--- base_model: stabilityai/stable-diffusion-xl-base-1.0 library_name: diffusers license: openrail++ instance_prompt: a photo of bakso widget: - text: A photo of bakso in a bowl output: url: image_0.png - text: A photo of bakso in a bowl output: url: image_1.png - text: A photo of bakso in a bowl output: url: image_2.png - text: A photo of bakso in a bowl output: url: image_3.png tags: - text-to-image - text-to-image - diffusers-training - diffusers - lora - template:sd-lora - stable-diffusion-xl - stable-diffusion-xl-diffusers --- # SDXL LoRA DreamBooth - adhisetiawan/sdxl-base-1.0-indonesian-food-dreambooth-lora ## Model description These are adhisetiawan/sdxl-base-1.0-indonesian-food-dreambooth-lora LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. The weights were trained using [DreamBooth](https://dreambooth.github.io/). LoRA for the text encoder was enabled: True. Special VAE used for training: madebyollin/sdxl-vae-fp16-fix. ## Trigger words You should use a photo of bakso to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](adhisetiawan/sdxl-base-1.0-indonesian-food-dreambooth-lora/tree/main) them in the Files & versions tab. ## Intended uses & limitations #### How to use ```python import torch from diffusers import DiffusionPipeline # Load Stable Diffusion XL Base1.0 pipeline = DiffusionPipeline.from_pretrained( "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16, variant="fp16", use_safetensors=True ).to("cuda") # Optional CPU offloading to save some GPU Memory pipeline.enable_model_cpu_offload() # Loading Trained DreamBooth LoRA Weights pipeline.load_lora_weights("adhisetiawan/sdxl-base-1.0-indonesian-food-dreambooth-lora") images = pipeline( "a delicous takoyaki in a plate", num_images_per_prompt=4, guidance_scale=8 ) for i in range(len(images.images)): display(images.images[i]) ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training details [TODO: describe the data used to train the model]