoch": 0.88,
827
+ "learning_rate": 0.000199967116823068,
828
+ "loss": 0.2656,
829
+ "step": 102
830
+ },
831
+ {
832
+ "epoch": 0.89,
833
+ "learning_rate": 0.00019992601792070679,
834
+ "loss": 0.2803,
835
+ "step": 103
836
+ },
837
+ {
838
+ "epoch": 0.9,
839
+ "learning_rate": 0.00019986848891833845,
840
+ "loss": 0.2313,
841
+ "step": 104
842
+ },
843
+ {
844
+ "epoch": 0.9,
845
+ "eval_loss": 0.371459424495697,
846
+ "eval_runtime": 3.1114,
847
+ "eval_samples_per_second": 6.428,
848
+ "eval_steps_per_second": 3.214,
849
+ "step": 104
850
+ },
851
+ {
852
+ "epoch": 0.91,
853
+ "learning_rate": 0.00019979453927503364,
854
+ "loss": 0.2983,
855
+ "step": 105
856
+ },
857
+ {
858
+ "epoch": 0.92,
859
+ "learning_rate": 0.0001997041811497882,
860
+ "loss": 0.2547,
861
+ "step": 106
862
+ },
863
+ {
864
+ "epoch": 0.92,
865
+ "learning_rate": 0.00019959742939952392,
866
+ "loss": 0.2463,
867
+ "step": 107
868
+ },
869
+ {
870
+ "epoch": 0.93,
871
+ "learning_rate": 0.00019947430157664576,
872
+ "loss": 0.2519,
873
+ "step": 108
874
+ },
875
+ {
876
+ "epoch": 0.93,
877
+ "eval_loss": 0.37180376052856445,
878
+ "eval_runtime": 3.1113,
879
+ "eval_samples_per_second": 6.428,
880
+ "eval_steps_per_second": 3.214,
881
+ "step": 108
882
+ },
883
+ {
884
+ "epoch": 0.94,
885
+ "learning_rate": 0.00019933481792615583,
886
+ "loss": 0.2032,
887
+ "step": 109
888
+ },
889
+ {
890
+ "epoch": 0.95,
891
+ "learning_rate": 0.0001991790013823246,
892
+ "loss": 0.2868,
893
+ "step": 110
894
+ },
895
+ {
896
+ "epoch": 0.96,
897
+ "learning_rate": 0.0001990068775649202,
898
+ "loss": 0.2653,
899
+ "step": 111
900
+ },
901
+ {
902
+ "epoch": 0.97,
903
+ "learning_rate": 0.00019881847477499557,
904
+ "loss": 0.2468,
905
+ "step": 112
906
+ },
907
+ {
908
+ "epoch": 0.97,
909
+ "eval_loss": 0.37166160345077515,
910
+ "eval_runtime": 3.1194,
911
+ "eval_samples_per_second": 6.412,
912
+ "eval_steps_per_second": 3.206,
913
+ "step": 112
914
+ },
915
+ {
916
+ "epoch": 0.98,
917
+ "learning_rate": 0.0001986138239902355,
918
+ "loss": 0.3997,
919
+ "step": 113
920
+ },
921
+ {
922
+ "epoch": 0.98,
923
+ "learning_rate": 0.00019839295885986296,
924
+ "loss": 0.172,
925
+ "step": 114
926
+ },
927
+ {
928
+ "epoch": 0.99,
929
+ "learning_rate": 0.00019815591569910654,
930
+ "loss": 0.2713,
931
+ "step": 115
932
+ },
933
+ {
934
+ "epoch": 1.0,
935
+ "learning_rate": 0.0001979027334832293,
936
+ "loss": 0.2034,
937
+ "step": 116
938
+ },
939
+ {
940
+ "epoch": 1.0,
941
+ "eval_loss": 0.37163203954696655,
942
+ "eval_runtime": 3.1126,
943
+ "eval_samples_per_second": 6.425,
944
+ "eval_steps_per_second": 3.213,
945
+ "step": 116
946
+ },
947
+ {
948
+ "epoch": 1.01,
949
+ "learning_rate": 0.00019763345384112043,
950
+ "loss": 0.1824,
951
+ "step": 117
952
+ },
953
+ {
954
+ "epoch": 1.02,
955
+ "learning_rate": 0.00019734812104845047,
956
+ "loss": 0.3669,
957
+ "step": 118
958
+ },
959
+ {
960
+ "epoch": 1.01,
961
+ "learning_rate": 0.0001970467820203915,
962
+ "loss": 0.229,
963
+ "step": 119
964
+ },
965
+ {
966
+ "epoch": 1.02,
967
+ "learning_rate": 0.00019672948630390294,
968
+ "loss": 0.2639,
969
+ "step": 120
970
+ },
971
+ {
972
+ "epoch": 1.02,
973
+ "eval_loss": 0.3714464008808136,
974
+ "eval_runtime": 3.1072,
975
+ "eval_samples_per_second": 6.437,
976
+ "eval_steps_per_second": 3.218,
977
+ "step": 120
978
+ },
979
+ {
980
+ "epoch": 1.03,
981
+ "learning_rate": 0.00019639628606958533,
982
+ "loss": 0.1806,
983
+ "step": 121
984
+ },
985
+ {
986
+ "epoch": 1.03,
987
+ "learning_rate": 0.00019604723610310194,
988
+ "loss": 0.2209,
989
+ "step": 122
990
+ },
991
+ {
992
+ "epoch": 1.04,
993
+ "learning_rate": 0.00019568239379617088,
994
+ "loss": 0.2566,
995
+ "step": 123
996
+ },
997
+ {
998
+ "epoch": 1.05,
999
+ "learning_rate": 0.00019530181913712872,
1000
+ "loss": 0.2472,
1001
+ "step": 124
1002
+ },
1003
+ {
1004
+ "epoch": 1.05,
1005
+ "eval_loss": 0.3729495108127594,
1006
+ "eval_runtime": 3.1102,
1007
+ "eval_samples_per_second": 6.43,
1008
+ "eval_steps_per_second": 3.215,
1009
+ "step": 124
1010
+ },
1011
+ {
1012
+ "epoch": 1.06,
1013
+ "learning_rate": 0.00019490557470106686,
1014
+ "loss": 0.2303,
1015
+ "step": 125
1016
+ },
1017
+ {
1018
+ "epoch": 1.07,
1019
+ "learning_rate": 0.00019449372563954293,
1020
+ "loss": 0.2203,
1021
+ "step": 126
1022
+ },
1023
+ {
1024
+ "epoch": 1.08,
1025
+ "learning_rate": 0.00019406633966986828,
1026
+ "loss": 0.2226,
1027
+ "step": 127
1028
+ },
1029
+ {
1030
+ "epoch": 1.09,
1031
+ "learning_rate": 0.00019362348706397373,
1032
+ "loss": 0.1987,
1033
+ "step": 128
1034
+ },
1035
+ {
1036
+ "epoch": 1.09,
1037
+ "eval_loss": 0.36887192726135254,
1038
+ "eval_runtime": 3.1178,
1039
+ "eval_samples_per_second": 6.415,
1040
+ "eval_steps_per_second": 3.207,
1041
+ "step": 128
1042
+ },
1043
+ {
1044
+ "epoch": 1.1,
1045
+ "learning_rate": 0.0001931652406368554,
1046
+ "loss": 0.1859,
1047
+ "step": 129
1048
+ },
1049
+ {
1050
+ "epoch": 1.1,
1051
+ "learning_rate": 0.0001926916757346022,
1052
+ "loss": 0.2408,
1053
+ "step": 130
1054
+ },
1055
+ {
1056
+ "epoch": 1.11,
1057
+ "learning_rate": 0.00019220287022200707,
1058
+ "loss": 0.2724,
1059
+ "step": 131
1060
+ },
1061
+ {
1062
+ "epoch": 1.12,
1063
+ "learning_rate": 0.00019169890446976454,
1064
+ "loss": 0.2296,
1065
+ "step": 132
1066
+ },
1067
+ {
1068
+ "epoch": 1.12,
1069
+ "eval_loss": 0.3678927719593048,
1070
+ "eval_runtime": 3.1086,
1071
+ "eval_samples_per_second": 6.434,
1072
+ "eval_steps_per_second": 3.217,
1073
+ "step": 132
1074
+ },
1075
+ {
1076
+ "epoch": 1.13,
1077
+ "learning_rate": 0.0001911798613412557,
1078
+ "loss": 0.2069,
1079
+ "step": 133
1080
+ },
1081
+ {
1082
+ "epoch": 1.14,
1083
+ "learning_rate": 0.0001906458261789238,
1084
+ "loss": 0.2973,
1085
+ "step": 134
1086
+ },
1087
+ {
1088
+ "epoch": 1.15,
1089
+ "learning_rate": 0.0001900968867902419,
1090
+ "loss": 0.2468,
1091
+ "step": 135
1092
+ },
1093
+ {
1094
+ "epoch": 1.16,
1095
+ "learning_rate": 0.0001895331334332753,
1096
+ "loss": 0.1542,
1097
+ "step": 136
1098
+ },
1099
+ {
1100
+ "epoch": 1.16,
1101
+ "eval_loss": 0.3685668408870697,
1102
+ "eval_runtime": 3.1094,
1103
+ "eval_samples_per_second": 6.432,
1104
+ "eval_steps_per_second": 3.216,
1105
+ "step": 136
1106
+ },
1107
+ {
1108
+ "epoch": 1.16,
1109
+ "learning_rate": 0.0001889546588018412,
1110
+ "loss": 0.2935,
1111
+ "step": 137
1112
+ },
1113
+ {
1114
+ "epoch": 1.17,
1115
+ "learning_rate": 0.00018836155801026753,
1116
+ "loss": 0.2493,
1117
+ "step": 138
1118
+ },
1119
+ {
1120
+ "epoch": 1.18,
1121
+ "learning_rate": 0.00018775392857775432,
1122
+ "loss": 0.1597,
1123
+ "step": 139
1124
+ },
1125
+ {
1126
+ "epoch": 1.19,
1127
+ "learning_rate": 0.00018713187041233896,
1128
+ "loss": 0.1949,
1129
+ "step": 140
1130
+ },
1131
+ {
1132
+ "epoch": 1.19,
1133
+ "eval_loss": 0.3697265684604645,
1134
+ "eval_runtime": 3.1097,
1135
+ "eval_samples_per_second": 6.431,
1136
+ "eval_steps_per_second": 3.216,
1137
+ "step": 140
1138
+ },
1139
+ {
1140
+ "epoch": 1.2,
1141
+ "learning_rate": 0.00018649548579446936,
1142
+ "loss": 0.2434,
1143
+ "step": 141
1144
+ },
1145
+ {
1146
+ "epoch": 1.21,
1147
+ "learning_rate": 0.00018584487936018661,
1148
+ "loss": 0.2348,
1149
+ "step": 142
1150
+ },
1151
+ {
1152
+ "epoch": 1.22,
1153
+ "learning_rate": 0.00018518015808392045,
1154
+ "loss": 0.2946,
1155
+ "step": 143
1156
+ },
1157
+ {
1158
+ "epoch": 1.22,
1159
+ "learning_rate": 0.00018450143126090015,
1160
+ "loss": 0.2239,
1161
+ "step": 144
1162
+ },
1163
+ {
1164
+ "epoch": 1.22,
1165
+ "eval_loss": 0.36812636256217957,
1166
+ "eval_runtime": 3.1112,
1167
+ "eval_samples_per_second": 6.428,
1168
+ "eval_steps_per_second": 3.214,
1169
+ "step": 144
1170
+ },
1171
+ {
1172
+ "epoch": 1.23,
1173
+ "learning_rate": 0.00018380881048918405,
1174
+ "loss": 0.1824,
1175
+ "step": 145
1176
+ },
1177
+ {
1178
+ "epoch": 1.24,
1179
+ "learning_rate": 0.00018310240965131041,
1180
+ "loss": 0.302,
1181
+ "step": 146
1182
+ },
1183
+ {
1184
+ "epoch": 1.25,
1185
+ "learning_rate": 0.00018238234489557215,
1186
+ "loss": 0.3452,
1187
+ "step": 147
1188
+ },
1189
+ {
1190
+ "epoch": 1.26,
1191
+ "learning_rate": 0.00018164873461691986,
1192
+ "loss": 0.1943,
1193
+ "step": 148
1194
+ },
1195
+ {
1196
+ "epoch": 1.26,
1197
+ "eval_loss": 0.3690447211265564,
1198
+ "eval_runtime": 3.111,
1199
+ "eval_samples_per_second": 6.429,
1200
+ "eval_steps_per_second": 3.214,
1201
+ "step": 148
1202
+ },
1203
+ {
1204
+ "epoch": 1.27,
1205
+ "learning_rate": 0.00018090169943749476,
1206
+ "loss": 0.2775,
1207
+ "step": 149
1208
+ },
1209
+ {
1210
+ "epoch": 1.28,
1211
+ "learning_rate": 0.00018014136218679567,
1212
+ "loss": 0.3347,
1213
+ "step": 150
1214
+ },
1215
+ {
1216
+ "epoch": 1.29,
1217
+ "learning_rate": 0.00017936784788148328,
1218
+ "loss": 0.337,
1219
+ "step": 151
1220
+ },
1221
+ {
1222
+ "epoch": 1.29,
1223
+ "learning_rate": 0.00017858128370482426,
1224
+ "loss": 0.1487,
1225
+ "step": 152
1226
+ },
1227
+ {
1228
+ "epoch": 1.29,
1229
+ "eval_loss": 0.3705955445766449,
1230
+ "eval_runtime": 3.1102,
1231
+ "eval_samples_per_second": 6.431,
1232
+ "eval_steps_per_second": 3.215,
1233
+ "step": 152
1234
+ },
1235
+ {
1236
+ "epoch": 1.3,
1237
+ "learning_rate": 0.00017778179898577973,
1238
+ "loss": 0.2416,
1239
+ "step": 153
1240
+ },
1241
+ {
1242
+ "epoch": 1.31,
1243
+ "learning_rate": 0.00017696952517774062,
1244
+ "loss": 0.2265,
1245
+ "step": 154
1246
+ },
1247
+ {
1248
+ "epoch": 1.32,
1249
+ "learning_rate": 0.00017614459583691346,
1250
+ "loss": 0.2106,
1251
+ "step": 155
1252
+ },
1253
+ {
1254
+ "epoch": 1.33,
1255
+ "learning_rate": 0.00017530714660036112,
1256
+ "loss": 0.2873,
1257
+ "step": 156
1258
+ },
1259
+ {
1260
+ "epoch": 1.33,
1261
+ "eval_loss": 0.37079566717147827,
1262
+ "eval_runtime": 3.1213,
1263
+ "eval_samples_per_second": 6.408,
1264
+ "eval_steps_per_second": 3.204,
1265
+ "step": 156
1266
+ },
1267
+ {
1268
+ "epoch": 1.34,
1269
+ "learning_rate": 0.0001744573151637007,
1270
+ "loss": 0.2134,
1271
+ "step": 157
1272
+ },
1273
+ {
1274
+ "epoch": 1.35,
1275
+ "learning_rate": 0.0001735952412584635,
1276
+ "loss": 0.3883,
1277
+ "step": 158
1278
+ },
1279
+ {
1280
+ "epoch": 1.35,
1281
+ "learning_rate": 0.00017272106662911973,
1282
+ "loss": 0.2018,
1283
+ "step": 159
1284
+ },
1285
+ {
1286
+ "epoch": 1.36,
1287
+ "learning_rate": 0.00017183493500977278,
1288
+ "loss": 0.2786,
1289
+ "step": 160
1290
+ },
1291
+ {
1292
+ "epoch": 1.36,
1293
+ "eval_loss": 0.3699425756931305,
1294
+ "eval_runtime": 3.1068,
1295
+ "eval_samples_per_second": 6.438,
1296
+ "eval_steps_per_second": 3.219,
1297
+ "step": 160
1298
+ },
1299
+ {
1300
+ "epoch": 1.37,
1301
+ "learning_rate": 0.0001709369921005258,
1302
+ "loss": 0.2128,
1303
+ "step": 161
1304
+ },
1305
+ {
1306
+ "epoch": 1.38,
1307
+ "learning_rate": 0.00017002738554352552,
1308
+ "loss": 0.2264,
1309
+ "step": 162
1310
+ },
1311
+ {
1312
+ "epoch": 1.39,
1313
+ "learning_rate": 0.00016910626489868649,
1314
+ "loss": 0.3394,
1315
+ "step": 163
1316
+ },
1317
+ {
1318
+ "epoch": 1.4,
1319
+ "learning_rate": 0.00016817378161909996,
1320
+ "loss": 0.2486,
1321
+ "step": 164
1322
+ },
1323
+ {
1324
+ "epoch": 1.4,
1325
+ "eval_loss": 0.3689553737640381,
1326
+ "eval_runtime": 3.111,
1327
+ "eval_samples_per_second": 6.429,
1328
+ "eval_steps_per_second": 3.214,
1329
+ "step": 164
1330
+ },
1331
+ {
1332
+ "epoch": 1.41,
1333
+ "learning_rate": 0.0001672300890261317,
1334
+ "loss": 0.1954,
1335
+ "step": 165
1336
+ },
1337
+ {
1338
+ "epoch": 1.41,
1339
+ "learning_rate": 0.0001662753422842123,
1340
+ "loss": 0.1786,
1341
+ "step": 166
1342
+ },
1343
+ {
1344
+ "epoch": 1.42,
1345
+ "learning_rate": 0.00016530969837532487,
1346
+ "loss": 0.2595,
1347
+ "step": 167
1348
+ },
1349
+ {
1350
+ "epoch": 1.43,
1351
+ "learning_rate": 0.00016433331607319343,
1352
+ "loss": 0.2048,
1353
+ "step": 168
1354
+ },
1355
+ {
1356
+ "epoch": 1.43,
1357
+ "eval_loss": 0.3692178726196289,
1358
+ "eval_runtime": 3.1102,
1359
+ "eval_samples_per_second": 6.43,
1360
+ "eval_steps_per_second": 3.215,
1361
+ "step": 168
1362
+ },
1363
+ {
1364
+ "epoch": 1.44,
1365
+ "learning_rate": 0.00016334635591717703,
1366
+ "loss": 0.1574,
1367
+ "step": 169
1368
+ },
1369
+ {
1370
+ "epoch": 1.45,
1371
+ "learning_rate": 0.00016234898018587337,
1372
+ "loss": 0.2797,
1373
+ "step": 170
1374
+ },
1375
+ {
1376
+ "epoch": 1.46,
1377
+ "learning_rate": 0.00016134135287043669,
1378
+ "loss": 0.2279,
1379
+ "step": 171
1380
+ },
1381
+ {
1382
+ "epoch": 1.47,
1383
+ "learning_rate": 0.00016032363964761363,
1384
+ "loss": 0.1669,
1385
+ "step": 172
1386
+ },
1387
+ {
1388
+ "epoch": 1.47,
1389
+ "eval_loss": 0.3703743815422058,
1390
+ "eval_runtime": 3.1096,
1391
+ "eval_samples_per_second": 6.432,
1392
+ "eval_steps_per_second": 3.216,
1393
+ "step": 172
1394
+ },
1395
+ {
1396
+ "epoch": 1.48,
1397
+ "learning_rate": 0.00015929600785250257,
1398
+ "loss": 0.188,
1399
+ "step": 173
1400
+ },
1401
+ {
1402
+ "epoch": 1.48,
1403
+ "learning_rate": 0.0001582586264510396,
1404
+ "loss": 0.2964,
1405
+ "step": 174
1406
+ },
1407
+ {
1408
+ "epoch": 1.49,
1409
+ "learning_rate": 0.00015721166601221698,
1410
+ "loss": 0.2548,
1411
+ "step": 175
1412
+ },
