File size: 1,693 Bytes
46ebed4
 
 
 
 
 
 
 
a157fe8
79041b7
400ec51
 
a3f7900
400ec51
a157fe8
400b7da
a157fe8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
400ec51
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
---
tags:
- image-classification
- timm
library_name: timm
license: apache-2.0
---
# Model card for kat_tiny_patch16_224

KAT model trained on ImageNet-1k (1 million images, 1,000 classes) at resolution 224x224. It was first introduced in the paper [Kolmogorov–Arnold Transformer](https://huggingface.co/papers/2409.10594).

## Model description
KAT is a model that replaces channel mixer in transfomrers with Group Rational Kolmogorov–Arnold Network (GR-KAN).

## Usage
The model definition is at https://github.com/Adamdad/kat, `katransformer.py`. 

```python
from urllib.request import urlopen
from PIL import Image
import timm
import torch
import katransformer

img = Image.open(urlopen(
    'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))

# Move model to CUDA
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

model = timm.create_model('hf_hub:adamdad/kat_tiny_patch16_224', pretrained=True)
model = model.to(device)
model = model.eval()



# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)

output = model(transforms(img).unsqueeze(0).to(device))  # unsqueeze single image into batch of 1

top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5)
print(top5_probabilities)
print(top5_class_indices)

```

## Bibtex
```bibtex
@misc{yang2024compositional,
    title={Kolmogorov–Arnold Transformer},
    author={Xingyi Yang and Xinchao Wang},
    year={2024},
    eprint={XXXX},
    archivePrefix={arXiv},
    primaryClass={cs.CV}
}
```