from transformers import CLIPModel, CLIPProcessor from typing import Dict, List, Any from PIL import Image from transformers import pipeline import requests import torch class EndpointHandler(): def __init__(self, path=""): """ path: """ self.device = "cuda" if torch.cuda.is_available() else "cpu" self.processor = CLIPProcessor.from_pretrained(path) self.model = CLIPModel.from_pretrained(path).to(self.device) def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]: """ data args: inputs (:obj: `str` | `PIL.Image` | `np.array`) kwargs Return: A :obj:`list` | `dict`: will be serialized and returned """ result = {} inputs = data.pop("inputs", data) image_url = inputs['image_url'] image = Image.open(requests.get(image_url, stream=True).raw).convert('RGB') processed_image = self.processor(images=image, return_tensors="pt").to(self.device) output = self.model.get_image_features(processed_image["pixel_values"])[0].tolist() result["embedding"] = output return result