1413
+ {
1414
+ "epoch": 1.5,
1415
+ "learning_rate": 0.0001561552986800375,
1416
+ "loss": 0.2339,
1417
+ "step": 176
1418
+ },
1419
+ {
1420
+ "epoch": 1.5,
1421
+ "eval_loss": 0.369620144367218,
1422
+ "eval_runtime": 3.1104,
1423
+ "eval_samples_per_second": 6.43,
1424
+ "eval_steps_per_second": 3.215,
1425
+ "step": 176
1426
+ },
1427
+ {
1428
+ "epoch": 1.51,
1429
+ "learning_rate": 0.00015508969814521025,
1430
+ "loss": 0.3109,
1431
+ "step": 177
1432
+ },
1433
+ {
1434
+ "epoch": 1.52,
1435
+ "learning_rate": 0.00015401503961659204,
1436
+ "loss": 0.2787,
1437
+ "step": 178
1438
+ },
1439
+ {
1440
+ "epoch": 1.53,
1441
+ "learning_rate": 0.00015293149979237876,
1442
+ "loss": 0.2867,
1443
+ "step": 179
1444
+ },
1445
+ {
1446
+ "epoch": 1.54,
1447
+ "learning_rate": 0.00015183925683105254,
1448
+ "loss": 0.2676,
1449
+ "step": 180
1450
+ },
1451
+ {
1452
+ "epoch": 1.54,
1453
+ "eval_loss": 0.3678538203239441,
1454
+ "eval_runtime": 3.1087,
1455
+ "eval_samples_per_second": 6.434,
1456
+ "eval_steps_per_second": 3.217,
1457
+ "step": 180
1458
+ },
1459
+ {
1460
+ "epoch": 1.54,
1461
+ "learning_rate": 0.00015073849032208822,
1462
+ "loss": 0.2537,
1463
+ "step": 181
1464
+ },
1465
+ {
1466
+ "epoch": 1.55,
1467
+ "learning_rate": 0.00014962938125642503,
1468
+ "loss": 0.23,
1469
+ "step": 182
1470
+ },
1471
+ {
1472
+ "epoch": 1.56,
1473
+ "learning_rate": 0.00014851211199670721,
1474
+ "loss": 0.1883,
1475
+ "step": 183
1476
+ },
1477
+ {
1478
+ "epoch": 1.57,
1479
+ "learning_rate": 0.00014738686624729986,
1480
+ "loss": 0.2565,
1481
+ "step": 184
1482
+ },
1483
+ {
1484
+ "epoch": 1.57,
1485
+ "eval_loss": 0.36626869440078735,
1486
+ "eval_runtime": 3.109,
1487
+ "eval_samples_per_second": 6.433,
1488
+ "eval_steps_per_second": 3.216,
1489
+ "step": 184
1490
+ },
1491
+ {
1492
+ "epoch": 1.58,
1493
+ "learning_rate": 0.00014625382902408356,
1494
+ "loss": 0.3444,
1495
+ "step": 185
1496
+ },
1497
+ {
1498
+ "epoch": 1.59,
1499
+ "learning_rate": 0.00014511318662403347,
1500
+ "loss": 0.3072,
1501
+ "step": 186
1502
+ },
1503
+ {
1504
+ "epoch": 1.6,
1505
+ "learning_rate": 0.00014396512659458824,
1506
+ "loss": 0.2074,
1507
+ "step": 187
1508
+ },
1509
+ {
1510
+ "epoch": 1.6,
1511
+ "learning_rate": 0.0001428098377028126,
1512
+ "loss": 0.1769,
1513
+ "step": 188
1514
+ },
1515
+ {
1516
+ "epoch": 1.6,
1517
+ "eval_loss": 0.367279052734375,
1518
+ "eval_runtime": 3.11,
1519
+ "eval_samples_per_second": 6.431,
1520
+ "eval_steps_per_second": 3.215,
1521
+ "step": 188
1522
+ },
1523
+ {
1524
+ "epoch": 1.61,
1525
+ "learning_rate": 0.0001416475099043599,
1526
+ "loss": 0.2805,
1527
+ "step": 189
1528
+ },
1529
+ {
1530
+ "epoch": 1.62,
1531
+ "learning_rate": 0.00014047833431223938,
1532
+ "loss": 0.2003,
1533
+ "step": 190
1534
+ },
1535
+ {
1536
+ "epoch": 1.63,
1537
+ "learning_rate": 0.00013930250316539238,
1538
+ "loss": 0.2478,
1539
+ "step": 191
1540
+ },
1541
+ {
1542
+ "epoch": 1.64,
1543
+ "learning_rate": 0.00013812020979708418,
1544
+ "loss": 0.2435,
1545
+ "step": 192
1546
+ },
1547
+ {
1548
+ "epoch": 1.64,
1549
+ "eval_loss": 0.3666362464427948,
1550
+ "eval_runtime": 3.1113,
1551
+ "eval_samples_per_second": 6.428,
1552
+ "eval_steps_per_second": 3.214,
1553
+ "step": 192
1554
+ },
1555
+ {
1556
+ "epoch": 1.65,
1557
+ "learning_rate": 0.00013693164860311565,
1558
+ "loss": 0.2149,
1559
+ "step": 193
1560
+ },
1561
+ {
1562
+ "epoch": 1.66,
1563
+ "learning_rate": 0.0001357370150098601,
1564
+ "loss": 0.1893,
1565
+ "step": 194
1566
+ },
1567
+ {
1568
+ "epoch": 1.67,
1569
+ "learning_rate": 0.00013453650544213076,
1570
+ "loss": 0.2509,
1571
+ "step": 195
1572
+ },
1573
+ {
1574
+ "epoch": 1.67,
1575
+ "learning_rate": 0.00013333031729088419,
1576
+ "loss": 0.2145,
1577
+ "step": 196
1578
+ },
1579
+ {
1580
+ "epoch": 1.67,
1581
+ "eval_loss": 0.36739152669906616,
1582
+ "eval_runtime": 3.1249,
1583
+ "eval_samples_per_second": 6.4,
1584
+ "eval_steps_per_second": 3.2,
1585
+ "step": 196
1586
+ },
1587
+ {
1588
+ "epoch": 1.68,
1589
+ "learning_rate": 0.00013211864888076457,
1590
+ "loss": 0.1946,
1591
+ "step": 197
1592
+ },
1593
+ {
1594
+ "epoch": 1.69,
1595
+ "learning_rate": 0.00013090169943749476,
1596
+ "loss": 0.2008,
1597
+ "step": 198
1598
+ },
1599
+ {
1600
+ "epoch": 1.7,
1601
+ "learning_rate": 0.00012967966905511906,
1602
+ "loss": 0.3234,
1603
+ "step": 199
1604
+ },
1605
+ {
1606
+ "epoch": 1.71,
1607
+ "learning_rate": 0.00012845275866310324,
1608
+ "loss": 0.2082,
1609
+ "step": 200
1610
+ },
1611
+ {
1612
+ "epoch": 1.71,
1613
+ "eval_loss": 0.36528101563453674,
1614
+ "eval_runtime": 3.1155,
1615
+ "eval_samples_per_second": 6.42,
1616
+ "eval_steps_per_second": 3.21,
1617
+ "step": 200
1618
+ },
1619
+ {
1620
+ "epoch": 1.72,
1621
+ "learning_rate": 0.00012722116999329712,
1622
+ "loss": 0.2492,
1623
+ "step": 201
1624
+ },
1625
+ {
1626
+ "epoch": 1.73,
1627
+ "learning_rate": 0.0001259851055467653,
1628
+ "loss": 0.1468,
1629
+ "step": 202
1630
+ },
1631
+ {
1632
+ "epoch": 1.73,
1633
+ "learning_rate": 0.00012474476856049144,
1634
+ "loss": 0.4099,
1635
+ "step": 203
1636
+ },
1637
+ {
1638
+ "epoch": 1.74,
1639
+ "learning_rate": 0.00012350036297396154,
1640
+ "loss": 0.2416,
1641
+ "step": 204
1642
+ },
1643
+ {
1644
+ "epoch": 1.74,
1645
+ "eval_loss": 0.3635335862636566,
1646
+ "eval_runtime": 3.1079,
1647
+ "eval_samples_per_second": 6.435,
1648
+ "eval_steps_per_second": 3.218,
1649
+ "step": 204
1650
+ },
1651
+ {
1652
+ "epoch": 1.75,
1653
+ "learning_rate": 0.00012225209339563145,
1654
+ "loss": 0.2295,
1655
+ "step": 205
1656
+ },
1657
+ {
1658
+ "epoch": 1.76,
1659
+ "learning_rate": 0.00012100016506928493,
1660
+ "loss": 0.2825,
1661
+ "step": 206
1662
+ },
1663
+ {
1664
+ "epoch": 1.77,
1665
+ "learning_rate": 0.00011974478384028672,
1666
+ "loss": 0.303,
1667
+ "step": 207
1668
+ },
1669
+ {
1670
+ "epoch": 1.78,
1671
+ "learning_rate": 0.00011848615612173688,
1672
+ "loss": 0.1884,
1673
+ "step": 208
1674
+ },
1675
+ {
1676
+ "epoch": 1.78,
1677
+ "eval_loss": 0.36344197392463684,
1678
+ "eval_runtime": 3.1145,
1679
+ "eval_samples_per_second": 6.422,
1680
+ "eval_steps_per_second": 3.211,
1681
+ "step": 208
1682
+ },
1683
+ {
1684
+ "epoch": 1.79,
1685
+ "learning_rate": 0.0001172244888605319,
1686
+ "loss": 0.2423,
1687
+ "step": 209
1688
+ },
1689
+ {
1690
+ "epoch": 1.79,
1691
+ "learning_rate": 0.00011595998950333793,
1692
+ "loss": 0.2338,
1693
+ "step": 210
1694
+ },
1695
+ {
1696
+ "epoch": 1.8,
1697
+ "learning_rate": 0.00011469286596248181,
1698
+ "loss": 0.246,
1699
+ "step": 211
1700
+ },
1701
+ {
1702
+ "epoch": 1.81,
1703
+ "learning_rate": 0.00011342332658176555,
1704
+ "loss": 0.275,
1705
+ "step": 212
1706
+ },
1707
+ {
1708
+ "epoch": 1.81,
1709
+ "eval_loss": 0.3634224236011505,
1710
+ "eval_runtime": 3.1116,
1711
+ "eval_samples_per_second": 6.428,
1712
+ "eval_steps_per_second": 3.214,
1713
+ "step": 212
1714
+ },
1715
+ {
1716
+ "epoch": 1.82,
1717
+ "learning_rate": 0.00011215158010221005,
1718
+ "loss": 0.3584,
1719
+ "step": 213
1720
+ },
1721
+ {
1722
+ "epoch": 1.83,
1723
+ "learning_rate": 0.00011087783562773311,
1724
+ "loss": 0.2247,
1725
+ "step": 214
1726
+ },
1727
+ {
1728
+ "epoch": 1.84,
1729
+ "learning_rate": 0.00010960230259076818,
1730
+ "loss": 0.2911,
1731
+ "step": 215
1732
+ },
1733
+ {
1734
+ "epoch": 1.85,
1735
+ "learning_rate": 0.00010832519071782894,
1736
+ "loss": 0.2518,
1737
+ "step": 216
1738
+ },
1739
+ {
1740
+ "epoch": 1.85,
1741
+ "eval_loss": 0.3610054850578308,
1742
+ "eval_runtime": 3.1068,
1743
+ "eval_samples_per_second": 6.437,
1744
+ "eval_steps_per_second": 3.219,
1745
+ "step": 216
1746
+ },
1747
+ {
1748
+ "epoch": 1.86,
1749
+ "learning_rate": 0.0001070467099950254,
1750
+ "loss": 0.2468,
1751
+ "step": 217
1752
+ },
1753
+ {
1754
+ "epoch": 1.86,
1755
+ "learning_rate": 0.00010576707063353746,
1756
+ "loss": 0.1837,
1757
+ "step": 218
1758
+ },
1759
+ {
1760
+ "epoch": 1.87,
1761
+ "learning_rate": 0.00010448648303505151,
1762
+ "loss": 0.355,
1763
+ "step": 219
1764
+ },
1765
+ {
1766
+ "epoch": 1.88,
1767
+ "learning_rate": 0.00010320515775716555,
1768
+ "loss": 0.2462,
1769
+ "step": 220
1770
+ },
1771
+ {
1772
+ "epoch": 1.88,
1773
+ "eval_loss": 0.36076828837394714,
1774
+ "eval_runtime": 3.112,
1775
+ "eval_samples_per_second": 6.427,
1776
+ "eval_steps_per_second": 3.213,
1777
+ "step": 220
1778
+ },
1779
+ {
1780
+ "epoch": 1.89,
1781
+ "learning_rate": 0.00010192330547876871,
1782
+ "loss": 0.289,
1783
+ "step": 221
1784
+ },
1785
+ {
1786
+ "epoch": 1.9,
1787
+ "learning_rate": 0.00010064113696540111,
1788
+ "loss": 0.2711,
1789
+ "step": 222
1790
+ },
1791
+ {
1792
+ "epoch": 1.91,
1793
+ "learning_rate": 9.93588630345989e-05,
1794
+ "loss": 0.1961,
1795
+ "step": 223
1796
+ },
1797
+ {
1798
+ "epoch": 1.92,
1799
+ "learning_rate": 9.80766945212313e-05,
1800
+ "loss": 0.2509,
1801
+ "step": 224
1802
+ },
1803
+ {
1804
+ "epoch": 1.92,
1805
+ "eval_loss": 0.36051902174949646,
1806
+ "eval_runtime": 3.1093,
1807
+ "eval_samples_per_second": 6.432,
1808
+ "eval_steps_per_second": 3.216,
1809
+ "step": 224
1810
+ },
1811
+ {
1812
+ "epoch": 1.92,
1813
+ "learning_rate": 9.679484224283449e-05,
1814
+ "loss": 0.228,
1815
+ "step": 225
1816
+ },
1817
+ {
1818
+ "epoch": 1.93,
1819
+ "learning_rate": 9.551351696494854e-05,
1820
+ "loss": 0.2148,
1821
+ "step": 226
1822
+ },
1823
+ {
1824
+ "epoch": 1.94,
1825
+ "learning_rate": 9.423292936646257e-05,
1826
+ "loss": 0.2076,
1827
+ "step": 227
1828
+ },
1829
+ {
1830
+ "epoch": 1.95,
1831
+ "learning_rate": 9.29532900049746e-05,
1832
+ "loss": 0.2749,
1833
+ "step": 228
1834
+ },
1835
+ {
1836
+ "epoch": 1.95,
1837
+ "eval_loss": 0.3603048324584961,
1838
+ "eval_runtime": 3.1096,
1839
+ "eval_samples_per_second": 6.432,
1840
+ "eval_steps_per_second": 3.216,
1841
+ "step": 228
1842
+ },
1843
+ {
1844
+ "epoch": 1.96,
1845
+ "learning_rate": 9.167480928217108e-05,
1846
+ "loss": 0.21,
1847
+ "step": 229
1848
+ },
1849
+ {
1850
+ "epoch": 1.97,
1851
+ "learning_rate": 9.039769740923183e-05,
1852
+ "loss": 0.2771,
1853
+ "step": 230
1854
+ },
1855
+ {
1856
+ "epoch": 1.98,
1857
+ "learning_rate": 8.912216437226693e-05,
1858
+ "loss": 0.3317,
1859
+ "step": 231
1860
+ },
1861
+ {
1862
+ "epoch": 1.98,
1863
+ "learning_rate": 8.784841989778996e-05,
1864
+ "loss": 0.2162,
1865
+ "step": 232
1866
+ },
1867
+ {
1868
+ "epoch": 1.98,
1869
+ "eval_loss": 0.3595748245716095,
1870
+ "eval_runtime": 3.1118,
1871
+ "eval_samples_per_second": 6.427,
1872
+ "eval_steps_per_second": 3.214,
1873
+ "step": 232
1874
+ },
1875
+ {
1876
+ "epoch": 1.99,
1877
+ "learning_rate": 8.657667341823448e-05,
1878
+ "loss": 0.227,
1879
+ "step": 233
1880
+ },
1881
+ {
1882
+ "epoch": 2.0,
1883
+ "learning_rate": 8.530713403751821e-05,
1884
+ "loss": 0.1645,
1885
+ "step": 234
1886
+ },
1887
+ {
1888
+ "epoch": 2.01,
1889
+ "learning_rate": 8.404001049666211e-05,
1890
+ "loss": 0.2724,
1891
+ "step": 235
1892
+ },
1893
+ {
1894
+ "epoch": 2.02,
1895
+ "learning_rate": 8.277551113946812e-05,
1896
+ "loss": 0.3927,
1897
+ "step": 236
1898
+ },
1899
+ {
1900
+ "epoch": 2.02,
1901
+ "eval_loss": 0.3591071665287018,
1902
+ "eval_runtime": 3.1142,
1903
+ "eval_samples_per_second": 6.422,
1904
+ "eval_steps_per_second": 3.211,
1905
+ "step": 236
1906
+ }
1907
+ ],
1908
+ "logging_steps": 1,
1909
+ "max_steps": 345,
1910
+ "num_train_epochs": 3,
1911
+ "save_steps": 500,
1912
+ "total_flos": 1.199924790778921e+17,
1913
+ "trial_name": null,
1914
+ "trial_params": null
1915
+ }
checkpoint-236/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e119793adec89e061da62a7de24a1a71fb0682ce4c3e3f95d85eab584ad38284
3
+ size 4539
checkpoint-345/README.md ADDED
@@ -0,0 +1,219 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: codellama/CodeLlama-7b-hf
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Shared by [optional]:** [More Information Needed]
22
+ - **Model type:** [More Information Needed]
23
+ - **Language(s) (NLP):** [More Information Needed]
24
+ - **License:** [More Information Needed]
25
+ - **Finetuned from model [optional]:** [More Information Needed]
26
+
27
+ ### Model Sources [optional]
28
+
29
+ <!-- Provide the basic links for the model. -->
30
+
31
+ - **Repository:** [More Information Needed]
32
+ - **Paper [optional]:** [More Information Needed]
33
+ - **Demo [optional]:** [More Information Needed]
34
+
35
+ ## Uses
36
+
37
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
38
+
39
+ ### Direct Use
40
+
41
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
42
+
43
+ [More Information Needed]
44
+
45
+ ### Downstream Use [optional]
46
+
47
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
48
+
49
+ [More Information Needed]
50
+
51
+ ### Out-of-Scope Use
52
+
53
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
54
+
55
+ [More Information Needed]
56
+
57
+ ## Bias, Risks, and Limitations
58
+
59
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
60
+
61
+ [More Information Needed]
62
+
63
+ ### Recommendations
64
+
65
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
66
+
67
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
68
+
69
+ ## How to Get Started with the Model
70
+
71
+ Use the code below to get started with the model.
72
+
73
+ [More Information Needed]
74
+
75
+ ## Training Details
76
+
77
+ ### Training Data
78
+
79
+ <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
80
+
81
+ [More Information Needed]
82
+
83
+ ### Training Procedure
84
+
85
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
86
+
87
+ #### Preprocessing [optional]
88
+
89
+ [More Information Needed]
90
+
91
+
92
+ #### Training Hyperparameters
93
+
94
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
95
+
96
+ #### Speeds, Sizes, Times [optional]
97
+
98
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
99
+
100
+ [More Information Needed]
101
+
102
+ ## Evaluation
103
+
104
+ <!-- This section describes the evaluation protocols and provides the results. -->
105
+
106
+ ### Testing Data, Factors & Metrics
107
+
108
+ #### Testing Data
109
+
110
+ <!-- This should link to a Data Card if possible. -->
111
+
112
+ [More Information Needed]
113
+
114
+ #### Factors
115
+
116
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
117
+
118
+ [More Information Needed]
119
+
120
+ #### Metrics
121
+
122
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
123
+
124
+ [More Information Needed]
125
+
126
+ ### Results
127
+
128
+ [More Information Needed]
129
+
130
+ #### Summary
131
+
132
+
133
+
134
+ ## Model Examination [optional]
135
+
136
+ <!-- Relevant interpretability work for the model goes here -->
137
+
138
+ [More Information Needed]
139
+
140
+ ## Environmental Impact
141
+
142
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
143
+
144
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
145
+
146
+ - **Hardware Type:** [More Information Needed]
147
+ - **Hours used:** [More Information Needed]
148
+ - **Cloud Provider:** [More Information Needed]
149
+ - **Compute Region:** [More Information Needed]
150
+ - **Carbon Emitted:** [More Information Needed]
151
+
152
+ ## Technical Specifications [optional]
153
+
154
+ ### Model Architecture and Objective
155
+
156
+ [More Information Needed]
157
+
158
+ ### Compute Infrastructure
159
+
160
+ [More Information Needed]
161
+
162
+ #### Hardware
163
+
164
+ [More Information Needed]
165
+
166
+ #### Software
167
+
168
+ [More Information Needed]
169
+
170
+ ## Citation [optional]
171
+
172
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
173
+
174
+ **BibTeX:**
175
+
176
+ [More Information Needed]
177
+
178
+ **APA:**
179
+
180
+ [More Information Needed]
181
+
182
+ ## Glossary [optional]
183
+
184
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
185
+
186
+ [More Information Needed]
187
+
188
+ ## More Information [optional]
189
+
190
+ [More Information Needed]
191
+
192
+ ## Model Card Authors [optional]
193
+
194
+ [More Information Needed]
195
+
196
+ ## Model Card Contact
197
+
198
+ [More Information Needed]
199
+
200
+
201
+ ## Training procedure
202
+
203
+
204
+ The following `bitsandbytes` quantization config was used during training:
205
+ - quant_method: bitsandbytes
206
+ - load_in_8bit: False
207
+ - load_in_4bit: True
208
+ - llm_int8_threshold: 6.0
209
+ - llm_int8_skip_modules: None
210
+ - llm_int8_enable_fp32_cpu_offload: False
211
+ - llm_int8_has_fp16_weight: False
212
+ - bnb_4bit_quant_type: nf4
213
+ - bnb_4bit_use_double_quant: True
214
+ - bnb_4bit_compute_dtype: bfloat16
215
+
216
+ ### Framework versions
217
+
218
+
219
+ - PEFT 0.6.2.dev0
checkpoint-345/adapter_config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "codellama/CodeLlama-7b-hf",
5
+ "bias": "none",
6
+ "fan_in_fan_out": null,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "lora_alpha": 16,
12
+ "lora_dropout": 0.05,
13
+ "modules_to_save": null,
14
+ "peft_type": "LORA",
15
+ "r": 32,
16
+ "rank_pattern": {},
17
+ "revision": null,
18
+ "target_modules": [
19
+ "up_proj",
20
+ "v_proj",
21
+ "o_proj",
22
+ "down_proj",
23
+ "gate_proj",
24
+ "q_proj",
25
+ "k_proj"
26
+ ],
27
+ "task_type": "CAUSAL_LM"
28
+ }
checkpoint-345/adapter_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7f401595b47c3b38a3681abb36daa3be453108ba604a56bd931a2c61ff672b99
3
+ size 319977229
checkpoint-345/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c4857539a232e753d3c9a1e26e9b487cef69656ca18421ec02eb38d1a025cf2d
3
+ size 639908613
checkpoint-345/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:86693ef0be553da9731a4034081d897e78baa24a8c7b3b7a91fdd78132c6996f
3
+ size 14575
checkpoint-345/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:183041b5e7ed7fe25be7309cdaff66dc81489ed30d447e4f3ecd9cf6fd87e9ae
3
+ size 627
checkpoint-345/trainer_state.json ADDED
@@ -0,0 +1,2785 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 2.9416846652267816,
5
+ "eval_steps": 4,
6
+ "global_step": 345,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.01,
13
+ "learning_rate": 2.0000000000000003e-06,
14
+ "loss": 0.3477,
15
+ "step": 1
16
+ },
17
+ {
18
+ "epoch": 0.01,
19
+ "eval_loss": 0.4987175166606903,
20
+ "eval_runtime": 3.1166,
21
+ "eval_samples_per_second": 6.417,
22
+ "eval_steps_per_second": 3.209,
23
+ "step": 1
24
+ },
25
+ {
26
+ "epoch": 0.02,
27
+ "learning_rate": 4.000000000000001e-06,
28
+ "loss": 0.3285,
29
+ "step": 2
30
+ },
31
+ {
32
+ "epoch": 0.03,
33
+ "learning_rate": 6e-06,
34
+ "loss": 0.3754,
35
+ "step": 3
36
+ },
37
+ {
38
+ "epoch": 0.03,
39
+ "learning_rate": 8.000000000000001e-06,
40
+ "loss": 0.3143,
41
+ "step": 4
42
+ },
43
+ {
44
+ "epoch": 0.03,
45
+ "eval_loss": 0.4986831247806549,
46
+ "eval_runtime": 3.101,
47
+ "eval_samples_per_second": 6.45,
48
+ "eval_steps_per_second": 3.225,
49
+ "step": 4
50
+ },
51
+ {
52
+ "epoch": 0.04,
53
+ "learning_rate": 1e-05,
54
+ "loss": 0.4661,
55
+ "step": 5
56
+ },
57
+ {
58
+ "epoch": 0.05,
59
+ "learning_rate": 1.2e-05,
60
+ "loss": 0.3726,
61
+ "step": 6
62
+ },
63
+ {
64
+ "epoch": 0.06,
65
+ "learning_rate": 1.4000000000000001e-05,
66
+ "loss": 0.3515,
67
+ "step": 7
68
+ },
69
+ {
70
+ "epoch": 0.07,
71
+ "learning_rate": 1.6000000000000003e-05,
72
+ "loss": 0.2981,
73
+ "step": 8
74
+ },
75
+ {
76
+ "epoch": 0.07,
77
+ "eval_loss": 0.4983077645301819,
78
+ "eval_runtime": 3.1103,
79
+ "eval_samples_per_second": 6.43,
80
+ "eval_steps_per_second": 3.215,
81
+ "step": 8
82
+ },
83
+ {
84
+ "epoch": 0.08,
85
+ "learning_rate": 1.8e-05,
86
+ "loss": 0.5434,
87
+ "step": 9
88
+ },
89
+ {
90
+ "epoch": 0.09,
91
+ "learning_rate": 2e-05,
92
+ "loss": 0.3998,
93
+ "step": 10
94
+ },
95
+ {
96
+ "epoch": 0.1,
97
+ "learning_rate": 2.2000000000000003e-05,
98
+ "loss": 0.31,
99
+ "step": 11
100
+ },
101
+ {
102
+ "epoch": 0.1,
103
+ "learning_rate": 2.4e-05,
104
+ "loss": 0.4314,
105
+ "step": 12
106
+ },
107
+ {
108
+ "epoch": 0.1,
109
+ "eval_loss": 0.497723788022995,
110
+ "eval_runtime": 3.1104,
111
+ "eval_samples_per_second": 6.43,
112
+ "eval_steps_per_second": 3.215,
113
+ "step": 12
114
+ },
115
+ {
116
+ "epoch": 0.11,
117
+ "learning_rate": 2.6000000000000002e-05,
118
+ "loss": 0.3478,
119
+ "step": 13
120
+ },
121
+ {
122
+ "epoch": 0.12,
123
+ "learning_rate": 2.8000000000000003e-05,
124
+ "loss": 0.3663,
125
+ "step": 14
126
+ },
127
+ {
128
+ "epoch": 0.13,
129
+ "learning_rate": 3e-05,
130
+ "loss": 0.3981,
131
+ "step": 15
132
+ },
133
+ {
134
+ "epoch": 0.14,
135
+ "learning_rate": 3.2000000000000005e-05,
136
+ "loss": 0.3959,
137
+ "step": 16
138
+ },
139
+ {
140
+ "epoch": 0.14,
141
+ "eval_loss": 0.49577316641807556,
142
+ "eval_runtime": 3.1093,
143
+ "eval_samples_per_second": 6.432,
144
+ "eval_steps_per_second": 3.216,
145
+ "step": 16
146
+ },
147
+ {
148
+ "epoch": 0.15,
149
+ "learning_rate": 3.4000000000000007e-05,
150
+ "loss": 0.4256,
151
+ "step": 17
152
+ },
153
+ {
154
+ "epoch": 0.16,
155
+ "learning_rate": 3.6e-05,
156
+ "loss": 0.3393,
157
+ "step": 18
158
+ },
159
+ {
160
+ "epoch": 0.16,
161
+ "learning_rate": 3.8e-05,
162
+ "loss": 0.4055,
163
+ "step": 19
164
+ },
165
+ {
166
+ "epoch": 0.17,
167
+ "learning_rate": 4e-05,
168
+ "loss": 0.3353,
169
+ "step": 20
170
+ },
171
+ {
172
+ "epoch": 0.17,
173
+ "eval_loss": 0.4915711581707001,
174
+ "eval_runtime": 3.1139,
175
+ "eval_samples_per_second": 6.423,
176
+ "eval_steps_per_second": 3.211,
177
+ "step": 20
178
+ },
179
+ {
180
+ "epoch": 0.18,
181
+ "learning_rate": 4.2e-05,
182
+ "loss": 0.3431,
183
+ "step": 21
184
+ },
185
+ {
186
+ "epoch": 0.19,
187
+ "learning_rate": 4.4000000000000006e-05,
188
+ "loss": 0.354,
189
+ "step": 22
190
+ },
191
+ {
192
+ "epoch": 0.2,
193
+ "learning_rate": 4.600000000000001e-05,
194
+ "loss": 0.3472,
195
+ "step": 23
196
+ },
197
+ {
198
+ "epoch": 0.21,
199
+ "learning_rate": 4.8e-05,
200
+ "loss": 0.4287,
201
+ "step": 24
202
+ },
203
+ {
204
+ "epoch": 0.21,
205
+ "eval_loss": 0.4811338782310486,
206
+ "eval_runtime": 3.1059,
207
+ "eval_samples_per_second": 6.439,
208
+ "eval_steps_per_second": 3.22,
209
+ "step": 24
210
+ },
211
+ {
212
+ "epoch": 0.22,
213
+ "learning_rate": 5e-05,
214
+ "loss": 0.3663,
215
+ "step": 25
216
+ },
217
+ {
218
+ "epoch": 0.22,
219
+ "learning_rate": 5.2000000000000004e-05,
220
+ "loss": 0.298,
221
+ "step": 26
222
+ },
223
+ {
224
+ "epoch": 0.23,
225
+ "learning_rate": 5.4000000000000005e-05,
226
+ "loss": 0.3649,
227
+ "step": 27
228
+ },
229
+ {
230
+ "epoch": 0.24,
231
+ "learning_rate": 5.6000000000000006e-05,
232
+ "loss": 0.4018,
233
+ "step": 28
234
+ },
235
+ {
236
+ "epoch": 0.24,
237
+ "eval_loss": 0.46300894021987915,
238
+ "eval_runtime": 3.1124,
239
+ "eval_samples_per_second": 6.426,
240
+ "eval_steps_per_second": 3.213,
241
+ "step": 28
242
+ },
243
+ {
244
+ "epoch": 0.25,
245
+ "learning_rate": 5.8e-05,
246
+ "loss": 0.3116,
247
+ "step": 29
248
+ },
249
+ {
250
+ "epoch": 0.26,
251
+ "learning_rate": 6e-05,
252
+ "loss": 0.3147,
253
+ "step": 30
254
+ },
255
+ {
256
+ "epoch": 0.27,
257
+ "learning_rate": 6.2e-05,
258
+ "loss": 0.2776,
259
+ "step": 31
260
+ },
261
+ {
262
+ "epoch": 0.28,
263
+ "learning_rate": 6.400000000000001e-05,
264
+ "loss": 0.3278,
265
+ "step": 32
266
+ },
267
+ {
268
+ "epoch": 0.28,
269
+ "eval_loss": 0.4446893334388733,
270
+ "eval_runtime": 3.1075,
271
+ "eval_samples_per_second": 6.436,
272
+ "eval_steps_per_second": 3.218,
273
+ "step": 32
274
+ },
275
+ {
276
+ "epoch": 0.29,
277
+ "learning_rate": 6.6e-05,
278
+ "loss": 0.2848,
279
+ "step": 33
280
+ },
281
+ {
282
+ "epoch": 0.29,
283
+ "learning_rate": 6.800000000000001e-05,
284
+ "loss": 0.2776,
285
+ "step": 34
286
+ },
287
+ {
288
+ "epoch": 0.3,
289
+ "learning_rate": 7e-05,
290
+ "loss": 0.3078,
291
+ "step": 35
292
+ },
293
+ {
294
+ "epoch": 0.31,
295
+ "learning_rate": 7.2e-05,
296
+ "loss": 0.2566,
297
+ "step": 36
298
+ },
299
+ {
300
+ "epoch": 0.31,
301
+ "eval_loss": 0.4287605881690979,
302
+ "eval_runtime": 3.1063,
303
+ "eval_samples_per_second": 6.438,
304
+ "eval_steps_per_second": 3.219,
305
+ "step": 36
306
+ },
307
+ {
308
+ "epoch": 0.32,
309
+ "learning_rate": 7.4e-05,
310
+ "loss": 0.2715,
311
+ "step": 37
312
+ },
313
+ {
314
+ "epoch": 0.33,
315
+ "learning_rate": 7.6e-05,
316
+ "loss": 0.3393,
317
+ "step": 38
318
+ },
319
+ {
320
+ "epoch": 0.34,
321
+ "learning_rate": 7.800000000000001e-05,
322
+ "loss": 0.2669,
323
+ "step": 39
324
+ },
325
+ {
326
+ "epoch": 0.35,
327
+ "learning_rate": 8e-05,
328
+ "loss": 0.3797,
329
+ "step": 40
330
+ },
331
+ {
332
+ "epoch": 0.35,
333
+ "eval_loss": 0.4169308543205261,
334
+ "eval_runtime": 3.1074,
335
+ "eval_samples_per_second": 6.436,
336
+ "eval_steps_per_second": 3.218,
337
+ "step": 40
338
+ },
339
+ {
340
+ "epoch": 0.35,
341
+ "learning_rate": 8.2e-05,
342
+ "loss": 0.2702,
343
+ "step": 41
344
+ },
345
+ {
346
+ "epoch": 0.36,
347
+ "learning_rate": 8.4e-05,
348
+ "loss": 0.3824,
349
+ "step": 42
350
+ },
351
+ {
352
+ "epoch": 0.37,
353
+ "learning_rate": 8.6e-05,
354
+ "loss": 0.274,
355
+ "step": 43
356
+ },
357
+ {
358
+ "epoch": 0.38,
359
+ "learning_rate": 8.800000000000001e-05,
360
+ "loss": 0.2966,
361
+ "step": 44
362
+ },
363
+ {
364
+ "epoch": 0.38,
365
+ "eval_loss": 0.41074520349502563,
366
+ "eval_runtime": 3.1076,
367
+ "eval_samples_per_second": 6.436,
368
+ "eval_steps_per_second": 3.218,
369
+ "step": 44
370
+ },
371
+ {
372
+ "epoch": 0.39,
373
+ "learning_rate": 9e-05,
374
+ "loss": 0.485,
375
+ "step": 45
376
+ },
377
+ {
378
+ "epoch": 0.4,
379
+ "learning_rate": 9.200000000000001e-05,
380
+ "loss": 0.2395,
381
+ "step": 46
382
+ },
383
+ {
384
+ "epoch": 0.41,
385
+ "learning_rate": 9.4e-05,
386
+ "loss": 0.3023,
387
+ "step": 47
388
+ },
389
+ {
390
+ "epoch": 0.41,
391
+ "learning_rate": 9.6e-05,
392
+ "loss": 0.2676,
393
+ "step": 48
394
+ },
395
+ {
396
+ "epoch": 0.41,
397
+ "eval_loss": 0.4023456573486328,
398
+ "eval_runtime": 3.1109,
399
+ "eval_samples_per_second": 6.429,
400
+ "eval_steps_per_second": 3.215,
401
+ "step": 48
402
+ },
403
+ {
404
+ "epoch": 0.42,
405
+ "learning_rate": 9.8e-05,
406
+ "loss": 0.2378,
407
+ "step": 49
408
+ },
409
+ {
410
+ "epoch": 0.43,
411
+ "learning_rate": 0.0001,
412
+ "loss": 0.2607,
413
+ "step": 50
414
+ },
415
+ {
416
+ "epoch": 0.44,
417
+ "learning_rate": 0.00010200000000000001,
418
+ "loss": 0.4538,
419
+ "step": 51
420
+ },
421
+ {
422
+ "epoch": 0.45,
423
+ "learning_rate": 0.00010400000000000001,
424
+ "loss": 0.2456,
425
+ "step": 52
426
+ },
427
+ {
428
+ "epoch": 0.45,
429
+ "eval_loss": 0.3957594335079193,
430
+ "eval_runtime": 3.1123,
431
+ "eval_samples_per_second": 6.426,
432
+ "eval_steps_per_second": 3.213,
433
+ "step": 52
434
+ },
435
+ {
436
+ "epoch": 0.46,
437
+ "learning_rate": 0.00010600000000000002,
438
+ "loss": 0.3435,
439
+ "step": 53
440
+ },
441
+ {
442
+ "epoch": 0.47,
443
+ "learning_rate": 0.00010800000000000001,
444
+ "loss": 0.3035,
445
+ "step": 54
446
+ },
447
+ {
448
+ "epoch": 0.48,
449
+ "learning_rate": 0.00011000000000000002,
450
+ "loss": 0.3564,
451
+ "step": 55
452
+ },
453
+ {
454
+ "epoch": 0.48,
455
+ "learning_rate": 0.00011200000000000001,
456
+ "loss": 0.3267,
457
+ "step": 56
458
+ },
459
+ {
460
+ "epoch": 0.48,
461
+ "eval_loss": 0.39143189787864685,
462
+ "eval_runtime": 3.1134,
463
+ "eval_samples_per_second": 6.424,
464
+ "eval_steps_per_second": 3.212,
465
+ "step": 56
466
+ },
467
+ {
468
+ "epoch": 0.49,
469
+ "learning_rate": 0.00011399999999999999,
470
+ "loss": 0.2641,
471
+ "step": 57
472
+ },
473
+ {
474
+ "epoch": 0.5,
475
+ "learning_rate": 0.000116,
476
+ "loss": 0.2805,
477
+ "step": 58
478
+ },
479
+ {
480
+ "epoch": 0.51,
481
+ "learning_rate": 0.000118,
482
+ "loss": 0.2784,
483
+ "step": 59
484
+ },
485
+ {
486
+ "epoch": 0.52,
487
+ "learning_rate": 0.00012,
488
+ "loss": 0.2901,
489
+ "step": 60
490
+ },
491
+ {
492
+ "epoch": 0.52,
493
+ "eval_loss": 0.38809266686439514,
494
+ "eval_runtime": 3.1079,
495
+ "eval_samples_per_second": 6.435,
496
+ "eval_steps_per_second": 3.218,
497
+ "step": 60
498
+ },
499
+ {
500
+ "epoch": 0.53,
501
+ "learning_rate": 0.000122,
502
+ "loss": 0.3039,
503
+ "step": 61
504
+ },
505
+ {
506
+ "epoch": 0.54,
507
+ "learning_rate": 0.000124,
508
+ "loss": 0.2035,
509
+ "step": 62
510
+ },
511
+ {
512
+ "epoch": 0.54,
513
+ "learning_rate": 0.000126,
514
+ "loss": 0.326,
515
+ "step": 63
516
+ },
517
+ {
518
+ "epoch": 0.55,
519
+ "learning_rate": 0.00012800000000000002,
520
+ "loss": 0.1843,
521
+ "step": 64
522
+ },
523
+ {
524
+ "epoch": 0.55,
525
+ "eval_loss": 0.3881237506866455,
526
+ "eval_runtime": 3.1107,
527
+ "eval_samples_per_second": 6.429,
528
+ "eval_steps_per_second": 3.215,
529
+ "step": 64
530
+ },
531
+ {
532
+ "epoch": 0.56,
533
+ "learning_rate": 0.00013000000000000002,
534
+ "loss": 0.296,
535
+ "step": 65
536
+ },
537
+ {
538
+ "epoch": 0.57,
539
+ "learning_rate": 0.000132,
540
+ "loss": 0.2766,
541
+ "step": 66
542
+ },
543
+ {
544
+ "epoch": 0.58,
545
+ "learning_rate": 0.000134,
546
+ "loss": 0.304,
547
+ "step": 67
548
+ },
549
+ {
550
+ "epoch": 0.59,
551
+ "learning_rate": 0.00013600000000000003,
552
+ "loss": 0.2585,
553
+ "step": 68
554
+ },
555
+ {
556
+ "epoch": 0.59,
557
+ "eval_loss": 0.3869483470916748,
558
+ "eval_runtime": 3.1091,
559
+ "eval_samples_per_second": 6.433,
560
+ "eval_steps_per_second": 3.216,
561
+ "step": 68
562
+ },
563
+ {
564
+ "epoch": 0.6,
565
+ "learning_rate": 0.000138,
566
+ "loss": 0.2639,
567
+ "step": 69
568
+ },
569
+ {
570
+ "epoch": 0.6,
571
+ "learning_rate": 0.00014,
572
+ "loss": 0.3013,
573
+ "step": 70
574
+ },
575
+ {
576
+ "epoch": 0.61,
577
+ "learning_rate": 0.000142,
578
+ "loss": 0.4263,
579
+ "step": 71
580
+ },
581
+ {
582
+ "epoch": 0.62,
583
+ "learning_rate": 0.000144,
584
+ "loss": 0.3108,
585
+ "step": 72
586
+ },
587
+ {
588
+ "epoch": 0.62,
589
+ "eval_loss": 0.3839200437068939,
590
+ "eval_runtime": 3.1098,
591
+ "eval_samples_per_second": 6.431,
592
+ "eval_steps_per_second": 3.216,
593
+ "step": 72
594
+ },
595
+ {
596
+ "epoch": 0.63,
597
+ "learning_rate": 0.000146,
598
+ "loss": 0.4283,
599
+ "step": 73
600
+ },
601
+ {
602
+ "epoch": 0.64,
603
+ "learning_rate": 0.000148,
604
+ "loss": 0.2582,
605
+ "step": 74
606
+ },
607
+ {
608
+ "epoch": 0.65,
609
+ "learning_rate": 0.00015000000000000001,
610
+ "loss": 0.2703,
611
+ "step": 75
612
+ },
613
+ {
614
+ "epoch": 0.66,
615
+ "learning_rate": 0.000152,
616
+ "loss": 0.3799,
617
+ "step": 76
618
+ },
619
+ {
620
+ "epoch": 0.66,
621
+ "eval_loss": 0.3816559314727783,
622
+ "eval_runtime": 3.1096,
623
+ "eval_samples_per_second": 6.432,
624
+ "eval_steps_per_second": 3.216,
625
+ "step": 76
626
+ },
627
+ {
628
+ "epoch": 0.67,
629
+ "learning_rate": 0.000154,
630
+ "loss": 0.252,
631
+ "step": 77
632
+ },
633
+ {
634
+ "epoch": 0.67,
635
+ "learning_rate": 0.00015600000000000002,
636
+ "loss": 0.3297,
637
+ "step": 78
638
+ },
639
+ {
640
+ "epoch": 0.68,
641
+ "learning_rate": 0.00015800000000000002,
642
+ "loss": 0.2607,
643
+ "step": 79
644
+ },
645
+ {
646
+ "epoch": 0.69,
647
+ "learning_rate": 0.00016,
648
+ "loss": 0.2064,
649
+ "step": 80
650
+ },
651
+ {
652
+ "epoch": 0.69,
653
+ "eval_loss": 0.37915611267089844,
654
+ "eval_runtime": 3.1123,
655
+ "eval_samples_per_second": 6.426,
656
+ "eval_steps_per_second": 3.213,
657
+ "step": 80
658
+ },
659
+ {
660
+ "epoch": 0.7,
661
+ "learning_rate": 0.000162,
662
+ "loss": 0.3341,
663
+ "step": 81
664
+ },
665
+ {
666
+ "epoch": 0.71,
667
+ "learning_rate": 0.000164,
668
+ "loss": 0.3159,
669
+ "step": 82
670
+ },
671
+ {
672
+ "epoch": 0.72,
673
+ "learning_rate": 0.000166,
674
+ "loss": 0.2457,
675
+ "step": 83
676
+ },
677
+ {
678
+ "epoch": 0.73,
679
+ "learning_rate": 0.000168,
680
+ "loss": 0.3176,
681
+ "step": 84
682
+ },
683
+ {
684
+ "epoch": 0.73,
685
+ "eval_loss": 0.3792770504951477,
686
+ "eval_runtime": 3.13,
687
+ "eval_samples_per_second": 6.39,
688
+ "eval_steps_per_second": 3.195,
689
+ "step": 84
690
+ },
691
+ {
692
+ "epoch": 0.73,
693
+ "learning_rate": 0.00017,
694
+ "loss": 0.3043,
695
+ "step": 85
696
+ },
697
+ {
698
+ "epoch": 0.74,
699
+ "learning_rate": 0.000172,
700
+ "loss": 0.2346,
701
+ "step": 86
702
+ },
703
+ {
704
+ "epoch": 0.75,
705
+ "learning_rate": 0.000174,
706
+ "loss": 0.2872,
707
+ "step": 87
708
+ },
709
+ {
710
+ "epoch": 0.76,
711
+ "learning_rate": 0.00017600000000000002,
712
+ "loss": 0.2307,
713
+ "step": 88
714
+ },
715
+ {
716
+ "epoch": 0.76,
717
+ "eval_loss": 0.3768787384033203,
718
+ "eval_runtime": 3.1088,
719
+ "eval_samples_per_second": 6.433,
720
+ "eval_steps_per_second": 3.217,
721
+ "step": 88
722
+ },
723
+ {
724
+ "epoch": 0.77,
725
+ "learning_rate": 0.00017800000000000002,
726
+ "loss": 0.2661,
727
+ "step": 89
728
+ },
729
+ {
730
+ "epoch": 0.78,
731
+ "learning_rate": 0.00018,
732
+ "loss": 0.3068,
733
+ "step": 90
734
+ },
735
+ {
736
+ "epoch": 0.79,
737
+ "learning_rate": 0.000182,
738
+ "loss": 0.2866,
739
+ "step": 91
740
+ },
741
+ {
742
+ "epoch": 0.79,
743
+ "learning_rate": 0.00018400000000000003,
744
+ "loss": 0.2826,
745
+ "step": 92
746
+ },
747
+ {
748
+ "epoch": 0.79,
749
+ "eval_loss": 0.3746011555194855,
750
+ "eval_runtime": 3.1104,
751
+ "eval_samples_per_second": 6.43,
752
+ "eval_steps_per_second": 3.215,
753
+ "step": 92
754
+ },
755
+ {
756
+ "epoch": 0.8,
757
+ "learning_rate": 0.00018600000000000002,
758
+ "loss": 0.4888,
759
+ "step": 93
760
+ },
761
+ {
762
+ "epoch": 0.81,
763
+ "learning_rate": 0.000188,
764
+ "loss": 0.1667,
765
+ "step": 94
766
+ },
767
+ {
768
+ "epoch": 0.82,
769
+ "learning_rate": 0.00019,
770
+ "loss": 0.2683,
771
+ "step": 95
772
+ },
773
+ {
774
+ "epoch": 0.83,
775
+ "learning_rate": 0.000192,
776
+ "loss": 0.2718,
777
+ "step": 96
778
+ },
779
+ {
780
+ "epoch": 0.83,
781
+ "eval_loss": 0.373685747385025,
782
+ "eval_runtime": 3.1134,
783
+ "eval_samples_per_second": 6.424,
784
+ "eval_steps_per_second": 3.212,
785
+ "step": 96
786
+ },
787
+ {
788
+ "epoch": 0.84,
789
+ "learning_rate": 0.000194,
790
+ "loss": 0.2193,
791
+ "step": 97
792
+ },
793
+ {
794
+ "epoch": 0.85,
795
+ "learning_rate": 0.000196,
796
+ "loss": 0.378,
797
+ "step": 98
798
+ },
799
+ {
800
+ "epoch": 0.86,
801
+ "learning_rate": 0.00019800000000000002,
802
+ "loss": 0.2917,
803
+ "step": 99
804
+ },
805
+ {
806
+ "epoch": 0.86,
807
+ "learning_rate": 0.0002,
808
+ "loss": 0.2945,
809
+ "step": 100
810
+ },
811
+ {
812
+ "epoch": 0.86,
813
+ "eval_loss": 0.3727183938026428,
814
+ "eval_runtime": 3.1085,
815
+ "eval_samples_per_second": 6.434,
816
+ "eval_steps_per_second": 3.217,
817
+ "step": 100
818
+ },
819
+ {
820
+ "epoch": 0.87,
821
+ "learning_rate": 0.00019999177886783194,
822
+ "loss": 0.2355,
823
+ "step": 101
824
+ },
825
+ {
826
+ "epoch": 0.88,
827
+ "learning_rate": 0.000199967116823068,
828
+ "loss": 0.2656,
829
+ "step": 102
830
+ },
831
+ {
832
+ "epoch": 0.89,
833
+ "learning_rate": 0.00019992601792070679,
834
+ "loss": 0.2803,
835
+ "step": 103
836
+ },
837
+ {
838
+ "epoch": 0.9,
839
+ "learning_rate": 0.00019986848891833845,
840
+ "loss": 0.2313,
841
+ "step": 104
842
+ },
843
+ {
844
+ "epoch": 0.9,
845
+ "eval_loss": 0.371459424495697,
846
+ "eval_runtime": 3.1114,
847
+ "eval_samples_per_second": 6.428,
848
+ "eval_steps_per_second": 3.214,
849
+ "step": 104
850
+ },
851
+ {
852
+ "epoch": 0.91,
853
+ "learning_rate": 0.00019979453927503364,
854
+ "loss": 0.2983,
855
+ "step": 105
856
+ },
857
+ {
858
+ "epoch": 0.92,
859
+ "learning_rate": 0.0001997041811497882,
860
+ "loss": 0.2547,
861
+ "step": 106
862
+ },
863
+ {
864
+ "epoch": 0.92,
865
+ "learning_rate": 0.00019959742939952392,
866
+ "loss": 0.2463,
867
+ "step": 107
868
+ },
869
+ {
870
+ "epoch": 0.93,
871
+ "learning_rate": 0.00019947430157664576,
872
+ "loss": 0.2519,
873
+ "step": 108
874
+ },
875
+ {
876
+ "epoch": 0.93,
877
+ "eval_loss": 0.37180376052856445,
878
+ "eval_runtime": 3.1113,
879
+ "eval_samples_per_second": 6.428,
880
+ "eval_steps_per_second": 3.214,
881
+ "step": 108
882
+ },
883
+ {
884
+ "epoch": 0.94,
885
+ "learning_rate": 0.00019933481792615583,
886
+ "loss": 0.2032,
887
+ "step": 109
888
+ },
889
+ {
890
+ "epoch": 0.95,
891
+ "learning_rate": 0.0001991790013823246,
892
+ "loss": 0.2868,
893
+ "step": 110
894
+ },
895
+ {
896
+ "epoch": 0.96,
897
+ "learning_rate": 0.0001990068775649202,
898
+ "loss": 0.2653,
899
+ "step": 111
900
+ },
901
+ {
902
+ "epoch": 0.97,
903
+ "learning_rate": 0.00019881847477499557,
904
+ "loss": 0.2468,
905
+ "step": 112
906
+ },
907
+ {
908
+ "epoch": 0.97,
909
+ "eval_loss": 0.37166160345077515,
910
+ "eval_runtime": 3.1194,
911
+ "eval_samples_per_second": 6.412,
912
+ "eval_steps_per_second": 3.206,
913
+ "step": 112
914
+ },
915
+ {
916
+ "epoch": 0.98,
917
+ "learning_rate": 0.0001986138239902355,
918
+ "loss": 0.3997,
919
+ "step": 113
920
+ },
921
+ {
922
+ "epoch": 0.98,
923
+ "learning_rate": 0.00019839295885986296,
924
+ "loss": 0.172,
925
+ "step": 114
926
+ },
927
+ {
928
+ "epoch": 0.99,
929
+ "learning_rate": 0.00019815591569910654,
930
+ "loss": 0.2713,
931
+ "step": 115
932
+ },
933
+ {
934
+ "epoch": 1.0,
935
+ "learning_rate": 0.0001979027334832293,
936
+ "loss": 0.2034,
937
+ "step": 116
938
+ },
939
+ {
940
+ "epoch": 1.0,
941
+ "eval_loss": 0.37163203954696655,
942
+ "eval_runtime": 3.1126,
943
+ "eval_samples_per_second": 6.425,
944
+ "eval_steps_per_second": 3.213,
945
+ "step": 116
946
+ },
947
+ {
948
+ "epoch": 1.01,
949
+ "learning_rate": 0.00019763345384112043,
950
+ "loss": 0.1824,
951
+ "step": 117
952
+ },
953
+ {
954
+ "epoch": 1.02,
955
+ "learning_rate": 0.00019734812104845047,
956
+ "loss": 0.3669,
957
+ "step": 118
958
+ },
959
+ {
960
+ "epoch": 1.01,
961
+ "learning_rate": 0.0001970467820203915,
962
+ "loss": 0.229,
963
+ "step": 119
964
+ },
965
+ {
966
+ "epoch": 1.02,
967
+ "learning_rate": 0.00019672948630390294,
968
+ "loss": 0.2639,
969
+ "step": 120
970
+ },
971
+ {
972
+ "epoch": 1.02,
973
+ "eval_loss": 0.3714464008808136,
974
+ "eval_runtime": 3.1072,
975
+ "eval_samples_per_second": 6.437,
976
+ "eval_steps_per_second": 3.218,
977
+ "step": 120
978
+ },
979
+ {
980
+ "epoch": 1.03,
981
+ "learning_rate": 0.00019639628606958533,
982
+ "loss": 0.1806,
983
+ "step": 121
984
+ },
985
+ {
986
+ "epoch": 1.03,
987
+ "learning_rate": 0.00019604723610310194,
988
+ "loss": 0.2209,
989
+ "step": 122
990
+ },
991
+ {
992
+ "epoch": 1.04,
993
+ "learning_rate": 0.00019568239379617088,
994
+ "loss": 0.2566,
995
+ "step": 123
996
+ },
997
+ {
998
+ "epoch": 1.05,
999
+ "learning_rate": 0.00019530181913712872,
1000
+ "loss": 0.2472,
1001
+ "step": 124
1002
+ },
1003
+ {
1004
+ "epoch": 1.05,
1005
+ "eval_loss": 0.3729495108127594,
1006
+ "eval_runtime": 3.1102,
1007
+ "eval_samples_per_second": 6.43,
1008
+ "eval_steps_per_second": 3.215,
1009
+ "step": 124
1010
+ },
1011
+ {
1012
+ "epoch": 1.06,
1013
+ "learning_rate": 0.00019490557470106686,
1014
+ "loss": 0.2303,
1015
+ "step": 125
1016
+ },
1017
+ {
1018
+ "epoch": 1.07,
1019
+ "learning_rate": 0.00019449372563954293,
1020
+ "loss": 0.2203,
1021
+ "step": 126
1022
+ },
1023
+ {
1024
+ "epoch": 1.08,
1025
+ "learning_rate": 0.00019406633966986828,
1026
+ "loss": 0.2226,
1027
+ "step": 127
1028
+ },
1029
+ {
1030
+ "epoch": 1.09,
1031
+ "learning_rate": 0.00019362348706397373,
1032
+ "loss": 0.1987,
1033
+ "step": 128
1034
+ },
1035
+ {
1036
+ "epoch": 1.09,
1037
+ "eval_loss": 0.36887192726135254,
1038
+ "eval_runtime": 3.1178,
1039
+ "eval_samples_per_second": 6.415,
1040
+ "eval_steps_per_second": 3.207,
1041
+ "step": 128
1042
+ },
1043
+ {
1044
+ "epoch": 1.1,
1045
+ "learning_rate": 0.0001931652406368554,
1046
+ "loss": 0.1859,
1047
+ "step": 129
1048
+ },
1049
+ {
1050
+ "epoch": 1.1,
1051
+ "learning_rate": 0.0001926916757346022,
1052
+ "loss": 0.2408,
1053
+ "step": 130
1054
+ },
1055
+ {
1056
+ "epoch": 1.11,
1057
+ "learning_rate": 0.00019220287022200707,
1058
+ "loss": 0.2724,
1059
+ "step": 131
1060
+ },
1061
+ {
1062
+ "epoch": 1.12,
1063
+ "learning_rate": 0.00019169890446976454,
1064
+ "loss": 0.2296,
1065
+ "step": 132
1066
+ },
1067
+ {
1068
+ "epoch": 1.12,
1069
+ "eval_loss": 0.3678927719593048,
1070
+ "eval_runtime": 3.1086,
1071
+ "eval_samples_per_second": 6.434,
1072
+ "eval_steps_per_second": 3.217,
1073
+ "step": 132
1074
+ },
1075
+ {
1076
+ "epoch": 1.13,
1077
+ "learning_rate": 0.0001911798613412557,
1078
+ "loss": 0.2069,
1079
+ "step": 133
1080
+ },
1081
+ {
1082
+ "epoch": 1.14,
1083
+ "learning_rate": 0.0001906458261789238,
1084
+ "loss": 0.2973,
1085
+ "step": 134
1086
+ },
1087
+ {
1088
+ "epoch": 1.15,
1089
+ "learning_rate": 0.0001900968867902419,
1090
+ "loss": 0.2468,
1091
+ "step": 135
1092
+ },
1093
+ {
1094
+ "epoch": 1.16,
1095
+ "learning_rate": 0.0001895331334332753,
1096
+ "loss": 0.1542,
1097
+ "step": 136
1098
+ },
1099
+ {
1100
+ "epoch": 1.16,
1101
+ "eval_loss": 0.3685668408870697,
1102
+ "eval_runtime": 3.1094,
1103
+ "eval_samples_per_second": 6.432,
1104
+ "eval_steps_per_second": 3.216,
1105
+ "step": 136
1106
+ },
1107
+ {
1108
+ "epoch": 1.16,
1109
+ "learning_rate": 0.0001889546588018412,
1110
+ "loss": 0.2935,
1111
+ "step": 137
1112
+ },
1113
+ {
1114
+ "epoch": 1.17,
1115
+ "learning_rate": 0.00018836155801026753,
1116
+ "loss": 0.2493,
1117
+ "step": 138
1118
+ },
1119
+ {
1120
+ "epoch": 1.18,
1121
+ "learning_rate": 0.00018775392857775432,
1122
+ "loss": 0.1597,
1123
+ "step": 139
1124
+ },
1125
+ {
1126
+ "epoch": 1.19,
1127
+ "learning_rate": 0.00018713187041233896,
1128
+ "loss": 0.1949,
1129
+ "step": 140
1130
+ },
1131
+ {
1132
+ "epoch": 1.19,
1133
+ "eval_loss": 0.3697265684604645,
1134
+ "eval_runtime": 3.1097,
1135
+ "eval_samples_per_second": 6.431,
1136
+ "eval_steps_per_second": 3.216,
1137
+ "step": 140
1138
+ },
1139
+ {
1140
+ "epoch": 1.2,
1141
+ "learning_rate": 0.00018649548579446936,
1142
+ "loss": 0.2434,
1143
+ "step": 141
1144
+ },
1145
+ {
1146
+ "epoch": 1.21,
1147
+ "learning_rate": 0.00018584487936018661,
1148
+ "loss": 0.2348,
1149
+ "step": 142
1150
+ },
1151
+ {
1152
+ "epoch": 1.22,
1153
+ "learning_rate": 0.00018518015808392045,
1154
+ "loss": 0.2946,
1155
+ "step": 143
1156
+ },
1157
+ {
1158
+ "epoch": 1.22,
1159
+ "learning_rate": 0.00018450143126090015,
1160
+ "loss": 0.2239,
1161
+ "step": 144
1162
+ },
1163
+ {
1164
+ "epoch": 1.22,
1165
+ "eval_loss": 0.36812636256217957,
1166
+ "eval_runtime": 3.1112,
1167
+ "eval_samples_per_second": 6.428,
1168
+ "eval_steps_per_second": 3.214,
1169
+ "step": 144
1170
+ },
1171
+ {
1172
+ "epoch": 1.23,
1173
+ "learning_rate": 0.00018380881048918405,
1174
+ "loss": 0.1824,
1175
+ "step": 145
1176
+ },
1177
+ {
1178
+ "epoch": 1.24,
1179
+ "learning_rate": 0.00018310240965131041,
1180
+ "loss": 0.302,
1181
+ "step": 146
1182
+ },
1183
+ {
1184
+ "epoch": 1.25,
1185
+ "learning_rate": 0.00018238234489557215,
1186
+ "loss": 0.3452,
1187
+ "step": 147
1188
+ },
1189
+ {
1190
+ "epoch": 1.26,
1191
+ "learning_rate": 0.00018164873461691986,
1192
+ "loss": 0.1943,
1193
+ "step": 148
1194
+ },
1195
+ {
1196
+ "epoch": 1.26,
1197
+ "eval_loss": 0.3690447211265564,
1198
+ "eval_runtime": 3.111,
1199
+ "eval_samples_per_second": 6.429,
1200
+ "eval_steps_per_second": 3.214,
1201
+ "step": 148
1202
+ },
1203
+ {
1204
+ "epoch": 1.27,
1205
+ "learning_rate": 0.00018090169943749476,
1206
+ "loss": 0.2775,
1207
+ "step": 149
1208
+ },
1209
+ {
1210
+ "epoch": 1.28,
1211
+ "learning_rate": 0.00018014136218679567,
1212
+ "loss": 0.3347,
1213
+ "step": 150
1214
+ },
1215
+ {
1216
+ "epoch": 1.29,
1217
+ "learning_rate": 0.00017936784788148328,
1218
+ "loss": 0.337,
1219
+ "step": 151
1220
+ },
1221
+ {
1222
+ "epoch": 1.29,
1223
+ "learning_rate": 0.00017858128370482426,
1224
+ "loss": 0.1487,
1225
+ "step": 152
1226
+ },
1227
+ {
1228
+ "epoch": 1.29,
1229
+ "eval_loss": 0.3705955445766449,
1230
+ "eval_runtime": 3.1102,
1231
+ "eval_samples_per_second": 6.431,
1232
+ "eval_steps_per_second": 3.215,
1233
+ "step": 152
1234
+ },
1235
+ {
1236
+ "epoch": 1.3,
1237
+ "learning_rate": 0.00017778179898577973,
1238
+ "loss": 0.2416,
1239
+ "step": 153
1240
+ },
1241
+ {
1242
+ "epoch": 1.31,
1243
+ "learning_rate": 0.00017696952517774062,
1244
+ "loss": 0.2265,
1245
+ "step": 154
1246
+ },
1247
+ {
1248
+ "epoch": 1.32,
1249
+ "learning_rate": 0.00017614459583691346,
1250
+ "loss": 0.2106,
1251
+ "step": 155
1252
+ },
1253
+ {
1254
+ "epoch": 1.33,
1255
+ "learning_rate": 0.00017530714660036112,
1256
+ "loss": 0.2873,
1257
+ "step": 156
1258
+ },
1259
+ {
1260
+ "epoch": 1.33,
1261
+ "eval_loss": 0.37079566717147827,
1262
+ "eval_runtime": 3.1213,
1263
+ "eval_samples_per_second": 6.408,
1264
+ "eval_steps_per_second": 3.204,
1265
+ "step": 156
1266
+ },
1267
+ {
1268
+ "epoch": 1.34,
1269
+ "learning_rate": 0.0001744573151637007,
1270
+ "loss": 0.2134,
1271
+ "step": 157
1272
+ },
1273
+ {
1274
+ "epoch": 1.35,
1275
+ "learning_rate": 0.0001735952412584635,
1276
+ "loss": 0.3883,
1277
+ "step": 158
1278
+ },
1279
+ {
1280
+ "epoch": 1.35,
1281
+ "learning_rate": 0.00017272106662911973,
1282
+ "loss": 0.2018,
1283
+ "step": 159
1284
+ },
1285
+ {
1286
+ "epoch": 1.36,
1287
+ "learning_rate": 0.00017183493500977278,
1288
+ "loss": 0.2786,
1289
+ "step": 160
1290
+ },
1291
+ {
1292
+ "epoch": 1.36,
1293
+ "eval_loss": 0.3699425756931305,
1294
+ "eval_runtime": 3.1068,
1295
+ "eval_samples_per_second": 6.438,
1296
+ "eval_steps_per_second": 3.219,
1297
+ "step": 160
1298
+ },
1299
+ {
1300
+ "epoch": 1.37,
1301
+ "learning_rate": 0.0001709369921005258,
1302
+ "loss": 0.2128,
1303
+ "step": 161
1304
+ },
1305
+ {
1306
+ "epoch": 1.38,
1307
+ "learning_rate": 0.00017002738554352552,
1308
+ "loss": 0.2264,
1309
+ "step": 162
1310
+ },
1311
+ {
1312
+ "epoch": 1.39,
1313
+ "learning_rate": 0.00016910626489868649,
1314
+ "loss": 0.3394,
1315
+ "step": 163
1316
+ },
1317
+ {
1318
+ "epoch": 1.4,
1319
+ "learning_rate": 0.00016817378161909996,
1320
+ "loss": 0.2486,
1321
+ "step": 164
1322
+ },
1323
+ {
1324
+ "epoch": 1.4,
1325
+ "eval_loss": 0.3689553737640381,
1326
+ "eval_runtime": 3.111,
1327
+ "eval_samples_per_second": 6.429,
1328
+ "eval_steps_per_second": 3.214,
1329
+ "step": 164
1330
+ },
1331
+ {
1332
+ "epoch": 1.41,
1333
+ "learning_rate": 0.0001672300890261317,
1334
+ "loss": 0.1954,
1335
+ "step": 165
1336
+ },
1337
+ {
1338
+ "epoch": 1.41,
1339
+ "learning_rate": 0.0001662753422842123,
1340
+ "loss": 0.1786,
1341
+ "step": 166
1342
+ },
1343
+ {
1344
+ "epoch": 1.42,
1345
+ "learning_rate": 0.00016530969837532487,
1346
+ "loss": 0.2595,
1347
+ "step": 167
1348
+ },
1349
+ {
1350
+ "epoch": 1.43,
1351
+ "learning_rate": 0.00016433331607319343,
1352
+ "loss": 0.2048,
1353
+ "step": 168
1354
+ },
1355
+ {
1356
+ "epoch": 1.43,
1357
+ "eval_loss": 0.3692178726196289,
1358
+ "eval_runtime": 3.1102,
1359
+ "eval_samples_per_second": 6.43,
1360
+ "eval_steps_per_second": 3.215,
1361
+ "step": 168
1362
+ },
1363
+ {
1364
+ "epoch": 1.44,
1365
+ "learning_rate": 0.00016334635591717703,
1366
+ "loss": 0.1574,
1367
+ "step": 169
1368
+ },
1369
+ {
1370
+ "epoch": 1.45,
1371
+ "learning_rate": 0.00016234898018587337,
1372
+ "loss": 0.2797,
1373
+ "step": 170
1374
+ },
1375
+ {
1376
+ "epoch": 1.46,
1377
+ "learning_rate": 0.00016134135287043669,
1378
+ "loss": 0.2279,
1379
+ "step": 171
1380
+ },
1381
+ {
1382
+ "epoch": 1.47,
1383
+ "learning_rate": 0.00016032363964761363,
1384
+ "loss": 0.1669,
1385
+ "step": 172
1386
+ },
1387
+ {
1388
+ "epoch": 1.47,
1389
+ "eval_loss": 0.3703743815422058,
1390
+ "eval_runtime": 3.1096,
1391
+ "eval_samples_per_second": 6.432,
1392
+ "eval_steps_per_second": 3.216,
1393
+ "step": 172
1394
+ },
1395
+ {
1396
+ "epoch": 1.48,
1397
+ "learning_rate": 0.00015929600785250257,
1398
+ "loss": 0.188,
1399
+ "step": 173
1400
+ },
1401
+ {
1402
+ "epoch": 1.48,
1403
+ "learning_rate": 0.0001582586264510396,
1404
+ "loss": 0.2964,
1405
+ "step": 174
1406
+ },
1407
+ {
1408
+ "epoch": 1.49,
1409
+ "learning_rate": 0.00015721166601221698,
1410
+ "loss": 0.2548,
1411
+ "step": 175
1412
+ },
1413
+ {
1414
+ "epoch": 1.5,
1415
+ "learning_rate": 0.0001561552986800375,
1416
+ "loss": 0.2339,
1417
+ "step": 176
1418
+ },
1419
+ {
1420
+ "epoch": 1.5,
1421
+ "eval_loss": 0.369620144367218,
1422
+ "eval_runtime": 3.1104,
1423
+ "eval_samples_per_second": 6.43,
1424
+ "eval_steps_per_second": 3.215,
1425
+ "step": 176
1426
+ },
1427
+ {
1428
+ "epoch": 1.51,
1429
+ "learning_rate": 0.00015508969814521025,
1430
+ "loss": 0.3109,
1431
+ "step": 177
1432
+ },
1433
+ {
1434
+ "epoch": 1.52,
1435
+ "learning_rate": 0.00015401503961659204,
1436
+ "loss": 0.2787,
1437
+ "step": 178
1438
+ },
1439
+ {
1440
+ "epoch": 1.53,
1441
+ "learning_rate": 0.00015293149979237876,
1442
+ "loss": 0.2867,
1443
+ "step": 179
1444
+ },
1445
+ {
1446
+ "epoch": 1.54,
1447
+ "learning_rate": 0.00015183925683105254,
1448
+ "loss": 0.2676,
1449
+ "step": 180
1450
+ },
1451
+ {
1452
+ "epoch": 1.54,
1453
+ "eval_loss": 0.3678538203239441,
1454
+ "eval_runtime": 3.1087,
1455
+ "eval_samples_per_second": 6.434,
1456
+ "eval_steps_per_second": 3.217,
1457
+ "step": 180
1458
+ },
1459
+ {
1460
+ "epoch": 1.54,
1461
+ "learning_rate": 0.00015073849032208822,
1462
+ "loss": 0.2537,
1463
+ "step": 181
1464
+ },
1465
+ {
1466
+ "epoch": 1.55,
1467
+ "learning_rate": 0.00014962938125642503,
1468
+ "loss": 0.23,
1469
+ "step": 182
1470
+ },
1471
+ {
1472
+ "epoch": 1.56,
1473
+ "learning_rate": 0.00014851211199670721,
1474
+ "loss": 0.1883,
1475
+ "step": 183
1476
+ },
1477
+ {
1478
+ "epoch": 1.57,
1479
+ "learning_rate": 0.00014738686624729986,
1480
+ "loss": 0.2565,
1481
+ "step": 184
1482
+ },
1483
+ {
1484
+ "epoch": 1.57,
1485
+ "eval_loss": 0.36626869440078735,
1486
+ "eval_runtime": 3.109,
1487
+ "eval_samples_per_second": 6.433,
1488
+ "eval_steps_per_second": 3.216,
1489
+ "step": 184
1490
+ },
1491
+ {
1492
+ "epoch": 1.58,
1493
+ "learning_rate": 0.00014625382902408356,
1494
+ "loss": 0.3444,
1495
+ "step": 185
1496
+ },
1497
+ {
1498
+ "epoch": 1.59,
1499
+ "learning_rate": 0.00014511318662403347,
1500
+ "loss": 0.3072,
1501
+ "step": 186
1502
+ },
1503
+ {
1504
+ "epoch": 1.6,
1505
+ "learning_rate": 0.00014396512659458824,
1506
+ "loss": 0.2074,
1507
+ "step": 187
1508
+ },
1509
+ {
1510
+ "epoch": 1.6,
1511
+ "learning_rate": 0.0001428098377028126,
1512
+ "loss": 0.1769,
1513
+ "step": 188
1514
+ },
1515
+ {
1516
+ "epoch": 1.6,
1517
+ "eval_loss": 0.367279052734375,
1518
+ "eval_runtime": 3.11,
1519
+ "eval_samples_per_second": 6.431,
1520
+ "eval_steps_per_second": 3.215,
1521
+ "step": 188
1522
+ },
1523
+ {
1524
+ "epoch": 1.61,
1525
+ "learning_rate": 0.0001416475099043599,
1526
+ "loss": 0.2805,
1527
+ "step": 189
1528
+ },
1529
+ {
1530
+ "epoch": 1.62,
1531
+ "learning_rate": 0.00014047833431223938,
1532
+ "loss": 0.2003,
1533
+ "step": 190
1534
+ },
1535
+ {
1536
+ "epoch": 1.63,
1537
+ "learning_rate": 0.00013930250316539238,
1538
+ "loss": 0.2478,
1539
+ "step": 191
1540
+ },
1541
+ {
1542
+ "epoch": 1.64,
1543
+ "learning_rate": 0.00013812020979708418,
1544
+ "loss": 0.2435,
1545
+ "step": 192
1546
+ },
1547
+ {
1548
+ "epoch": 1.64,
1549
+ "eval_loss": 0.3666362464427948,
1550
+ "eval_runtime": 3.1113,
1551
+ "eval_samples_per_second": 6.428,
1552
+ "eval_steps_per_second": 3.214,
1553
+ "step": 192
1554
+ },
1555
+ {
1556
+ "epoch": 1.65,
1557
+ "learning_rate": 0.00013693164860311565,
1558
+ "loss": 0.2149,
1559
+ "step": 193
1560
+ },
1561
+ {
1562
+ "epoch": 1.66,
1563
+ "learning_rate": 0.0001357370150098601,
1564
+ "loss": 0.1893,
1565
+ "step": 194
1566
+ },
1567
+ {
1568
+ "epoch": 1.67,
1569
+ "learning_rate": 0.00013453650544213076,
1570
+ "loss": 0.2509,
1571
+ "step": 195
1572
+ },
1573
+ {
1574
+ "epoch": 1.67,
1575
+ "learning_rate": 0.00013333031729088419,
1576
+ "loss": 0.2145,
1577
+ "step": 196
1578
+ },
1579
+ {
1580
+ "epoch": 1.67,
1581
+ "eval_loss": 0.36739152669906616,
1582
+ "eval_runtime": 3.1249,
1583
+ "eval_samples_per_second": 6.4,
1584
+ "eval_steps_per_second": 3.2,
1585
+ "step": 196
1586
+ },
1587
+ {
1588
+ "epoch": 1.68,
1589
+ "learning_rate": 0.00013211864888076457,
1590
+ "loss": 0.1946,
1591
+ "step": 197
1592
+ },
1593
+ {
1594
+ "epoch": 1.69,
1595
+ "learning_rate": 0.00013090169943749476,
1596
+ "loss": 0.2008,
1597
+ "step": 198
1598
+ },
1599
+ {
1600
+ "epoch": 1.7,
1601
+ "learning_rate": 0.00012967966905511906,
1602
+ "loss": 0.3234,
1603
+ "step": 199
1604
+ },
1605
+ {
1606
+ "epoch": 1.71,
1607
+ "learning_rate": 0.00012845275866310324,
1608
+ "loss": 0.2082,
1609
+ "step": 200
1610
+ },
1611
+ {
1612
+ "epoch": 1.71,
1613
+ "eval_loss": 0.36528101563453674,
1614
+ "eval_runtime": 3.1155,
1615
+ "eval_samples_per_second": 6.42,
1616
+ "eval_steps_per_second": 3.21,
1617
+ "step": 200
1618
+ },
1619
+ {
1620
+ "epoch": 1.72,
1621
+ "learning_rate": 0.00012722116999329712,
1622
+ "loss": 0.2492,
1623
+ "step": 201
1624
+ },
1625
+ {
1626
+ "epoch": 1.73,
1627
+ "learning_rate": 0.0001259851055467653,
1628
+ "loss": 0.1468,
1629
+ "step": 202
1630
+ },
1631
+ {
1632
+ "epoch": 1.73,
1633
+ "learning_rate": 0.00012474476856049144,
1634
+ "loss": 0.4099,
1635
+ "step": 203
1636
+ },
1637
+ {
1638
+ "epoch": 1.74,
1639
+ "learning_rate": 0.00012350036297396154,
1640
+ "loss": 0.2416,
1641
+ "step": 204
1642
+ },
1643
+ {
1644
+ "epoch": 1.74,
1645
+ "eval_loss": 0.3635335862636566,
1646
+ "eval_runtime": 3.1079,
1647
+ "eval_samples_per_second": 6.435,
1648
+ "eval_steps_per_second": 3.218,
1649
+ "step": 204
1650
+ },
1651
+ {
1652
+ "epoch": 1.75,
1653
+ "learning_rate": 0.00012225209339563145,
1654
+ "loss": 0.2295,
1655
+ "step": 205
1656
+ },
1657
+ {
1658
+ "epoch": 1.76,
1659
+ "learning_rate": 0.00012100016506928493,
1660
+ "loss": 0.2825,
1661
+ "step": 206
1662
+ },
1663
+ {
1664
+ "epoch": 1.77,
1665
+ "learning_rate": 0.00011974478384028672,
1666
+ "loss": 0.303,
1667
+ "step": 207
1668
+ },
1669
+ {
1670
+ "epoch": 1.78,
1671
+ "learning_rate": 0.00011848615612173688,
1672
+ "loss": 0.1884,
1673
+ "step": 208
1674
+ },
1675
+ {
1676
+ "epoch": 1.78,
1677
+ "eval_loss": 0.36344197392463684,
1678
+ "eval_runtime": 3.1145,
1679
+ "eval_samples_per_second": 6.422,
1680
+ "eval_steps_per_second": 3.211,
1681
+ "step": 208
1682
+ },
1683
+ {
1684
+ "epoch": 1.79,
1685
+ "learning_rate": 0.0001172244888605319,
1686
+ "loss": 0.2423,
1687
+ "step": 209
1688
+ },
1689
+ {
1690
+ "epoch": 1.79,
1691
+ "learning_rate": 0.00011595998950333793,
1692
+ "loss": 0.2338,
1693
+ "step": 210
1694
+ },
1695
+ {
1696
+ "epoch": 1.8,
1697
+ "learning_rate": 0.00011469286596248181,
1698
+ "loss": 0.246,
1699
+ "step": 211
1700
+ },
1701
+ {
1702
+ "epoch": 1.81,
1703
+ "learning_rate": 0.00011342332658176555,
1704
+ "loss": 0.275,
1705
+ "step": 212
1706
+ },
1707
+ {
1708
+ "epoch": 1.81,
1709
+ "eval_loss": 0.3634224236011505,
1710
+ "eval_runtime": 3.1116,
1711
+ "eval_samples_per_second": 6.428,
1712
+ "eval_steps_per_second": 3.214,
1713
+ "step": 212
1714
+ },
1715
+ {
1716
+ "epoch": 1.82,
1717
+ "learning_rate": 0.00011215158010221005,
1718
+ "loss": 0.3584,
1719
+ "step": 213
1720
+ },
1721
+ {
1722
+ "epoch": 1.83,
1723
+ "learning_rate": 0.00011087783562773311,
1724
+ "loss": 0.2247,
1725
+ "step": 214
1726
+ },
1727
+ {
1728
+ "epoch": 1.84,
1729
+ "learning_rate": 0.00010960230259076818,
1730
+ "loss": 0.2911,
1731
+ "step": 215
1732
+ },
1733
+ {
1734
+ "epoch": 1.85,
1735
+ "learning_rate": 0.00010832519071782894,
1736
+ "loss": 0.2518,
1737
+ "step": 216
1738
+ },
1739
+ {
1740
+ "epoch": 1.85,
1741
+ "eval_loss": 0.3610054850578308,
1742
+ "eval_runtime": 3.1068,
1743
+ "eval_samples_per_second": 6.437,
1744
+ "eval_steps_per_second": 3.219,
1745
+ "step": 216
1746
+ },
1747
+ {
1748
+ "epoch": 1.86,
1749
+ "learning_rate": 0.0001070467099950254,
1750
+ "loss": 0.2468,
1751
+ "step": 217
1752
+ },
1753
+ {
1754
+ "epoch": 1.86,
1755
+ "learning_rate": 0.00010576707063353746,
1756
+ "loss": 0.1837,
1757
+ "step": 218
1758
+ },
1759
+ {
1760
+ "epoch": 1.87,
1761
+ "learning_rate": 0.00010448648303505151,
1762
+ "loss": 0.355,
1763
+ "step": 219
1764
+ },
1765
+ {
1766
+ "epoch": 1.88,
1767
+ "learning_rate": 0.00010320515775716555,
1768
+ "loss": 0.2462,
1769
+ "step": 220
1770
+ },
1771
+ {
1772
+ "epoch": 1.88,
1773
+ "eval_loss": 0.36076828837394714,
1774
+ "eval_runtime": 3.112,
1775
+ "eval_samples_per_second": 6.427,
1776
+ "eval_steps_per_second": 3.213,
1777
+ "step": 220
1778
+ },
1779
+ {
1780
+ "epoch": 1.89,
1781
+ "learning_rate": 0.00010192330547876871,
1782
+ "loss": 0.289,
1783
+ "step": 221
1784
+ },
1785
+ {
1786
+ "epoch": 1.9,
1787
+ "learning_rate": 0.00010064113696540111,
1788
+ "loss": 0.2711,
1789
+ "step": 222
1790
+ },
1791
+ {
1792
+ "epoch": 1.91,
1793
+ "learning_rate": 9.93588630345989e-05,
1794
+ "loss": 0.1961,
1795
+ "step": 223
1796
+ },
1797
+ {
1798
+ "epoch": 1.92,
1799
+ "learning_rate": 9.80766945212313e-05,
1800
+ "loss": 0.2509,
1801
+ "step": 224
1802
+ },
1803
+ {
1804
+ "epoch": 1.92,
1805
+ "eval_loss": 0.36051902174949646,
1806
+ "eval_runtime": 3.1093,
1807
+ "eval_samples_per_second": 6.432,
1808
+ "eval_steps_per_second": 3.216,
1809
+ "step": 224
1810
+ },
1811
+ {
1812
+ "epoch": 1.92,
1813
+ "learning_rate": 9.679484224283449e-05,
1814
+ "loss": 0.228,
1815
+ "step": 225
1816
+ },
1817
+ {
1818
+ "epoch": 1.93,
1819
+ "learning_rate": 9.551351696494854e-05,
1820
+ "loss": 0.2148,
1821
+ "step": 226
1822
+ },
1823
+ {
1824
+ "epoch": 1.94,
1825
+ "learning_rate": 9.423292936646257e-05,
1826
+ "loss": 0.2076,
1827
+ "step": 227
1828
+ },
1829
+ {
1830
+ "epoch": 1.95,
1831
+ "learning_rate": 9.29532900049746e-05,
1832
+ "loss": 0.2749,
1833
+ "step": 228
1834
+ },
1835
+ {
1836
+ "epoch": 1.95,
1837
+ "eval_loss": 0.3603048324584961,
1838
+ "eval_runtime": 3.1096,
1839
+ "eval_samples_per_second": 6.432,
1840
+ "eval_steps_per_second": 3.216,
1841
+ "step": 228
1842
+ },
1843
+ {
1844
+ "epoch": 1.96,
1845
+ "learning_rate": 9.167480928217108e-05,
1846
+ "loss": 0.21,
1847
+ "step": 229
1848
+ },
1849
+ {
1850
+ "epoch": 1.97,
1851
+ "learning_rate": 9.039769740923183e-05,
1852
+ "loss": 0.2771,
1853
+ "step": 230
1854
+ },
1855
+ {
1856
+ "epoch": 1.98,
1857
+ "learning_rate": 8.912216437226693e-05,
1858
+ "loss": 0.3317,
1859
+ "step": 231
1860
+ },
1861
+ {
1862
+ "epoch": 1.98,
1863
+ "learning_rate": 8.784841989778996e-05,
1864
+ "loss": 0.2162,
1865
+ "step": 232
1866
+ },
1867
+ {
1868
+ "epoch": 1.98,
1869
+ "eval_loss": 0.3595748245716095,
1870
+ "eval_runtime": 3.1118,
1871
+ "eval_samples_per_second": 6.427,
1872
+ "eval_steps_per_second": 3.214,
1873
+ "step": 232
1874
+ },
1875
+ {
1876
+ "epoch": 1.99,
1877
+ "learning_rate": 8.657667341823448e-05,
1878
+ "loss": 0.227,
1879
+ "step": 233
1880
+ },
1881
+ {
1882
+ "epoch": 2.0,
1883
+ "learning_rate": 8.530713403751821e-05,
1884
+ "loss": 0.1645,
1885
+ "step": 234
1886
+ },
1887
+ {
1888
+ "epoch": 2.01,
1889
+ "learning_rate": 8.404001049666211e-05,
1890
+ "loss": 0.2724,
1891
+ "step": 235
1892
+ },
1893
+ {
1894
+ "epoch": 2.02,
1895
+ "learning_rate": 8.277551113946812e-05,
1896
+ "loss": 0.3927,
1897
+ "step": 236
1898
+ },
1899
+ {
1900
+ "epoch": 2.02,
1901
+ "eval_loss": 0.3591071665287018,
1902
+ "eval_runtime": 3.1142,
1903
+ "eval_samples_per_second": 6.422,
1904
+ "eval_steps_per_second": 3.211,
1905
+ "step": 236
1906
+ },
1907
+ {
1908
+ "epoch": 2.01,
1909
+ "learning_rate": 8.151384387826313e-05,
1910
+ "loss": 0.1859,
1911
+ "step": 237
1912
+ },
1913
+ {
1914
+ "epoch": 2.02,
1915
+ "learning_rate": 8.02552161597133e-05,
1916
+ "loss": 0.1292,
1917
+ "step": 238
1918
+ },
1919
+ {
1920
+ "epoch": 2.03,
1921
+ "learning_rate": 7.899983493071507e-05,
1922
+ "loss": 0.1601,
1923
+ "step": 239
1924
+ },
1925
+ {
1926
+ "epoch": 2.03,
1927
+ "learning_rate": 7.774790660436858e-05,
1928
+ "loss": 0.2169,
1929
+ "step": 240
1930
+ },
1931
+ {
1932
+ "epoch": 2.03,
1933
+ "eval_loss": 0.36295366287231445,
1934
+ "eval_runtime": 3.1096,
1935
+ "eval_samples_per_second": 6.432,
1936
+ "eval_steps_per_second": 3.216,
1937
+ "step": 240
1938
+ },
1939
+ {
1940
+ "epoch": 2.04,
1941
+ "learning_rate": 7.649963702603849e-05,
1942
+ "loss": 0.1255,
1943
+ "step": 241
1944
+ },
1945
+ {
1946
+ "epoch": 2.05,
1947
+ "learning_rate": 7.525523143950859e-05,
1948
+ "loss": 0.1482,
1949
+ "step": 242
1950
+ },
1951
+ {
1952
+ "epoch": 2.06,
1953
+ "learning_rate": 7.401489445323473e-05,
1954
+ "loss": 0.1793,
1955
+ "step": 243
1956
+ },
1957
+ {
1958
+ "epoch": 2.07,
1959
+ "learning_rate": 7.27788300067029e-05,
1960
+ "loss": 0.1822,
1961
+ "step": 244
1962
+ },
1963
+ {
1964
+ "epoch": 2.07,
1965
+ "eval_loss": 0.3715473711490631,
1966
+ "eval_runtime": 3.1084,
1967
+ "eval_samples_per_second": 6.434,
1968
+ "eval_steps_per_second": 3.217,
1969
+ "step": 244
1970
+ },
1971
+ {
1972
+ "epoch": 2.08,
1973
+ "learning_rate": 7.154724133689677e-05,
1974
+ "loss": 0.205,
1975
+ "step": 245
1976
+ },
1977
+ {
1978
+ "epoch": 2.09,
1979
+ "learning_rate": 7.032033094488095e-05,
1980
+ "loss": 0.1724,
1981
+ "step": 246
1982
+ },
1983
+ {
1984
+ "epoch": 2.1,
1985
+ "learning_rate": 6.909830056250527e-05,
1986
+ "loss": 0.167,
1987
+ "step": 247
1988
+ },
1989
+ {
1990
+ "epoch": 2.1,
1991
+ "learning_rate": 6.788135111923545e-05,
1992
+ "loss": 0.2968,
1993
+ "step": 248
1994
+ },
1995
+ {
1996
+ "epoch": 2.1,
1997
+ "eval_loss": 0.379179447889328,
1998
+ "eval_runtime": 3.1105,
1999
+ "eval_samples_per_second": 6.43,
2000
+ "eval_steps_per_second": 3.215,
2001
+ "step": 248
2002
+ },
2003
+ {
2004
+ "epoch": 2.11,
2005
+ "learning_rate": 6.666968270911584e-05,
2006
+ "loss": 0.1403,
2007
+ "step": 249
2008
+ },
2009
+ {
2010
+ "epoch": 2.12,
2011
+ "learning_rate": 6.546349455786926e-05,
2012
+ "loss": 0.1491,
2013
+ "step": 250
2014
+ },
2015
+ {
2016
+ "epoch": 2.13,
2017
+ "learning_rate": 6.426298499013994e-05,
2018
+ "loss": 0.2384,
2019
+ "step": 251
2020
+ },
2021
+ {
2022
+ "epoch": 2.14,
2023
+ "learning_rate": 6.306835139688438e-05,
2024
+ "loss": 0.2022,
2025
+ "step": 252
2026
+ },
2027
+ {
2028
+ "epoch": 2.14,
2029
+ "eval_loss": 0.3767882287502289,
2030
+ "eval_runtime": 3.1079,
2031
+ "eval_samples_per_second": 6.435,
2032
+ "eval_steps_per_second": 3.218,
2033
+ "step": 252
2034
+ },
2035
+ {
2036
+ "epoch": 2.15,
2037
+ "learning_rate": 6.187979020291583e-05,
2038
+ "loss": 0.1408,
2039
+ "step": 253
2040
+ },
2041
+ {
2042
+ "epoch": 2.16,
2043
+ "learning_rate": 6.069749683460765e-05,
2044
+ "loss": 0.1376,
2045
+ "step": 254
2046
+ },
2047
+ {
2048
+ "epoch": 2.16,
2049
+ "learning_rate": 5.952166568776062e-05,
2050
+ "loss": 0.175,
2051
+ "step": 255
2052
+ },
2053
+ {
2054
+ "epoch": 2.17,
2055
+ "learning_rate": 5.835249009564012e-05,
2056
+ "loss": 0.1384,
2057
+ "step": 256
2058
+ },
2059
+ {
2060
+ "epoch": 2.17,
2061
+ "eval_loss": 0.37171897292137146,
2062
+ "eval_runtime": 3.1106,
2063
+ "eval_samples_per_second": 6.43,
2064
+ "eval_steps_per_second": 3.215,
2065
+ "step": 256
2066
+ },
2067
+ {
2068
+ "epoch": 2.18,
2069
+ "learning_rate": 5.7190162297187475e-05,
2070
+ "loss": 0.1422,
2071
+ "step": 257
2072
+ },
2073
+ {
2074
+ "epoch": 2.19,
2075
+ "learning_rate": 5.60348734054118e-05,
2076
+ "loss": 0.1683,
2077
+ "step": 258
2078
+ },
2079
+ {
2080
+ "epoch": 2.2,
2081
+ "learning_rate": 5.488681337596653e-05,
2082
+ "loss": 0.2688,
2083
+ "step": 259
2084
+ },
2085
+ {
2086
+ "epoch": 2.21,
2087
+ "learning_rate": 5.37461709759165e-05,
2088
+ "loss": 0.2045,
2089
+ "step": 260
2090
+ },
2091
+ {
2092
+ "epoch": 2.21,
2093
+ "eval_loss": 0.37158870697021484,
2094
+ "eval_runtime": 3.1106,
2095
+ "eval_samples_per_second": 6.43,
2096
+ "eval_steps_per_second": 3.215,
2097
+ "step": 260
2098
+ },
2099
+ {
2100
+ "epoch": 2.22,
2101
+ "learning_rate": 5.261313375270014e-05,
2102
+ "loss": 0.2776,
2103
+ "step": 261
2104
+ },
2105
+ {
2106
+ "epoch": 2.22,
2107
+ "learning_rate": 5.148788800329278e-05,
2108
+ "loss": 0.131,
2109
+ "step": 262
2110
+ },
2111
+ {
2112
+ "epoch": 2.23,
2113
+ "learning_rate": 5.0370618743575026e-05,
2114
+ "loss": 0.2729,
2115
+ "step": 263
2116
+ },
2117
+ {
2118
+ "epoch": 2.24,
2119
+ "learning_rate": 4.92615096779118e-05,
2120
+ "loss": 0.2492,
2121
+ "step": 264
2122
+ },
2123
+ {
2124
+ "epoch": 2.24,
2125
+ "eval_loss": 0.37324967980384827,
2126
+ "eval_runtime": 3.1091,
2127
+ "eval_samples_per_second": 6.433,
2128
+ "eval_steps_per_second": 3.216,
2129
+ "step": 264
2130
+ },
2131
+ {
2132
+ "epoch": 2.25,
2133
+ "learning_rate": 4.8160743168947496e-05,
2134
+ "loss": 0.1436,
2135
+ "step": 265
2136
+ },
2137
+ {
2138
+ "epoch": 2.26,
2139
+ "learning_rate": 4.706850020762126e-05,
2140
+ "loss": 0.1558,
2141
+ "step": 266
2142
+ },
2143
+ {
2144
+ "epoch": 2.27,
2145
+ "learning_rate": 4.5984960383408005e-05,
2146
+ "loss": 0.1629,
2147
+ "step": 267
2148
+ },
2149
+ {
2150
+ "epoch": 2.28,
2151
+ "learning_rate": 4.491030185478976e-05,
2152
+ "loss": 0.1719,
2153
+ "step": 268
2154
+ },
2155
+ {
2156
+ "epoch": 2.28,
2157
+ "eval_loss": 0.37554189562797546,
2158
+ "eval_runtime": 3.1081,
2159
+ "eval_samples_per_second": 6.435,
2160
+ "eval_steps_per_second": 3.217,
2161
+ "step": 268
2162
+ },
2163
+ {
2164
+ "epoch": 2.29,
2165
+ "learning_rate": 4.384470131996252e-05,
2166
+ "loss": 0.2066,
2167
+ "step": 269
2168
+ },
2169
+ {
2170
+ "epoch": 2.29,
2171
+ "learning_rate": 4.278833398778306e-05,
2172
+ "loss": 0.1934,
2173
+ "step": 270
2174
+ },
2175
+ {
2176
+ "epoch": 2.3,
2177
+ "learning_rate": 4.174137354896039e-05,
2178
+ "loss": 0.146,
2179
+ "step": 271
2180
+ },
2181
+ {
2182
+ "epoch": 2.31,
2183
+ "learning_rate": 4.0703992147497425e-05,
2184
+ "loss": 0.1684,
2185
+ "step": 272
2186
+ },
2187
+ {
2188
+ "epoch": 2.31,
2189
+ "eval_loss": 0.37683507800102234,
2190
+ "eval_runtime": 3.1132,
2191
+ "eval_samples_per_second": 6.424,
2192
+ "eval_steps_per_second": 3.212,
2193
+ "step": 272
2194
+ },
2195
+ {
2196
+ "epoch": 2.32,
2197
+ "learning_rate": 3.9676360352386356e-05,
2198
+ "loss": 0.1512,
2199
+ "step": 273
2200
+ },
2201
+ {
2202
+ "epoch": 2.33,
2203
+ "learning_rate": 3.8658647129563364e-05,
2204
+ "loss": 0.2222,
2205
+ "step": 274
2206
+ },
2207
+ {
2208
+ "epoch": 2.34,
2209
+ "learning_rate": 3.7651019814126654e-05,
2210
+ "loss": 0.1904,
2211
+ "step": 275
2212
+ },
2213
+ {
2214
+ "epoch": 2.35,
2215
+ "learning_rate": 3.665364408282305e-05,
2216
+ "loss": 0.1927,
2217
+ "step": 276
2218
+ },
2219
+ {
2220
+ "epoch": 2.35,
2221
+ "eval_loss": 0.37731653451919556,
2222
+ "eval_runtime": 3.1196,
2223
+ "eval_samples_per_second": 6.411,
2224
+ "eval_steps_per_second": 3.206,
2225
+ "step": 276
2226
+ },
2227
+ {
2228
+ "epoch": 2.35,
2229
+ "learning_rate": 3.566668392680662e-05,
2230
+ "loss": 0.1277,
2231
+ "step": 277
2232
+ },
2233
+ {
2234
+ "epoch": 2.36,
2235
+ "learning_rate": 3.469030162467513e-05,
2236
+ "loss": 0.1867,
2237
+ "step": 278
2238
+ },
2239
+ {
2240
+ "epoch": 2.37,
2241
+ "learning_rate": 3.372465771578771e-05,
2242
+ "loss": 0.2013,
2243
+ "step": 279
2244
+ },
2245
+ {
2246
+ "epoch": 2.38,
2247
+ "learning_rate": 3.276991097386831e-05,
2248
+ "loss": 0.218,
2249
+ "step": 280
2250
+ },
2251
+ {
2252
+ "epoch": 2.38,
2253
+ "eval_loss": 0.3782224655151367,
2254
+ "eval_runtime": 3.11,
2255
+ "eval_samples_per_second": 6.431,
2256
+ "eval_steps_per_second": 3.215,
2257
+ "step": 280
2258
+ },
2259
+ {
2260
+ "epoch": 2.39,
2261
+ "learning_rate": 3.1826218380900064e-05,
2262
+ "loss": 0.2087,
2263
+ "step": 281
2264
+ },
2265
+ {
2266
+ "epoch": 2.4,
2267
+ "learning_rate": 3.089373510131354e-05,
2268
+ "loss": 0.2147,
2269
+ "step": 282
2270
+ },
2271
+ {
2272
+ "epoch": 2.41,
2273
+ "learning_rate": 2.9972614456474536e-05,
2274
+ "loss": 0.1804,
2275
+ "step": 283
2276
+ },
2277
+ {
2278
+ "epoch": 2.41,
2279
+ "learning_rate": 2.9063007899474216e-05,
2280
+ "loss": 0.1984,
2281
+ "step": 284
2282
+ },
2283
+ {
2284
+ "epoch": 2.41,
2285
+ "eval_loss": 0.3790702223777771,
2286
+ "eval_runtime": 3.1101,
2287
+ "eval_samples_per_second": 6.431,
2288
+ "eval_steps_per_second": 3.215,
2289
+ "step": 284
2290
+ },
2291
+ {
2292
+ "epoch": 2.42,
2293
+ "learning_rate": 2.8165064990227252e-05,
2294
+ "loss": 0.2094,
2295
+ "step": 285
2296
+ },
2297
+ {
2298
+ "epoch": 2.43,
2299
+ "learning_rate": 2.7278933370880265e-05,
2300
+ "loss": 0.2664,
2301
+ "step": 286
2302
+ },
2303
+ {
2304
+ "epoch": 2.44,
2305
+ "learning_rate": 2.6404758741536505e-05,
2306
+ "loss": 0.2505,
2307
+ "step": 287
2308
+ },
2309
+ {
2310
+ "epoch": 2.45,
2311
+ "learning_rate": 2.5542684836299313e-05,
2312
+ "loss": 0.1435,
2313
+ "step": 288
2314
+ },
2315
+ {
2316
+ "epoch": 2.45,
2317
+ "eval_loss": 0.37862634658813477,
2318
+ "eval_runtime": 3.11,
2319
+ "eval_samples_per_second": 6.431,
2320
+ "eval_steps_per_second": 3.215,
2321
+ "step": 288
2322
+ },
2323
+ {
2324
+ "epoch": 2.46,
2325
+ "learning_rate": 2.4692853399638917e-05,
2326
+ "loss": 0.2423,
2327
+ "step": 289
2328
+ },
2329
+ {
2330
+ "epoch": 2.47,
2331
+ "learning_rate": 2.3855404163086558e-05,
2332
+ "loss": 0.2061,
2333
+ "step": 290
2334
+ },
2335
+ {
2336
+ "epoch": 2.48,
2337
+ "learning_rate": 2.3030474822259397e-05,
2338
+ "loss": 0.1276,
2339
+ "step": 291
2340
+ },
2341
+ {
2342
+ "epoch": 2.48,
2343
+ "learning_rate": 2.2218201014220263e-05,
2344
+ "loss": 0.1672,
2345
+ "step": 292
2346
+ },
2347
+ {
2348
+ "epoch": 2.48,
2349
+ "eval_loss": 0.378492146730423,
2350
+ "eval_runtime": 3.1099,
2351
+ "eval_samples_per_second": 6.431,
2352
+ "eval_steps_per_second": 3.215,
2353
+ "step": 292
2354
+ },
2355
+ {
2356
+ "epoch": 2.49,
2357
+ "learning_rate": 2.141871629517577e-05,
2358
+ "loss": 0.1699,
2359
+ "step": 293
2360
+ },
2361
+ {
2362
+ "epoch": 2.5,
2363
+ "learning_rate": 2.063215211851678e-05,
2364
+ "loss": 0.1806,
2365
+ "step": 294
2366
+ },
2367
+ {
2368
+ "epoch": 2.51,
2369
+ "learning_rate": 1.985863781320435e-05,
2370
+ "loss": 0.138,
2371
+ "step": 295
2372
+ },
2373
+ {
2374
+ "epoch": 2.52,
2375
+ "learning_rate": 1.9098300562505266e-05,
2376
+ "loss": 0.1819,
2377
+ "step": 296
2378
+ },
2379
+ {
2380
+ "epoch": 2.52,
2381
+ "eval_loss": 0.37836065888404846,
2382
+ "eval_runtime": 3.1101,
2383
+ "eval_samples_per_second": 6.431,
2384
+ "eval_steps_per_second": 3.215,
2385
+ "step": 296
2386
+ },
2387
+ {
2388
+ "epoch": 2.53,
2389
+ "learning_rate": 1.835126538308013e-05,
2390
+ "loss": 0.1794,
2391
+ "step": 297
2392
+ },
2393
+ {
2394
+ "epoch": 2.54,
2395
+ "learning_rate": 1.7617655104427832e-05,
2396
+ "loss": 0.18,
2397
+ "step": 298
2398
+ },
2399
+ {
2400
+ "epoch": 2.54,
2401
+ "learning_rate": 1.689759034868961e-05,
2402
+ "loss": 0.241,
2403
+ "step": 299
2404
+ },
2405
+ {
2406
+ "epoch": 2.55,
2407
+ "learning_rate": 1.619118951081594e-05,
2408
+ "loss": 0.1647,
2409
+ "step": 300
2410
+ },
2411
+ {
2412
+ "epoch": 2.55,
2413
+ "eval_loss": 0.37813514471054077,
2414
+ "eval_runtime": 3.1084,
2415
+ "eval_samples_per_second": 6.434,
2416
+ "eval_steps_per_second": 3.217,
2417
+ "step": 300
2418
+ },
2419
+ {
2420
+ "epoch": 2.56,
2421
+ "learning_rate": 1.5498568739099906e-05,
2422
+ "loss": 0.2419,
2423
+ "step": 301
2424
+ },
2425
+ {
2426
+ "epoch": 2.57,
2427
+ "learning_rate": 1.481984191607959e-05,
2428
+ "loss": 0.1949,
2429
+ "step": 302
2430
+ },
2431
+ {
2432
+ "epoch": 2.58,
2433
+ "learning_rate": 1.415512063981339e-05,
2434
+ "loss": 0.144,
2435
+ "step": 303
2436
+ },
2437
+ {
2438
+ "epoch": 2.59,
2439
+ "learning_rate": 1.350451420553065e-05,
2440
+ "loss": 0.1531,
2441
+ "step": 304
2442
+ },
2443
+ {
2444
+ "epoch": 2.59,
2445
+ "eval_loss": 0.3778517246246338,
2446
+ "eval_runtime": 3.1114,
2447
+ "eval_samples_per_second": 6.428,
2448
+ "eval_steps_per_second": 3.214,
2449
+ "step": 304
2450
+ },
2451
+ {
2452
+ "epoch": 2.6,
2453
+ "learning_rate": 1.286812958766106e-05,
2454
+ "loss": 0.2153,
2455
+ "step": 305
2456
+ },
2457
+ {
2458
+ "epoch": 2.6,
2459
+ "learning_rate": 1.224607142224572e-05,
2460
+ "loss": 0.1835,
2461
+ "step": 306
2462
+ },
2463
+ {
2464
+ "epoch": 2.61,
2465
+ "learning_rate": 1.1638441989732473e-05,
2466
+ "loss": 0.2181,
2467
+ "step": 307
2468
+ },
2469
+ {
2470
+ "epoch": 2.62,
2471
+ "learning_rate": 1.1045341198158831e-05,
2472
+ "loss": 0.2988,
2473
+ "step": 308
2474
+ },
2475
+ {
2476
+ "epoch": 2.62,
2477
+ "eval_loss": 0.37788671255111694,
2478
+ "eval_runtime": 3.1084,
2479
+ "eval_samples_per_second": 6.434,
2480
+ "eval_steps_per_second": 3.217,
2481
+ "step": 308
2482
+ },
2483
+ {
2484
+ "epoch": 2.63,
2485
+ "learning_rate": 1.0466866566724698e-05,
2486
+ "loss": 0.214,
2487
+ "step": 309
2488
+ },
2489
+ {
2490
+ "epoch": 2.64,
2491
+ "learning_rate": 9.903113209758096e-06,
2492
+ "loss": 0.1431,
2493
+ "step": 310
2494
+ },
2495
+ {
2496
+ "epoch": 2.65,
2497
+ "learning_rate": 9.354173821076184e-06,
2498
+ "loss": 0.2165,
2499
+ "step": 311
2500
+ },
2501
+ {
2502
+ "epoch": 2.66,
2503
+ "learning_rate": 8.820138658744304e-06,
2504
+ "loss": 0.153,
2505
+ "step": 312
2506
+ },
2507
+ {
2508
+ "epoch": 2.66,
2509
+ "eval_loss": 0.37841156125068665,
2510
+ "eval_runtime": 3.1062,
2511
+ "eval_samples_per_second": 6.439,
2512
+ "eval_steps_per_second": 3.219,
2513
+ "step": 312
2514
+ },
2515
+ {
2516
+ "epoch": 2.67,
2517
+ "learning_rate": 8.301095530235492e-06,
2518
+ "loss": 0.1963,
2519
+ "step": 313
2520
+ },
2521
+ {
2522
+ "epoch": 2.67,
2523
+ "learning_rate": 7.797129777992952e-06,
2524
+ "loss": 0.1444,
2525
+ "step": 314
2526
+ },
2527
+ {
2528
+ "epoch": 2.68,
2529
+ "learning_rate": 7.308324265397836e-06,
2530
+ "loss": 0.2277,
2531
+ "step": 315
2532
+ },
2533
+ {
2534
+ "epoch": 2.69,
2535
+ "learning_rate": 6.834759363144594e-06,
2536
+ "loss": 0.1877,
2537
+ "step": 316
2538
+ },
2539
+ {
2540
+ "epoch": 2.69,
2541
+ "eval_loss": 0.3786165714263916,
2542
+ "eval_runtime": 3.1085,
2543
+ "eval_samples_per_second": 6.434,
2544
+ "eval_steps_per_second": 3.217,
2545
+ "step": 316
2546
+ },
2547
+ {
2548
+ "epoch": 2.7,
2549
+ "learning_rate": 6.37651293602628e-06,
2550
+ "loss": 0.2029,
2551
+ "step": 317
2552
+ },
2553
+ {
2554
+ "epoch": 2.71,
2555
+ "learning_rate": 5.933660330131752e-06,
2556
+ "loss": 0.2068,
2557
+ "step": 318
2558
+ },
2559
+ {
2560
+ "epoch": 2.72,
2561
+ "learning_rate": 5.506274360457086e-06,
2562
+ "loss": 0.2556,
2563
+ "step": 319
2564
+ },
2565
+ {
2566
+ "epoch": 2.73,
2567
+ "learning_rate": 5.094425298933136e-06,
2568
+ "loss": 0.1873,
2569
+ "step": 320
2570
+ },
2571
+ {
2572
+ "epoch": 2.73,
2573
+ "eval_loss": 0.378797322511673,
2574
+ "eval_runtime": 3.108,
2575
+ "eval_samples_per_second": 6.435,
2576
+ "eval_steps_per_second": 3.217,
2577
+ "step": 320
2578
+ },
2579
+ {
2580
+ "epoch": 2.73,
2581
+ "learning_rate": 4.698180862871282e-06,
2582
+ "loss": 0.1367,
2583
+ "step": 321
2584
+ },
2585
+ {
2586
+ "epoch": 2.74,
2587
+ "learning_rate": 4.317606203829127e-06,
2588
+ "loss": 0.1721,
2589
+ "step": 322
2590
+ },
2591
+ {
2592
+ "epoch": 2.75,
2593
+ "learning_rate": 3.952763896898071e-06,
2594
+ "loss": 0.1383,
2595
+ "step": 323
2596
+ },
2597
+ {
2598
+ "epoch": 2.76,
2599
+ "learning_rate": 3.6037139304146762e-06,
2600
+ "loss": 0.1722,
2601
+ "step": 324
2602
+ },
2603
+ {
2604
+ "epoch": 2.76,
2605
+ "eval_loss": 0.3789643943309784,
2606
+ "eval_runtime": 3.1067,
2607
+ "eval_samples_per_second": 6.438,
2608
+ "eval_steps_per_second": 3.219,
2609
+ "step": 324
2610
+ },
2611
+ {
2612
+ "epoch": 2.77,
2613
+ "learning_rate": 3.270513696097055e-06,
2614
+ "loss": 0.1906,
2615
+ "step": 325
2616
+ },
2617
+ {
2618
+ "epoch": 2.78,
2619
+ "learning_rate": 2.9532179796085356e-06,
2620
+ "loss": 0.207,
2621
+ "step": 326
2622
+ },
2623
+ {
2624
+ "epoch": 2.79,
2625
+ "learning_rate": 2.651878951549536e-06,
2626
+ "loss": 0.2667,
2627
+ "step": 327
2628
+ },
2629
+ {
2630
+ "epoch": 2.79,
2631
+ "learning_rate": 2.36654615887959e-06,
2632
+ "loss": 0.2007,
2633
+ "step": 328
2634
+ },
2635
+ {
2636
+ "epoch": 2.79,
2637
+ "eval_loss": 0.3788919746875763,
2638
+ "eval_runtime": 3.1077,
2639
+ "eval_samples_per_second": 6.436,
2640
+ "eval_steps_per_second": 3.218,
2641
+ "step": 328
2642
+ },
2643
+ {
2644
+ "epoch": 2.8,
2645
+ "learning_rate": 2.0972665167707126e-06,
2646
+ "loss": 0.2,
2647
+ "step": 329
2648
+ },
2649
+ {
2650
+ "epoch": 2.81,
2651
+ "learning_rate": 1.8440843008934561e-06,
2652
+ "loss": 0.169,
2653
+ "step": 330
2654
+ },
2655
+ {
2656
+ "epoch": 2.82,
2657
+ "learning_rate": 1.6070411401370334e-06,
2658
+ "loss": 0.1048,
2659
+ "step": 331
2660
+ },
2661
+ {
2662
+ "epoch": 2.83,
2663
+ "learning_rate": 1.386176009764506e-06,
2664
+ "loss": 0.266,
2665
+ "step": 332
2666
+ },
2667
+ {
2668
+ "epoch": 2.83,
2669
+ "eval_loss": 0.37898656725883484,
2670
+ "eval_runtime": 3.1077,
2671
+ "eval_samples_per_second": 6.436,
2672
+ "eval_steps_per_second": 3.218,
2673
+ "step": 332
2674
+ },
2675
+ {
2676
+ "epoch": 2.84,
2677
+ "learning_rate": 1.1815252250044318e-06,
2678
+ "loss": 0.1435,
2679
+ "step": 333
2680
+ },
2681
+ {
2682
+ "epoch": 2.85,
2683
+ "learning_rate": 9.931224350798185e-07,
2684
+ "loss": 0.2048,
2685
+ "step": 334
2686
+ },
2687
+ {
2688
+ "epoch": 2.86,
2689
+ "learning_rate": 8.209986176753948e-07,
2690
+ "loss": 0.1466,
2691
+ "step": 335
2692
+ },
2693
+ {
2694
+ "epoch": 2.86,
2695
+ "learning_rate": 6.651820738441949e-07,
2696
+ "loss": 0.2055,
2697
+ "step": 336
2698
+ },
2699
+ {
2700
+ "epoch": 2.86,
2701
+ "eval_loss": 0.3791235387325287,
2702
+ "eval_runtime": 3.1193,
2703
+ "eval_samples_per_second": 6.412,
2704
+ "eval_steps_per_second": 3.206,
2705
+ "step": 336
2706
+ },
2707
+ {
2708
+ "epoch": 2.87,
2709
+ "learning_rate": 5.256984233542595e-07,
2710
+ "loss": 0.1953,
2711
+ "step": 337
2712
+ },
2713
+ {
2714
+ "epoch": 2.88,
2715
+ "learning_rate": 4.025706004760932e-07,
2716
+ "loss": 0.1906,
2717
+ "step": 338
2718
+ },
2719
+ {
2720
+ "epoch": 2.89,
2721
+ "learning_rate": 2.9581885021181533e-07,
2722
+ "loss": 0.2208,
2723
+ "step": 339
2724
+ },
2725
+ {
2726
+ "epoch": 2.9,
2727
+ "learning_rate": 2.054607249663665e-07,
2728
+ "loss": 0.2702,
2729
+ "step": 340
2730
+ },
2731
+ {
2732
+ "epoch": 2.9,
2733
+ "eval_loss": 0.3788047134876251,
2734
+ "eval_runtime": 3.1079,
2735
+ "eval_samples_per_second": 6.435,
2736
+ "eval_steps_per_second": 3.218,
2737
+ "step": 340
2738
+ },
2739
+ {
2740
+ "epoch": 2.91,
2741
+ "learning_rate": 1.3151108166156168e-07,
2742
+ "loss": 0.2008,
2743
+ "step": 341
2744
+ },
2745
+ {
2746
+ "epoch": 2.92,
2747
+ "learning_rate": 7.39820792932333e-08,
2748
+ "loss": 0.1559,
2749
+ "step": 342
2750
+ },
2751
+ {
2752
+ "epoch": 2.92,
2753
+ "learning_rate": 3.288317693201926e-08,
2754
+ "loss": 0.2126,
2755
+ "step": 343
2756
+ },
2757
+ {
2758
+ "epoch": 2.93,
2759
+ "learning_rate": 8.221132168073631e-09,
2760
+ "loss": 0.1416,
2761
+ "step": 344
2762
+ },
2763
+ {
2764
+ "epoch": 2.93,
2765
+ "eval_loss": 0.3789215087890625,
2766
+ "eval_runtime": 3.1064,
2767
+ "eval_samples_per_second": 6.438,
2768
+ "eval_steps_per_second": 3.219,
2769
+ "step": 344
2770
+ },
2771
+ {
2772
+ "epoch": 2.94,
2773
+ "learning_rate": 0.0,
2774
+ "loss": 0.1994,
2775
+ "step": 345
2776
+ }
2777
+ ],
2778
+ "logging_steps": 1,
2779
+ "max_steps": 345,
2780
+ "num_train_epochs": 3,
2781
+ "save_steps": 500,
2782
+ "total_flos": 1.757605931903877e+17,
2783
+ "trial_name": null,
2784
+ "trial_params": null
2785
+ }
checkpoint-345/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e119793adec89e061da62a7de24a1a71fb0682ce4c3e3f95d85eab584ad38284
3
+ size 4539
config.json ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "codellama/CodeLlama-7b-hf",
3
+ "architectures": [
4
+ "LlamaForCausalLM"
5
+ ],
6
+ "attention_bias": false,
7
+ "bos_token_id": 1,
8
+ "eos_token_id": 2,
9
+ "hidden_act": "silu",
10
+ "hidden_size": 4096,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 11008,
13
+ "max_position_embeddings": 16384,
14
+ "model_type": "llama",
15
+ "num_attention_heads": 32,
16
+ "num_hidden_layers": 32,
17
+ "num_key_value_heads": 32,
18
+ "pretraining_tp": 1,
19
+ "quantization_config": {
20
+ "bnb_4bit_compute_dtype": "bfloat16",
21
+ "bnb_4bit_quant_type": "nf4",
22
+ "bnb_4bit_use_double_quant": true,
23
+ "llm_int8_enable_fp32_cpu_offload": false,
24
+ "llm_int8_has_fp16_weight": false,
25
+ "llm_int8_skip_modules": null,
26
+ "llm_int8_threshold": 6.0,
27
+ "load_in_4bit": true,
28
+ "load_in_8bit": false,
29
+ "quant_method": "bitsandbytes"
30
+ },
31
+ "rms_norm_eps": 1e-05,
32
+ "rope_scaling": null,
33
+ "rope_theta": 1000000,
34
+ "tie_word_embeddings": false,
35
+ "torch_dtype": "bfloat16",
36
+ "transformers_version": "4.34.1",
37
+ "use_cache": false,
38
+ "vocab_size": 32016
39
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "</s>",
17
+ "unk_token": {
18
+ "content": "<unk>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ }
24
+ }
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:45ccb9c8b6b561889acea59191d66986d314e7cbd6a78abc6e49b139ca91c1e6
3
+ size 500058
tokenizer_config.json ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "added_tokens_decoder": {
5
+ "0": {
6
+ "content": "<unk>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "1": {
14
+ "content": "<s>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "2": {
22
+ "content": "</s>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ }
29
+ },
30
+ "bos_token": "<s>",
31
+ "clean_up_tokenization_spaces": false,
32
+ "eos_token": "</s>",
33
+ "legacy": true,
34
+ "model_max_length": 1000000000000000019884624838656,
35
+ "pad_token": "</s>",
36
+ "sp_model_kwargs": {},
37
+ "spaces_between_special_tokens": false,
38
+ "tokenizer_class": "LlamaTokenizer",
39
+ "trust_remote_code": false,
40
+ "unk_token": "<unk>",
41
+ "use_default_system_prompt": true,
42
+ "use_fast": true
43
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e119793adec89e061da62a7de24a1a71fb0682ce4c3e3f95d85eab584ad38284
3
+ size 4539